
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUPPRESSING RECENCY BIAS THROUGH IMPLICIT
TASK IN TASK-AGNOSTIC CONTINUAL ADAPTATION
FOR FOUNDATION LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Foundation language models have significantly advanced natural language pro-
cessing but face challenges such as catastrophic forgetting when adapting to dy-
namic environments with diverse tasks. Recently, among the continual learning
(CL) methods for these models, model architecture expansion methods have been
spotlighted due to the growth of parameter-efficient fine-tuning (PEFT) methods.
However, these methods need to store past PEFT adapters for each task and require
task identifiers (task IDs) to distinguish each task, thus limiting their applicability
in task-agnostic settings. They also overlook recency bias, where models focus
overly on current tasks at the expense of past knowledge. To address these issues,
we propose suppressing recency bias (SRB) by using the concept of implicit tasks.
SRB assigns a fixed-size adapter to an implicit task, recursively storing historical
knowledge through arithmetic operations with current adapters at every time step
instead of task IDs. This arithmetic mitigates recency bias by integrating non-
overlapping information between historical and current adapters. Our approach
requires only simple arithmetic operations without backpropagation, minimizing
additional computation, and allocates a fixed-size adapter to the implicit task, re-
sulting in low memory requirements. We evaluate SRB on CL benchmarks for
foundational LMs. Experimental results demonstrate that SRB outperforms state-
of-the-art methods, achieving superior generalization performance across various
task sequences and models by effectively mitigating recency bias.

1 INTRODUCTION

Recent advancements in foundation language models (LMs) have demonstrated significant potential
in the field of natural language processing (Min et al., 2023; Zhao et al., 2023; Zhou et al., 2023).
These models have evolved from pretrained language models (PLMs) (Min et al., 2023) to large lan-
guage models (LLMs) (Zhao et al., 2023). Early PLMs (Devlin et al., 2019; Liu, 2019; Lewis, 2019)
focused on understanding and generating language through tasks like masked language modeling,
emphasizing comprehension and generation in text-based applications. Recent LLMs (Achiam et al.,
2023; Touvron et al., 2023) have expanded the capabilities of PLMs by increasing the scale of model
architectures and training data (Min et al., 2022; Wei et al., 2021; 2022a;b; Yao et al., 2024). This
expansion improves generality and adaptability in a variety of tasks. The paradigm of these models
involves capturing rich semantic information through pretraining on vast amounts of unlabeled data,
followed by fine-tuning to suit specific tasks or domains. This methodology improves performance
in various applications and significantly improves the flexibility of the model for different tasks.
Despite these advancements, foundation LMs often experience gradual performance degradation
when adapting to dynamic environments where a series of tasks from diverse domains are presented
(Amba Hombaiah et al., 2021; Dhingra et al., 2022; Jang et al., 2021; Jin et al., 2021; Loureiro et al.,
2022; Chen et al., 2023; Cossu et al., 2024; Gupta et al., 2023; Ke et al., 2022). This performance
degradation suggests an inherent difficulty for foundation LMs to continuously adapt to multiple
environments in a manner similar to human learning processes. A critical challenge in training on
a sequence of tasks is catastrophic forgetting, where the model loses previously acquired knowl-
edge when learning new information specific to a task. Addressing catastrophic forgetting requires
mechanisms that allow the model to expand and continually adapt to a diverse array of tasks.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

✅

⚠

⚠

⚠

✅

Figure 1: Illustrations of continual adaptation, model architecture expansion, and the proposed sup-
pressing recency bias (SRB) method. (a) Generic continual adaptation sequentially adapts to task
series T1, . . . , TI using adapter wi. (b) Model architecture expansion methods store adapters cor-
responding to each past task using task identifiers (task IDs) i ∈ {1, . . . , I} that distinguish tasks.
(c) The proposed SRB method targets the current adapter wt, obtained by optimizing the previous
adapter wt−1 on a mini-batch dataset Dt drawn from an unknown task at time step t where the task
ID is not provided (Section 3.1). The adapter ut allocated to the implicit task Tu is recursively com-
puted via arithmetic operations using wt and ut−1 (Section 3.3). The adapter w̃t for the next time
step t + 1 optimization process is regularized via arithmetic operations to not deviate excessively
from ut (Section 3.4). Detailed arithmetic operations are illustrated in Figure 2.

Continual learning (CL) methodologies have efficiently adapted foundation LMs to downstream
tasks while minimizing performance degradation on historical tasks. Inspired by incremental learn-
ing patterns observed in the human brain (Constantinescu et al., 2016; Kandel et al., 2000), CL aims
for machine learning models to sequentially adapt to a series of tasks while maintaining performance
across all tasks. CL approaches for foundation LMs include replay-based methods (Buzzega et al.,
2020; Sarfraz et al., 2023; Rebuffi et al., 2017; Zhao et al., 2021; Bang et al., 2021), parameter
regularization (Kirkpatrick et al., 2017a; Aljundi et al., 2018; Rongali et al., 2020), and model ar-
chitecture expansion (MAE) (Aljundi et al., 2017; Hu et al., 2021; Lester et al., 2021; Li & Liang,
2021; Shazeer et al., 2017). Replay-based methods maintain a small buffer that stores portions of
observed data from each task to retain past knowledge. However, data storage may not always be
feasible due to privacy concerns, and additional computation is required for further learning. Param-
eter regularization approaches use regularization terms as proxies for the loss values of past domains,
determined by distances in the parameter space, to prevent significant deviations from previous pa-
rameters. MAE methods dynamically expand the network architecture to integrate new information
in a CL manner (Gururangan et al., 2021; Wistuba et al., 2023).

Recently, as parameter-efficient fine-tuning (PEFT) has become the standard approach to continual
adaptation, MAE methods have gained attention (Dettmers et al., 2024; Wang et al., 2023; Wu et al.,
2024; Yan et al., 2023). MAE strategy stores PEFT adapters for each task and combines the outputs
of past and current adapters to update the model. This approach has demonstrated superior retention
of past knowledge compared to existing methods by storing and freezing adapters during adaptation
(Zhang et al., 2023a; Wang et al., 2023). Despite these successes, MAE strategies require task

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

identifiers (task IDs) to store the adapter corresponding to each task, making them difficult to apply
in task-agnostic scenarios (Criado et al., 2022; Pentina & Lampert, 2015). Moreover, this strategy
does not address the issue of recency bias (Ray, 2023), where excessive focus on the current task
leads to the loss of past knowledge (Peysakhovich & Lerer, 2023). This recency bias problem is
exacerbated in continual adaptation settings, where the model repeatedly learns about the current
task (Criado et al., 2022; Pentina & Lampert, 2015).

To address these challenges, we propose a method called suppressing recency bias (SRB), which
introduces an implicit task and assigns adapters to the task, thereby eliminating the need for task
IDs and reducing redundant information acquisition (see Figure 1). We focus on the current adapter,
trained on a mini-batch dataset drawn from a task without a task ID. This adapter is recursively inte-
grated into an implicit task adapter over time to construct historical knowledge, utilizing arithmetic
operations. These operations are designed to compare the historical knowledge with the current
information to suppress repetitive information before storing it in the implicit task adapter. Finally,
we modify the current adapter by regularizing it from deviating excessively from the implicit task
adapter. The advantages of SRB are as follows:

• SRB can be applied in task-agnostic settings and excels at adapting to each task while
preserving historical knowledge by reducing recency bias.

