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Abstract

Recently, the equivariance of models with respect to a group action has become an important
topic of research in machine learning. Analysis of the built-in equivariance of existing neural
network architectures, as well as the study of methods for building model architectures that
explicitly “bake in” equivariance, have become significant research areas in their own right.
However, imbuing an architecture with a specific group equivariance imposes a strong prior
on the types of data transformations that the model expects to see. While strictly-equivariant
models enforce symmetries, such as those due to rotations or translations, real-world data
does not always conform to such strict equivariances, be it due to noise in the data or
underlying physical laws that encode only approximate or partial symmetries. In such
cases, the prior of strict equivariance can actually prove too strong and cause models to
underperform on real-world data. Therefore, in this work we study a closely related topic,
that of almost equivariance. We provide a definition of almost equivariance that differs
from those extant in the current literature and give a practical method for encoding almost
equivariance in models by appealing to the Lie algebra of a Lie group. Specifically, we define
Lie algebra convolutions and demonstrate that they offer several benefits over Lie group
convolutions, including being well-defined for non-compact Lie groups having non-surjective
exponential map. From there, we pivot to the realm of theory and demonstrate connections
between the notions of equivariance and isometry and those of almost equivariance and
almost isometry. We prove two existence theorems, one showing the existence of almost
isometries within bounded distance of isometries of a general manifold, and another showing
the converse for Hilbert spaces. We then extend these theorems to prove the existence
of almost equivariant manifold embeddings within bounded distance of fully equivariant
embedding functions, subject to certain constraints on the group action and the function
class. Finally, we demonstrate the validity of our approach by benchmarking against datasets
in fully equivariant and almost equivariant settings.

1 Introduction

The past few years have shown a surge in interest in equivariant model architectures, those that explicitly
impose symmetry with respect to a particular group acting on the model inputs. While data augmentation
strategies have been proposed to make generic models exhibit greater symmetry without the need for
equivariant model architectures, much work has demonstrated that this is an inefficient approach at best
(Gerken et al., 2022b; Lafarge et al., 2020; Wang et al., 2022b). As such, developing methods for building
neural network layers that are equivariant to general group actions is of great importance.

More recently, almost equivariance, also referred to variously as approximate, soft, or partial equivariance, has
become a rich topic of study. The idea is that the symmetry constraints imposed by full equivariance are
not always completely conformed to in real-world systems. For example, the introduction of external forces
and certain boundary conditions into models of turbulence and fluid flow break many theoretical symmetry
constraints. Accurately modeling real-world physical systems therefore requires building model architectures
that have a built-in notion of symmetry but that are not so constrained by it as to be incapable of fully
modeling the underlying system dynamics.
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2 Related Work

2.1 Strict Equivariance

Much of the work in developing strictly-equivariant model architectures began with the seminal paper of
Cohen & Welling (2016), which introduced the group equivariant convolutional neural network layer. Kondor
& Trivedi (2018) generalized this notion of equivariance and convolution to the action of an arbitrary compact
group. Further generalizations followed, with the creation of convolutions (Finzi et al., 2020) and efficient
MLP layers (Finzi et al., 2021a) equivariant to arbitrary Lie groups. Other neural network types have also
been studied through the lens of equivariance, for example, graph neural networks (Satorras et al., 2021),
(Batzner et al., 2022), transformers (Hutchinson et al., 2021a), and graph transformers (Liao & Smidt, 2023).
Cohen et al. (2019) consolidated much of this work into a general framework via which equivariant layers
can be understood as maps between spaces of sections of vector bundles. Similar to our work, Dehmamy
et al. (2021) devised a convolutional layer on the Lie algebra designed to approximate group convolutional
layers. However, their objective was to make the layer as close to equivariant as possible whereas our layer is
designed to be flexible so as to be capable of modelling almost equivariances. Finally, rather than devising a
new equivariant layer type, Gruver et al. (2023) developed a method based on the Lie derivative which can
be used to detect the degree of equivariance learned by an arbitrary model architecture.

2.2 Almost Equivariance

One of the first works on almost equivariance was Finzi et al. (2021b), which introduced the Residual Pathway
Prior . Their idea is to construct a neural network layer, f , that is the sum of two components, A and B,
where A is a strictly equivariant layer and B is a more flexible, non-equivariant layer

f(x) = A(x) +B(x)

Furthermore, they place priors on the sizes of A and B such that a model trained using maximum a posteriori
estimation is incentivized to favor the strict equivariance of A while relying on B only to explain the difference
between f and the fully symmetric prediction function determined by A. The priors on A and B can be
defined so as to weight the layer towards favoring the use of A.

The approach taken in Wang et al. (2022a) is somewhat different. They give an explicit definition of
approximate equivariance, then model it via a relaxed group convolutional layer wherein the single kernel, Ψ,
of a strictly equivariant group convolutional layer is replaced with a set of kernels, {Ψl}L

l=1. This introduces
a specific, symmetry-breaking dependence on a pair of group elements, (g, h), i.e.

Ψ(g, h) =
L∑

l=1
wl(h)Ψl(g−1h)

Their full relaxed group convolution operation is then defined as follows

[f⋆G
Ψ](g) =

∑
h∈G

f(h)Ψ(g, h)

=
∑
h∈G

L∑
l=1

f(h)wl(h)Ψl(g−1h)

Romero & Lohit (2022) take an altogether different approach. They introduce a model, which they call
the Partial G-CNN, and show how to train it to learn layer-wise levels of equivariance from data. A key
differentiator in their method is the learning of a probability distribution over group elements at each group
convolutional layer, allowing them to sample group elements during group convolutions.

More specifically, they define a G-partially equivariant map, ϕ, as one that satisfies

ϕ(g · x) = g · ϕ(x) ∀x ∈ X, g ∈ S
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where S is a subset, but not necessarily a subgroup, of G. They then define a partial group convolution from
f : S1 → R to h : S2 → R as

h(u) = (ψ ⋆ f)(u) =
∫

S1
p(u)ψ(v−1u)f(v) dµG(v); u ∈ S2, v ∈ S1

where p(u) is a probability distribution on G and µG is the Haar measure.

In order to learn the convolution for one-dimensional, continuous groups, they parameterize p(u) by applying
a reparameterization trick to the Lie algebra of G. This allows them to define a distribution which is uniform
over a connected set of group elements, [u−1, . . . , e, . . . , u], but zero otherwise. Thus they define a uniform
distribution, U(u · [−1, 1]), with learnable u ⊂ g and map it to the group via the exponential map, exp : g → G.

van der Ouderaa et al. (2022) relax equivariance constraints by defining a non-stationary group convolution

h(u) = (kθ ⋆ f)(u) =
∫

G

kθ(v−1(u), v)f(v) dµ(v)

They parameterize the kernel by choosing a basis for the Lie algebra, g, of G and defining elements, g ∈ G,
as exponential maps of Lie algebra elements, i.e.

g = exp(a) = exp
(

n∑
i=1

αiAi

)
where a ∈ g and {Ai} is a basis for g. In particular, they achieve fine-grained control over the kernel
representation by choosing a basis of Random Fourier Features (RFF) for g.

Finally, Petrache & Trivedi (2023) provide a take on approximate equivariance rooted in statistical learning
theory and provide generalization and error bounds on approximately equivariant architectures.

