
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NUMBER COOKBOOK: NUMBER UNDERSTANDING OF
LANGUAGE MODELS AND HOW TO IMPROVE IT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) can solve an increasing number of complex tasks
while making surprising mistakes in basic numerical understanding and process-
ing (such as 9.11 > 9.9). The latter ability is essential for tackling complex
arithmetic and mathematical problems and serves as a foundation for most rea-
soning tasks, but previous work paid less attention to it or only discussed several
restricted tasks (like integer addition). In this paper, we comprehensively inves-
tigate the numerical understanding and processing ability (NUPA) of LLMs.
Firstly, we introduce a test suite covering four common numerical representations
and 17 distinct numerical tasks in four major categories, resulting in 41 meaning-
ful combinations in total. These tasks are derived from primary and secondary
education curricula, encompassing nearly all everyday numerical understanding
and processing scenarios, and the rules of these tasks are very simple and clear.
We find that current LLMs exhibit a considerable probability of error in many
of them. To address this, we analyze and evaluate techniques designed to en-
hance NUPA, identifying three key factors that influence NUPA of LLMs. We
also perform finetuning of practical-scale LLMs on our defined NUPA tasks and
find that a naive finetuning improves the performance but these tricks cannot be
directly used to finetune an already-trained model. We further explore the impact
of chain-of-thought techniques on NUPA. Our work takes an initial step towards
understanding and improving NUPA of LLMs.

1 INTRODUCTION

The mathematical and reasoning abilities of large language models (LLMs) are currently quite im-
pressive (OpenAI, 2023; Meta, 2024; OpenAI, 2024; Yang et al., 2024), capable of solving problems
at the level of a graduate student or even more difficult ones like olympiad-level problems (He et al.,
2024), GAOKAO (a nationwide examination of high school students applying to universities in
China) (Zhang et al., 2024) and college mathematics (Tang et al., 2024). However, upon closer
examination of the models’ outputs, we found that although the models demonstrate remarkable
proficiency in problem-solving approaches, they often struggle with basic numerical understanding
and processing — like a careless student who claims, “I know how to do it, but I didn’t get it right.”
Some of these errors are quite surprising, such as believing that 3.11 > 3.9 or making mistakes in
simple addition 8/7 + 3/5. These types of errors are a major cause of hallucinations when dealing
with math, reasoning, and data analysis tasks, as the model presents seemingly correct problem-
solving approaches but ultimately produces incorrect results. Therefore, improving the fundamental
“numerical understanding and processing abilities” (NUPA) of models is crucial.

However, as we mentioned earlier, in current tests and research, the tasks of “numerical processing”
and “logical reasoning” are often mixed together, and much of the evaluation is based on solving
various word problems or complex problems. And even the numerical content is often simplified
in these datasets. For example, in various exam questions, to focus on assessing students’ under-
standing of mathematical concepts — such as how to set up the correct equations and apply the right
theorems — the numbers in both the questions and answers are often specially chosen to be integers.
However, this is not the case in real-world scenarios.

Therefore, an accurate, detailed and comprehensive formalization, measurement, and analysis of this
fundamental capability remains lacking. In this paper, we first try to formalize the NUPA of LLMs.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Task overview of NUPA Test. ✓: 41 tasks included in our test. ✗: Not included, too
complex. ⃝: Not directly included but can be easily transferred from an included task. −: Not
applicable. Detailed explanation for these non-included tasks refers to Appendix A.1.2

Add Sub Multiply Truediv Floordiv Mod Max Min Digit
Max

Digit
Min

Digit
Add

Get
Digit Length Count To

Float
To

Scientific
Sig.
Fig.

Integer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ − ✓ ✓
Float ✓ ✓ ✓ ✗ − − ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⃝ − ✓ ✓
Fraction ✓ ✓ ✓ ✓ − − ✓ ✓ − − − − − ⃝ ✓ ⃝ ⃝
Scientific ✓ ✓ ✓ ✗ − − ✓ ✓ − − − − − ⃝ ✓ − ⃝

By summarizing the concepts and operations involving numbers in primary and secondary educa-
tion into four types of numerical representations: integers, floating-point numbers (finite decimals),
fractions, and scientific notation, along with four categories comprising 17 tasks. Pairing these
representations results in 41 meaningful tasks, forming our NUPA benchmark (Table 1). These
tasks cover most common scenarios involving number understanding and processing, providing a
more comprehensive measure of NUPA of LLMs. We test several state-of-the-art LLMs containing
GPT-4o (OpenAI, 2024), Llama-3.1 (Meta, 2024) and Qwen2 (Qwen Team, 2024), which claim
strong mathematical abilities. Although the latest LLMs performed well on most typical tasks,
their performance declined significantly as tasks became slightly more complex or specialized (such
as multiplication, modulo operations, or digit-based calculations), or when the representation of
numbers extended beyond basic integers to floating-point numbers and other formats (Section 2.4,
Figure 2). This performance decline may impede the models’ reasoning capabilities in addressing
more complex and practical problems.

To address this issue, we explore three possible approaches to enhance the NUPA of models. First,
we summarize previous techniques aimed at improving models’ numerical processing abilities, and
evaluate and analyze them on our newly introduced tasks, representations, and metrics. These tech-
niques contain different tokenization, specially-designed positional encoding (PE) (Haviv et al.,
2022; Kazemnejad et al., 2023b; Zhou et al., 2024a), special format of numbers (like zero-padding,
index-hint (Zhou et al., 2023) or reverse representation (Lee et al., 2023; Zhou et al., 2024b)). We
find that past techniques can be broadly classified into three mechanisms: assisting mathematical
reasoning, aiding digit alignment, and providing regularization. We also discuss the applicability of
these mechanisms across different numerical processing scenarios.

Next, we investigate how to improve NUPA for an already trained model and discover that while
simple direct finetuning can significantly enhance NUPA performance, introducing these tricks in
this stage may have negative effects. We test with several different setting and finetuning config-
uration but no one can achieve similar or better NUPA performance than the original model. Our
findings suggest that these modifications can significantly disrupt the model’s original information
flow or conflict with its pre-existing knowledge.

Finally, we discuss the potential of using chain-of-thought techniques for numerical processing. Al-
though chain-of-thought methods can break down complex problems into simpler sub-tasks and sig-
nificantly increase the likelihood of obtaining correct answers, their drawbacks—such as consuming
large reasoning windows and requiring extended processing time—become particularly apparent in
numerical tasks. We tested a general chain-of-thought method known as RFFT, and found that for
more complex tasks (such as those with O(n2) complexity, including multiplication, division, and
fraction simplification), chain-of-thought methods face scalability challenges, making them difficult
to apply in practical scenarios.

In summary, we conclude that current research is insufficient to fully solve the basic NUPA task,
despite it being a fundamental capability of models. We hope that by introducing a more compre-
hensive definition and evaluation of NUPA, we can bring greater attention to this area and encourage
researchers to include numerical processing, alongside reasoning, in their evaluations of model per-
formance.

2 NUPA TEST: A COMPREHENSIVE BENCHMARK FOR NUMBER
UNDERSTANDING AND PROCESSING ABILITY

In this section, we will introduce our NUPA benchmark from the following four aspect: number
representation, tasks, metrics, and the test performance analysis about current LLMs. We will ex-
plain the rationale behind the inclusion (or exclusion) of specific representations and tasks in our
benchmark, highlighting their distinctive features. By comparing these representations and tasks

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

with previous benchmarks, we will demonstrate that several common tasks and abilities have been
overlooked in prior evaluations.

2.1 NUMBER REPRESENTATION

As we discuss above, we believe that the educational curricula on the primary and secondary school
stage is a good reference on what NUPAs are necessary and expected to learn by LLM. We identify
four number formats that are both common and capable of covering most practical scenarios.
• Integer: The integer is the first set of numbers that we met in primary school and the most com-

mon representation of a number. Some experiments on animals (Davis & Memmott, 1982) and
infants (Strauss & Curtis, 1981) have found that understanding of (simple) integers is somewhat
innate because it is used naturally in counting various countable objects. Understanding and op-
erations of more complex integers is also acquired very early in human civilization (Smith &
Karpinski, 1911; Dauben, 2002). At the same time, integers serve as the foundation for other
mathematical representations.

• Fraction: Specifically, the fractions whose numerators and denominators are integers. Once the
“division” operation has been introduced in integers, the concept “fraction” has occurred. Extend-
ing from the integer to the fraction (i.e. rational numbers) is the first extension of our understand-
ing of number set. In life, once it comes to distribution, fractions are inevitable. However, though
the concept of fraction is intuitive, the operation on fractions is a little more complex. As we will
discuss later, mastering fraction operations remains a significant challenge for current LLMs.