• Implicit tasks require only arithmetic operations that do not necessitate backpropagation,
minimizing additional computation.

• SRB allocates only a fixed-size adapter to the implicit task, resulting in low additional
memory requirements.

We compare the proposed method with state-of-the-art techniques on CL benchmarks for foundation
LMs in task-agnostic continual adaptation. The proposed method demonstrates superior generaliza-
tion performance over existing methods across task series of various orders, lengths, and models.
We show that our method’s enhanced generalization performance is achieved by reducing the loss
of past knowledge due to recency bias observed in existing methods.

2 PRELIMINARIES

2.1 CONTINUAL ADAPTATION FOR FOUNDATION LMS

Continual Adaptation CL has been a long-standing challenge in machine learning (McCloskey
& Cohen, 1989). In a CL setting, a model sequentially adapts to tasks Ti for each task ID
i ∈ {1, . . . , I}. We denote the dataset assigned to task Ti, consisting of N samples, as Di =
{(xn,yn) : n = 1, . . . , N}, where xn is the input text and yn is the corresponding target text.
Before starting continual adaptation, the model is initialized with weights W0 ∈ RD of dimension
D from a foundation LM. The adaptation objective at each time step is defined as:

L(Wi−1,Di) =
1

N

∑
(yn,xn)∈Di

log p(yn|xn;Wi−1), (1)

where p(yn | xn;Wi−1) is the probability of generating yn given xn using the model weights
from the previous time step Wi−1. The updated weights Wi are then computed by optimizing the
adaptation objective:

Wi ← argmax
Wi−1

L(Wi−1,Di). (2)

However, this sequential learning approach risks losing past knowledge because it relies solely on
the previous weights Wi−1, making it susceptible to catastrophic forgetting.

Continual Learning for Foundation LMs To mitigate catastrophic forgetting, replay-based meth-
ods that store and continually utilize past data have been employed (Buzzega et al., 2020; Sarfraz
et al., 2023; Rebuffi et al., 2017; Zhao et al., 2021; Bang et al., 2021). These methods maintain a
memory buffer containing data from previous tasks, allowing the model to reference prior informa-
tion and alleviate the loss of past knowledge. However, replay-based methods can be impractical
in real-world applications due to privacy concerns that make storing past task data unrealistic. In
addition, they require extra computation to train on the data in the memory buffer.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Semantic Intent Arithmetic Operation

Multi-task learning τα + τβ
Unlearning τα − τβ
Domain transfer τγ + (τα − τβ)

Table 1: Semantic intent and their arithmetic operation for α, β and γ tasks.

Alternatively, parameter regularization methods have been explored, which save previous weights
and continuously access them during adaptation to preserve historical knowledge (Kirkpatrick et al.,
2017a; Aljundi et al., 2018; Rongali et al., 2020). These methods introduce a regularization loss that
prevents current weights from deviating significantly from past weights. Specifically, L2 regulariza-
tion helps prevent the weights from becoming excessively large, resulting in improved performance
(Zhang et al., 2023c; Lin et al., 2022).

2.2 CONTINUAL ADAPTATION USING PARAMETER-EFFICIENT FINE-TUNING

Parameter-efficient Fine-tuning The PEFT methods propose inserting a adapter weight wi ∈ Rd

of dimension d at various positions in the Transformer (Vaswani, 2017) architecture commonly used
in foundation LMs, such as after attention and feedforward networks (Houlsby et al., 2019; Li &
Liang, 2021; He et al., 2021). Continual adaptation through the PEFT approach is performed by
updating the adapter as follows:

wi+1 ← argmax
wi

L({wi,W0},Di+1), (3)

where W0 represents the fixed weights of the foundation LMs and only wi are updated. One of
the most effective PEFT methods is a low-rank adaptation (LoRA) (Hu et al., 2021), which has
gained significant attention and has become a standard approach for adapting LLMs such as LLaMA
(Touvron et al., 2023) under limited computational resources. LoRA decomposes the adapters by
mapping the input vector to a lower-dimensional space and then back to the original dimension.
Specifically, for dimensions k and l, given an input z ∈ Rk and output h ∈ Rl in the Transformer,
LoRA modifies h as:

h← h+BAz, (4)
where A ∈ Rr×k and B ∈ Rl×r are projection matrices, with rank r much smaller than min(l, k).
Here, d = lk denotes the dimensionality of the adapter weight wi = BiAi. LoRA can be applied to
any weight matrix but is typically used in query and value projection matrices (Hu et al., 2021). The
matrix A is initialized from a Gaussian distribution, while B is initialized to zeros to allow recovery
of W0. During adaptation, only the adapter weights are updated. Since d is much smaller than D,
most of the model weights remain identical to W0. Similar to parameter regularization approaches,
this characteristic of PEFT helps preserve past knowledge by preventing the current weights from
deviating too far from their previous weights.

Model Architecture Expansion As the adoption of LoRA as a standard method, MAE techniques
that expand adapters as tasks increase have gained attention (Dettmers et al., 2024; Wang et al.,
2023; Wu et al., 2024; Yan et al., 2023). For the current task i, these methods modify h using the
LoRA weights w = BA as follows:

h← h+ (w + w1 + w2 + · · ·+ wi−1)z, (5)

where wj = BjAj for j = 1, . . . , i − 1 are the adapters for past tasks, which are stored and kept
frozen after past adaptation. The outputs of all adapters are summed to modify h, effectively in-
tegrating knowledge from past and current tasks. This process aims to prevent the current adapter
from forgetting historical knowledge by referencing the outputs of the stored adapters during learn-
ing (Zhang et al., 2023a; Wang et al., 2023).

2.3 ARITHMETIC OPERATIONS OF TASK VECTORS FOR SEMANTIC OPERATIONS

Recent studies have demonstrated that arithmetic operations between adapted weights can concretely
implement semantic intents (Ilharco et al., 2022). These semantic intents include improving perfor-
mance of downstream task, alleviating biases or unwanted behaviors, aligning the model with human

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

preferences, or updating the model with new information. Such semantic intents are based on the
concept of a task vector. The task vector is defined as:

τ = Wi −W0, (6)

where Wi represents the adapted weights for task i, and W0 denotes the initial weight of the foun-
dation LM. This approach encodes the information needed to adapt to a specific task, introducing a
new paradigm for neural network editing. Inspired by studies on weight interpolation (Guo et al.,
2023; Wortsman et al., 2022; Rame et al., 2022; 2024), task vectors enable task arithmetic, perform-
ing element-wise operations to edit various models. For example, adding task vectors can enhance
multi-task model performance to achieve generalized capabilities (first row in Table 1), while un-
learning can help the model remove unwanted behaviors or forget specific tasks (second row in
Table 1). Furthermore, when tasks share similar relationships, combining task vectors allows con-
crete computations of abstract concepts such as domain transfer (third row in Table 1).

