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ABSTRACT

Foundation language models have significantly advanced natural language pro-
cessing but face challenges such as catastrophic forgetting when adapting to dy-
namic environments with diverse tasks. Recently, among the continual learning
(CL) methods for these models, model architecture expansion methods have been
spotlighted due to the growth of parameter-efficient fine-tuning (PEFT) methods.
However, these methods need to store past PEFT adapters for each task and require
task identifiers (task IDs) to distinguish each task, thus limiting their applicability
in task-agnostic settings. They also overlook recency bias, where models focus
overly on current tasks at the expense of past knowledge. To address these issues,
we propose suppressing recency bias (SRB) by using the concept of implicit tasks.
SRB assigns a fixed-size adapter to an implicit task, recursively storing historical
knowledge through arithmetic operations with current adapters at every time step
instead of task IDs. This arithmetic mitigates recency bias by integrating non-
overlapping information between historical and current adapters. Our approach
requires only simple arithmetic operations without backpropagation, minimizing
additional computation, and allocates a fixed-size adapter to the implicit task, re-
sulting in low memory requirements. We evaluate SRB on CL benchmarks for
foundational LMs. Experimental results demonstrate that SRB outperforms state-
of-the-art methods, achieving superior generalization performance across various
task sequences and models by effectively mitigating recency bias.

1 INTRODUCTION

Recent advancements in foundation language models (LMs) have demonstrated significant potential
in the field of natural language processing (Min et al., 2023; Zhao et al., 2023; Zhou et al., 2023).
These models have evolved from pretrained language models (PLMs) (Min et al., 2023) to large lan-
guage models (LLMs) (Zhao et al., 2023). Early PLMs (Devlin et al., 2019; Liu, 2019; Lewis, 2019)
focused on understanding and generating language through tasks like masked language modeling,
emphasizing comprehension and generation in text-based applications. Recent LLMs (Achiam et al.,
2023; Touvron et al., 2023) have expanded the capabilities of PLMs by increasing the scale of model
architectures and training data (Min et al., 2022; Wei et al., 2021; 2022a;b; Yao et al., 2024). This
expansion improves generality and adaptability in a variety of tasks. The paradigm of these models
involves capturing rich semantic information through pretraining on vast amounts of unlabeled data,
followed by fine-tuning to suit specific tasks or domains. This methodology improves performance
in various applications and significantly improves the flexibility of the model for different tasks.
Despite these advancements, foundation LMs often experience gradual performance degradation
when adapting to dynamic environments where a series of tasks from diverse domains are presented
(Amba Hombaiah et al., 2021; Dhingra et al., 2022; Jang et al., 2021; Jin et al., 2021; Loureiro et al.,
2022; Chen et al., 2023; Cossu et al., 2024; Gupta et al., 2023; Ke et al., 2022). This performance
degradation suggests an inherent difficulty for foundation LMs to continuously adapt to multiple
environments in a manner similar to human learning processes. A critical challenge in training on
a sequence of tasks is catastrophic forgetting, where the model loses previously acquired knowl-
edge when learning new information specific to a task. Addressing catastrophic forgetting requires
mechanisms that allow the model to expand and continually adapt to a diverse array of tasks.
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Figure 1: Illustrations of continual adaptation, model architecture expansion, and the proposed sup-
pressing recency bias (SRB) method. (a) Generic continual adaptation sequentially adapts to task
series T1, . . . , TI using adapter wi. (b) Model architecture expansion methods store adapters cor-
responding to each past task using task identifiers (task IDs) i ∈ {1, . . . , I} that distinguish tasks.
(c) The proposed SRB method targets the current adapter wt, obtained by optimizing the previous
adapter wt−1 on a mini-batch dataset Dt drawn from an unknown task at time step t where the task
ID is not provided (Section 3.1). The adapter ut allocated to the implicit task Tu is recursively com-
puted via arithmetic operations using wt and ut−1 (Section 3.3). The adapter w̃t for the next time
step t + 1 optimization process is regularized via arithmetic operations to not deviate excessively
from ut (Section 3.4). Detailed arithmetic operations are illustrated in Figure 2.

Continual learning (CL) methodologies have efficiently adapted foundation LMs to downstream
tasks while minimizing performance degradation on historical tasks. Inspired by incremental learn-
ing patterns observed in the human brain (Constantinescu et al., 2016; Kandel et al., 2000), CL aims
for machine learning models to sequentially adapt to a series of tasks while maintaining performance
across all tasks. CL approaches for foundation LMs include replay-based methods (Buzzega et al.,
2020; Sarfraz et al., 2023; Rebuffi et al., 2017; Zhao et al., 2021; Bang et al., 2021), parameter
regularization (Kirkpatrick et al., 2017a; Aljundi et al., 2018; Rongali et al., 2020), and model ar-
chitecture expansion (MAE) (Aljundi et al., 2017; Hu et al., 2021; Lester et al., 2021; Li & Liang,
2021; Shazeer et al., 2017). Replay-based methods maintain a small buffer that stores portions of
observed data from each task to retain past knowledge. However, data storage may not always be
feasible due to privacy concerns, and additional computation is required for further learning. Param-
eter regularization approaches use regularization terms as proxies for the loss values of past domains,
determined by distances in the parameter space, to prevent significant deviations from previous pa-
rameters. MAE methods dynamically expand the network architecture to integrate new information
in a CL manner (Gururangan et al., 2021; Wistuba et al., 2023).