• Floating-point numbers (Float): Finite decimals are a subset of fractions whose denominators
consist of powers of 2 and 5. Since this representation aligns with the decimal number system,
it simplifies calculations—especially addition, subtraction, and comparison—allowing them to
function similarly to integer operations. This simplicity makes finite decimals common in every-
day use. In cases where exact precision isn’t necessary, most fractions are eventually converted to
floating-point representation. Floating-point numbers are also one of the most prevalent formats
in computer-related tasks. However, not all fraction operations can be accurately converted into
decimal form. Consider this problem solved by ChatGPT:

The bookstore sells newspapers and magazines. Bob bought 7 newspapers and 3 mag-
azines for 13 dollars, and Alice bought 3 newspapers and 7 magazines for 23 dollars.
How much are the newspapers and magazines, respectively?

ChatGPT sets up a system of linear equations: 7x + 3y = 13 and 3x + 7y = 23. Using the
elimination method, x = 13

7 − 3
7y, we can easily find the integer solution x = 1, y = 2. In this

case, the fractions 13
7 and 3

7 cannot be approximated as floats like 1.86 and 0.43, as this would
prevent us from arriving at the exact integer solution.

• Scientific Notation: Scientific notation is a common way to represent floating-point numbers,
characterized by separating a number’s precise value from its order of magnitude. The magnitude
is expressed using a base-10 exponent, while the float represents the precise value. This format
introduces some complexity, as numbers with different exponents cannot be easily aligned by the
decimal point. However, it is widely used in fields like physics, economics, and computer science
because it efficiently handles a wide range of numbers and clearly conveys significant figures and
precision. For LLMs, mastering scientific notation can significantly enhance their ability to handle
practical tasks, such as interpreting financial reports or understanding scientific texts.

There are possible representations of numbers that are not included in these four formulas, like
complex numbers, infinite decimal representation (repeating and non-repeating), radical expression
(like

√
2), ... These representations either occur relatively infrequently in practical conversations

(e.g., complex numbers) or present significant challenges for language models to process effectively
without the aid of external tools (e.g., radicals). For these reasons, we have opted not to include
them in our benchmark at this stage.

2.2 TASKS IN FOUR CATEGORIES

Another aspect of NUPA is defining the tasks that the model needs to handle. The tasks should have
clear calculation rules — any student who has completed a full primary and secondary education
should be able to accomplish them. Furthermore, a vast majority of practical numerical processing
tasks are either included in these tasks or can be easily transformed into some of them. We propose

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

17 tasks across four categories. The complete task list is shown in Table 1 and for each task we
provide an example in Appendix A.1.1.

• Elementary arithmetic: addition, subtraction, multiplication, and division. They are the most
fundamental mathematical operations and the first branch of mathematics taught in schools. How-
ever, some operations can be complicated when different number representations are involved.
For example, fraction addition is more complicated than multiplication because it needs to be re-
duced to a common denominator first. Additionally, multiplication of long integers or floating
point numbers actually involves L2 complexity (L is the length of digits), which poses a challenge
to models.

– True division, floor division and modulus: Division is somewhat unique because it is not
closed for integers and float numbers. Here, we consider three common division-related
calculations. True division: To maintain precision, we represent the division of two integers
as a simplified fraction. Combined with the “significant digits” task we will mention later,
this can approximate the result of dividing two integers as a floating-point number. Integer
division and modulus: Represent approximate multiple relationships, frequently used in
practical applications - such as dividing individuals into batches.

• Compare: Max and min. Another important aspect of understanding of numbers is the concept of
“order”. To truly comprehend a number, we must know how large it is and whether it is greater or
smaller than another number. Moreover, comparison serves as the foundation for other significant
operations. For instance, when adding negative and positive numbers, we actually determine
the sign first and then subtract their absolute values - this involves identifying which of the two
numbers has a greater absolute value.

• Digit understanding: The concept of a digit is fundamental. Unlike the “value” of a number, a
digit is tied to its specific representation. When we care about a language model’s understanding,
processing (and generation) of numbers, digit is an unavoidable issue, as they are the units that
our tokenizers and models directly handle. Numbers are not read and processed by the language
model as a whole, but rather as a sequence of digits. Therefore, we specially designed some tasks
that may not be so practical but are useful for exploring whether the language model correctly
understands the concept of digits. Including:

– Digit compare: compare and return the larger (smaller) digit one by one.
– Digit add: Operate the normal addition but ignore any carrying. For example,

digit add(12345, 34567) = 46802. This calculation is independent of each digit. In general
addition, it can test the model’s understanding of digit alignment and its mastery of the unit
operation of single-digit addition.

– Get digit: Given a number and an integer, return the corresponding digit, like the subscribe
operator of a string. Length: Return the total length (i.e., the number of digits) of the number.

– Count: Count the number of times a particular digit occurs in an integer.
Through these tasks, we can assess whether the model correctly understands the concepts of the
number’s digits (length), the position of a digit, and the alignment of the digits between two
numbers.

• Conversion between representations: we designed tasks for converting to two representations:
to float and to scientific notation, as they are frequently used to present final results. These
two tasks also create transformations between different representations to test whether the model
can understand the relationship between various numerical formats. In particular, since many
tasks present answers as approximate values, we designed a “significant digit” (sig. fig.) task to
evaluate the model’s ability to round longer numbers to fixed-digit significant digits.

The combination of representations and tasks ultimately resulted in a total of 41 meaningful tasks.
The remaining tasks were excluded due to being excessively complex, uncommon, inapplicable, or
redundant with other tasks; for further details, see the discussion in the Appendix A.1.2.

The difficulty of each task depends not only on the nature of the task itself, but also on the length
of the numbers to be processed — longer tasks involve more steps of internal operations, as well as
longer inputs and outputs. Therefore, we want to evaluate model performance on different problem
lengths. For tasks that are inherently more difficult, we limit the size of the problem to 1-20 digits,
and for easier tasks to 1-100 digits. (For which tasks are considered difficult or easy, please refer to
the Appendix A.1.3.) We generated 1,000 questions as the NUPA benchmark for each length and
each task. Unlike some previous works that set the lengths of two numbers to be the same, in our

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tests, the length L of a question is determined by the longer of the two numbers, while the length
of the shorter number follows a uniform distribution between 1 and L. For some tasks, randomly
generated numbers may lead to unusual answers. For instance, performing addition or subtraction
on numbers in scientific notation with significantly different exponents may result in very long
(and impractical) outcomes, like 1.1e10 − 2.1e1 = 1.0999999979e10. To address such issues, we
implemented additional handling to ensure the generated problems do not result in overly simple,
overly complex, or meaningless results. For some tasks, we also split a task into a hard and an easy
version. More details can be found in Appendix A.1.4.

2.3 METRICS ABOUT NUPA

Measuring the performance of NUPA benchmarks on these tasks is not trivial. “Exact match”
accuracy is undoubtedly the golden standard of the performance where only the answer is
considered as correct when it exactly match the groundtruth. For most practical tasks in-
volving numbers (like arithmetic or math tests), all we care is whether the answer is right,
and there is no significant difference between being almost right and being completely wrong.
But having a smoother and more detailed metric is more important when we want to un-
derstand the capabilities of a model, especially focusing on current flaws in the model and
how to make it better. Therefore, we also report the “digit match” and “dlength” metrics.

31415.92653582
425.925535321

Groundtruth:
Generation:

Exact match: 0

Digit match: 8 / (8 + 5) =0.62
dlength: 3

Figure 1: An example of metrics.

For “digit match”, we first align the generated answer with the
groundtruth digit by digit. The integer parts (integer, integer
part of a float, the numerator and denominator of a fraction,
the exponential of a scientific notation) are aligned from the
least significant digit; and for the decimal part of float (and
the float in scientific notation), they are aligned from the most
significant digit. We then measured the accuracy for each digit,
with missing digits considered as errors, and averaged them
for each digit. For “dlength”, we report the absolute value of
the difference in length between prediction and groundtruth.
Figure 1 provides an illustration for these three metrics.