3 SUPPRESSING RECENCY BIAS

3.1 OVERALL PROCESS

In task-agnostic continual adaptation, task IDs are not provided, and the model continually adapts
without explicit knowledge of task boundaries. This scenario differs from the standard continual
adaptation setting (as described in Eq. (3)), where datasets Di are associated with specific tasks.
Instead, we consider mini-batches of data Dt of size B at each time step t ∈ [1, T ], where T is the
total number of time steps. The optimization process at each time step is defined as:

wt ← argmax
w̃t−1

L({w̃t−1,W0},Dt), (7)

where wt represents the updated adapter weights at time t, w̃0 is assigned as the zero-initialized
w0, and W0 denotes the initial weights of the foundation LMs. The objective function L is the
log-likelihood defined as:

L({w̃t−1,W0},Dt) =
1

B

∑
(xn,yn)∈Dt

log p(yn | xn; {w̃t−1,W0}), (8)

where (xn,yn) are input-output text pairs in the mini-batch Dt. In this setting, the union of all
datasets over tasks is equivalent to the union over time steps,

⋃
iDi =

⋃
tDt. This implies that

the data is presented sequentially over time without explicit task boundaries. To compute w̃t, we
introduce a recursive arithmetic operation defined as:

w̃t, ut ← Arithmetic(wt, ut−1), (9)

where ut ∈ Rd is an adapter allocated to an implicit task Tu, having the same dimensionality as
wt. The function Arithmetic(·) performs recursive operations with u0 initialized as w0 and then
modifies the wt. This function allows the implicit task to incorporate information from past data
without storing adapters for each task individually, thereby operating in a task-agnostic manner.
The step-by-step implementation is provided in Algorithm 1.

3.2 PROBLEM STATEMENT

Suppose that we define the arithmetic operation as w̃t = wt + ut−1 with ut−1 = w1 + · · ·+ wt−1.
In that case, this operation corresponds to the arithmetic used in Eq. (5). This method effectively
accumulates the adapters from all previous time steps, analogous to the arithmetic used in MAE
approaches representing multi-task learning (as shown in Table 1). However, this approach treats
each task independently without considering the sequential relationships or redundancies between
adapters. Consequently, it cannot prevent the duplication of information across adapters. This mech-
anism is vulnerable to catastrophic forgetting due to recency bias, where the model disproportion-
ately focuses on recent data at the expense of past knowledge. This issue is particularly pronounced
in continual adaptation scenarios where mini-batches drawn from the same task are repeatedly pre-
sented, and subsequent tasks are introduced sequentially. The accumulation of redundant informa-
tion and the lack of mechanisms to mitigate recency bias lead to inefficient learning and degradation
of performance on previous tasks.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Illustration of arithmetic operations in SRB.

3.3 ARITHMETIC FOR IMPLICIT TASK VECTORS

In the implicit task, we aim to integrate historical knowledge with current information to generalize
across multiple tasks and suppress recency bias. According to Appendix A.1, the zero-initialized
adapter corresponds to a task vector, so the task vector for the current task is τt = wt − w0 and the
task vector for the implicit task is τut = ut − w0. Task vector arithmetic is based on the notion that
generalized weights exist in the interpolation regions between weights (Guo et al., 2023; Wortsman
et al., 2022; Rame et al., 2022; 2024). Therefore, we compute the implicit task vector through
interpolation of w0, ut−1, and wt as follows:

ut = λ1w0 + λ2ut−1 + λ3wt, (10)

subject to the constraints λ1 + λ2 + λ3 = 1 and 0 ≤ λ1, λ2, λ3 ≤ 1. Since λ1 = 1 − λ2 − λ3, we
can rewrite the equation as ut − w0 = λ2(ut−1 − w0) + λ3(wt − w0). Expressing this in terms of
the task vectors τt and τut , we have τut = λ2τ

u
t−1 + λ3τt. By setting λ2 = a(1− b) and λ3 = b, for

0 ≤ a, b ≤ 1, the implicit task vector becomes

τut = aτut−1 + b(τt − aτut−1). (11)

This result is a weighted version of the domain transfer in Table 1. The hyperparameter a controls the
influence of the previous implicit task vector τut−1. The value of a close to 0 effectively emphasize
the impact of the foundation LM weights W0 (see Figure 2 (a)). In contrast, the value of a close
to 1 retains more historical information. The hyperparameter b determines the degree to which
new information is incorporated. The value of b close to 0 causes the model to respond slowly
to rapidly changing information, acting as a low-pass filter (see Figure 2 (b)). The term (τt −
aτut−1) compares the current task vector τt with the previous scaled implicit task vector aτut−1. This
difference captures the new distinctive information not already represented in the past knowledge.
By adding this adjusted difference to aτut−1, we effectively reduce duplicated information and
prevent excessive growth of redundant task information in the implicit task.

3.4 ARITHMETIC FOR REGULARIZATION

We leverage the non-overlapping information from the implicit task adapter to modify the current
adapter. However, sufficient diversity among weights is necessary for generalized weights to exist in
the interpolation regions between weights (Wortsman et al., 2022; Rame et al., 2022). Paradoxically,
the implicit task vector acts as a low-pass filter, limiting diversity. Therefore, we ensure that the
current task vector is sufficiently distant from the implicit task vector to ensure diversity. To achieve
this, we calculate a regularization term that exerts a stronger attractive force on the current task
vector τt when it is less similar to the implicit task vector τut , using task vector arithmetic. First, we
compute the orthogonal projection of τt onto τut :

oprojτu
t
(τt) = τt −

τt · τut
τut · τut

τut , (12)

where · denotes the dot product. This operation calculates the component of τt that is orthogonal to
τut , which effectively implies the dissimilarity between the two vectors. As illustrated in Figure 2 (c),
the magnitude of this orthogonal component is proportional to the angle between the two vectors.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Therefore, the attractive force towards the implicit task vector is dynamically adjusted according to
the similarity between τt and τut . Finally, we modify τt using this attraction vector:

τ̃t ← τt − c · oprojτu
t
(τt), (13)

where 0 ≤ c ≤ 1 is a hyperparameter that controls the strength of the attraction. This operation dy-
namically regularizes the current task vector by applying a stronger attraction when τt is less similar
to τut and a weaker attraction when they are more similar. This regularizing operation effectively
balances increasing diversity and reducing recency bias by using the implicit task vector as a sup-
port. The diversity enhances the autonomy of the current task vector, thus maintaining adaptability
to each task. The final modified τ̃t is equivalent to w̃t and is used in the subsequent optimization
step in Eq. (7).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Metric We evaluated our approach using a standard CL benchmark designed for
foundation LMs (Qin & Joty, 2021). This benchmark consists of four text classification datasets
introduced by Zhang et al. (2015): AG News, Amazon Reviews, DBpedia, and Yahoo Answers.
Following the previous study (Qin & Joty, 2021), we applied three different orders of CL settings to
these datasets (Order 1, 2, and 3). To assess performance on longer task sequences, we conducted
experiments on a long CL benchmark comprising 15 datasets (Razdaibiedina et al., 2023). This
extended benchmark includes the initial four CL benchmarks along with the Yelp reviews (Zhang
et al., 2015), four tasks from the GLUE benchmark (MNLI, QQP, RTE, SST2) (Wang, 2018), five
tasks from the SuperGLUE benchmark (WiC, CB, COPA, MultiRC, BoolQ) (Wang et al., 2019),
and the IMDB movie reviews dataset (Maas et al., 2011) (Order 4, 5, and 6). Sequences of tasks
are provided in Appendix C.1. Following previous work (Razdaibiedina et al., 2023), we randomly
selected 1,000 samples per task for training and reserved 500 samples per class for validation. For
evaluation metrics, we used accuracy (Chaudhry et al., 2018) and reported the average accuracy
(Avg.) for all tasks after training on the last task.