Recently, as parameter-efficient fine-tuning (PEFT) has become the standard approach to continual
adaptation, MAE methods have gained attention (Dettmers et al., 2024; Wang et al., 2023; Wu et al.,
2024; Yan et al., 2023). MAE strategy stores PEFT adapters for each task and combines the outputs
of past and current adapters to update the model. This approach has demonstrated superior retention
of past knowledge compared to existing methods by storing and freezing adapters during adaptation
(Zhang et al., 2023a; Wang et al., 2023). Despite these successes, MAE strategies require task
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identifiers (task IDs) to store the adapter corresponding to each task, making them difficult to apply
in task-agnostic scenarios (Criado et al., 2022; Pentina & Lampert, 2015). Moreover, this strategy
does not address the issue of recency bias (Ray, 2023), where excessive focus on the current task
leads to the loss of past knowledge (Peysakhovich & Lerer, 2023). This recency bias problem is
exacerbated in continual adaptation settings, where the model repeatedly learns about the current
task (Criado et al., 2022; Pentina & Lampert, 2015).

To address these challenges, we propose a method called suppressing recency bias (SRB), which
introduces an implicit task and assigns adapters to the task, thereby eliminating the need for task
IDs and reducing redundant information acquisition (see Figure 1). We focus on the current adapter,
trained on a mini-batch dataset drawn from a task without a task ID. This adapter is recursively inte-
grated into an implicit task adapter over time to construct historical knowledge, utilizing arithmetic
operations. These operations are designed to compare the historical knowledge with the current
information to suppress repetitive information before storing it in the implicit task adapter. Finally,
we modify the current adapter by regularizing it from deviating excessively from the implicit task
adapter. The advantages of SRB are as follows:

• SRB can be applied in task-agnostic settings and excels at adapting to each task while
preserving historical knowledge by reducing recency bias.

• Implicit tasks require only arithmetic operations that do not necessitate backpropagation,
minimizing additional computation.

• SRB allocates only a fixed-size adapter to the implicit task, resulting in low additional
memory requirements.

We compare the proposed method with state-of-the-art techniques on CL benchmarks for foundation
LMs in task-agnostic continual adaptation. The proposed method demonstrates superior generaliza-
tion performance over existing methods across task series of various orders, lengths, and models.
We show that our method’s enhanced generalization performance is achieved by reducing the loss
of past knowledge due to recency bias observed in existing methods.

2 PRELIMINARIES

2.1 CONTINUAL ADAPTATION FOR FOUNDATION LMS

Continual Adaptation CL has been a long-standing challenge in machine learning (McCloskey
& Cohen, 1989). In a CL setting, a model sequentially adapts to tasks Ti for each task ID
i ∈ {1, . . . , I}. We denote the dataset assigned to task Ti, consisting of N samples, as Di =
{(xn,yn) : n = 1, . . . , N}, where xn is the input text and yn is the corresponding target text.
Before starting continual adaptation, the model is initialized with weights W0 ∈ RD of dimension
D from a foundation LM. The adaptation objective at each time step is defined as:

L(Wi−1,Di) =
1

N

∑
(yn,xn)∈Di

log p(yn|xn;Wi−1), (1)

where p(yn | xn;Wi−1) is the probability of generating yn given xn using the model weights
from the previous time step Wi−1. The updated weights Wi are then computed by optimizing the
adaptation objective:

Wi ← argmax
Wi−1

L(Wi−1,Di). (2)

However, this sequential learning approach risks losing past knowledge because it relies solely on
the previous weights Wi−1, making it susceptible to catastrophic forgetting.

Continual Learning for Foundation LMs To mitigate catastrophic forgetting, replay-based meth-
ods that store and continually utilize past data have been employed (Buzzega et al., 2020; Sarfraz
et al., 2023; Rebuffi et al., 2017; Zhao et al., 2021; Bang et al., 2021). These methods maintain a
memory buffer containing data from previous tasks, allowing the model to reference prior informa-
tion and alleviate the loss of past knowledge. However, replay-based methods can be impractical
in real-world applications due to privacy concerns that make storing past task data unrealistic. In
addition, they require extra computation to train on the data in the memory buffer.
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Semantic Intent Arithmetic Operation

Multi-task learning τα + τβ
Unlearning τα − τβ
Domain transfer τγ + (τα − τβ)

Table 1: Semantic intent and their arithmetic operation for α, β and γ tasks.

Alternatively, parameter regularization methods have been explored, which save previous weights
and continuously access them during adaptation to preserve historical knowledge (Kirkpatrick et al.,
2017a; Aljundi et al., 2018; Rongali et al., 2020). These methods introduce a regularization loss that
prevents current weights from deviating significantly from past weights. Specifically, L2 regulariza-
tion helps prevent the weights from becoming excessively large, resulting in improved performance
(Zhang et al., 2023c; Lin et al., 2022).

2.2 CONTINUAL ADAPTATION USING PARAMETER-EFFICIENT FINE-TUNING

Parameter-efficient Fine-tuning The PEFT methods propose inserting a adapter weight wi ∈ Rd

of dimension d at various positions in the Transformer (Vaswani, 2017) architecture commonly used
in foundation LMs, such as after attention and feedforward networks (Houlsby et al., 2019; Li &
Liang, 2021; He et al., 2021). Continual adaptation through the PEFT approach is performed by
updating the adapter as follows:

wi+1 ← argmax
wi

L({wi,W0},Di+1), (3)

where W0 represents the fixed weights of the foundation LMs and only wi are updated. One of
the most effective PEFT methods is a low-rank adaptation (LoRA) (Hu et al., 2021), which has
gained significant attention and has become a standard approach for adapting LLMs such as LLaMA
(Touvron et al., 2023) under limited computational resources. LoRA decomposes the adapters by
mapping the input vector to a lower-dimensional space and then back to the original dimension.
Specifically, for dimensions k and l, given an input z ∈ Rk and output h ∈ Rl in the Transformer,
LoRA modifies h as:

h← h+BAz, (4)
where A ∈ Rr×k and B ∈ Rl×r are projection matrices, with rank r much smaller than min(l, k).
Here, d = lk denotes the dimensionality of the adapter weight wi = BiAi. LoRA can be applied to
any weight matrix but is typically used in query and value projection matrices (Hu et al., 2021). The
matrix A is initialized from a Gaussian distribution, while B is initialized to zeros to allow recovery
of W0. During adaptation, only the adapter weights are updated. Since d is much smaller than D,
most of the model weights remain identical to W0. Similar to parameter regularization approaches,
this characteristic of PEFT helps preserve past knowledge by preventing the current weights from
deviating too far from their previous weights.