For each task, we divide the digits into four intervals (s, m, l, xl), where the total number of tasks
from 1-20 corresponds to 1-41, 5-8, 9-14, 15-20; the total number of tasks from 1-100 corresponds to
1-10, 11-20, 21-60, 61-100. We average the results in each range for each task and metric. Besides,
to demonstrate the model’s upper and lower performance limits, we also present the following met-
rics: well-learned digits and performance-preserving digits. These represent the maximum number
of digits that can maintain over 90% accuracy and the maximum number of digits that can maintain
over 10% accuracy, respectively. (For digit match, the thresholds are set to 90% and 50%, and for
dlength, where smaller is better, the thresholds are 0.1 and 1).

2.4 PERFORMANCE OF CURRENT LLMS

We test some common-used LLMs on our benchmark, including three Llama models: Llama-
2-7b, Llama-3.1-8b and Llama-3.1-70b (Meta, 2024), because they are the most popular open-
source model; Mixtral-8×7B (Jiang et al., 2024) as a strong MoE model and Qwen2-2B and -
72B (Qwen Team, 2024) which are also open-source models and are believed to have strong math
ability. We also test GPT-4o-2024-08-06 and GPT-4o-mini-2024-07-18 on our benchmark. The re-
sults on parts of tasks are shown in Figure 2 while the full results are shown in Appendix B.1 as well
as the “digit-match” and “dlength” metrics. We have several observations regarding the results:

The optimal model performs well on typical tasks, but its performance declines on many less
common tasks. We find that GPT-4o, GPT-4o-mini and Qwen2 can solve typical tasks such as inte-
ger addition, float addition, integer max, integer length with high accuracy among S and M ranges.
This is also consistent with their excellent performance on various mathematical datasets. How-
ever, accuracy drops significantly when dealing with less common representations, such as fractions

1Because we also generate a larger training set (with 100, 000 different pairs of numbers for each digit and
each tasks), we prioritized ensuring that certain basic operations appeared in the training set, which led to some
lengths being absent in the test set. For example, there are no tests for the addition of 1- or 2-digit integers
because 100× 100 < 100, 000.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Digit Max
Float

Truediv
Integer

Floordiv
Integer

Mod Easy
Integer

To Float
Fraction

Count
Integer

Sig
Integer

Multiply Easy
Integer

Multiply Easy
Fraction

Multiply Easy
Float

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Qwen2-7B

Qwen2-72B

Mixtral-8x7B

Llama-3.1-8B

Llama-3.1-8B-ft

Llama-3.1-70B

Llama-2-7b-hf

GPT-4o

GPT-4o-mini

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Digit Max
Float

Truediv
Integer

Floordiv
Integer

Mod Easy
Integer

To Float
Fraction

Count
Integer

Sig
Integer

Multiply Easy
Integer

Multiply Easy
Fraction

Multiply Easy
Float

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Qwen2-7B

Qwen2-72B

Mixtral-8x7B

Llama-3.1-8B

Llama-3.1-8B-ft

Llama-3.1-70B

Llama-2-7b-hf

GPT-4o

GPT-4o-mini

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Add
Integer

Add
Float

Add
Fraction

Add
ScientificNotation

Max
Integer

Max
Fraction

Max Hard
Integer

Max Hard
Float

Get Digit
Integer

Length
Integer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Add
Integer

Add
Float

Add
Fraction

Add
ScientificNotation

Max
Integer

Max
Fraction

Max Hard
Integer

Max Hard
Float

Get Digit
Integer

Length
Integer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Figure 2: Parts of performance of state-of-the-art LLMs on NUPA benchmark.

and scientific notation, with average accuracy falling below 20%, even in the shortest S-range (1-4
length input). For tasks such as significant figure, modulo operations, or digit-based calculations, the
model’s performance was similarly unsatisfactory. This highlights the current limitations of LLMs
in understanding numerical diversity and complexity — they only demonstrate proficiency with a
small subset of numbers, while for many other tasks, they remain unfamiliar and unable to produce
accurate answers.
Length still remains an obstacle for NUPA of LLMs. We observe a clear decline in accuracy
for even simple integer addition as problem length increases. The precision of GPT-4o drops from
nearly 100% in the S range and 80% in the M range to around 40% in the L range and 15% in the
XL range. For the more challenging floating-point addition task, the accuracy falls from 90% (S)
and 60% (M) to just 15% (L) and under 5% (XL). The same trend is evident in other models and
tasks. For instance, Qwen2’s performance in the integer length task declines from almost 100% (S)
to 50% (M) and below 5% (L and XL).
Concept “digit” is not as easy as we expected. We were surprised to discover that LLMs struggle
to fully grasp the concept of a “digit”. For instance, in the “get digit” task, where the model is
given a long integer and an index, and asked to return the corresponding digit, performance is strong
in the shorter S-range. This suggests that the model can at least understand the task requirements.
However, as the length of the number increases, performance drops significantly, indicating that
the model lacks a consistent understanding of what a digit represents. In the XL-range, GPT-4o
manages only 20% accuracy, barely above random guessing, which would achieve 10% accuracy
(since the answer is always a digit between 0 and 9). This fundamental limitation likely explains
why current models struggle with numerical understanding and processing across a wider range of
tasks and longer input lengths. If a model cannot reliably determine a certain digit in a given number,
it casts doubt on its ability to learn and apply more complex arithmetic operations in a generalizable
way, such as addition. The performance on these tasks may largely rely on case-based reasoning, as
pointed out by Hu et al. (2024).
We also have some interesting observations: (1) LLMs find the “max-hard” task easier than “max”
with integer inputs. The difference is that in the max task, the two numbers often differ in length,
whereas in max-hard, they are always the same length and share some left-most digits, requiring
more digits to be compared. While max-hard intuitively seems more difficult, models actually per-
form better on it, likely because they struggle to effectively use sequence length information, as
evidenced by their weaker performance on the “length” tasks in the longer ranges. This suggests
that models might process tasks in different ways from humans. They could have to compare two
numbers digit-by-digit. In this situation, the “harder” subtasks is actually easier because the num-
bers have been aligned. (2) GPT-4o and GPT-4o-mini show nearly identical performance across
most tasks, similar to the comparison between Qwen2-72B and Qwen2-7B. This suggests that after
reaching a certain size, NUPA performance depends more on the training approach, such as data
diversity and post-training, rather than simply on model size.

3 HOW DO TOKENIZER AND OTHER TRICKS AFFECT NUPA?
We use the architecture of decoder-only transformers and alter the number of attention heads
and layers together with the hidden size and intermediate size to get models of various param-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.0M 0.6M 1.2M 1.8M 2.4M
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Exact Match D6

1-digit tokenizer
2-digit tokenizer
3-digit tokenizer

0.0M 0.6M 1.2M 1.8M 2.4M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D7

0.0M 0.6M 1.2M 1.8M 2.4M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D8

0.0M 0.6M 1.2M 1.8M 2.4M
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Exact Match D9

0.0M 0.6M 1.2M 1.8M 2.4M
0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Exact Match D10

(a) 0.9B model int add

128.0K 3.3M 6.5M 9.7M
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Exact Match D6

1-digit tokenizer
2-digit tokenizer
3-digit tokenizer

128.0K 3.3M 6.5M 9.7M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D7

128.0K 3.3M 6.5M 9.7M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D8

128.0K 3.3M 6.5M 9.7M
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Exact Match D9

128.0K 3.3M 6.5M 9.7M
0.00

0.05

0.10

0.15

0.20

0.25
Exact Match D10

(b) 0.9B model float add

6.4K 1.3M 2.6M 3.8M
0.00

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

Exact Match D6

1-digit tokenizer
2-digit tokenizer
3-digit tokenizer

6.4K 1.3M 2.6M 3.8M
0.00
0.03
0.05
0.08
0.10
0.12
0.15
0.18
0.20

Exact Match D7

6.4K 1.3M 2.6M 3.8M
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Exact Match D8

6.4K 1.3M 2.6M 3.8M
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Exact Match D9

6.4K 1.3M 2.6M 3.8M
0.00
0.01
0.01
0.01
0.02
0.03
0.03
0.04
0.04

Exact Match D10

(c) 0.9B model int multiply
Figure 4: Accuracy of 0.9B models trained with 1-3 digit tokenizer on three task of integer addition,
float addition and integer multiplication.

eter sizes, like 0.1B, 0.9B and 3B on integer addition, float addition, and integer multiplication.
We then train the models from scratch with a wide range of techniques that may affect NUPA.
We confirm the effects of the various techniques through experiments, including tokenizers, posi-
tional encodings (PE) and data formats, such as reverse formatting, zero-padding and index hints.