2.3 Notions of Approximate Equivariance

It’s worthwhile to note that there are multiple notions of approximate, partial, and soft equivariance, only
some of which we explicitly address in this work.

The first type occurs when we only have partially observed data, for example, a single pose of a 3D object
captured in a 2D image or an object occlusion in computer vision. Wang et al. (2023) refer to this as extrinsic
equivariance in that applying a group transformation to an in-distribution data point transforms it to an
out-of-distribution data point. This type of partial equivariance is often addressed via data augmentation.
We do not explicitly test our approach in this setting.

The second type occurs when we have noise in data that breaks equivariance. This is one setting we explicitly
address.

The third type occurs when we have data that naturally exhibits almost equivariance. For example, data
sampled from vector fields and PDEs governing natural physical processes often exhibit this quality. This is
another setting we exxplicitly address.

Finally, there is what Wang et al. (2023) call incorrect equivariance. This occurs when applying a group
transformation to a data point qualitatively and quantitatively changes its label. For example, rotating
the digit 6 by 180 degrees turns it into the digit 9 and vice versa. We do not explicitly address this in our
method, but our model performs competitively on the Rot-MNIST classification task, indicating that it has
the capability of accounting for incorrect equivariances in its modeling.

3 Theory

3.1 Equivariance & Almost Equivariance

In this section, we seek to give a suitable definition of almost equivariance and establish the relationship
between it and full equivariance. In defining almost equivariance of a model with respect to the action of some
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Lie group, G, we seek a definition that offers both theoretical insight as well as practical significance. We start
by addressing the abstract case, in which we define almost equivariance for general functions on a Riemannian
manifold. We then drop to the level of practice and give a method for encoding almost equivariance into a
machine learning model taking inputs on some data manifold.
Definition 3.1 (equivariant function). Let G be a Lie group acting smoothly on smooth Riemannian
manifolds (M, g) and (N,h) via the left actions G × M → M and G × N → N given by (g, x) 7→ g · x.
Furthermore, let f be a mapping of smooth manifolds, f : M → N . Then we say f is equivariant with respect
to the action of G if it commutes with the actions of G on M and N , i.e.

g · f(x) = f(g · x)

Definition 3.2 (ε-almost equivariant function). Now, consider the same setup as in the previous definition.
We say a function f : M → N is ε-almost equivariant if the following is satisfied

d(f(g · x), g · f(x)) < ε

for all g ∈ G and x ∈ M , where d is the distance metric on N . We can think of such a function as commuting
with the actions of G on M and N to within some ε.

This definition is reminiscent of one given in a question posed by Stanislaw Ulam (Ulam, 1960) concerning
the stability of certain “quasi” group homomorphisms. In particular, given a group Γ, a group G equipped
with a distance d, and a δ-homomorphism, µ : Γ → G, satisfying

d(µ(xy), µ(x)µ(y)) < δ

for all x, y ∈ Γ, he asked whether there exists an actual group homorphism that is “close” to µ with respect
to the distance, d. This question spurred research that showed the answer to be in the affirmative in a variety
of cases, given certain restrictions on µ,Γ, and G.

In our case, we seek to address a similar question, that is, whether given an almost equivariant map as defined
above, there exists a fully equivariant map that is “close” to it in the sense of being within some bounded
distance, and vice versa. If such maps do exist, we hope to determine under what conditions on G and M
they can be found.

3.2 Isometries, Isometry Groups, and Almost Isometries

We begin our discussion of the theory underlying almost equivariance by studying the notions of isometry
and almost isometry. Because we often seek to impose in our models equivariance with respect to the action
of the isometry group of a manifold from which data is sampled, we find it worthwhile to study isometries as
a precursor to studying equivariance. An isometry is a mapping of metric spaces that preserves the distance
metric. Some common types of metric spaces for which there exists a natural notion of isometry are normed
spaces, such as Banach spaces, and Riemannian manifolds. In this work, we focus most of our analysis on
Riemannian manifolds, as they are among the most general spaces upon which equivariant models operate
and underlie all of geometric deep learning (Bronstein et al., 2021).
Definition 3.3 (isometry of a Riemannian manifold). Let (M, g) and (M̃, g̃) be Riemannian manifolds,
ε > 0, and φ : M → M̃ a diffeomorphism. Then we say φ is an isometry of M if g = φ∗g̃. In other words,
the metric g̃ can be pulled back by φ to get the metric g.

Next, we give a definition of an ε-almost isometry, which, in close analogy with almost equivariance, is a
mapping of manifolds that preserves the metric on a Riemannian manifold, M , to within some ε.
Definition 3.4 (ε-almost isometry of a Riemannian manifold – local version). Let (M, g) and (M, g̃) be
Riemannian manifolds, φ : M → M a diffeomorphism, and ε > 0. Then we say φ is an ε-almost isometry of
M if

|(g − φ∗g̃)p(v, w)| < ε

for any p ∈ M and any v, w ∈ TpM .
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In other words, ε-almost isometries are maps between the same Riemannian manifold equipped with two
different metrics for which the metric on pairs of vectors, gp(v, w), and the metric on their pushforward by φ,
g̃φ(p)(dφp(v), dφp(w)), differ by at most ε.

Our definition of an ε-almost isometry is local in the sense that it deals with the tangent spaces to points
p, φ(p) of a Riemannian manifold. However, we can naturally extend this definition to a global version that
operates on vector fields. The local and global definitions are related by the following fact: if (M, g) is locally
ε-almost isometric to (M, g̃) via φ, then globally it is at most (ε · Volg(M))-isometric.
Definition 3.5 (E-almost isometry of a Riemannian manifold – global version). Given Riemannian manifolds
(M, g) and (M, g̃) and a local ε-almost isometry, φ : M → M , we say that φ is a global E-almost isometry if
there exists a scalar field, E : M → R, such that for any vector fields X,Y ∈ Γ(TM), we have

|(g − φ∗g̃)(X,Y )| < E

In particular,
∑

p∈M Ep ≤ ε · Volg(M).

It is known that equivariant model architectures are designed to preserve symmetries in data by imposing
equivariance with respect to a Lie group action. Typical examples of Lie groups include the group of
n-dimensional rotations, SO(n), the group of area-preserving transformations, SL(n), and the special unitary
group, SU(n), which has applications to quantum computing and particle physics. Some of these Lie groups
are, in fact, isometry groups of the underlying manifolds from which data are sampled.
Definition 3.6 (Isometry group of a Riemannian manifold). The isometry group of a Riemannian manifold,
M , is the set of isometries φ : M → M where the group operations of multiplication and inversion are given
by function composition and function inversion, respectively. In particular, the composition of two isometries
is an isometry, and the inverse of an isometry is an isometry. We denote the isometry group of M by Iso(M)
and the set of ε-almost isometries of M by Isoε(M).

To give some examples, E(n) = Rn⋊O(n) is the isometry group of Rn, while the Poincaré group, R1,3⋊O(1, 3),
is the isometry group of Minkowski space, which has important applications to special and general relativity.
We often seek to impose equivariance in our models with respect to such isometry groups. Isometry groups of
Riemannian manifolds also satisfy the following deep theorem, due to Myers and Steenrod.
Theorem 3.7 (Myers & Steenrod (1939)). The isometry group of a Riemannian manifold is a Lie group.