Model Architecture Expansion As the adoption of LoRA as a standard method, MAE techniques
that expand adapters as tasks increase have gained attention (Dettmers et al., 2024; Wang et al.,
2023; Wu et al., 2024; Yan et al., 2023). For the current task i, these methods modify h using the
LoRA weights w = BA as follows:

h← h+ (w + w1 + w2 + · · ·+ wi−1)z, (5)

where wj = BjAj for j = 1, . . . , i − 1 are the adapters for past tasks, which are stored and kept
frozen after past adaptation. The outputs of all adapters are summed to modify h, effectively in-
tegrating knowledge from past and current tasks. This process aims to prevent the current adapter
from forgetting historical knowledge by referencing the outputs of the stored adapters during learn-
ing (Zhang et al., 2023a; Wang et al., 2023).

2.3 ARITHMETIC OPERATIONS OF TASK VECTORS FOR SEMANTIC OPERATIONS

Recent studies have demonstrated that arithmetic operations between adapted weights can concretely
implement semantic intents (Ilharco et al., 2022). These semantic intents include improving perfor-
mance of downstream task, alleviating biases or unwanted behaviors, aligning the model with human
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preferences, or updating the model with new information. Such semantic intents are based on the
concept of a task vector. The task vector is defined as:

τ = Wi −W0, (6)

where Wi represents the adapted weights for task i, and W0 denotes the initial weight of the foun-
dation LM. This approach encodes the information needed to adapt to a specific task, introducing a
new paradigm for neural network editing. Inspired by studies on weight interpolation (Guo et al.,
2023; Wortsman et al., 2022; Rame et al., 2022; 2024), task vectors enable task arithmetic, perform-
ing element-wise operations to edit various models. For example, adding task vectors can enhance
multi-task model performance to achieve generalized capabilities (first row in Table 1), while un-
learning can help the model remove unwanted behaviors or forget specific tasks (second row in
Table 1). Furthermore, when tasks share similar relationships, combining task vectors allows con-
crete computations of abstract concepts such as domain transfer (third row in Table 1).

3 SUPPRESSING RECENCY BIAS

3.1 OVERALL PROCESS

In task-agnostic continual adaptation, task IDs are not provided, and the model continually adapts
without explicit knowledge of task boundaries. This scenario differs from the standard continual
adaptation setting (as described in Eq. (3)), where datasets Di are associated with specific tasks.
Instead, we consider mini-batches of data Dt of size B at each time step t ∈ [1, T ], where T is the
total number of time steps. The optimization process at each time step is defined as:

wt ← argmax
w̃t−1

L({w̃t−1,W0},Dt), (7)

where wt represents the updated adapter weights at time t, w̃0 is assigned as the zero-initialized
w0, and W0 denotes the initial weights of the foundation LMs. The objective function L is the
log-likelihood defined as:

L({w̃t−1,W0},Dt) =
1

B

∑
(xn,yn)∈Dt

log p(yn | xn; {w̃t−1,W0}), (8)

where (xn,yn) are input-output text pairs in the mini-batch Dt. In this setting, the union of all
datasets over tasks is equivalent to the union over time steps,

⋃
iDi =

⋃
tDt. This implies that

the data is presented sequentially over time without explicit task boundaries. To compute w̃t, we
introduce a recursive arithmetic operation defined as:

w̃t, ut ← Arithmetic(wt, ut−1), (9)

where ut ∈ Rd is an adapter allocated to an implicit task Tu, having the same dimensionality as
wt. The function Arithmetic(·) performs recursive operations with u0 initialized as w0 and then
modifies the wt. This function allows the implicit task to incorporate information from past data
without storing adapters for each task individually, thereby operating in a task-agnostic manner.
The step-by-step implementation is provided in Algorithm 1.

3.2 PROBLEM STATEMENT

Suppose that we define the arithmetic operation as w̃t = wt + ut−1 with ut−1 = w1 + · · ·+ wt−1.
In that case, this operation corresponds to the arithmetic used in Eq. (5). This method effectively
accumulates the adapters from all previous time steps, analogous to the arithmetic used in MAE
approaches representing multi-task learning (as shown in Table 1). However, this approach treats
each task independently without considering the sequential relationships or redundancies between
adapters. Consequently, it cannot prevent the duplication of information across adapters. This mech-
anism is vulnerable to catastrophic forgetting due to recency bias, where the model disproportion-
ately focuses on recent data at the expense of past knowledge. This issue is particularly pronounced
in continual adaptation scenarios where mini-batches drawn from the same task are repeatedly pre-
sented, and subsequent tasks are introduced sequentially. The accumulation of redundant informa-
tion and the lack of mechanisms to mitigate recency bias lead to inefficient learning and degradation
of performance on previous tasks.
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Figure 2: Illustration of arithmetic operations in SRB.