(a) 31415.926535897932

(b) 31415.926535897932

(c) 31415.926535897932

Figure 3: Different tokenization
of a long number in representative
LLMs. (a) 1-digit tokenizer, used
in Llama-2. (b) mixed digit tok-
enizer, used in GPT-2. (c) 3-digit
tokenizer, used in GPT-3.5, GPT-4
and Llama-3.

3.1 TOKENIZER

LLMs interpret numbers as segmented tokens rather than
whole numbers or digits like humans. With the develop-
ment of language models, various tokenization strategies have
emerged, including 1-digit tokenizers, mixed tokenizers, and
3-digit tokenizers, as shown in Figure 3. There has been a
trend towards extending each numeric token. However, the
question of which tokenizer best assists the model in un-
derstanding and processing numbers remains an open ques-
tion. Longer tokenizers reduce training and inference costs
per sample, as they decrease the number of tokens per sam-
ple. However, the trade-off is that long tokenizers require ex-
ponentially larger number vocabularies. For tokenizers with such large vocabularies, developing
NUPA might demand the model to also see exponentially more examples, which is intuitively more
challenging. In this section, we will mainly discuss tokenizers of 1 to 3 digits. The n-digit tokenizer
greedily segments a number from left to right into n-digit tokens until a remainder shorter than n
digits is left, which is then segmented into a single token.

We train 0.9B models on 1- to 8- digit length training samples of tasks including integer addition,
float addition, and integer multiplication. We also discuss experiments on models of 3 different
sizes, including 0.1B, 0.9B, and 3B in Appendix B.2.

Figure 4 illustrates the in-domain performance of these models in the first three columns and their
out-of-domain (OOD) performance in the last two columns. Here we use the exact match met-
ric. From the figure, we find that except for in-domain performance of integer addition, the 1-digit
tokenizer consistently exceeds the others by large margins in both in-domain tests and length gener-
alization. In contrast, the 3-digit tokenizer exhibits poor performance in both in-domain and out-of-
domain evaluations. Tokenizers with an increasing number of digits significantly hinder subbillion
models’ NUPA. In the experiments of the 3B model in Appendix B.2, the 3-digit tokenizer shows
the potential in length generalization for the first time, yet its performance remains inferior to that of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0M 0.6M 1.2M 1.8M 2.4M
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Exact Match D6

1-digit tokenizer
2-digit tokenizer
3-digit tokenizer
2-digit random tokenizer
3-digit random tokenizer

0.0M 0.6M 1.2M 1.8M 2.4M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D7

0.0M 0.6M 1.2M 1.8M 2.4M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D8

0.0M 0.6M 1.2M 1.8M 2.4M
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Exact Match D9

0.0M 0.6M 1.2M 1.8M 2.4M
0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Exact Match D10

Figure 5: Accuracy of 0.9B models trained with 1- to 3- digit tokenizers and 2- to 3- digit random
tokenizers on integer addition.

the smaller tokenizers. This indicates that scaling up the model size indeed alleviates the challenges
in developing NUPA caused by larger tokenizers. Nevertheless, larger tokenizers do not present any
distinct benefits in either in-domain or out-of-domain generalization in our models.
Random tokenizer. Additionally, we investigate the random tokenizer, as introduced in Sathe
et al. (2024). They claim that this trick can improve the reasoning ability of LLMs by giving the same
reasoning path with different generating processions. Here, we try this idea in the number domain,
which means the tokenizer segments a number into tokens of digit lengths randomly chosen between
1 and a predefined maximum iteratively instead of segmenting numbers from left to right greedily.
Unlike GPT-2 tokenizer shown in Figure 3 (b), random tokenizers can give different tokenizations
for a fixed number while the GPT-2 tokenizer can not. We denote this random tokenizer with a
maximum digit length of n as the n-digit random tokenizer. It should be noted that the 1-digit
tokenizer is equivalent to the 1-digit random tokenizer.

We show the performance of 1- to 3-digit tokenizers and 2- to 3-digit random tokenizers in Fig-
ure 5. 2- and 3-digit random tokenizers outperform corresponding standard tokenizers respectively
in length generalization. Regarding in-domain generalization performance, the 3-digit random to-
kenizer surpasses the 3-digit tokenizer, while the 2-digit random tokenizer shows a marginal de-
crease in performance relative to the 2-digit standard tokenizer. Nevertheless, it should be noted that
even though random tokenizers show superior performance in length generalization, they still fail to
match the 1-digit tokenizer.

3.2 TRICKS TO IMPROVE NUPA
Table 2: RoPE performance.
Exact Match Digit Match Dlength
d8 d9 d8 d9 d8 d9

RoPE 1.00 0.00 1.00 0.53 0.00 0.67

PEs: In most tasks, there is an intrinsic calculating rule
not related to the length of input numbers, we called it
the “length-agnostic” rules. However, because the model
only accesses a portion of the length, there can be a
“length-related” rule that is not distinguishable by the
model. For example, the model can learn a “length-related” addition rule that is the normal ad-
dition rules + the output should be of length ranging from 1 to 8. This phenomenon can be called
length over-fitting. To investigate whether and why different PE will influence the length generaliza-
tion, we train 100M models with different PEs: RoPE (Su et al., 2023), NoPE (Kazemnejad et al.,
2023a) and Alibi (Press et al., 2022) on integer addition of 1-8 length (S and M range), then test
them on full range (S to XL, 1-20). RoPE is the most classic relative PEs and Alibi is also a relative
PE that claim more effective in length generalization, while NoPE denotes transformers without po-
sitional encoding. We find that (1) RoPE encourages the model to rely on the length of the input. The
first evidence is that RoPE causes the model’s predictive performance to plummet dramatically just
beyond the training boundary; for instance, accuracy drops from nearly 100% to 0% when moving
from 8 to 9 digits, while “dlength” rises from 0 to 0.7 (Table 2). This indicates that the model has a
significant probability of generating shorter results, avoiding the generation of 9-digit answers. At
the same time, RoPE not only constrains the model’s output length but also affects the digit pairing.
The performance of 100% for inputs of 8 digits indicates that the model performs calculations for
each position unless it can successfully align the corresponding digits. However, when inputting 9-
digit numbers, digit match drops significantly to 50%, suggesting that the model has a considerable
probability of failing to align the digits. (2) On the other hand, we observe that the length learning
provided by RoPE appears to be a shortcut. In cases where the model is extremely small or has been
trained very little, we see the advantages of this “shortcut”. In Table 3, we train a 2-layer transformer
(1.3M parameters) on integer addition using 3 different PEs on 1- to 8- digit integer addition or the
0.1B model with only 1M samples, we find RoPE shows the best in-domain performance. However,
in actual training, this shortcut, as a case-based learning mechanism for length, fails to achieve a
generalization in length. In contrast, although NoPE and Alibi slow down learning, it enables the
model to learn a generalizable behavior. Therefore, our conclusion is that RoPE causes over-fitting
on length shortcuts while these specially-designed PE can be understood as a length regularization.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Exact match of 0.1B models trained on integer addition and float addition respectively with
various compositions of reverse formatting and zero padding.

Integer Addition Float Addition

rev rev
+pad no pad rev total rev total

+ pad rev each rev each
+ pad rev dec rev dec

+ pad rev int rev int
+ pad no pad

d9 1.00 1.00 1.00 1.00 0.12 0.24 0.12 0.24 0.12 0.24 1.00 1.00 1.00 1.00
d10 0.80 0.92 0.32 0.82 0.10 0.22 0.12 0.23 0.09 0.22 0.98 0.98 0.22 0.98

Table 3: 8-digit digit-match accuracy
with small model or small dataset.

1.3M Model 1M Samples

RoPE 0.091 0.97
NoPE 0.061 0.78
Alibi 0.056 0.23

Data Formats: A series of works focusing on length
generalization, especially the addition of language mod-
els, has proposed specific data formats to enhance the
model performance on the addition of long numbers. Typ-
ical techniques include reverse formatting, zero padding
and index hints. Reverse formatting (Lee et al., 2023;
Shen et al., 2023; Zhou et al., 2023; 2024b; Cho et al.,
2024) presents numbers in reverse order from the least significant digit to the most significant digit
to align with the models’ autoregressive mechanism, simplifying the learning process for addition.
Zero padding (Lee et al., 2023; Shen et al., 2023; Zhou et al., 2024b; Cho et al., 2024) adds lead-
ing zeros to numbers to standardize the lengths of operands, helping models align operands. Index
Hints (Zhou et al., 2023) explicitly include positional information in input and output sequences by
representing each digit with their indexes corresponding to the positions prefixing the digit.