Comparison Methods We compared SRB with seven other CL methods for foundation LMs. EWC
(Kirkpatrick et al., 2017b) employs a regularization loss based on the Fisher information matrix
to prevent significant weight updates that could interfere with previously learned tasks while fine-
tuning the entire model. Replay (Buzzega et al., 2020) uses a memory buffer containing data from
previous tasks to fine-tune the whole model, retraining on samples from previous tasks when learn-
ing new ones to avoid forgetting. Learning without Forgetting (LwF) (Li & Hoiem, 2017) adds
a regularization loss before learning a new task to ensure that the shared representation layers re-
main similar to those of previous representations. LoRA (Hu et al., 2021) learns a series of tasks
using fixed-size LoRA adapters without retraining on samples of earlier tasks or employing regu-
larization. Incremental low-rank adaptation (IncLoRA) (Zhang et al., 2023a) incrementally adds
new LoRA adapters for each task in a series, similar to LoRA, but without retraining on previous
task samples or using regularization. Orthogonal low-rank adaptation (O-IncLoRA) (Wang et al.,
2023) builds upon IncLoRA by introducing an additional loss that enforces orthogonality among the
adapters stored for each task. L2 (Zhang et al., 2023c) applies an L2 regularization loss to constrain
the LoRA adapters from significantly changing while learning new tasks. Additionally, We referred
to the multitask learning baseline (MTL) as the upper bound and per-task fine-tuning (PerTaskFT)
from (Du et al., 2024) for the benchmark. Further details of the experimental setup are provided in
Appendix C.2.

Implementation Details We adopted two open-source foundation LMs in line with previous studies:
the encoder-decoder T5 (Raffel et al., 2020) and the decoder-only LLaMA (Touvron et al., 2023).
We adopted the large version of the T5 model. For LLaMA, we employed the latest 8B parameter
version, LLaMA3 (Dubey et al., 2024), and LLaMA3-chat, which includes additional instruction
tuning performed on the base model. We adhered to their official implementations for all comparison
methods and followed the hyperparameters reported in the original papers to ensure consistency
with existing CL benchmarks. We used the AdamW optimizer (Loshchilov, 2017) with β1 = 0.9
and β2 = 0.999 and the batch size was 64. For our SRB method, the hyperparameters (a, b, c) were
uniformly set to (0.99, 0.025, 0.15) across all experiments. We set the learning rates to 0.001 and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Accuracy (%) of each order and Average accuracy (Avg., %) on the standard CL benchmark
(Order 1, 2 and 3) and the long CL benchmark (Order 4, 5 and 6) for the T5 model. All results are
averaged over three runs. * indicates performance results from (Du et al., 2024), ✓ of Expan.
indicates the MAE method, and ✓ of Task IDs denotes the task-agnostic settings.

Order OrderMethod 1 2 3 Avg. 4 5 6 Avg. Expan. Task IDs

PerTaskFT∗ 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1 -
MTL∗ 80.0 80.0 80.0 80.0 76.5 76.5 76.5 76.5 -
EWC∗ 48.7 47.7 54.5 50.3 45.3 44.5 45.6 45.1 -

Replay∗ 55.2 56.9 61.3 57.8 55.0 54.6 53.1 54.2 -
LwF∗ 54.4 53.1 49.6 52.4 50.1 43.1 47.4 46.9 - ✓

IncLoRA 71.4 66.2 70.7 69.4 62.3 66.2 63.5 64.0 ✓
O-IncLoRA 77.1 76.2 76.6 76.6 68.4 68.8 71.4 69.5 ✓

LoRA 61.9 62.1 68.8 64.3 53.7 44.4 39.8 46.0 -
L2 66.0 63.0 63.9 64.3 49.1 46.9 12.8 36.3 - -

SRB 78.1 78.2 77.5 77.9 70.5 71.4 73.3 71.7 -

adopted LoRA as the PEFT method for the adapter weights. All experimental results are reported as
the average over three runs.

4.2 RESULTS OF CL BENCHMARK

Table 2 presents the average accuracy of CL methods for foundation LMs on both the standard and
long CL benchmarks. The MAE approaches, specifically IncLoRA and O-IncLoRA, demonstrated
superior performance compared to traditional CL methods, with O-IncLoRA achieving the highest
accuracy. In contrast, task-agnostic settings that do not utilize task IDs, such as those employing
LoRA and L2, generally exhibited comparable or decreased performance on the long CL bench-
mark relative to existing methods. These findings suggest that reusing adapters allocated to each
task effectively enhanced performance and that enforcing orthogonality among adapters, as in O-
IncLoRA, was beneficial for further improvement. Our proposed SRB method attained even higher
performance than O-IncLoRA despite operating without task IDs, whereas O-IncLoRA relied on
them. In the task-agnostic settings, SRB achieved significant performance gains of approximately
21% and 54% compared to LoRA on the standard and long CL benchmarks, respectively.

4.3 RESULTS OF CL BENCHMARK FOR LLM

Table 3: Accuracy (%) of each order and average accuracy
(Avg., %) on the standard CL benchmark (Order 1, 2 and 3)
for LLaMA3 and LLaMA3-chat. All results are averaged over
3 runs.

OrderModel Method 1 2 3 Avg.

LLaMA3

LoRA 75.8 75.9 74.4 75.4
IncLoRA 75.0 75.2 75.7 75.3

O-IncLoRA 74.6 74.7 74.8 74.7
SRB 79.0 80.5 77.0 78.8

LLaMA3-chat

LoRA 75.6 75.6 75.7 75.6
IncLoRA 75.1 74.9 76.2 75.4

O-IncLoRA 74.6 74.5 74.9 74.7
SRB 78.9 80.3 78.0 79.1

Table 3 shows the average ac-
curacy of LoRA, MAE meth-
ods, and our proposed SRB
on the standard CL benchmark
using the LLaMA3 models.
The LLaMA3 and LLaMA3-
chat models generally exhib-
ited more stable and higher per-
formance across various meth-
ods than the T5 model. How-
ever, IncLoRA and O-IncLoRA,
which displayed strong perfor-
mance on the T5 model, per-
formed similarly to or slightly
worse than LoRA, even when
task IDs were provided. In con-
trast, SRB recorded higher performance than LoRA in this setting. These observations imply that
SRB consistently delivers superior performance across different foundation LMs. Moreover, the
unique feature of SRB in suppressing recency bias appeared to be a significant factor in enhancing
performance for the LLaMA3 models.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: (a) Accuracy (%) of each current task after adaptation in Order 1 using the T5 model.
(b)–(d) Accuracy of each method along with adaptation time.