3.3 ARITHMETIC FOR IMPLICIT TASK VECTORS

In the implicit task, we aim to integrate historical knowledge with current information to generalize
across multiple tasks and suppress recency bias. According to Appendix A.1, the zero-initialized
adapter corresponds to a task vector, so the task vector for the current task is τt = wt − w0 and the
task vector for the implicit task is τut = ut − w0. Task vector arithmetic is based on the notion that
generalized weights exist in the interpolation regions between weights (Guo et al., 2023; Wortsman
et al., 2022; Rame et al., 2022; 2024). Therefore, we compute the implicit task vector through
interpolation of w0, ut−1, and wt as follows:

ut = λ1w0 + λ2ut−1 + λ3wt, (10)

subject to the constraints λ1 + λ2 + λ3 = 1 and 0 ≤ λ1, λ2, λ3 ≤ 1. Since λ1 = 1 − λ2 − λ3, we
can rewrite the equation as ut − w0 = λ2(ut−1 − w0) + λ3(wt − w0). Expressing this in terms of
the task vectors τt and τut , we have τut = λ2τ

u
t−1 + λ3τt. By setting λ2 = a(1− b) and λ3 = b, for

0 ≤ a, b ≤ 1, the implicit task vector becomes

τut = aτut−1 + b(τt − aτut−1). (11)

This result is a weighted version of the domain transfer in Table 1. The hyperparameter a controls the
influence of the previous implicit task vector τut−1. The value of a close to 0 effectively emphasize
the impact of the foundation LM weights W0 (see Figure 2 (a)). In contrast, the value of a close
to 1 retains more historical information. The hyperparameter b determines the degree to which
new information is incorporated. The value of b close to 0 causes the model to respond slowly
to rapidly changing information, acting as a low-pass filter (see Figure 2 (b)). The term (τt −
aτut−1) compares the current task vector τt with the previous scaled implicit task vector aτut−1. This
difference captures the new distinctive information not already represented in the past knowledge.
By adding this adjusted difference to aτut−1, we effectively reduce duplicated information and
prevent excessive growth of redundant task information in the implicit task.

3.4 ARITHMETIC FOR REGULARIZATION

We leverage the non-overlapping information from the implicit task adapter to modify the current
adapter. However, sufficient diversity among weights is necessary for generalized weights to exist in
the interpolation regions between weights (Wortsman et al., 2022; Rame et al., 2022). Paradoxically,
the implicit task vector acts as a low-pass filter, limiting diversity. Therefore, we ensure that the
current task vector is sufficiently distant from the implicit task vector to ensure diversity. To achieve
this, we calculate a regularization term that exerts a stronger attractive force on the current task
vector τt when it is less similar to the implicit task vector τut , using task vector arithmetic. First, we
compute the orthogonal projection of τt onto τut :

oprojτu
t
(τt) = τt −

τt · τut
τut · τut

τut , (12)

where · denotes the dot product. This operation calculates the component of τt that is orthogonal to
τut , which effectively implies the dissimilarity between the two vectors. As illustrated in Figure 2 (c),
the magnitude of this orthogonal component is proportional to the angle between the two vectors.
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Therefore, the attractive force towards the implicit task vector is dynamically adjusted according to
the similarity between τt and τut . Finally, we modify τt using this attraction vector:

τ̃t ← τt − c · oprojτu
t
(τt), (13)

where 0 ≤ c ≤ 1 is a hyperparameter that controls the strength of the attraction. This operation dy-
namically regularizes the current task vector by applying a stronger attraction when τt is less similar
to τut and a weaker attraction when they are more similar. This regularizing operation effectively
balances increasing diversity and reducing recency bias by using the implicit task vector as a sup-
port. The diversity enhances the autonomy of the current task vector, thus maintaining adaptability
to each task. The final modified τ̃t is equivalent to w̃t and is used in the subsequent optimization
step in Eq. (7).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Metric We evaluated our approach using a standard CL benchmark designed for
foundation LMs (Qin & Joty, 2021). This benchmark consists of four text classification datasets
introduced by Zhang et al. (2015): AG News, Amazon Reviews, DBpedia, and Yahoo Answers.
Following the previous study (Qin & Joty, 2021), we applied three different orders of CL settings to
these datasets (Order 1, 2, and 3). To assess performance on longer task sequences, we conducted
experiments on a long CL benchmark comprising 15 datasets (Razdaibiedina et al., 2023). This
extended benchmark includes the initial four CL benchmarks along with the Yelp reviews (Zhang
et al., 2015), four tasks from the GLUE benchmark (MNLI, QQP, RTE, SST2) (Wang, 2018), five
tasks from the SuperGLUE benchmark (WiC, CB, COPA, MultiRC, BoolQ) (Wang et al., 2019),
and the IMDB movie reviews dataset (Maas et al., 2011) (Order 4, 5, and 6). Sequences of tasks
are provided in Appendix C.1. Following previous work (Razdaibiedina et al., 2023), we randomly
selected 1,000 samples per task for training and reserved 500 samples per class for validation. For
evaluation metrics, we used accuracy (Chaudhry et al., 2018) and reported the average accuracy
(Avg.) for all tasks after training on the last task.

Comparison Methods We compared SRB with seven other CL methods for foundation LMs. EWC
(Kirkpatrick et al., 2017b) employs a regularization loss based on the Fisher information matrix
to prevent significant weight updates that could interfere with previously learned tasks while fine-
tuning the entire model. Replay (Buzzega et al., 2020) uses a memory buffer containing data from
previous tasks to fine-tune the whole model, retraining on samples from previous tasks when learn-
ing new ones to avoid forgetting. Learning without Forgetting (LwF) (Li & Hoiem, 2017) adds
a regularization loss before learning a new task to ensure that the shared representation layers re-
main similar to those of previous representations. LoRA (Hu et al., 2021) learns a series of tasks
using fixed-size LoRA adapters without retraining on samples of earlier tasks or employing regu-
larization. Incremental low-rank adaptation (IncLoRA) (Zhang et al., 2023a) incrementally adds
new LoRA adapters for each task in a series, similar to LoRA, but without retraining on previous
task samples or using regularization. Orthogonal low-rank adaptation (O-IncLoRA) (Wang et al.,
2023) builds upon IncLoRA by introducing an additional loss that enforces orthogonality among the
adapters stored for each task. L2 (Zhang et al., 2023c) applies an L2 regularization loss to constrain
the LoRA adapters from significantly changing while learning new tasks. Additionally, We referred
to the multitask learning baseline (MTL) as the upper bound and per-task fine-tuning (PerTaskFT)
from (Du et al., 2024) for the benchmark. Further details of the experimental setup are provided in
Appendix C.2.