While previous work mainly focuses on integer addition or multiplication, we extend the techniques
to various tasks in NUPA Test of different number domains for the first time. Reverse formatting
is believed to help models perform carry-over calculations and also assist in digit alignment, while
zero padding and index hints serve primarily to help with digit alignment. To compare the effects
of reverse formatting and zero padding, we demonstrate in Table 4 how the combination of reverse
formatting and zero padding impacts length generalization. Reverse formatting, zero padding, and
their combination show comparable performance to each other in integer and float addition, which
indicates that the role of reverse formatting in assisting calculations is not apparent. To provide an
intuitive explanation: regarding addition, examples where reverse formatting can make a difference
through the effects of assisting carry-over calculations are quite rare. Most of the time, knowing
the result of the next digit allows us to determine the answer for the current digit. When the next
digit addition is not less than 10 (without considering further carrying from the following digit),
there must be a carrying from that digit into the current one, no matter what the result of the later
digits is. And when the next digit addition is not more than 8, there will never be a carrying.
The only exception is the next digit addition is 9. In this situation, we must refer to the next two
digits to determine the current digit results. Therefore, we point out that, although in the worst-case
scenario, performing non-reversed addition requires O(n)-length looking forward for each digit,
and reversing could solve this problem, such cases are extremely rare. (44445 + 55556 = 100001)
In most instances, the task can be accomplished with a very limited local view. Assuming the model
has the capability to focus on the next n digits to calculate the current digit, then reverse formatting
would only aid in calculations for questions with consecutive n + 1 carry-overs, which are quite
uncommon. Therefore, the role of reverse formatting in aiding calculation is very subtle, and its
main functions are similar to padding, primarily helping with alignment tasks. As for index hints, it
expands the vocabulary and thus causes an extra burden for models to achieve length generalization.
On the contrary, reverse formatting raises the performance of length generalization dramatically even
with 0.1B models in multiple tasks. The experiments about index hint are included in appendix B.4.

3.3 DOES FINETUNING IMPROVE NUPA PERFORMANCE OF LLMS?

As shown in Figure 2, the current models still exhibit poor performance in some NUPA tests. Addi-
tionally, the existing techniques aimed at enhancing mathematical abilities have rarely been applied
to practical LLMs, mostly remaining in toy models and limited to a few isolated tasks. We are cu-
rious whether it is possible to improve the NUPA capabilities of large models through post-training
finetuning. Therefore, based on the NUPA test tasks, we also generate training (105 samples for
each digit and each task) and validation sets, ensuring that they do not overlap with the previously
proposed test set. We then used them to perform LoRA finetuning on a pre-trained model. We fine-
tune a Meta-Llama-3.1-8B model with lora (rank 128, α=32) on a mixed-up training set of all our
NUPA tasks. We find only 800 steps training (about 50M training samples, ≪ 1 epoch) can improve
the performance significantly, as shown in Figure 2 labeled as “Llama-8B-ft”. Though Llama-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Performance of RF CoT. “-” means exceeding context window limitation (2k tokens).
Exact Match Add Float Multiply Fraction Max Scientific Mod Integer

Digit 5 6 7 2 3 4 38 39 40 6 7 8

RF CoT 1.00 1.00 - 0.90 0.85 - 1.00 0.85 0.90 0.70 0.35 -
GPT-4o 0.78 0.66 0.49 0.53 0.20 0.00 0.37 0.46 0.36 0.01 0.00 0.00

Qwen2-72B 0.62 0.50 0.70 0.05 0.00 0.00 0.96 0.98 0.95 0.03 0.00 0.00

3.1-8B is not a strong baseline, this finetuned version achieves much better performance. In max,
max-hard, add-float and turediv tasks, this model can beat or exceed GPT-4o. This confirms our
hypothesis: for many NUPA tasks, the model’s capabilities may not be the main limiting factor, but
rather the lack of numerical diversity and task variety in the training data constrains performance.
However, we also found that such finetuning does not provide much improvement on certain tasks,
such as understanding digits.

However, when we attempted to incorporate various techniques, such as modifying the model’s
original PEs, tokenizer, or the representation of inputting numbers, into an already trained model,
we find that these approaches were ineffective. Whether we altered the PE or adjusted the model’s
tokenization and representation, it significantly disrupted the model’s original behavior, leading to a
substantial drop in performance. In such cases, finetuning was unable to restore the model’s original
performance, let alone improve it. This suggests that enhancing a model’s NUPA capabilities post-
training may require more revolutionary innovations beyond the current research paradigms. The
results of these attempts are presented in Appendix B.5.

4 IS COT SUITABLE AND VALID FOR NUPA?
Due to the task and representation diversity of our benchmark, it is difficult for one form of CoT to
cover all issues. So here we adapt a special CoT form called Rule-Following CoT (Hu et al., 2024),
where the LLMs are taught to follow a code or pseudo-code that describes the procedure to solve
the task. Because all the steps can be converted into recurrences and some basic unit operations, the
RF-CoT can be used to solve any problem solvable by code, which is suitable for our benchmark.

Table 5: Average inference time.
batchsize sec / sample

RF CoT 128 5.625
Direct 128 0.371
Direct 256 0.336

To evaluate the performance of the CoT method on the NUPA
test, we finetuned the LLaMA 3.1-8B model on a subset of the
NUPA test, using the rule-following finetuning (RFFT). Dur-
ing both training and testing, we set a context window of 2000
tokens, with any data exceeding this limit being ignored. The
performance on selected tasks is presented in Table 6. Within
the context length limit, the rule-following finetuned LLaMA 3.1-8B significantly outperformed
GPT-4o and Qwen2-72B on average. However, although CoT methods are quite effective within
a certain data range, their design requiring a longer context window for more complex operations
leads to significantly slower reasoning times as input size increases. This is particularly crucial in
mathematical computations. As shown in Table 6, with the 2000-token limit, CoT can only handle
fraction addition involving numbers up to three digits. The more complex the logic required for
the computation, the smaller the range of numbers CoT can process. We provide the maximal digit
length within the 2k context window limitation for each task in Appendix C to show the context
window limitation for complex tasks. As for inference time, Table 5 demonstrates the average in-
ference time for generating each sample using “RF CoT” and “direct answer” during the NUPA test
where both experiments are operated on an A800 GPU. The batchsize 128 is the same batchsize
while 256 shares a similar CUDA memory. The RF CoT method is approximately 17 times slower
than directly generating the answer, causing an unsustainable burden for such a basic operation that
is frequently encountered in solving real-world problems.

5 CONCLUSION & LIMITATION

We investigate NUPA of LLMs, propose a comprehensive benchmark called NUPA test and reveal
that numerical problems remain challenging for modern LLMs. Our comprehensive test suite, which
includes a variety of numerical representations and tasks, has exposed the surprising vulnerability
of LLMs in this fundamental area. Our analysis includes techniques proposed in previous work
that significantly influence the NUPA of LLMs. finetuning models on NUPA Test do improve their
performance. However, extra tricks harm NUPA in the finetuning process, which indicates that these
methods are not readily transferable to enhance a pre-trained model. Additionally, we have explored
the potential of chain-of-thought techniques to improve NUPA.

While our work marks a preliminary step towards enhancing NUPA in LLMs, a definitive solution
to the challenges faced by LLMs has not yet been found, which is left for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are fully reproducible.
Detailed descriptions of the number formats, construction and metrics of our NUPA dataset are
provided in 2 and A.1.2, and examples for each task in B.4. To further facilitate reproducibility,
we have incorporated the full source code, enabling the generation of the entire datasets and the
training and assessment of models, within the supplementary materials. Researchers wishing to
generate NUPA benchmark or replicate our experiments can refer to these resources for all necessary
information.

ETHICS STATEMENT

In conducting this research, we have adhered to the highest ethical standards to ensure the integrity
and fairness of our work. For source code releases, we have ensured compliance with applicable
legal standards, ensuring that the code is anonymized and free from personally identifiable infor-
mation. During the construction of the dataset, all data was entirely generated randomly, without
including any personal identity information or other private data of individuals.

REFERENCES

Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, and Chulhee
Yun. Position coupling: Leveraging task structure for improved length generalization of trans-
formers, 2024. URL https://arxiv.org/abs/2405.20671.

Joseph Dauben. The universal history of numbers and the universal history of computing. Notices
of the AMS, 49(1), 2002.