5 DISCUSSIONS

In this section, we discuss the challenges of recency bias, analyze the role of diversity and evaluate
efficiency. Detailed discussions, including ablation studies, can be found in Appendix E.

5.1 ANALYSIS OF RECENCY BIAS

We analyzed the recency bias by comparing the forward transferability, which refers to a capacity
to leverage learned knowledge from previous tasks to enhance performance on current task, and
the ability to preserve historical knowledge of SRB with existing methods. Figure 3 illustrates the
forward transferability of each method on individual tasks (Figure 3 (a)) and the preservation of
previous information over adaptation time (Figures 3 (b)–(d)) on the standard CL benchmark. As
shown in Figure 3 (a), LoRA and IncLoRA exhibited slightly higher or comparable performance
compared to SRB when adapting to each target task. However, Figures 3 (b) and 3 (c) revealed
that, as adaptation progresses over time, both of these methods experienced a rapid decline in per-
formance on previously adapted tasks (indicated by the dotted lines). This outcome demonstrates
that existing methods are prone to catastrophic forgetting due to excessive adaptation to the latest
task, highlighting the issue of recency bias. In contrast, Figure 3 (d) shows that SRB maintained
nearly parallel dotted lines over time, indicating that the performance on past tasks remained largely
preserved despite ongoing adaptation. These results suggest that the implicit task and the arithmetic
operations designed to suppress recency bias in SRB effectively mitigated the forgetting of past
information.

5.2 ANALYSIS OF DIVERSITY

We analyzed how variations in the hyperparameter c, which controls the diversity of the current
task vector during optimization, affect SRB. We measured diversity as log(1 − s) (Lee & Chang,
2024), where s is the cosine similarity between the implicit and current task vectors. Figure 4(a)
illustrates that increasing the value of c led to a decrease in diversity over the adaptation time. This
outcome indicates that the regularization imposed by c effectively reduced the diversity. Figure 4(b)
shows that the performance improved as diversity decreased until c = 0.75. Specifically, the model
achieved stable performance when c was set between 0.05 and 0.5. However, when c was set to
1.0, diversity rapidly declined from the 10th task onward. For tasks 13 to 15, the diversity measure
became undefined (indicated by triangle points in Figure 4), resulting in an average accuracy of
0.0%. This result suggests that the optimization process failed to produce sufficiently diverse adapter
without adequate regularization. Consequently, the model ability to generalize deteriorates, leading
to a significant decrease in performance similar to the findings in (Rame et al., 2022).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: (a) Diversity over task series for various values of c in Order 4 for T5. (b) Average accuracy
(%) for different values for each value of c.

5.3 ANALYSIS OF COMPUTATIONAL EFFICIENCY

Table 4: Comparison of computational and memory efficiency
for each method, including average accuracy (Avg., %) across
all tasks in Order 1. #Adapters denotes the number of adapters
needed when processing the I-th task. #Forward and #Backward
indicate the computational load required to process on one mini-
batch containing B samples during the forward and backward
passes, respectively. Elapsed Time indicates that the time taken
to adapt the last task in Order 1 for the T5 model.

Method Avg. #Adapter #Forward #Backward Elapsed Time (sec)
LoRA 64.3 1 B B 39.7

IncLoRA 69.4 I B × I B 45.7
O-IncLoRA 76.6 I B × I B + I × r2 101.6

SRB 77.9 2 B B 42.2

We compared and analyzed the
efficiency of SRB with existing
methods. Table 4 summarizes
the computational resources re-
quired by each approach. In-
cLoRA and O-IncLoRA re-
quired more memory and com-
putational time than LoRA, in-
creasing training times. Specifi-
cally, IncLoRA maintains multi-
ple adapters, increasing memory
usage and computational over-
head during the forward pass as
it processes each adapter sepa-
rately. O-IncLoRA further introduces an additional loss term to enforce orthogonality among
adapters. This orthogonality constraint adds computational complexity proportional to I × r2 dur-
ing the backward pass (Wang et al., 2023), where I is the number of tasks and r is the rank of the
adapters. Consequently, O-IncLoRA experienced significantly longer training times, as reflected in
the elapsed time. In contrast, SRB requires only one additional adapter for the implicit task, result-
ing in two adapters (including the current adapter), regardless of the number of tasks. Moreover,
SRB does not necessitate extra forward or backward passes through the network for each adapter.
Instead, it performs simple arithmetic operations on the adapters, such as vector addition and scalar
multiplication, which incur minimal computational overhead. As shown in Table 4, SRB achieved
higher average accuracy than other methods while maintaining comparable elapsed time to LoRA.

6 CONCLUSION

In this paper, we addressed the limitations of current state-of-the-art CL methods for foundation
LMs. These methods require task IDs that are difficult to obtain in real-world scenarios and often
overlook recency bias. Focusing on task-agnostic settings, we introduced an implicit task to store
historical knowledge while reducing recency bias where task IDs are not provided. By leveraging the
implicit task as support for regularization, the proposed SRB maintains a balance between adapting
to new tasks and retaining information from previous ones during the adapter’s optimization process.
As a result, SRB achieved superior performance compared to state-of-the-art methods with minimal
additional computational overhead. These improvements are attributed to the SRB mechanism,
which effectively retains past information by suppressing the recency bias that existing methods have
overlooked. One limitation of our approach is the requirement for hyperparameters. However, SRB
demonstrated consistent performance enhancements using fixed hyperparameters across task series
of various orders, lengths, and different models. For future work, we plan to focus on implicitly
identifying these hyperparameters, further enhancing the applicability and robustness of our method.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

In this paper, we conducted experiments based on the official CL benchmark as mentioned in Section
4. We also described more experimental details in Appendix C. We plan to make our code publicly
available.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with
a network of experts. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pp. 3366–3375, 2017.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European confer-
ence on computer vision (ECCV), pp. 139–154, 2018.

Spurthi Amba Hombaiah, Tao Chen, Mingyang Zhang, Michael Bendersky, and Marc Najork. Dy-
namic language models for continuously evolving content. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2514–2524, 2021.

Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow mem-
ory: Continual learning with a memory of diverse samples. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (CVPR), pp. 8218–8227, 2021.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark expe-
rience for general continual learning: a strong, simple baseline. Advances in Neural Information
Processing Systems (NeurIPS), 33:15920–15930, 2020.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Wuyang Chen, Yanqi Zhou, Nan Du, Yanping Huang, James Laudon, Zhifeng Chen, and Claire Cui.
Lifelong language pretraining with distribution-specialized experts. In International Conference
on Machine Learning (ICML), pp. 5383–5395. PMLR, 2023.

Alexandra O Constantinescu, Jill X O’Reilly, and Timothy EJ Behrens. Organizing conceptual
knowledge in humans with a gridlike code. Science, 352(6292):1464–1468, 2016.