Implementation Details We adopted two open-source foundation LMs in line with previous studies:
the encoder-decoder T5 (Raffel et al., 2020) and the decoder-only LLaMA (Touvron et al., 2023).
We adopted the large version of the T5 model. For LLaMA, we employed the latest 8B parameter
version, LLaMA3 (Dubey et al., 2024), and LLaMA3-chat, which includes additional instruction
tuning performed on the base model. We adhered to their official implementations for all comparison
methods and followed the hyperparameters reported in the original papers to ensure consistency
with existing CL benchmarks. We used the AdamW optimizer (Loshchilov, 2017) with β1 = 0.9
and β2 = 0.999 and the batch size was 64. For our SRB method, the hyperparameters (a, b, c) were
uniformly set to (0.99, 0.025, 0.15) across all experiments. We set the learning rates to 0.001 and
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Table 2: Accuracy (%) of each order and Average accuracy (Avg., %) on the standard CL benchmark
(Order 1, 2 and 3) and the long CL benchmark (Order 4, 5 and 6) for the T5 model. All results are
averaged over three runs. * indicates performance results from (Du et al., 2024), ✓ of Expan.
indicates the MAE method, and ✓ of Task IDs denotes the task-agnostic settings.

Order OrderMethod 1 2 3 Avg. 4 5 6 Avg. Expan. Task IDs

PerTaskFT∗ 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1 -
MTL∗ 80.0 80.0 80.0 80.0 76.5 76.5 76.5 76.5 -
EWC∗ 48.7 47.7 54.5 50.3 45.3 44.5 45.6 45.1 -

Replay∗ 55.2 56.9 61.3 57.8 55.0 54.6 53.1 54.2 -
LwF∗ 54.4 53.1 49.6 52.4 50.1 43.1 47.4 46.9 - ✓

IncLoRA 71.4 66.2 70.7 69.4 62.3 66.2 63.5 64.0 ✓
O-IncLoRA 77.1 76.2 76.6 76.6 68.4 68.8 71.4 69.5 ✓

LoRA 61.9 62.1 68.8 64.3 53.7 44.4 39.8 46.0 -
L2 66.0 63.0 63.9 64.3 49.1 46.9 12.8 36.3 - -

SRB 78.1 78.2 77.5 77.9 70.5 71.4 73.3 71.7 -

adopted LoRA as the PEFT method for the adapter weights. All experimental results are reported as
the average over three runs.

4.2 RESULTS OF CL BENCHMARK

Table 2 presents the average accuracy of CL methods for foundation LMs on both the standard and
long CL benchmarks. The MAE approaches, specifically IncLoRA and O-IncLoRA, demonstrated
superior performance compared to traditional CL methods, with O-IncLoRA achieving the highest
accuracy. In contrast, task-agnostic settings that do not utilize task IDs, such as those employing
LoRA and L2, generally exhibited comparable or decreased performance on the long CL bench-
mark relative to existing methods. These findings suggest that reusing adapters allocated to each
task effectively enhanced performance and that enforcing orthogonality among adapters, as in O-
IncLoRA, was beneficial for further improvement. Our proposed SRB method attained even higher
performance than O-IncLoRA despite operating without task IDs, whereas O-IncLoRA relied on
them. In the task-agnostic settings, SRB achieved significant performance gains of approximately
21% and 54% compared to LoRA on the standard and long CL benchmarks, respectively.

4.3 RESULTS OF CL BENCHMARK FOR LLM

Table 3: Accuracy (%) of each order and average accuracy
(Avg., %) on the standard CL benchmark (Order 1, 2 and 3)
for LLaMA3 and LLaMA3-chat. All results are averaged over
3 runs.

OrderModel Method 1 2 3 Avg.

LLaMA3

LoRA 75.8 75.9 74.4 75.4
IncLoRA 75.0 75.2 75.7 75.3

O-IncLoRA 74.6 74.7 74.8 74.7
SRB 79.0 80.5 77.0 78.8

LLaMA3-chat

LoRA 75.6 75.6 75.7 75.6
IncLoRA 75.1 74.9 76.2 75.4

O-IncLoRA 74.6 74.5 74.9 74.7
SRB 78.9 80.3 78.0 79.1

Table 3 shows the average ac-
curacy of LoRA, MAE meth-
ods, and our proposed SRB
on the standard CL benchmark
using the LLaMA3 models.
The LLaMA3 and LLaMA3-
chat models generally exhib-
ited more stable and higher per-
formance across various meth-
ods than the T5 model. How-
ever, IncLoRA and O-IncLoRA,
which displayed strong perfor-
mance on the T5 model, per-
formed similarly to or slightly
worse than LoRA, even when
task IDs were provided. In con-
trast, SRB recorded higher performance than LoRA in this setting. These observations imply that
SRB consistently delivers superior performance across different foundation LMs. Moreover, the
unique feature of SRB in suppressing recency bias appeared to be a significant factor in enhancing
performance for the LLaMA3 models.
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Figure 3: (a) Accuracy (%) of each current task after adaptation in Order 1 using the T5 model.
(b)–(d) Accuracy of each method along with adaptation time.

5 DISCUSSIONS

In this section, we discuss the challenges of recency bias, analyze the role of diversity and evaluate
efficiency. Detailed discussions, including ablation studies, can be found in Appendix E.