Hank Davis and John Memmott. Counting behavior in animals: A critical evaluation. Psychological
Bulletin, 1982.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models
without positional encodings still learn positional information. In Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2022, pp. 1382–1390, Abu Dhabi, United Arab Emirates, December 2022. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.99. URL https:
//aclanthology.org/2022.findings-emnlp.99.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual mul-
timodal scientific problems, 2024. URL https://arxiv.org/abs/2402.14008.

Yi Hu, Xiaojuan Tang, Haotong Yang, and Muhan Zhang. Case-based or rule-based: How do
transformers do the math?, 2024. URL https://arxiv.org/abs/2402.17709.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers, 2023a. URL
https://arxiv.org/abs/2305.19466.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers, 2023b. URL
https://arxiv.org/abs/2305.19466.

11

https://arxiv.org/abs/2405.20671
https://aclanthology.org/2022.findings-emnlp.99
https://aclanthology.org/2022.findings-emnlp.99
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.17709
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2305.19466
https://arxiv.org/abs/2305.19466

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers, 2023. URL https://arxiv.org/abs/2307.
03381.

Meta. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

OpenAI. Gpt-4 technical report, 2023. URL https://arxiv.org/abs/2303.08774.

OpenAI. Gpt-4o system card, 2024.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation, 2022. URL https://arxiv.org/abs/2108.12409.

Alibaba Group Qwen Team. Qwen2 technical report, 2024. URL https://arxiv.org/abs/
2407.10671.

Ashutosh Sathe, Divyanshu Aggarwal, and Sunayana Sitaram. Improving self consistency in llms
through probabilistic tokenization, 2024. URL https://arxiv.org/abs/2407.03678.

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic, 2023. URL https://arxiv.org/abs/
2311.14737.

David Eugene Smith and Louis Charles Karpinski. The hindu-arabic numerals. Ginn, 1911.

Mark S. Strauss and Lynne E. Curtis. Infant perception of numerosity. Child Development, 1981.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning, 2024. URL https://arxiv.org/abs/2403.02884.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

Xiaotian Zhang, Chunyang Li, Yi Zong, Zhengyu Ying, Liang He, and Xipeng Qiu. Evaluating the
performance of large language models on gaokao benchmark, 2024. URL https://arxiv.
org/abs/2305.12474.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization,
2023. URL https://arxiv.org/abs/2310.16028.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly, 2024a. URL https://arxiv.
org/abs/2402.09371.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly, 2024b. URL https://arxiv.
org/abs/2402.09371.

A APPENDIX

A.1 NUPA TEST

A.1.1 EXAMPLES FOR EACH TASK

We provide each tasks with an examples. To test the models, we also add some model specific system
messages like “You are a helpful assistant to process numbers. Please directly answer the question
after the =”. The context before “=” is the question and the context after “=” is the groundtruth and
be removed when testing.

12

https://arxiv.org/abs/2307.03381
https://arxiv.org/abs/2307.03381
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.03678
https://arxiv.org/abs/2311.14737
https://arxiv.org/abs/2311.14737
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2403.02884
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2305.12474
https://arxiv.org/abs/2310.16028
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2402.09371

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

• Add-Integer: Add two numbers: 744 + 543 = 1287

• Add-Float: Add two numbers: 93.81 + 9.976 = 103.786

• Add-Fraction: Add two numbers: 3/8 + 2/5 = 31/40

• Add-Scientific: Add two numbers: 9.92e16 + 9.731e18 = 9.8302e18

• Sub-Integer: Subtract two numbers: 744− 543 = 201

• Sub-Float: Subtract two numbers: 93.81− 9.976 = 83.834

• Sub-Fraction: Subtract two numbers: 2/5− 3/8 = 1/40

• Sub-Scientific: Subtract two numbers: 9.731e38− 9.92e36 = 9.6318e38

• Multiply-Integer: Multiply two numbers: 968× 8 = 7744

• Multiply-Float: Multiply two numbers: 8.4× 9.555 = 80.262

• Multiply-Fraction: Multiply two numbers: 8/7× 5/2 = 20/7

• Multiply-Fraction: Multiply two numbers: 9.92e16× 9.731e38 = 9.653152e55

• Truediv-Integer: Divide two numbers and return the result as a fraction. 744 / 543 =
248/181

• Truediv-Fraction: Divide two numbers and return the result as a fraction. (3/8) / (2/5) =
15/16

• Floordiv-Integer: Divide two numbers and return the result as an integer. 845 // 152 = 5

• Mod-Integer: Divide two numbers and return the remainder. 845 % 152 = 85

• Max-Integer: Get the maximal number: 50404 and 97871 = 97871

• Max-Float: Get the maximal number: 44.418 and 65.669 = 65.669

• Max-Fraction: Get the maximal number: 3/5 and 3/8 = 3/5

• Max-Scientific: Get the maximal number: 8.15e64 and 1.063e73 = 1.063e73

• Digit max-Integer: Compare two numbers digit by digit and return the larger digit at each
position, treating any missing digits as 0. 50194 and 14283 = 54294

• Digit max-Float: Compare two numbers digit by digit and return the larger digit at each
position, treating any missing digits as 0. 35.905 and 8.4 = 38.905

• Digit add-Integer: The task is to add two given numbers digit by digit and return the result
modulo 10 (ignoring carry), treating any missing digits as 0. 50404 digit add 97871 =
47275

• Digit add-Float: The task is to add two given numbers digit by digit and return the result
modulo 10 (ignoring carry), treating any missing digits as 0. 44.418 digit add 65.669 =
9.077

• Get digit-Integer: Get the digit at the given position (from left to right, starting from 0).
50404 at position 4 = 4

• Get digit-Float: Get the digit at the given position (from left to right, starting from 0).
44.418 at position 3 = 1

• Length-Integer: The total number of digits of 50404 = 5

• Length-Float: The total number of digits of 262.534 = 6

• Count-Integer: Count the number of the given digit in the given number:
27422 count the occurance time of digit 2 = 3

• To float-Fraction: Convert the number to float: 9/5 = 1.8

• To float-Scientific: Convert the number to float: 8.538e2 = 853.8

• To scientific-Integer: Convert the number to scientific notation: 50400 = 5.04e4

• To scientific-Float: Convert the number to scientific notation: 262.534 = 2.62534e2

• Sig.Fig-Integer: Convert the number to scientific notation: 50194 and keep significant
figures as 3 = 5.02e4

• Sig.Fig-Float: Convert the number to scientific notation: 65.669 and keep significant fig-
ures as 2 = 6.6e1

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.1.2 NON-INCLUDED TASKS

We exclude some compositions between number representations and tasks because of the following
three reasons:

• ✗ too complex. We exclude the truediv between float and scientific. Division between float
numbers is difficult to define accurately in our scenario. It is very common to divide two
floating point numbers into an infinite decimal, which means that even very short decimals
can still result in a very long and unpredictable result after division. And in this task we do
not want to discuss the case of rounding the result. (This is another task of ours.) For the
same reason, we also exclude division in scientific notation.

• ⃝: can be easily transferred to from an included task.
– Converting fractions to scientific notation can be done by first converting to a

float. (Fraction-to scientific = Fraction-to float + Float-to scientific). Fraction-
SiginificantFigure is similar.

– Scientific notation retains significant digits and is virtually identical to floating point
numbers.

– count is a special task where we just consider a nubmer as “a set of digits” so count in
a float, fraction and scientific notation is as the same as in a integer.

• −: not applicable.
– In fraction and scientific notation, the digit concept is not well-defined so the tasks

about digit (digit-compare, digit-add, get-digit and length) are not applicable.
– Floordiv and mod is only defined on integer.
– Integer and float do not need to be further converted to float. Similarly, scientific has

no need to converted to scientific.

A.1.3 EASY/HARD SPLIT OF NUPA TASKS

We divide the tasks into easy and hard as shown in Table 7, where the hard tasks marked as H with
maximal test digit as 20 and the easy tasks marked as E with maximal test digit as 100.

Table 7: Tasks can be divided into Easy and Hard.

Add Sub Multiply Truediv Floordiv Mod Max Min Digit
Max

Digit
Min

Digit
Add

Get
Digit Length Count To

Float
To

Scientific
Sig.
Fig.

Integer H H H H H H E E E E E E E E E E
Float H H H E E E E E E E E E
Fraction H H H H H H H
Scientific H H H E E E

A.1.4 PREPROCESS FOR NUPA TASKS

After we select two random numbers, we have some pre-procession to generate the final questions:

• For “Multiply”, the difficulty also affected by the shorter number severely, so we split
the task into two sub-tasks as “Multiply-hard” and “multiply-easy”. For hard subset, we
require that the shorter number must be longer than half of the longer one. For easy subset,
we require that the length of the shorter number is less than 3, so that the complexity is
O(n) instead of O(n2). And because the addition of fraction also involves multiplication,
we also add a add-easy for this task in a same way.