Andrea Cossu, Antonio Carta, Lucia Passaro, Vincenzo Lomonaco, Tinne Tuytelaars, and Davide
Bacciu. Continual pre-training mitigates forgetting in language and vision. Neural Networks,
179:106492, 2024.

Marcos F Criado, Fernando E Casado, Roberto Iglesias, Carlos V Regueiro, and Senén Barro. Non-
iid data and continual learning processes in federated learning: A long road ahead. Information
Fusion, 88:263–280, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems (NeurIPS), 36, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), volume 1, pp. 4171–4186. Minneapolis, Minnesota, 2019.

Bhuwan Dhingra, Jeremy R Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W Cohen. Time-aware language models as temporal knowledge bases. Transactions of
the Association for Computational Linguistics (TACL), 10:257–273, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Wenyu Du, Shuang Cheng, Tongxu Luo, Zihan Qiu, Zeyu Huang, Ka Chun Cheung, Reynold
Cheng, and Jie Fu. Unlocking continual learning abilities in language models. arXiv preprint
arXiv:2406.17245, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Hao Guo, Jiyong Jin, and Bin Liu. Stochastic weight averaging revisited. Applied Sciences, 13(5):
2935, 2023.

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats L Richter, Quentin Anthony, Eugene
Belilovsky, Irina Rish, and Timothée Lesort. Continual pre-training of large language models:
How to (re)warm your model? arXiv preprint arXiv:2308.04014, 2023.

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A Smith, and Luke Zettlemoyer. Demix
layers: Disentangling domains for modular language modeling. arXiv preprint arXiv:2108.05036,
2021.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning (ICML), pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin, Janghoon Han, Gyeonghun Kim, Stan-
ley Jungkyu Choi, and Minjoon Seo. Towards continual knowledge learning of language models.
arXiv preprint arXiv:2110.03215, 2021.

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and
Xiang Ren. Lifelong pretraining: Continually adapting language models to emerging corpora.
arXiv preprint arXiv:2110.08534, 2021.

Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum, A James Hudspeth, Sarah
Mack, et al. Principles of neural science, volume 4. McGraw-hill New York, 2000.

Zixuan Ke, Haowei Lin, Yijia Shao, Hu Xu, Lei Shu, and Bing Liu. Continual training of language
models for few-shot learning. arXiv preprint arXiv:2210.05549, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences
(PNAS), 114(13):3521–3526, 2017a.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences
(PNAS), 114(13):3521–3526, 2017b.

Jae-Hong Lee and Joon-Hyuk Chang. Continual momentum filtering on parameter space for on-
line test-time adaptation. In The Twelfth International Conference on Learning Representations
(ICLR), 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

M Lewis. Bart: Denoising sequence-to-sequence pre-training for natural language generation, trans-
lation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (ACL-IJCNLP), pp. 4582–
4597, 2021.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence (TPAMI), 40(12):2935–2947, 2017.

Bill Yuchen Lin, Sida Wang, Xi Victoria Lin, Robin Jia, Lin Xiao, Xiang Ren, and Wen-tau Yih. On
continual model refinement in out-of-distribution data streams. arXiv preprint arXiv:2205.02014,
2022.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Daniel Loureiro, Francesco Barbieri, Leonardo Neves, Luis Espinosa Anke, and José Camacho-
Collados. Timelms: Diachronic language models from twitter. In Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), 2022.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
Association for Computational Linguistics (ACL), pp. 142–150, 2011.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural language processing via
large pre-trained language models: A survey. ACM Computing Surveys, 56(2):1–40, 2023.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

Anastasia Pentina and Christoph H Lampert. Lifelong learning with non-iid tasks. Advances in
Neural Information Processing Systems (NeurIPS), 28, 2015.

Alexander Peysakhovich and Adam Lerer. Attention sorting combats recency bias in long context
language models. arXiv preprint arXiv:2310.01427, 2023.

Chengwei Qin and Shafiq Joty. Lfpt5: A unified framework for lifelong few-shot language learning
based on prompt tuning of t5. arXiv preprint arXiv:2110.07298, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research (JMLR), 21(140):1–67, 2020.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, et al. Diverse
weight averaging for out-of-distribution generalization. Advances in Neural Information Process-
ing Systems (NeurIPS), 35:10821–10836, 2022.

Alexandre Rame, Guillaume Couairon, Corentin Dancette, Jean-Baptiste Gaya, Mustafa Shukor,
Laure Soulier, and Matthieu Cord. Rewarded soups: Towards pareto-optimal alignment by in-
terpolating weights fine-tuned on diverse rewards. Advances in Neural Information Processing
Systems (NeurIPS), 36, 2024.

Partha Pratim Ray. Chatgpt: A comprehensive review on background, applications, key challenges,
bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3:
121–154, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad
Almahairi. Progressive prompts: Continual learning for language models. arXiv preprint
arXiv:2301.12314, 2023.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition (CVPR), pp. 2001–2010, 2017.

Subendhu Rongali, Abhyuday Jagannatha, Bhanu Pratap Singh Rawat, and Hong Yu. Continual
domain-tuning for pretrained language models. arXiv preprint arXiv:2004.02288, 2020.

Fahad Sarfraz, Elahe Arani, and Bahram Zonooz. Error sensitivity modulation based expe-
rience replay: Mitigating abrupt representation drift in continual learning. arXiv preprint
arXiv:2302.11344, 2023.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems
(NeurIPS), 2017.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in Neural Information Processing Systems (NeurIPS), 32, 2019.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning. arXiv
preprint arXiv:2310.14152, 2023.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems (NeurIPS), 35:24824–24837, 2022b.

Martin Wistuba, Prabhu Teja Sivaprasad, Lukas Balles, and Giovanni Zappella. Continual learning
with low rank adaptation. arXiv preprint arXiv:2311.17601, 2023.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, et al. Model soups: Averag-
ing weights of multiple fine-tuned models improves accuracy without increasing inference time.
In International Conference on Machine Learning (ICML), pp. 23965–23998. PMLR, 2022.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ping Luo, and Ying Shan.
Llama pro: Progressive llama with block expansion. arXiv preprint arXiv:2401.02415, 2024.

Yongyu Yan, Kui Xue, Xiaoming Shi, Qi Ye, Jingping Liu, and Tong Ruan. Af adapter: Con-
tinual pretraining for building chinese biomedical language model. In 2023 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 953–957. IEEE, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems (NeurIPS), 36, 2024.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang Jiang, Bowen Wang, and Yiming Qian. In-
crelora: Incremental parameter allocation method for parameter-efficient fine-tuning. arXiv
preprint arXiv:2308.12043, 2023a.

Jinghan Zhang, Junteng Liu, Junxian He, et al. Composing parameter-efficient modules with arith-
metic operation. Advances in Neural Information Processing Systems (NeurIPS), 36:12589–
12610, 2023b.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in Neural Information Processing Systems (NeurIPS), 28, 2015.

Xiao Zhang and Ji Wu. Dissecting learning and forgetting in language model finetuning. In The
Twelfth International Conference on Learning Representations, 2024.