5.1 ANALYSIS OF RECENCY BIAS

We analyzed the recency bias by comparing the forward transferability, which refers to a capacity
to leverage learned knowledge from previous tasks to enhance performance on current task, and
the ability to preserve historical knowledge of SRB with existing methods. Figure 3 illustrates the
forward transferability of each method on individual tasks (Figure 3 (a)) and the preservation of
previous information over adaptation time (Figures 3 (b)–(d)) on the standard CL benchmark. As
shown in Figure 3 (a), LoRA and IncLoRA exhibited slightly higher or comparable performance
compared to SRB when adapting to each target task. However, Figures 3 (b) and 3 (c) revealed
that, as adaptation progresses over time, both of these methods experienced a rapid decline in per-
formance on previously adapted tasks (indicated by the dotted lines). This outcome demonstrates
that existing methods are prone to catastrophic forgetting due to excessive adaptation to the latest
task, highlighting the issue of recency bias. In contrast, Figure 3 (d) shows that SRB maintained
nearly parallel dotted lines over time, indicating that the performance on past tasks remained largely
preserved despite ongoing adaptation. These results suggest that the implicit task and the arithmetic
operations designed to suppress recency bias in SRB effectively mitigated the forgetting of past
information.

5.2 ANALYSIS OF DIVERSITY

We analyzed how variations in the hyperparameter c, which controls the diversity of the current
task vector during optimization, affect SRB. We measured diversity as log(1 − s) (Lee & Chang,
2024), where s is the cosine similarity between the implicit and current task vectors. Figure 4(a)
illustrates that increasing the value of c led to a decrease in diversity over the adaptation time. This
outcome indicates that the regularization imposed by c effectively reduced the diversity. Figure 4(b)
shows that the performance improved as diversity decreased until c = 0.75. Specifically, the model
achieved stable performance when c was set between 0.05 and 0.5. However, when c was set to
1.0, diversity rapidly declined from the 10th task onward. For tasks 13 to 15, the diversity measure
became undefined (indicated by triangle points in Figure 4), resulting in an average accuracy of
0.0%. This result suggests that the optimization process failed to produce sufficiently diverse adapter
without adequate regularization. Consequently, the model ability to generalize deteriorates, leading
to a significant decrease in performance similar to the findings in (Rame et al., 2022).
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Figure 4: (a) Diversity over task series for various values of c in Order 4 for T5. (b) Average accuracy
(%) for different values for each value of c.

5.3 ANALYSIS OF COMPUTATIONAL EFFICIENCY

Table 4: Comparison of computational and memory efficiency
for each method, including average accuracy (Avg., %) across
all tasks in Order 1. #Adapters denotes the number of adapters
needed when processing the I-th task. #Forward and #Backward
indicate the computational load required to process on one mini-
batch containing B samples during the forward and backward
passes, respectively. Elapsed Time indicates that the time taken
to adapt the last task in Order 1 for the T5 model.

Method Avg. #Adapter #Forward #Backward Elapsed Time (sec)
LoRA 64.3 1 B B 39.7

IncLoRA 69.4 I B × I B 45.7
O-IncLoRA 76.6 I B × I B + I × r2 101.6

SRB 77.9 2 B B 42.2

We compared and analyzed the
efficiency of SRB with existing
methods. Table 4 summarizes
the computational resources re-
quired by each approach. In-
cLoRA and O-IncLoRA re-
quired more memory and com-
putational time than LoRA, in-
creasing training times. Specifi-
cally, IncLoRA maintains multi-
ple adapters, increasing memory
usage and computational over-
head during the forward pass as
it processes each adapter sepa-
rately. O-IncLoRA further introduces an additional loss term to enforce orthogonality among
adapters. This orthogonality constraint adds computational complexity proportional to I × r2 dur-
ing the backward pass (Wang et al., 2023), where I is the number of tasks and r is the rank of the
adapters. Consequently, O-IncLoRA experienced significantly longer training times, as reflected in
the elapsed time. In contrast, SRB requires only one additional adapter for the implicit task, result-
ing in two adapters (including the current adapter), regardless of the number of tasks. Moreover,
SRB does not necessitate extra forward or backward passes through the network for each adapter.
Instead, it performs simple arithmetic operations on the adapters, such as vector addition and scalar
multiplication, which incur minimal computational overhead. As shown in Table 4, SRB achieved
higher average accuracy than other methods while maintaining comparable elapsed time to LoRA.

6 CONCLUSION

In this paper, we addressed the limitations of current state-of-the-art CL methods for foundation
LMs. These methods require task IDs that are difficult to obtain in real-world scenarios and often
overlook recency bias. Focusing on task-agnostic settings, we introduced an implicit task to store
historical knowledge while reducing recency bias where task IDs are not provided. By leveraging the
implicit task as support for regularization, the proposed SRB maintains a balance between adapting
to new tasks and retaining information from previous ones during the adapter’s optimization process.
As a result, SRB achieved superior performance compared to state-of-the-art methods with minimal
additional computational overhead. These improvements are attributed to the SRB mechanism,
which effectively retains past information by suppressing the recency bias that existing methods have
overlooked. One limitation of our approach is the requirement for hyperparameters. However, SRB
demonstrated consistent performance enhancements using fixed hyperparameters across task series
of various orders, lengths, and different models. For future work, we plan to focus on implicitly
identifying these hyperparameters, further enhancing the applicability and robustness of our method.
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REPRODUCIBILITY STATEMENT

In this paper, we conducted experiments based on the official CL benchmark as mentioned in Section
4. We also described more experimental details in Appendix C. We plan to make our code publicly
available.
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A DETAILS OF SUPPRESSING RECENCY BIAS

A.1 RELATIONSHIP BETWEEN ADAPTER AND TASK VECTOR

From the perspective of task vectors, an adapter initializes to 0 and adapts to any task aligns with
the definition of a task vector. Suppose the adapter w0 is included in the initial weights W0 and
is fixed at zero. This adapter generates zero outputs during pretraining and does not participate
in learning, making the process equivalent to pretraining without w0. At time step t of continual
adaptation, the adapter becomes wt. Given the zero initialization, the task vector τt is defined as
τt = wt − w0 = wt. Therefore, a LoRA adapter with zero initialization can also be considered a
task vector, and arithmetic operations can be applied to the adapter (Zhang et al., 2023b).