• For “max” and “min” tasks, we additionally provide a harder version. For Integers and
floats, we make the compared two numbers share the same length. At the same time, they
should have more digit as the same like 12949 and 12961 to avoid models can solve the
problem by only counting the length or compare the first digit. For scientific notation, we
make sure 70% pairs of compared numbers with the same exponential part so that model
cannot directly get the answer without compare the mantissa part. For fraction, we make
sure the numbers are both less than one, avoiding model can just compare them with 1 to
get more than 50% accuracy.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• For “to float-Fraction”, we require the fraction must can be convert into a finite decimal,
that is the denominator contains only factors 2 and 5.

• For “add/sub-Scientific”, we require the exponential part of each number has difference
less than 5 that make sure the generated answer will not too long.

B TOKENIZER, PE AND DATA FORMATS

B.1 FULL TEST RESULTS OF LLMS

See Figures 6, 7, 8 and Table 8.

B.2 TOKENIZATION

We experiment on models of 3 different size, including 0.1B, 0.9B and 3B. For the 0.1B and 0.9B
models, we train them on integer addition of 1-8 digits; for the 3B model, we train it on the same
task of 1-40 digits.

Figure 9 illustrates the in-domain performance of these three models in the first three columns and
their out-of-domain (OOD) performance in the last two columns. Here we use the exact match met-
ric. In our experiments of the 0.1B and 0.9B models, the 1-digit and the 2-digit tokenizer demon-
strate comparable performance in the in-domain test, while the 1-digit tokenizer exceeds the others
to a large extent in length generalization. In contrast, the 3-digit tokenizer exhibits poor perfor-
mance in both in-domain and out-of-domain evaluations. Tokenizers with an increasing number of
digits significantly hinder subbillion models’ NUPA. In the experiments of the 3B model, the 2-digit
tokenizer matches the 1-digit tokenizer in both in-domain and OOD performance. In addition, the
3-digit tokenizer shows the potential in length generalization for the first time, yet its performance
remains inferior to that of the smaller tokenizers. This indicates that scaling up the model size in-
deed alleviate the challenges in developing NUPA caused by larger tokenizers. Nevertheless, larger
tokenizers do not present any distinct benefits in either in-domain or out-of-domain generalization
in both small and large models.

B.3 PES

We show exact match, digit match and dlength of 100M models trained with various PE, including
RoPE, NoPE and Alibi in Figure 10. The shadowed areas denote in-domain length range.

B.4 DATA FORMATS

We provide the evaluation curves of compositions of reverse formatting, zero padding and index
hints in Figure 13, Figure 12, Figure 13, Figure 14 and Figure 15. We experiment on 0.1B models
trained on 1- to 8- digit training samples. Here we all use the exact match metric.

About the experiments of index hint, we show in Table 9.

B.5 NUPA FINTUNING WITH PE, TOKENIZER AND REPRESENTATION MODIFICATION

We show parts of results of our attempt to finetune a Llama-3.1-8B model with PE, tokenizer and
data format modification in Table 10. All the checkpoint we select by the lowest valid loss. No one
can outperform the naive finetuning or the original Llama.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Add
Integer

Add
Float

Add
Fraction

Add Easy
Fraction

Add
ScientificNotation

Sub
Integer

Sub
Float

Sub
Fraction

Sub
ScientificNotation

Max
Integer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Exact Match

(a)

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Max
Float

Max
Fraction

Max
ScientificNotation

Max Hard
Integer

Max Hard
Float

Max Hard
ScientificNotation

Multiply Hard
Integer

Multiply Hard
Float

Multiply Hard
Fraction

Multiply Hard
ScientificNotation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Exact Match

(b)

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Multiply Easy
Integer

Multiply Easy
Float

Multiply Easy
Fraction

Multiply Easy
ScientificNotation

Digit Max
Integer

Digit Max
Float

Digit Add
Integer

Digit Add
Float

Get Digit
Integer

Get Digit
Float

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Exact Match

(c)

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Length
Integer

Length
Float

Truediv
Integer

Truediv
Fraction

Floordiv
Integer

Mod
Integer

Mod Easy
Integer

To Float
Fraction

To Float
ScientificNotation

To Scient
Integer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Exact Match

(d)

S M L XL S M L XL S M L XL

To Scient
Float

Count
Integer

Sig
Integer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Exact Match

(e)

Figure 6: Exact match of models tested on NUPA Test.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Add
Integer

Add
Float

Add
Fraction

Add Easy
Fraction

Add
ScientificNotation

Sub
Integer

Sub
Float

Sub
Fraction

Sub
ScientificNotation

Max
Integer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Digit Match

(a)

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Max
Float

Max
Fraction

Max
ScientificNotation

Max Hard
Integer

Max Hard
Float

Max Hard
ScientificNotation

Multiply Hard
Integer

Multiply Hard
Float

Multiply Hard
Fraction

Multiply Hard
ScientificNotation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Digit Match

(b)

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Multiply Easy
Integer

Multiply Easy
Float

Multiply Easy
Fraction

Multiply Easy
ScientificNotation

Digit Max
Integer

Digit Max
Float

Digit Add
Integer

Digit Add
Float

Get Digit
Integer

Get Digit
Float

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Digit Match

(c)

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Truediv
Integer

Truediv
Fraction

Floordiv
Integer

Mod
Integer

Mod Easy
Integer

To Float
Fraction

To Float
ScientificNotation

To Scient
Integer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Digit Match

(d)

S M L XL S M L XL

To Scient
Float

Sig
Integer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Digit Match

(e)

Figure 7: Digit match of models tested on NUPA Test.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Add
Integer

Add
Float

Add
Fraction

Add Easy
Fraction

Add
ScientificNotation

Sub
Integer

Sub
Float

Sub
Fraction

Sub
ScientificNotation

Max
Integer

0

1

2

3

4 GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Dlength

lo
g

(d
le

ng
th

 +
 1

)

(a)

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Max
Float

Max
Fraction

Max
ScientificNotation

Max Hard
Integer

Max Hard
Float

Max Hard
ScientificNotation

Multiply Hard
Integer

Multiply Hard
Float

Multiply Hard
Fraction

Multiply Hard
ScientificNotation

0

1

2

3

4

GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Dlength

lo
g

(d
le

ng
th

 +
 1

)

(b)

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Multiply Easy
Integer

Multiply Easy
Float

Multiply Easy
Fraction

Multiply Easy
ScientificNotation

Digit Max
Integer

Digit Max
Float

Digit Add
Integer

Digit Add
Float

Get Digit
Integer

Get Digit
Float

0

1

2

3

4

5
GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Dlength

lo
g

(d
le

ng
th

 +
 1

)

(c)

S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL S M L XL

Truediv
Integer

Truediv
Fraction

Floordiv
Integer

Mod
Integer

Mod Easy
Integer

To Float
Fraction

To Float
ScientificNotation

To Scient
Integer

0

1

2

3

4
GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Dlength

lo
g

(d
le

ng
th

 +
 1

)

(d)

S M L XL S M L XL

To Scient
Float

Sig
Integer

0

1

2

3

4

5
GPT-4o-mini
GPT-4o
Llama-2-7b-hf
Llama-3.1-70B
Llama-3.1-8B-ft
Llama-3.1-8B
Mixtral-8x7B
Qwen2-72B
Qwen2-7B

Dlength

lo
g

(d
le

ng
th

 +
 1

)

(e)

Figure 8: Dlength of models tested on NUPA Test. Note that we use log(dlength + 1) as the ylabel
in the figure.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Add Add Add Add Easy Add Sub Sub Sub
Int Float Frac Frac Sci Int Float Frac

GPT-4o-mini 5 / 20 4 / 11 0 / 1 0 / 2 0 / 0 6 / 20 5 / 15 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1 0 / 1 0 / 0 6 / 20 4 / 15 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1 0 / 1 0 / 11 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1 0 / 0 0 / 7 4 / 14 0 / 13 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1 0 / 1 0 / 4 4 / 12 4 / 17 0 / 2
Llama-3.1-70B 4 / 15 0 / 11 0 / 1 0 / 1 0 / 0 6 / 11 4 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1 0 / 0 0 / 0 3 / 10 3 / 10 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1 0 / 1 0 / 6 4 / 15 3 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0 0 / 0 0 / 0 0 / 6 0 / 5 0 / 1