Thus, we can apply all the standard theorems of Lie theory to the study of isometry groups. Using basic
facts, we can deduce the following result about equivariance.
Remark 3.8. If f : M → M is an isometry of the Riemannian manifold (M, g) and Iso(M) be abelian, then
Iso(M) acts smoothly on M and f is an equivariant map with respect to this action of Iso(M) on M . To
see why, note that since Iso(M) is abelian, we have by definition that g · f = f · g for all g ∈ Iso(M), which
shows that f is equivariant with respect to the action of Iso(M) on M .

Unfortunately, it is relatively rare for an isometry group of a manifold to be abelian. Furthermore, we
cannot, without some work, consider this theorem in the context of Isoε(M) because the set of ε-almost
isometries of a manifold does not form a group. To see why, note that composing two ε-almost isometries
produces, in general, a 2ε-almost isometry, thus the set of ε-almost isometries of a manifold is not closed
under composition. Still, we can impose the abelian condition on group actions as a stepping stone towards
studying more general group actions, almost isometries, and equivariant functions. Under the assumption of
an abelian Lie group acting on a Riemannian manifold, we prove the following theorem.
Theorem 3.9. Let (M, g) be a Riemannian manifold and suppose its group of isometries, G = Iso(M), is an
abelian Lie group. Let f ∈ Iso(M), and suppose there exists a continuous ε-almost isometry, fε ∈ Isoε(M),
with f ̸= fε, such that

sup
p∈M

d(f(p), fε(p)) < ε

where we abbreviate the above as d(f, fε) on C∞(M,M) and interpret it as an analogue to the supremum
norm on the space of real-valued functions on M , i.e. C∞(M). Then fε is 2ε-almost equivariant with respect
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to the action of G on M . That is, it satisfies

d(g · fε(x), fε(g · x)) < 2ε

for any g ∈ Iso(M) and any x ∈ M .

Proof. By Proposition 3.8, since Iso(M) is abelian, any f ∈ Iso(M) is equivariant to actions of Iso(M), i.e.
we have

g · f(x) = f(g · x)

for all x ∈ M . Equivalently, we have d(g · f(x), f(g · x)) = 0. Now, d(f(x), fε(x)) < ε by definition of the
supremum norm. Then, we have d(f(g · x), fε(g · x)) < ε simply by definition of a ε-almost isometry. Since g
is an isometry, it preserves distances, so we have d(g · f(x), g · fε(x)) < ε because d(f(x), fε(x)) < ε.

Using the fact that f is equivariant to actions of g ∈ Iso(M) and applying the inequalities just derived, along
with repeated applications of the triangle inequality, we get

d(g · f(x), fε(g · x)) < d(g · f(x), f(g · x)) + d(f(g · x), fε(g · x)) (1)
< 0 + ε = ε (2)

d(g · fε(x), fε(g · x)) < d(g · fε(x), g · f(x)) + d(g · f(x), fε(g · x)) (3)
< ε+ ε = 2ε (4)

We apply the triangle inequality to get (1) and (3), and we substitute the inequalities derived above to get
(2) and (4). Thus, d(g · fε(x), fε(g · x)) < 2ε, which shows that fε is 2ε-almost equivariant with respect to
the action of Iso(M). This completes the proof.

Of course, this theorem is not particularly useful unless for every isometry, f ∈ Iso(M), we have a way of
obtaining an ε-almost isometry, fε ∈ Isoε(M), satisfying

d(f, fε) < ε

The next theorem shows that such fε are plentiful. In fact, there are infinitely many of them. Furthermore,
not only can we find fε : M → M , but we can find an isometric embedding, φ : M → Rn, of f that is
G-equivariant and then construct fε : M → Rn as an ε-almost isometric embedding of M into Rn such that

∥φ(f) − fε∥∞ < ε

This is particularly useful in the context of machine learning, where we normally appeal to embedding
abstract manifolds into some discretized subspace of Rn in order to actually perform computations on a
finite-precision computer. We then later give some conditions under which we can achieve the converse, that
is, given an ε-almost isometry, fε, of a metric space, X, find an isometry, f of X, such that

sup
x∈X

d(f(x), fε(x)) < c · ε

for some constant c ∈ R.
Lemma 3.10. Let (M, g) be a compact Riemannian manifold without boundary, G a compact Lie group
acting on M by isometries, f : M → M a G-equivariant function, and ε > 0. Then there exists an orthogonal
representation ρ of G, i.e. a Lie group homomorphism from G into the orthogonal group O(N) which acts on
Rn by rotations and reflections, an isometric embedding φ : M → RN , and an ε-almost isometric embedding,
fε : M → RN , such that φ is equivariant with respect to ρ, i.e.

ρ(g) · φ(f(x)) = φ(g · f(x)), for g ∈ G

and fε is ε-almost isometric with respect to φ(f), i.e. it satisfies

∥φ(f) − fε∥∞ < ε
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Figure 1: We provide a visualization of how actions of the Lie algebra can be used to approximate actions of
the corresponding Lie group. The Lie group, SO(2), of two-dimensional rotations, represented here as the
circle, S1 ⊂ C2, with its Lie algebra, so(2), represented here as the tangent line at the identity x = 1 ∈ C, is
the most easily visualized case. Here, θ gives the angle of rotation, ε gives the approximation error arising
from working in the Lie algebra, and the top dashed arrow shows how points can be mapped from the Lie
algebra onto the Lie group via the exponential map. The function Φ : g → G, indicated here by the green
curve, is a learned mapping that can be trained to approximate the exponential map.

Proof. Under the stated assumptions of M a compact Riemannian manifold and G a compact Lie group
acting on M by isometries, we can get the existence of ρ and φ by invoking the main theorem of Moore &
Schlafly (1980). From there, note that setting fε = φ(f) trivially satisfies (1) for any ε, although we seek a
non-trivial solution. We can choose an arbitrary x0 ∈ M , and define fε(x) = φ(f(x)) for all x ̸= x0 ∈ M .
Next, since M is compact, φ(f) is bounded on M . We can then take a neighborhood U of x0 such that
Bε(φ(f(x0))) ⊆ φ(U). We can then choose an arbitrary y ∈ Bε(φ(f(x0))), while requiring y ̸= φ(f(x0)),
and set fε(x0) = y. Then fε is an ε-almost isometric embedding of M , but fε ̸= f , as desired. Furthermore,
given a suitable topology on C∞(M) (such as the compact-open topology), Bε(φ(f(x0))) is open so that
there exist infinitely many such fε ̸= f , and they can be taken to be continuous.

We’ve now shown that, subject to restrictions on G, given a G-equivariant isometry of M , f , we can find
ε-isometries of M , fε, within distance ε to f that are, in fact, 2ε-almost equivariant with respect to the
G-action on M . The next, more difficult question (Theorem 3.11) concerns a partial converse. That is, given
an ε-almost isometry, fε, can we find an isometry, f , that differs from fε by no more than some constant
multiple of ε, for all inputs x? The answer here is, yes, but proving it takes some work. We address this
question in the next section.