A.2 OVERALL PROCESS

Algorithm 1 Suppressing Recency Bias

INPUT:
Time step t ∈ [1, T ], Input data stream (D1 . . .DT ), Foundation LM weights W0,
Adapter weights {w0, u0}, Hyperparameters (a, b, c),
Initialization w0 ← 0, u0 ← w0, w̃0 ← w0

for t = 1, . . . , T do
OPTIMIZATION PROCESS:

wt ← argmaxw̃t−1
L({w̃t−1,W0},Dt) ▷ Eq. (7)

ARITHMETIC:
// Current Task Vector:
τt = wt − w0

// Implicit Task Vector:
τut = aτut−1 + b(τt − aτut−1) ▷ Eq. (11)
// Regularization Step:
oprojτu

t
(τt) = τt − τt·τu

t

τu
t ·τu

t
τut ▷ Eq. (12)

τ̃t ← τt − c · oprojτu
t
(τt) ▷ Eq. (13)

w̃t ← τ̃t
end for

Algorithm 1 presents the overall process of SRB. SRB operates over a total time step T in task-
agnostic continual learning settings, where tasks are not specified. The foundation LM weights W0

remains frozen with only the fixed-size adapters w0 and u0 being updated. SRB is composed of two
key processes: the first involves optimizing the adapters to encode knowledge from the current task,
while the second performs arithmetic operations between the current task vector and the implicit
task vector. This process preserves historical information and mitigates recency bias after the new
task information is integrated through optimization.

B RELATED WORKS: PROMPT AND OPTIMIZATION-BASED APPROACH

Beyond replay-based methods that store information about past tasks and mix it with new tasks, re-
cent studies in CL for foundation LMs can be broadly categorized into MAE and optimization-based.
MAE stores task-specific information in separate modules, such as adapters or prompts, effectively
leveraging previous knowledge. By combining the outputs of past and current modules, these meth-
ods preserve prior knowledge while adapting to new tasks. Among MAE methods, prompt-based
methods optimize prompts, which are learnable embedding vectors rather than adapters. For in-
stance, LFPT5 (Qin & Joty, 2021) learns soft prompts sequentially while generating task samples
for replay. Similarly, the Progressive Prompt (ProgPrompt) (Razdaibiedina et al., 2023) adapts sep-
arate prompts for incoming downstream tasks and concatenates them sequentially with the previous
prompts. Both LFPT5 and ProgPrompt mitigate catastrophic forgetting and adapt effectively to new
tasks. However, they encounter challenges, including memory overhead caused by the extension of
the soft prompt and the need for task IDs.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Optimization-based CL methods aim to limit changes to parameters that are important for retaining
previous knowledge, often without expanding the model architecture. One such method, MagnItude-
based Gradient Updating (MIGU) (Du et al., 2024) can be applied in a task-agnostic setting, unlike
methods that require task IDs (Kirkpatrick et al., 2017b; Li & Hoiem, 2017). MIGU caches output
magnitudes and updates only the parameters corresponding to the most significant values of the L1-
normalized magnitudes. By leveraging the model’s inherent features, MIGU effectively mitigates
gradient conflicts and demonstrates stable performance in task-agnostic scenarios.

In addition to these foundational methods, O-IncLoRA (Wang et al., 2023) mitigates catastrophic
forgetting by extending LoRA with task-specific orthogonal projections, preserving prior knowledge
by minimizing task interference. However, it relies on explicit task IDs, limiting its effectiveness in
task-agnostic settings, and independently applies orthogonal constraints for each task, leading to in-
creased memory costs as tasks grow. In contrast, SRB eliminates the need for task IDs, dynamically
integrates knowledge through implicit task vectors, and maintains a fixed computational footprint,
enabling more efficient and scalable continual learning.

Besides, recent research has focused on understanding the dynamics of learning and forgetting dur-
ing language model fine-tuning. (Zhang & Wu, 2024) investigates how fine-tuning affects different
aspects of a language model’s knowledge. The authors analyze the impact on elements such as
topic, style, and factual knowledge, providing an in-depth examination of how fine-tuning can lead
to biases or shifts in the model’s behavior. By isolating these components, the study offers valuable
insights into the internal mechanisms of language models, contributing to a better understanding of
catastrophic forgetting and knowledge retention in continual learning scenarios.

C ADDITIONAL EXPERIMENTS DETAILS

C.1 ORDERS OF TASK SERIES

Table 5: Six different task sequences used in continual learning experiments for checking forward
transferability and generalization performance. The tasks correspond to the standard CL benchmarks
adopted in previous studies.

Order Task Sequence
1 DBpedia → Amazon → Yahoo → AG News
2 DBpedia → Amazon → AG News → Yahoo
3 Yahoo → Amazon → AG News → DBpedia

4 MNLI → CB → WiC → COPA → QQP → BoolQ → RTE → IMDB →
Yelp →Amazon → SST2 → DBpedia, → AG News → MultiRC → Yahoo

5 MultiRC → BoolQ → WiC → MNLI → CB → COPA → QQP → RTE →
IMDB →SST2 → DBpedia → AG News → Yelp → Amazon → Yahoo

6 Yelp → Amazon → MNLI → CB → COPA → QQP → RTE → IMDB →
SST2 → DBpedia → AG News → Yahoo → MultiRC → BoolQ → WiC

C.2 EXPERIMENT DETAILS

In this section, we provide specific experimental settings for each method. Our experiments were
conducted using four NVIDIA GeForce RTX 3090 GPUs for T5 and four NVIDIA A100 for the
LLaMA3 models.

LoRA and IncLoRA

• The batch size is set to 64.

• AdamW optimizer is used with hyperparameters β1 = 0.9 and β2 = 0.999.

• LoRA configuration: r = 8, α = 32, dropout = 0.05.

• The learning rate is set to 0.001 for the T5 model and 0.0001 for LLaMA3.

O-IncLoRA
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• The threshold for mask selection is set at 0.7 across orders 1 to 6.