Zihan Zhang, Meng Fang, Ling Chen, and Mohammad-Reza Namazi-Rad. Citb: A benchmark for
continual instruction tuning. arXiv preprint arXiv:2310.14510, 2023c.

Hanbin Zhao, Hui Wang, Yongjian Fu, Fei Wu, and Xi Li. Memory-efficient class-incremental
learning for image classification. IEEE Transactions on Neural Networks and Learning Systems
(TNNLS), 33(10):5966–5977, 2021.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Jie Zhou, Pei Ke, Xipeng Qiu, Minlie Huang, and Junping Zhang. Chatgpt: potential, prospects,
and limitations. Frontiers of Information Technology & Electronic Engineering, pp. 1–6, 2023.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DETAILS OF SUPPRESSING RECENCY BIAS

A.1 RELATIONSHIP BETWEEN ADAPTER AND TASK VECTOR

From the perspective of task vectors, an adapter initializes to 0 and adapts to any task aligns with
the definition of a task vector. Suppose the adapter w0 is included in the initial weights W0 and
is fixed at zero. This adapter generates zero outputs during pretraining and does not participate
in learning, making the process equivalent to pretraining without w0. At time step t of continual
adaptation, the adapter becomes wt. Given the zero initialization, the task vector τt is defined as
τt = wt − w0 = wt. Therefore, a LoRA adapter with zero initialization can also be considered a
task vector, and arithmetic operations can be applied to the adapter (Zhang et al., 2023b).

A.2 OVERALL PROCESS

Algorithm 1 Suppressing Recency Bias

INPUT:
Time step t ∈ [1, T ], Input data stream (D1 . . .DT ), Foundation LM weights W0,
Adapter weights {w0, u0}, Hyperparameters (a, b, c),
Initialization w0 ← 0, u0 ← w0, w̃0 ← w0

for t = 1, . . . , T do
OPTIMIZATION PROCESS:

wt ← argmaxw̃t−1
L({w̃t−1,W0},Dt) ▷ Eq. (7)

ARITHMETIC:
// Current Task Vector:
τt = wt − w0

// Implicit Task Vector:
τut = aτut−1 + b(τt − aτut−1) ▷ Eq. (11)
// Regularization Step:
oprojτu

t
(τt) = τt − τt·τu

t

τu
t ·τu

t
τut ▷ Eq. (12)

τ̃t ← τt − c · oprojτu
t
(τt) ▷ Eq. (13)

w̃t ← τ̃t
end for

Algorithm 1 presents the overall process of SRB. SRB operates over a total time step T in task-
agnostic continual learning settings, where tasks are not specified. The foundation LM weights W0

remains frozen with only the fixed-size adapters w0 and u0 being updated. SRB is composed of two
key processes: the first involves optimizing the adapters to encode knowledge from the current task,
while the second performs arithmetic operations between the current task vector and the implicit
task vector. This process preserves historical information and mitigates recency bias after the new
task information is integrated through optimization.

B RELATED WORKS: PROMPT AND OPTIMIZATION-BASED APPROACH

Beyond replay-based methods that store information about past tasks and mix it with new tasks, re-
cent studies in CL for foundation LMs can be broadly categorized into MAE and optimization-based.
MAE stores task-specific information in separate modules, such as adapters or prompts, effectively
leveraging previous knowledge. By combining the outputs of past and current modules, these meth-
ods preserve prior knowledge while adapting to new tasks. Among MAE methods, prompt-based
methods optimize prompts, which are learnable embedding vectors rather than adapters. For in-
stance, LFPT5 (Qin & Joty, 2021) learns soft prompts sequentially while generating task samples
for replay. Similarly, the Progressive Prompt (ProgPrompt) (Razdaibiedina et al., 2023) adapts sep-
arate prompts for incoming downstream tasks and concatenates them sequentially with the previous
prompts. Both LFPT5 and ProgPrompt mitigate catastrophic forgetting and adapt effectively to new
tasks. However, they encounter challenges, including memory overhead caused by the extension of
the soft prompt and the need for task IDs.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Optimization-based CL methods aim to limit changes to parameters that are important for retaining
previous knowledge, often without expanding the model architecture. One such method, MagnItude-
based Gradient Updating (MIGU) (Du et al., 2024) can be applied in a task-agnostic setting, unlike
methods that require task IDs (Kirkpatrick et al., 2017b; Li & Hoiem, 2017). MIGU caches output
magnitudes and updates only the parameters corresponding to the most significant values of the L1-
normalized magnitudes. By leveraging the model’s inherent features, MIGU effectively mitigates
gradient conflicts and demonstrates stable performance in task-agnostic scenarios.

In addition to these foundational methods, O-IncLoRA (Wang et al., 2023) mitigates catastrophic
forgetting by extending LoRA with task-specific orthogonal projections, preserving prior knowledge
by minimizing task interference. However, it relies on explicit task IDs, limiting its effectiveness in
task-agnostic settings, and independently applies orthogonal constraints for each task, leading to in-
creased memory costs as tasks grow. In contrast, SRB eliminates the need for task IDs, dynamically
integrates knowledge through implicit task vectors, and maintains a fixed computational footprint,
enabling more efficient and scalable continual learning.

Besides, recent research has focused on understanding the dynamics of learning and forgetting dur-
ing language model fine-tuning. (Zhang & Wu, 2024) investigates how fine-tuning affects different
aspects of a language model’s knowledge. The authors analyze the impact on elements such as
topic, style, and factual knowledge, providing an in-depth examination of how fine-tuning can lead
to biases or shifts in the model’s behavior. By isolating these components, the study offers valuable
insights into the internal mechanisms of language models, contributing to a better understanding of
catastrophic forgetting and knowledge retention in continual learning scenarios.

C ADDITIONAL EXPERIMENTS DETAILS

C.1 ORDERS OF TASK SERIES

Table 5: Six different task sequences used in continual learning experiments for checking forward
transferability and generalization performance. The tasks correspond to the standard CL benchmarks
adopted in previous studies.

Order Task Sequence
1 DBpedia → Amazon → Yahoo → AG News
2 DBpedia → Amazon → AG News → Yahoo
3 Yahoo → Amazon → AG News → DBpedia

4 MNLI → CB → WiC → COPA → QQP → BoolQ → RTE → IMDB →
Yelp →Amazon → SST2 → DBpedia, → AG News → MultiRC → Yahoo

5 MultiRC → BoolQ → WiC → MNLI → CB → COPA → QQP → RTE →
IMDB →SST2 → DBpedia → AG News → Yelp → Amazon → Yahoo

6 Yelp → Amazon → MNLI → CB → COPA → QQP → RTE → IMDB →
SST2 → DBpedia → AG News → Yahoo → MultiRC → BoolQ → WiC

C.2 EXPERIMENT DETAILS

In this section, we provide specific experimental settings for each method. Our experiments were
conducted using four NVIDIA GeForce RTX 3090 GPUs for T5 and four NVIDIA A100 for the
LLaMA3 models.

LoRA and IncLoRA

• The batch size is set to 64.

• AdamW optimizer is used with hyperparameters β1 = 0.9 and β2 = 0.999.