3.3 Ulam Stability Theory & Fickett’s Theorem

There exist a number of results in the mathematics literature that confirm the existence of almost isometries
that are “close” to isometries in the sense that the metric space distance between them can be bounded by
some ε. For example, a theorem, due to Hyers and Ulam, states the following
Theorem 3.11. (Hyers & Ulam (1945)) Let E be a complete real Hilbert space. Let ε > 0 and T be a
surjection of E into itself that is an ε-isometry, that is, |ρ(T (x), T (y)) − ρ(x, y)| < ε, for all x, y ∈ E, where
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ρ denotes the inner product in E. Assume that T (0) = 0. Then the limit

I(x) = lim
n→∞

T (2nx)
2n

exists for every x ∈ E and the transformation I is a surjective isometry of E into itself, which satisfies
∥T (x) − I(x)∥ < 10ε, ∀x ∈ E.

This proposition demonstrates, given any ε > 0 and ε-almost isometry, fε, the existence of an isometry, f ,
whose distance from fε is at most 10ε, for any input x.

This result spurred subsequent research, and a later bound due to Fickett tightened the inequality. We state
his theorem here as well.
Theorem 3.12 (Fickett (1982)). For a fixed integer n ≥ 2, let D be a bounded subset of Rn and let ε > 0 be
given. If a function f : D → Rn satisfies

|∥f(x) − f(y)∥ − ∥x− y∥| ≤ ε

for all x, y ∈ D, that is, f is an ε-isometry of D, then there exists an isometry U : D → Rn such that

∥f(x) − U(x)∥ ≤ 27ε1/2n

Taken together, these two results show that no matter what ε-almost isometry we define, it is never “far off”
from a full isometry, with the distance between the two bounded above by 27ε1/2n . Most recently, Väisälä
(2002) proved an even tighter bound, but its discussion is beyond the scope of this paper.

To apply Theorem 3.11 and Theorem 3.12 in the context of machine learning, note that by the Nash
Embedding Theorem (Nash, 1954), we can smoothly and isometrically embed any Riemannian manifold
(M, g) into Rn for some n. If M is compact, then the embedding of M in Rn will be a compact, and therefore
bounded, subset of Rn. We can then apply Theorem 3.12 or Theorem 3.11 to any ε-isometry of M to get a
nearby isometry of M as a subset of Rn.

If M is not compact, let S ⊆ Rn be its smooth isometric embedding. We can then apply Theorem 11.4 of
Wells & Williams (1975), which states that for a finite-dimensional Hilbert space, H, we can extend any
isometry of S to an isometry on the linear span of S. Assuming the completion, S̄, of S is contained in the
linear span of S, we can then, for any surjective ε-isometry of S̄ into itself, apply Theorem 3.11 to recover an
isometry of S̄.

4 Method

4.1 Almost Equivariant Models

Having established the theory, we now give a practical method for encoding almost equivariance in machine
learning models by appealing to the Lie algebra, g, of the Lie group, G.
Definition 4.1 (ε-almost equivariant model). Given a connected Lie group, G, its Lie algebra, g, vector
spaces, V and W , and representations, ρG : G → GL(V ) and ρg : g → gl(W ), we say a model f : V → W is
ε-almost equivariant with respect to the action of a Lie group, G, if

∥f(ρG(g)v) − Φ(ρg(x))f(v)∥ ≤ ε

for g ∈ G, x ∈ g, v ∈ V , and some Φ : gl(W ) → GL(W ).

The norm, ∥ · ∥, can be a distance (for metric spaces), a geodesic distance (for Riemannian manifolds), or a
vector norm (for normed spaces). The most common case in machine learning is that where we take ∥ · ∥ to
be the Euclidean norm in Rn. Note that our definition naturally encompasses full equivariance with respect
to the action of connected, compact Lie groups, for which the exp map is surjective, and which occurs when
we take ε = 0 and define Φ := exp.
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Figure 2: We provide a visualization of the grid used to perform Lie algebra convolutions. In this example,
we sample n = 10 elements, x0, . . . , x9, of the Lie algebra so(2) and apply Φ, parameterized as a single-layer
feedforward neural network, N , to acquire the grid elements, g0 = N −1(x0), . . . , g9 = N −1(x9), that are
convolved over. The × symbol shows the action of the rotation on the grid’s lower-right corner. The
linearity of both the Lie algebra and the feedforward neural network are apparent here, although the neural
network’s activation function introduces subtle non-linear effects on the grid structure. We experimented
with normalizing the grid values to the range [−1, 1] along both the x and y axes but found it did not lead
to reliable improvements in performance. We suspect that the variance in scale across grids might help the
model learn functions across a range of scales.

Our definition makes clear the correspondence between G and the linear approximation at the identity,
e ∈ G, afforded by the Lie algebra, g. Because ρG(g) acts by g on v ∈ V , we expect that there exists an
element x ∈ g such that the action of Φ(ρg(x)) on f(v) ∈ W approximates the action of some representation
of g on f(v). We give a visualization of the intuition behind the definition in Figure 1 for the case where
G = SO2(C) = S1 ⊂ C.

4.2 Lie Algebra Convolutions

Similar to the approach taken in van der Ouderaa et al. (2022), we build an almost equivariant neural
network layer based on the Lie algebra, g, of a matrix Lie group, G ⊆ GLn(R). However, our model makes
use of a few, key differences. First, rather than parametrizing our kernel in a finite-dimensional random
Fourier features basis, we instead encode the Lie algebra basis explicitly. For most matrix Lie groups, the
corresponding Lie algebra basis has an easily calculated set of generators, i.e. a set of basis elements {xi}.
Second, instead of mapping elements of g directly to G via the exponential map, we train a neural network,
Nθ : g → Rn×n, to learn an approximation to this mapping directly from data. In our experiments, each
Lie algebra convolutional layer of the network is equipped with its own N , which is parameterized as an
MLP with a single linear layer followed by a non-linear activation, either a ReLU or a Sigmoid function.
Our method confers some key benefits over previous approaches. For one, the kernels used in some past
works are still constrained to take as input only group elements, u, x ∈ G, which to some extent limits the
flexibility with which they can model partial equivariances. In contrast, our kernel can take any u, x ∈ Rn×n

as an input, allowing us to model a more flexible class of functions while still maintaining the interpretability
achieved by parameterizing this function class via elements of the Lie algebra.
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Group Num Samples Model Rot-MNIST
Classification Accuracy

Pendulum
Regression Error (RMSE)

Pendulum
Average RMSE

SE(2) 10 Almost Equivariant G-CNN 92.05 ± 0.27 0.0363 ± 0.0004 0.5571 ± 2.1730

E(2) 10 E2CNN 91.91 ± 0.22 0.0349 ± 0.0001 3.5987 ± 2.8203
Residual Pathway Prior 85.20 ± 0.66 0.0350 ± 0.0001 14.4018 ± 26.8171

N/A Approximately Equivariant G-CNN 84.99 ± 0.37 0.1349 ± 0.1414 1.4893 ± 1.8695
T(2) N/A Standard CNN 85.95 ± 0.49 0.0354 ± 0.0009 0.6573 ± 1.0565

Table 1: Rot-MNIST classification accuracies and RMSE prediction errors for pendulum trajectory prediction.
The first column gives the Lie group with respect to which equivariance or almost equivariance (depending
on the model) is imposed. The second column gives the number of Lie group/algebra elements sampled by
the model, if applicable. Best results are bold-faced and second-best are colored gray.