• All remaining hyperparameters are the same as those used in LoRA and IncLoRA.

L2 regularization

• The regularization rate λ is set to 0.01.

• Training hyperparameters are consistent with LoRA and IncLoRA.

MIGU

• LoRA configuration: r = 8, α = 32, dropout = 0.05.

• The learning rate is set to 0.001.

• The threshold for mask selection is set at 0.7 across orders 1 to 6.

ProgPrompt

• The learning rate is set to 0.3.

• Prompt length: 50

• Task specific MLP layer is set as True.

SRB

• The hyperparameters (a,b,c) is set to (0.99, 0.025, 0.15) across all experiments.

• All remaining hyperparameters are consistent with those used in LoRA and IncLoRA.

D FURTHER EXPERIMENTAL RESULTS

Table 6: Average accuracy (Avg., %) on the CL benchmark for the T5 model, comparing results by
method.

Order OrderMethod 1 2 3 Avg. 4 5 6 Avg. Task IDs

ProgPrompt 75.2 75.0 75.1 75.1 - - - -
✓LFPT5 77.1 76.2 76.6 76.6 68.4 68.8 71.4 69.5

LoRA 60.6 62.1 68.8 63.8 53.7 44.4 39.8 46.0
-MIGU 74.8 71.6 73.5 73.3 66.9 64.8 51.8 61.2

SRB 78.1 78.2 77.5 77.9 70.5 71.4 73.3 71.7

Table 6 presents the average accuracy of prompt-based CL methods and task-agnostic CL methods
on the standard CL and long CL benchmarks. While MIGU and LoRA can be applied without task
IDs, they performed poorly on both benchmarks compared to prompt-based CL methods such as
LFPT5 and ProgPrompt, which require task IDs. These results show that task-specific information
has a significant impact on CL performance. Notably, SRB does not require task IDs such as MIGU
and LoRA, yet it achieved performance improvements of approximately 1.3% and 2.2% over LFPT5
on the standard and long CL benchmarks, respectively. It demonstrates that SRB effectively lever-
ages past knowledge and adapts to new tasks, making it applicable to general CL environments with
or without task IDs.

E FURTHER DISCUSSIONS

E.1 EFFECTIVENESS OF RECOVERY ARITHMETIC

Table 7 examines the effect of the recovery operation in Eq. (11), which preserves the foundation
LM weights more during adaptation, on performance across different models. For the T5 model on
the standard CL benchmark, we observed that not performing the recovery led to a slight increase
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Table 7: Average accuracy (Avg., %) on the CL benchmark, comparing results with and without
Recovery applied. When Recovery is applied, a = 0.99; when it is not applied, a = 1.0.

OrderModel Recovery 1 2 3 Avg.

✓ 78.1 78.2 77.5 77.9
- 78.5 78.8 77.1 78.1

OrderRecovery 4 5 6 Avg.

✓ 70.5 71.4 73.3 71.7

T5

- 70.9 67.8 71.0 69.9
OrderModel Recovery 1 2 3 Avg.

✓ 79.0 80.5 77.0 78.8LLaMA3 - 78.8 79.7 76.8 78.5
✓ 78.9 80.3 78.0 79.1LLaMA3-chat - 78.0 81.1 77.6 78.9

in performance of approximately 0.2%. However, in the case of longer task sequences, perform-
ing the recovery resulted in a performance improvement of 1.8%. This trend is consistent for the
LLaMA models. The recovery strategy increased performance by 0.3% for LLaMA3 and by 0.2%
for LLaMA3-chat. These results suggest that the recovery strategy is more effective when dealing
with a more significant number of tasks or starting from a model with higher initial performance.

E.2 EFFECTIVENESS OF UPDATE ARITHMETIC

Table 8: Average accuracy (%) of the standard CL benchmark for T5 as b vary.

MethodHyperparameter SRB LoRA
0.015 0.02 0.025 0.03 0.05 0.1b 77.4 77.5 77.9 78.3 77.6 75.7 75.8

Table 8 presents the performance changes of our SRB method as we vary the hyperparameter b in
Eq. (11). The hyperparameter b controls the extent to which information with reduced recency bias
is updated for new tasks. Our experimental results show that SRB performed well when b is less than
0.1, with a tendency for performance to decrease when b exceeds 0.03. This indicates that updating
new task information relatively slowly—thereby strengthening the low-pass filter characteristic—is
crucial for the performance.

E.3 EXPERIMENTAL RESULTS OF APPLYING LORA TO VARYING ATTENTION WEIGHTS

Table 9: Performance comparison of LoRA, IncLoRA, and SRB applied to query (q), value (v), and
both q and v across standard CL experiments (Order 1, 2, and 3) and long CL experiments (Order 4,
5, and 6).

Order OrderMethod Target 1 2 3 Avg. 4 5 6 Avg.

q,v 61.9 62.1 68.8 64.3 53.7 44.4 39.8 46.0
q 72.5 70.8 67.6 70.3 57.4 60.2 34.1 50.6LoRA
v 70.2 68.6 71.3 70.0 66.2 58.0 13.3 45.9

q,v 71.4 66.2 70.7 69.4 62.3 66.2 63.5 64.0
q 76.2 75.2 74.5 75.3 64.1 65.1 67.0 65.4IncLoRA
v 73.9 67.9 68.4 70.0 66.1 63.3 60.9 63.4

q,v 78.1 78.2 77.5 77.9 70.5 71.4 73.3 71.7
q 78.3 78.1 77.4 78.0 67.4 69.3 69.0 68.6SRB
v 72.8 68.5 71.9 71.1 63.8 64.1 68.3 65.4

We measured the performance variations when applying LoRA to different attention weights (query,
value, and both query and value) across the standard and the long CL benchmark in Table 9. Our
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experimental results demonstrated that SRB consistently achieved the highest average accuracy,
regardless of the attention weights used.
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