• LoRA configuration: r = 8, α = 32, dropout = 0.05.

• The learning rate is set to 0.001 for the T5 model and 0.0001 for LLaMA3.

O-IncLoRA

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• The threshold for mask selection is set at 0.7 across orders 1 to 6.

• All remaining hyperparameters are the same as those used in LoRA and IncLoRA.

L2 regularization

• The regularization rate λ is set to 0.01.

• Training hyperparameters are consistent with LoRA and IncLoRA.

MIGU

• LoRA configuration: r = 8, α = 32, dropout = 0.05.

• The learning rate is set to 0.001.

• The threshold for mask selection is set at 0.7 across orders 1 to 6.

ProgPrompt

• The learning rate is set to 0.3.

• Prompt length: 50

• Task specific MLP layer is set as True.

SRB

• The hyperparameters (a,b,c) is set to (0.99, 0.025, 0.15) across all experiments.

• All remaining hyperparameters are consistent with those used in LoRA and IncLoRA.

D FURTHER EXPERIMENTAL RESULTS

Table 6: Average accuracy (Avg., %) on the CL benchmark for the T5 model, comparing results by
method.

Order OrderMethod 1 2 3 Avg. 4 5 6 Avg. Task IDs

ProgPrompt 75.2 75.0 75.1 75.1 - - - -
✓LFPT5 77.1 76.2 76.6 76.6 68.4 68.8 71.4 69.5

LoRA 60.6 62.1 68.8 63.8 53.7 44.4 39.8 46.0
-MIGU 74.8 71.6 73.5 73.3 66.9 64.8 51.8 61.2

SRB 78.1 78.2 77.5 77.9 70.5 71.4 73.3 71.7

Table 6 presents the average accuracy of prompt-based CL methods and task-agnostic CL methods
on the standard CL and long CL benchmarks. While MIGU and LoRA can be applied without task
IDs, they performed poorly on both benchmarks compared to prompt-based CL methods such as
LFPT5 and ProgPrompt, which require task IDs. These results show that task-specific information
has a significant impact on CL performance. Notably, SRB does not require task IDs such as MIGU
and LoRA, yet it achieved performance improvements of approximately 1.3% and 2.2% over LFPT5
on the standard and long CL benchmarks, respectively. It demonstrates that SRB effectively lever-
ages past knowledge and adapts to new tasks, making it applicable to general CL environments with
or without task IDs.

E FURTHER DISCUSSIONS

E.1 EFFECTIVENESS OF RECOVERY ARITHMETIC

Table 7 examines the effect of the recovery operation in Eq. (11), which preserves the foundation
LM weights more during adaptation, on performance across different models. For the T5 model on
the standard CL benchmark, we observed that not performing the recovery led to a slight increase

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Average accuracy (Avg., %) on the CL benchmark, comparing results with and without
Recovery applied. When Recovery is applied, a = 0.99; when it is not applied, a = 1.0.

OrderModel Recovery 1 2 3 Avg.

✓ 78.1 78.2 77.5 77.9
- 78.5 78.8 77.1 78.1

OrderRecovery 4 5 6 Avg.

✓ 70.5 71.4 73.3 71.7

T5

- 70.9 67.8 71.0 69.9
OrderModel Recovery 1 2 3 Avg.

✓ 79.0 80.5 77.0 78.8LLaMA3 - 78.8 79.7 76.8 78.5
✓ 78.9 80.3 78.0 79.1LLaMA3-chat - 78.0 81.1 77.6 78.9

in performance of approximately 0.2%. However, in the case of longer task sequences, perform-
ing the recovery resulted in a performance improvement of 1.8%. This trend is consistent for the
LLaMA models. The recovery strategy increased performance by 0.3% for LLaMA3 and by 0.2%
for LLaMA3-chat. These results suggest that the recovery strategy is more effective when dealing
with a more significant number of tasks or starting from a model with higher initial performance.

E.2 EFFECTIVENESS OF UPDATE ARITHMETIC

Table 8: Average accuracy (%) of the standard CL benchmark for T5 as b vary.

MethodHyperparameter SRB LoRA
0.015 0.02 0.025 0.03 0.05 0.1b 77.4 77.5 77.9 78.3 77.6 75.7 75.8

Table 8 presents the performance changes of our SRB method as we vary the hyperparameter b in
Eq. (11). The hyperparameter b controls the extent to which information with reduced recency bias
is updated for new tasks. Our experimental results show that SRB performed well when b is less than
0.1, with a tendency for performance to decrease when b exceeds 0.03. This indicates that updating
new task information relatively slowly—thereby strengthening the low-pass filter characteristic—is
crucial for the performance.

E.3 EXPERIMENTAL RESULTS OF APPLYING LORA TO VARYING ATTENTION WEIGHTS

Table 9: Performance comparison of LoRA, IncLoRA, and SRB applied to query (q), value (v), and
both q and v across standard CL experiments (Order 1, 2, and 3) and long CL experiments (Order 4,
5, and 6).

Order OrderMethod Target 1 2 3 Avg. 4 5 6 Avg.

q,v 61.9 62.1 68.8 64.3 53.7 44.4 39.8 46.0
q 72.5 70.8 67.6 70.3 57.4 60.2 34.1 50.6LoRA
v 70.2 68.6 71.3 70.0 66.2 58.0 13.3 45.9

q,v 71.4 66.2 70.7 69.4 62.3 66.2 63.5 64.0
q 76.2 75.2 74.5 75.3 64.1 65.1 67.0 65.4IncLoRA
v 73.9 67.9 68.4 70.0 66.1 63.3 60.9 63.4

q,v 78.1 78.2 77.5 77.9 70.5 71.4 73.3 71.7
q 78.3 78.1 77.4 78.0 67.4 69.3 69.0 68.6SRB
v 72.8 68.5 71.9 71.1 63.8 64.1 68.3 65.4

We measured the performance variations when applying LoRA to different attention weights (query,
value, and both query and value) across the standard and the long CL benchmark in Table 9. Our

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

experimental results demonstrated that SRB consistently achieved the highest average accuracy,
regardless of the attention weights used.

20


	Introduction
	Preliminaries
	Continual Adaptation for Foundation LMs
	Continual Adaptation using Parameter-efficient Fine-tuning
	Arithmetic Operations of Task Vectors for Semantic Operations

	Suppressing Recency Bias
	Overall Process
	Problem Statement
	Arithmetic for Implicit Task Vectors
	Arithmetic for Regularization

	Experiments
	Experimental Setup
	Results of CL Benchmark
	Results of CL Benchmark for LLM

	Discussions
	Analysis of Recency Bias
	Analysis of Diversity
	Analysis of Computational Efficiency

	Conclusion
	Details of Suppressing Recency Bias
	Relationship between Adapter and Task Vector
	Overall Process

	Related Works: Prompt and Optimization-based approach
	Additional Experiments Details
	Orders of Task Series
	Experiment Details

	Further Experimental Results
	Further Discussions
	Effectiveness of Recovery Arithmetic
	Effectiveness of Update Arithmetic
	Experimental Results of Applying LoRA to Varying Attention Weights