Furthermore, whereas van der Ouderaa et al. (2022) relax equivariance constraints by letting their kernel
depend on an absolute group element, v, we define a simpler convolution that still allows us to relax
equivariance constraints.
Definition 4.2 (Almost Equivariant Lie Algebra Convolution). We construct an almost equivariant Lie
algebra convolution, abbreviated g-conv, by letting u, x =

∑dim g
i=1 cixi ∈ g and defining

h(u) = (kω ⋆ f)(u) =
∫

x∈g

kω

(
Nθ(x)−1 exp(u)

)
f(x)dµ(x)

Here, instead of integrating with respect to the Haar measure, we instead integrate with respect to the
Lebesgue measure, µ, defined on Rn×n. This is possible because we are integrating over the Lie algebra, g,
which is a vector subspace of Rn×n. Existing works require integrating with respect to the Haar measure
because it is finite for compact groups, which allows one to more easily do MCMC sampling. Compactness
is also necessary to define fully-equivariant group convolutions parameterized in the Lie algebra, because
such a parameterization relies on the exponential map being surjective. Furthermore, while MacDonald et al.
(2022) define a method for sampling from the Lie group, G, that allows the group convolution to retain
full equivariance, even for non-compact groups, by using a measure induced on the Lie algebra by the Haar
measure, we adopt our simpler approach since we are not aiming for full group equivariance and instead only
for almost equivariance. Thus, we use a uniform measure on the Lie algebra, which for the groups studied
here amounts to the Lebesgue measure on Rn×n. While we still ultimately convolve with group elements
(in the case of compact groups, for which exp : g → G is surjective), our inputs, u, are taken from the Lie
algebra, g, and then pushed onto the Lie group, G, via the exp map.

Additionally, because the exp map is surjective only for compact Lie groups (Hall, 2015), the approach of
parameterizing Lie group elements by applying the exp map to elements of the Lie algebra only works in the
compact case. Because we model the mapping function Nθ : g → G using a neural network, our approach
extends to non-compact Lie groups.

Finally, our approach easily interpolates between full equivariance, partial equivariance, and non-equivariance.
When presented with fully equivariant training data, our neural network over Lie algebra elements can learn
the exponential map. When presented with almost equivariant training data, this same neural network can
learn an approximation to the exponential map that is justified by said data. And finally, when presented
with a task for which equivariance is not beneficial, the neural network is free to learn an arbitrary function
over the Lie algebra that best models the training data.

4.3 Computational Considerations

Calculating convolutions over continuous groups is a non-trivial computational problem as it involves taking
an integral which can only be numerically approximated on a finite-precision computer. One approach
is to discretize the underlying group and compute a finite sum, but this actually leaves the model layer
equivariant only to the action of the group elements in the discretization. MacDonald et al. (2022) introduced
a Markov Chain Monte Carlo (MCMC) method which uses the Haar measure to sample from probability
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distributions over an arbitrary Lie group, thereby enabling fast and easily parallelizable approximations of
group convolutions. A similar approach is taken in Finzi et al. (2020), although their method is restricted to
Lie groups for which the exponential map is surjective.

We proceed in a similar manner, by defining a uniform probability distribution with respect to the Lebesgue
measure over the Lie algebra, g, and drawing samples to create a grid of Lie algebra elements. These samples
are then passed through N , inverted, and convolved over. We provide a visualization of this grid in Figure 2.

5 Results

We test our Almost Equivariant G-CNN on a suite of tasks that span the gamut of full and almost equivariance.
For each task, we compare the performance of our model with that of the Residual Pathway Prior model
given in Finzi et al. (2021b), the Approximately Equivariant G-CNN defined in Wang et al. (2022a), the
E(2)-equivariant and steerable E2CNN of Weiler & Cesa (2019), and a Standard CNN that is equivariant
only to translations of the inputs.

5.1 Image Classification

We first test our model on an image classification task. We focus on the Rot-MNIST dataset, which consists
of images taken from the MNIST dataset and subjected to random rotations. We would expect rotational
equivariance to be beneficial for classifying these images. The training, validation, and test sets contain
10,000, 2,000, and 50,000 images, respectively. We summarize our results on this task in Table 1. We
perform a comprehensive hyperparameter grid search during training, and find that our best-performing
model significantly outperforms the almost equivariant baselines that we tested against. It also outperforms
the standard CNN and is marginally outperformed only by the fully-E(2)-equivariant E2CNN. We didn’t
perform any optimization of the kernel functions for any of the models, nor of the neural network mapping
from the Lie Algebra to the Lie Group for our model, and expect that with further hyperparameter tuning as
well as deeper models and more complex kernel functions, we could achieve even higher performance(s) on
the test set. We provide further details on the model training process in the Appendix.

5.2 Damped Pendulum

The second task is to predict the xy-position, (x, y) ∈ R2, at time t ∈ R+ of a pendulum undergoing simple
harmonic motion and subjected to wind resistance. The pendulum is modeled as a mass, m, connected to a
massless rod of length L subjected to an acceleration due to gravity of g = −9.8m/sec2 and position function
θ(t). The differential equation governing this motion is

∂2θ

∂t2
+ λ

m

∂θ

∂t
+ g

L
θ = 0

where λ is the coefficient of friction governing the wind resistance which is modeled as a force

Fw = −λL∂θ
∂t

We simulate the trajectory of the pendulum using the Runge-Kutta method to obtain an iterative, approximate
solution to the above, second-order differential equation. We sample θ(t) for 6000 values of t ∈ (0, 60) using a
dt = 0.01 and setting m = L = 1, θ(0) = π/3, ∂θ

∂t (0) = 0, and λ = 0.2. We partition this data into a 90%/10%
train-test split and train a series of models to predict xy-position from the time t ∈ (0, 60). Because the
pendulum rotates about a vertical line, we again expect that rotational equivariance would be beneficial for
this task.

Table 1 summarizes our results. We find that our Almost Equivariant G-CNN, the E2CNN, the Approximately
Equivariant G-CNN, and the Residual Pathway Prior all achieve nearly identical performance, slightly beating
out the standard CNN, which has many more parameters than the other baselines. Relative to the E2CNN and
the RPP models, our model achieves significantly lower mean RMSE across hyperparameter configurations.
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Group Num Samples Model Jet Flow (RMSE) Smoke Plume (RMSE)
Future Domain Future Domain

SE(2) 10 Almost Equivariant G-CNN 0.1931 ± 0.0012 0.2078 ± 0.0008 1.18 0.78

E(2)
10 E2CNN 0.1919 ± 0.0016 0.2131 ± 0.0023 1.05 0.76
10 Residual Pathway Prior 0.1947 ± 0.0066 0.2143 ± 0.0057 0.96 0.83
4 Steerable Approximately Equivariant G-CNN 0.1597 ± 0.0016 0.1785 ± 0.0023 0.80 0.67

T(2) N/A Standard CNN 0.2109 ± 0.0068 0.2218 ± 0.0008 1.21 1.10

Table 2: Prediction RMSE on simulated smoke plume velocity fields and jet flow 2D turbulent velocity fields
with almost rotational symmetry. The results for the baseline methods are taken from Wang et al. (2022a)
and compared against our Almost Equivariant G-CNN. As stated in Wang et al. (2022a), Future prediction
involves testing on data that lies in the future of the training data. Domain prediction involves training and
test data that are from different spatial domains. Best results are bold-faced and second-best are colored gray.

The RPP model, in particular, demonstrates a high sensitivity to hyperparameter settings. Our model uses
far fewer parameters than the standard CNN and a number of parameters comparable to the other baselines.
While our best-performing model uses a kernel size of 4 compared to a kernel size of 2 used for the CNN, it
uses only 1 hidden layer and 16 hidden channels, compared to the CNN which uses 3 hidden layers having
hidden channel sizes of 32, 64, and 128, respectively.

5.3 Smoke Plume

Next, we test our model on an almost equivariant prediction task. The dataset we use is the smoke plume
dataset of Wang et al. (2022a) consisting of 64 × 64 2D velocity vector fields of smoke simulations with
different initial conditions and external forces, all generated using the PDE simulation framework, PhiFlow
(Holl et al., 2020). Specifically, we use the subset of the data that features rotational almost equivariance.
As stated in Wang et al. (2022a), “both the inflow location and the direction of the buoyant forces possess
a perfect rotation symmetry with respect to the C4 group, but the buoyancy factor varies with the inflow
positions to break the rotational symmetry.” All models are trained to predict the raw velocity fields at the
next time step given the raw velocity fields at the previous timestep as input.

Due to computational constraints, we only run our method on this data and compare to the baseline
results reported in Wang et al. (2022a). Table 2 shows how our method compares to the baselines. Due to
computational constraints, we were unable to run a full hyperparameter sweep and suspect that doing so
would boost our model’s performance even further.

5.4 Jet Flow

Finally, we test on one more almost equivariant dataset. As described in Wang et al. (2022a), this dataset
contains samples of 2D turbulent velocity fields taken from NASA multi-stream jets that were measured using
time-resolved particle image velocimetry as described in Bridges & Wernet (2017). We follow the procedure
described in Wang et al. (2022a), and “train and test on twenty-four 62 × 23 sub-regions of jet flows.” Table 2
shows our results.

6 Discussion

In this work, we proposed a definition of almost equivariance that encompassed previous definitions of full
and approximate/partial/soft equivariance. We connected this definition to mathematical theory by showing
that, given an abelian isometry group, G, acting on a Riemannian manifold, M , then any isometry, f of M ,
is equivariant to the action of G, and furthermore that there exists an ε-almost isometry, fε of M , not more
than ε from f in the supremum norm, such that fε is almost equivariant to the action of G. Next, we showed
that nothing is lost by taking f and fε to be isometric and almost isometric embeddings, respectively, of M
into Rn. We then appealed to Ulam Stability Theory and Fickett’s Theorem to give conditions under which
we can get an isometry of a complete, real Hilbert space close to an almost isometry of the same space. All of
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this taken together demonstrates that there exist almost equivariant functions that are never “far” from fully
equivariant functions, given some constraints on the group action and class of functions, in a sense that can
be mathematically quantified.

We next introduced a convolution on the elements of a Lie algebra, for which Lie algebra elements are sampled
using the Lebesgue measure on the algebra, that approximates a fully equivariant group convolution. We
then showed that such a convolution can model almost equivariance relative to any group action, even those
of non-compact groups. We validated our assumptions by testing our model on a 2D image classification task,
a 1D sequence regression task, and a 2D sequence regression task. On all tasks, our model exceeded or met
the performance of state-of-the-art equivariant and almost equivariant baseline models. This demonstrates
the utility of our method across a variety of scientific domains and prediction task types.

7 Future Work

One line of future work will involve testing our model architecture on a wider class of group actions. While
our model is general enough to handle the action of any group, including those of non-compact groups,
we have not yet tested it on groups aside from E(2). One reason for this is that the utility of imposing
equivariance to non-compact groups or non-Euclidean isometry groups is less clear than for compact Lie
groups that are isometries of Rn, although Lawrence & Harris (2023) points to some potential applications.
We plan to address the case of non-compact groups in a subsequent paper.

Next, there exist a number of ways to further expound upon the theoretical results given here. One
potential angle to consider is whether variations of Theorems 3.11 and 3.12 can be made to hold for arbitrary
Riemannian manifolds and not just Hilbert and Euclidean spaces, respectively. Another direction would
involve undertaking a rigorous analysis of the conditions under which almost equivariance to the action of a
non-abelian group can be imposed upon a function. We here gave proof of the existence of almost isometries
of Riemannian manifolds that are almost equivariant to certain abelian group actions, which we believe to
be the most useful direction as, in practice, one normally seeks to take a fully equivariant model and make
it almost equivariant. That said, the more difficult mathematical question is to consider when, given an
almost equivariant function on a manifold, it can be transformed into a fully equivariant function on the
same manifold. We leave this direction for future work.

Finally, it is known that fully-equivariant kernel sharing for G-CNNs requires that the group act transitively
on the input space (Weiler et al., 2021). An interesting direction for future work would be investigating the
extent to which this assumption is required for almost equivariant kernel sharing.
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A Appendix

A.1 Proofs of Theorems

A.1.1 Almost Equivariance of the Lie Algebra Convolution

Let G be a compact matrix Lie group, G ⩽ GLn(R), and NW (x) := σ(Wx + b) so that N −1
W (x) =

W−1(σ−1(x) − b). Then the Lie algebra convolution∫
x∈g

kω

(
NW (x)−1 exp(u)

)
f(x)dµ(x)

is ε-almost equivariant.

Proof. Take G to be smoothly and isometrically embedded in Rn by the Nash Embedding Theorem, and
let ∥ · ∥2 be the norm defined with respect to the Euclidean metric on the ambient space, Rn. This allows
us to subtract g ∈ G and x ∈ g as elements of the ambient Rn, despite the fact that they live in different
natural spaces. Let u = I +

∑
i aiVi, x = I +

∑
i ciVi ∈ g, where I is the identity element of G, and let

h = exp(u), g ∈ G. Define
δ = sup

g,h∈G
∥g − h∥2

Since G is compact, G is bounded as a subset of Rn, and such an ε must exist. Furthermore, because G is
compact, the exponential map exp : g → G is surjective. We write our convolution as∫

x∈g

kω

(
NW (x)−1 exp(u)

)
f(x)dµ(x)

In practice, we discretize this integral by drawing samples of xi ∈ g, i = 1, . . . , N to approximate a convolution
of some gi ∈ G with h = exp(u) ∈ G, so the MCMC approximation of the above full convolution becomes

Vol(G)
N

N∑
i=1

kω

(
NW (xi)−1 exp(u)

)
f(xi)

assuming a bounded kernel function, kω(x) ≤ K∥x∥2, we have∥∥∥∥∥
N∑

i=1
kω(g−1

i exp(u)) − kω(N −1
W (xi) exp(u))

∥∥∥∥∥
2

≤
N∑

i=1

∥∥kω(g−1
i exp(u)) − kω(N −1

W (xi) exp(u))
∥∥

2 (5)

≤
N∑

i=1
K∥g−1

i exp(u)∥2 −K∥N −1
W (xi) exp(u)∥2 (6)

= K

N∑
i=1

∥g−1
i exp(u)∥2 − ∥N −1

W (xi) exp(u)∥2 (7)

≤ K∥ exp(u)∥2

N∑
i=1

∥g−1
i ∥2 − ∥N −1

W (xi)∥2 (8)
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where we get (5) by the triangle inequality, (6) by the boundedness of kω, (7) by factoring out K, and (8) by
the Cauchy-Schwarz inequality. If we set

δx = max
i

(
∥g−1

i ∥2 − ∥N −1
W (xi)∥2

)
then we can substitute back into equation (8) and get

K∥ exp(u)∥2

N∑
i=1

∥g−1
i ∥2 − ∥N −1

W (xi)∥2 ≤ KNδx∥ exp(u)∥2

and setting ε = KNδx∥ exp(u)∥2 gets us what we want.

Thus, by bounding the error ∥g − N −1(x)∥2 < δx for g ∈ G, x ∈ g in the neural network N : g → G and the
kernel function kω(x) ≤ K∥x∥2, we can control the extent to which the Lie algebra convolution is ε-almost
equivariant.

A.1.2 Proof of Theorem 3.11

We recall theorem 3.11.

Theorem 3.11. (Hyers & Ulam (1945)) Let E be a complete real Hilbert space. Let ε > 0 and T be a
surjection of E into itself that is an ε-isometry, that is, |ρ(T (x), T (y)) − ρ(x, y)| < ε, for all x, y ∈ E, where
ρ denotes the inner product in E. Assume that T (0) = 0. Then the limit

I(x) = lim
n→∞

T (2nx)
2n

exists for every x ∈ E and the transformation I is a surjective isometry of E into itself, which satisfies
∥T (x) − I(x)∥ < 10ε, ∀x ∈ E.

This proof, taken from (Hyers & Ulam, 1945), is reproduced here for the reader’s convenience.

Proof. Put r = ∥x∥. Then |∥T (x)∥ − r| < ε and |∥T (x) − T (2x)∥ − r| < ε. Put also y0 = T (2x)/2, so that
|r−∥y0∥| < ε/2. Consider the intersection of the two spheres: S1 = [y; ∥y∥ < r+ε], S2 = [y; ∥y−2y0| < r+ε].
Now T (x) belongs to this intersection, and for any point y of S1 ∩ S2 we have

2∥y − y0∥2 = 2∥y∥2 + 2∥y0∥2 − 4(y, y0);
∥y − 2y0∥2 = ∥y∥2 + 4∥y0∥2 − 4(y, y0) < (r + ε)2

and ∥y∥2 < (r + ε)2. It follows that

2∥y − y0∥2 < (r + ε)2 + ∥y∥2 − 2∥y0∥2 < 2(r + ε)2 − 2∥y0∥2

< 2(r + ε)2 − 2(r − ε/2)2 = 6εr + 3ε2/2.

Hence, ∥T (x)−T (2x)/2∥ < 2(ε∥x∥)1/2 if ∥x∥ ≥ ε, and ∥T (x)−T (2x)/2∥ < 2ε in the contrary case. Therefore,
for all x ∈ E, the inequality

∥T (x/2) − T (x)/2∥ < 2−1/2k(∥x∥)1/2 + 2ε (9)
is satisfied, where k = 2ε1/2. Now, let us make the inductive assumption

∥T (2−nx) − 2−nT (x)∥ < 2−n/2k(∥x∥)1/2

(
n−1∑
i=0

2−i/2

)
+ (1 − 2−n)4ε (10)

The inequality (2) is true for n = 1. Assuming it true for any particular value of n, we shall prove it for n+ 1.
Dividing the inequality (2) by 2, we have

∥T (2−nx)/2 − 2−n−1T (x)∥ < 2−(n+1)/2k(∥x∥)1/2

(
n∑

i=1
2−i/2

)
+ (1/2 − 2−n−1)4ε
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Replacing x by 2−nx in the inequality (1), we get

∥T (2−n−1x) − T (2−nx)/2∥ < 2−(n+1)/2k(∥x∥)1/2 + 2ε

Upon adding the last two inequalities, we obtain

∥T (2−n−1x) − 2−n−1T (x)∥ < 2−(n+1)/2k(∥x∥)1/2

(
n∑

i=0
2−i/2

)
+ (1 − 2−n−1)4ε

This proves the induction. Therefore inequality (2) is true for all x ∈ E and for n = 1, 2, 3, . . .. If we put
a = k

∑∞
i=0 2−i/2, we have

∥T (2−nx) − 2−nT (x)∥ < 2−n/2a(∥x∥)1/2 + 4ε
Hence, if m and p are any positive integers,

∥2−mT (2mx) − 2−m−pT (2m+px)∥ = 2−m

∥∥∥∥T (2m+p x

2p

)
− 2−pT (2m+px)

∥∥∥∥ < 2−m/2a(∥x∥)1/2 + 22−mε

for all x ∈ E. Therefore, since E is a complete space, the limit U(x) = limn→∞(T (2nx)/2n) exists for all x ∈ E.

To prove that U(x) is an isometry, let x and y be any two points of E. Divide the inequality

|∥T (2nx) − T (2ny)∥ − 2n∥x− y∥| < ε

by 2n and take the limit as n → ∞. The result is ∥U(x) − U(y)∥ = ∥x− y∥. This completes the proof.

A.2 Mathematical Background

We give brief introductions to the subjects of representation theory, differential topology and geometry,
and Lie theory, stating only those definitions and theorems needed to understand the paper. For more
comprehensive background, we encourage readers to consult any of Fulton & Harris (2004); Etingof et al.
(2011); Hall (2015) for representation theory, any of Lee (2003; 2018) for differential topology and geometry,
and Hall (2015) for Lie theory.

A.2.1 Representation Theory

Representation theory seeks to extend the theory of linear algebra to groups (and more general objects, such
as algebras) by associating to each group a representation, which is a homomorphism from the group to the
space of linear operators on that group. As a simplification, we often just think of the representation as an
association of an n× n matrix to each group element, in which case we have a matrix group.
Definition A.1 (Representation of an associative algebra). We define a representation (ρ, V ) of an associative
algebra A to be a vector space V with an associated homomorphism ρ : A → End(V ) where End(V ) denotes
the set of endomorphisms of V , i.e. linear operators from V to itself.
Definition A.2 (Lie group representation). A representation (ρ, V ) of a Lie group G is a homomorphism
ρ : G → GL(V ) where V is a vector space.
Definition A.3 (Lie algebra representation). A representation (ρ, V ) of a Lie algebra g is a homomorphism
ρ : g → gl(V ) where V is a vector space.
Definition A.4 (Morphism of representations). A morphism of representations (ρ1, V ), (ρ2,W ) is a map
ϕ : V → W satisfying

ϕ(ρ1(a)(v)) = ρ2(a)ϕ(v)
for all a ∈ A, v ∈ V .

We can view morphisms as the set of transformations on V that preserve equivariance with respect to some
pair of representations. ϕ is also sometimes called an intertwining map. In other words, in equivariant deep
learning we seek to learn neural networks N that are morphisms of representations. In almost equivariant
deep learning, we seek models N that are almost morphisms in the sense described in the paper intro.
Definition A.5 (Subrepresentation). A subrepresentation of (ρ, V ) is a subspace U ⊆ V such that ρ(a)(u) ∈ U
for all a ∈ A, u ∈ U .
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A.2.2 Differential Topology & Geometry, Lie Groups, and Lie Algebras

Smooth manifold theory extends the techniques of calculus to high-dimensional, non-Euclidean spaces and
those without a preferred coordinate system. In layman’s terms, a smooth manifold is a mathematical object
that is locally homeomorphic to Rn about every point and which has a smooth structure that allows one
to perform operations from calculus such as differentiation and integration. More concretely, we equip a
Hausdorff, second countable, and locally Euclidean topologyical space with a set of charts, {(Uk, φk)}n

k=1
which consist of a neighborhood Uk about each point and a homeomorphism φk : Uk → Rn. We then defined
transition maps, ψ ◦φ−1 : φ(U ∩V ) → ψ(U ∩V ) that allow us to move between charts. For smooth manifolds,
we require that these charts are smoothly compatible, i.e. that either U ∩V = ∅ or ψ ◦φ−1 is a diffeomorphism.
Definition A.6 (Smooth manifold). A smooth manifold is a Hausdorff, second countable, locally Euclidean
topological space, M , equipped with a smooth structure.
Definition A.7 (Smooth submersion). A smooth map of manifolds, F : M → N is said to be a smooth
submersion if its differential is surjective at each point.
Definition A.8 (Smooth immersion). A smooth map of manifolds, F : M → N is said to be a smooth
submersion if its differential is injective at each point.
Definition A.9 (Riemannian manifold). A Riemannian manifold is a pair (M, g) where M is a smooth
manifold and g is a choice of Riemannian metric on M .
Definition A.10 (Riemannian metric). A Riemannian metric for a manifold M is a smoothly-varying choice
of inner product on the tangent space TpM . Equivalently, a Riemannian metric on M is a smooth covariant
2-tensor field g ∈ T 2(M) whose value gp at each p ∈ M is an inner product on TpM .
Proposition A.11. Every smooth manifold admits a Riemannian metric.
Definition A.12 (Isometry). An isometry of Riemannian manifolds (M, g) and (M̃, g̃) is a diffeomorphism
φ : M → M̃ such that φ∗g̃ = g. Equivalently, φ is a metric-preserving diffeomorphism.
Definition A.13 (Transitive group action). A group action on M is said to be transitive if for every pair of
points p, q ∈ M , there exists g ∈ G such that g · p = q or, equivalently, if the only orbit is all of M .
Theorem A.14 (Global Rank Theorem). Let M and N be smooth manifolds, and suppose F : M → N is a
smooth map of constant rank. Then

1. If F is surjective, then it is a smooth submersion.

2. If F is injective, then it is a smooth immersion.

3. If F is bijective, then it is a diffeomorphism.

Theorem A.15 (Equivariant Rank Theorem). Let M and N be smooth manifolds and let G be a Lie group.
Suppose F : M → N is a smooth map that is equivariant with respect to a transitive smooth G-action on
M and any smooth G-action on N . Then F has constant rank. Thus, if F is surjective, it is a smooth
submersion; if it is injective, it is a smooth immersion; and if it is bijective, it is a diffeomorphism.
Proposition A.16. Suppose θ is a smooth left action of a Lie group G on a smooth manifold M . For each
p ∈ M , the orbit map θ(p) : G → M is smooth and has constant rank, so the isotropy group Gp = (θ(p))−1(p)
is a properly embedded Lie subgroup of G. If Gp = {e}, then θ(p) is an injective smooth immersion, so the
orbit G · p is an immersed submanifold of M .
Definition A.17 (Lie group). A Lie group is a smooth manifold with an algebraic group structure such that
the multiplication map m : G×G → G and the inversion map i : G → G are both smooth.
Definition A.18 (Lie algebra). A Lie algebra is a vector space g over a field F , equipped with a map
[·, ·] : g × g → g, called the bracket, which satisfies the following three properties:

1. Bilinearity

2. Antisymmetry
[X,Y ] = −[Y,X]
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3. The Jacobi Identity
[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Theorem A.19 (Ado’s Theorem). Every finite-dimensional real Lie algebra admits a faithful finite-
dimensional representation.
Definition A.20 (Matrix exponential). Given A ∈ Rn×n, the matrix exponential is the function exp :
Rn×n → Rn×n given by

exp(A) = eA =
∞∑

k=0

Ak

k!

Definition A.21 (Haar measure). Let G be a locally compact group. Then the (unique up to scalars,
nonzero, left-invariant) Haar measure on G is the Borel measure µ satisfying the following

1. µ(xE) = µ(E) for all x ∈ G and all measurable E ⊆ G.

2. µ(U) > 0 for every non-empty open set U ⊆ G.

3. µ(K) < ∞ for every compact set K ⊆ G.

Proposition A.22. Every Lie group is locally compact and thus comes equipped with a Haar measure.

A.3 Model Training & Hyperparameter Tuning

A.3.1 Pendulum Trajectory Prediction

For the pendulum trajectory prediction task, we performed a grid search over the following parameters across
all models excluding, to some extent, the standard CNN. For the standard CNN, we used a fixed architecture
with three convolutional layers having a kernel size of 2 and having 32, 64, and 128 channels, respectively.
This was followed by two linear layers having weight matrices of sizes 128 × 256 and 256 × 2, respectively.

Each model was given a batch size of 16 and trained for 100 epochs. An 80%/10%/10% train-validation-test
split was used, with RMSE calculated on the test set after the final epoch. The data was not shuffled due to
this being a time series prediction task. Four random seeds were used at each step of the grid search, with
average test set RMSE and standard deviations calculated with respect to the four random seeds.

Learning Rate Optimizer Kernel Sizes Hidden Channels # Hidden Layers
1e-4, 1e-3, 1e-2, 1e-1 Adam, SGD 2, 3, 4, 5 16, 32 1, 2, 3, 4

Table 3: Model hyperparameters used in grid search for the pendulum trajectory prediction task.

Below, we provide plots of train and validation RMSE as well as training loss for each of the best performing
models.

A.3.2 Rotated MNIST Classification

For the Rotated MNIST classification task, we performed a grid search over the following parameters across
all models excluding the standard CNN. For the standard CNN, we used a fixed architecture with two
convolutional layers having hidden channel counts of 32 and 64, respectively, and a kernel size of 3. The
convolutional layers are followed by dropout and two linear layers having weight matrices of sizes 9126 × 128
and 128 × 10, respectively.

Each model was trained for 200 epochs with a linear learning rate decay schedule. The standard 10k/2k/50k
train-validation-test split was used, with classification accuracy calculated on the test set after the final epoch.
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(a) CNN Training Loss (b) CNN RMSE

(c) E2CNN Training Loss (d) E2CNN RMSE

(e) RPP Training Loss (f) RPP RMSE
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(g) Approximately Equivariant G-CNN Training Loss (h) Approximately Equivariant G-CNN RMSE

(i) Almost Equivariant G-CNN Training Loss (j) Almost Equivariant G-CNN RMSE

Figure 3: Training Losses and Train/Validation RMSE across Epochs for Pendulum Trajectory Prediction
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Learning Rate Optimizer Kernel Sizes Hidden Channels # Hidden Layers Batch Sizes
1e-4, 1e-3, 1e-2, 1e-1 Adam 3, 4, 5 16, 32 1, 2, 3, 4 16, 32, 64

Table 4: Model hyperparameters used in grid search for the Rot-MNIST classification task.
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