Sub Max Max Max Max Max Hard Max Hard Max Hard
Sci Int Float Frac Sci Int Float Sci

GPT-4o-mini 5 / 20 4 / 11 0 / 1 0 / 2 0 / 0 6 / 20 5 / 15 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1 0 / 1 0 / 0 6 / 20 4 / 15 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1 0 / 1 0 / 11 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1 0 / 0 0 / 7 4 / 14 0 / 13 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1 0 / 1 0 / 4 4 / 12 4 / 17 0 / 2
Llama-3.1-70B 4 / 15 0 / 11 0 / 1 0 / 1 0 / 0 6 / 11 4 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1 0 / 0 0 / 0 3 / 10 3 / 10 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1 0 / 1 0 / 6 4 / 15 3 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0 0 / 0 0 / 0 0 / 6 0 / 5 0 / 1

Multiply Hard Multiply Hard Multiply Hard Multiply Hard Multiply Easy Multiply Easy Multiply Easy Multiply Easy
Int Float Frac Sci Int Float Frac Sci

GPT-4o-mini 5 / 20 4 / 11 0 / 1 0 / 2 0 / 0 6 / 20 5 / 15 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1 0 / 1 0 / 0 6 / 20 4 / 15 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1 0 / 1 0 / 11 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1 0 / 0 0 / 7 4 / 14 0 / 13 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1 0 / 1 0 / 4 4 / 12 4 / 17 0 / 2
Llama-3.1-70B 4 / 15 0 / 11 0 / 1 0 / 1 0 / 0 6 / 11 4 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1 0 / 0 0 / 0 3 / 10 3 / 10 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1 0 / 1 0 / 6 4 / 15 3 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0 0 / 0 0 / 0 0 / 6 0 / 5 0 / 1

Digit Max Digit Max Digit Add Digit Add Get Digit Get Digit Length Length
Int Float Int Float Int Float Int Float

GPT-4o-mini 5 / 20 4 / 11 0 / 1 0 / 2 0 / 0 6 / 20 5 / 15 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1 0 / 1 0 / 0 6 / 20 4 / 15 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1 0 / 1 0 / 11 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1 0 / 0 0 / 7 4 / 14 0 / 13 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1 0 / 1 0 / 4 4 / 12 4 / 17 0 / 2
Llama-3.1-70B 4 / 15 0 / 11 0 / 1 0 / 1 0 / 0 6 / 11 4 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1 0 / 0 0 / 0 3 / 10 3 / 10 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1 0 / 1 0 / 6 4 / 15 3 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0 0 / 0 0 / 0 0 / 6 0 / 5 0 / 1

Truediv Truediv Floordiv Mod Mod Easy To Float To Float To Scient
Int Frac Int Int Int Frac Sci Int

GPT-4o-mini 5 / 20 4 / 11 0 / 1 0 / 2 0 / 0 6 / 20 5 / 15 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1 0 / 1 0 / 0 6 / 20 4 / 15 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1 0 / 1 0 / 11 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1 0 / 0 0 / 7 4 / 14 0 / 13 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1 0 / 1 0 / 4 4 / 12 4 / 17 0 / 2
Llama-3.1-70B 4 / 15 0 / 11 0 / 1 0 / 1 0 / 0 6 / 11 4 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1 0 / 0 0 / 0 3 / 10 3 / 10 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1 0 / 1 0 / 6 4 / 15 3 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0 0 / 0 0 / 0 0 / 6 0 / 5 0 / 1

To Scient Count Sig
Float Int Int

GPT-4o-mini 5 / 20 4 / 11 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1
Llama-3.1-70B 4 / 15 0 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0

Table 8: Well-learned digits / performance-preserving digits of models tested on NUPA Test.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.1M 9.3M 18.5M 27.8M
0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Exact Match D6

1-digit tokenizer
2-digit tokenizer
3-digit tokenizer

0.1M 9.3M 18.5M 27.8M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D7

0.1M 9.3M 18.5M 27.8M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D8

0.1M 9.3M 18.5M 27.8M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D9

0.1M 9.3M 18.5M 27.8M
0.00

0.05

0.10

0.15

0.20

0.25

Exact Match D10

(a) 0.1B model int add

0.0M 0.6M 1.2M 1.8M 2.4M
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Exact Match D6

1-digit tokenizer
2-digit tokenizer
3-digit tokenizer

0.0M 0.6M 1.2M 1.8M 2.4M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D7

0.0M 0.6M 1.2M 1.8M 2.4M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D8

0.0M 0.6M 1.2M 1.8M 2.4M
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Exact Match D9

0.0M 0.6M 1.2M 1.8M 2.4M
0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Exact Match D10

(b) 0.9B model int add

0.1M 1.4M 2.7M 4.0M 5.2M
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Exact Match D10

1-digit tokenizer
2-digit tokenizer
3-digit tokenizer

0.1M 1.4M 2.7M 4.0M 5.2M
0.0

0.2

0.4

0.6

0.8

Exact Match D25

0.1M 1.4M 2.7M 4.0M 5.2M
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Exact Match D40

0.1M 1.4M 2.7M 4.0M 5.2M
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Exact Match D45

0.1M 1.4M 2.7M 4.0M 5.2M
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Exact Match D50

(c) 3B model int add

Figure 9: Accuracy of models of 0.1B, 0.9B and 3B parameters trained with 1-3 digit tokenizer on
the task of integer addition.

5 7 9 11 13 15 17
Length

0.00
0.20
0.40
0.60
0.80
1.00

Ac
cu

ra
cy

Exact Match
rope
nope
alibi

5 7 9 11 13 15 17
Length

0.00
0.20
0.40
0.60
0.80
1.00

Ac
cu

ra
cy

Digit Match

5 7 9 11 13 15 17
Length

0.0
0.5
1.0
1.5
2.0
2.5

lo
g

(d
le

ng
th

+1
)

Dlength

Figure 10: Exact match, digit match and dlength of 100M models trained with various PE, including
RoPE, NoPE and Alibi. The shadowed areas denote in-domain length range.

Table 9: Exact match of 0.1B models trained on integer addition, multiply and maximum respec-
tively with various compositions of reverse formatting and index hints.

Integer Addition Integer Multiply Integer Max

rev rev
+ idx no idx rev reverse

+ idx no idx reverse only reverse
+ idx no idx

d9 1.00 0.93 0.98 0.41 0.43 0.00 0.13 0.00 1.00 0.99 1.00 0.99
d10 0.80 0.06 0.32 0.01 0.13 0.02 0.04 0.02 1.00 0.97 1.00 0.98

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Finetining with PE, data format, and tokenizer modification will degrade the performance.
The first two lines are a naive finetuned Llama and the original Llama without finetuning, which
are the baseline. All the checkpoint we select by the lowest valid loss. “wl-digit” is used to denote
well-learned digit; “pp-digit” is used to denote performance-preserving digit.

Add Integer
S M L XL wl-digit pp-digit

FT 0.95 0.65 0.12 0.01 4 12
without FT 0.95 0.38 0.06 0.02 4 9
NoPE +reverse 0.89 0.35 0.06 0.02 3 9
NoPE +reverse +pad 0.87 0.34 0.05 0.02 0 9
RoPE +reverse +pad 0.40 0.20 0.04 0.00 0 7

Add Float
S M L XL wl-digit pp-digit

FT 0.96 0.71 0.27 0.08 5 17
without FT 0.90 0.47 0.10 0.02 3 11
NoPE +reverse 0.81 0.38 0.09 0.01 0 11
NoPE +reverse +pad 0.74 0.38 0.06 0.01 0 9
RoPE +reverse +pad 0.35 0.30 0.09 0.02 0 11

0.1M 10.9M 21.6M 32.4M 43.1M
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Exact Match D8

0.1M 10.9M 21.6M 32.4M 43.1M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D9

0.1M 10.9M 21.6M 32.4M 43.1M
0.0

0.2

0.4

0.6

0.8

Exact Match D10

reverse only
reverse + pad
no
pad only

Figure 11: Exact match of 0.1B models trained on 1- to 8- digit integer addition with different
compositions of reverse formatting and zero padding on 8- to 10- digit tests.

1.0M 26.6M 52.2M
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Exact Match D8

1.0M 26.6M 52.2M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D9

1.0M 26.6M 52.2M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D10

reverse total
reverse total + pad
reverse each
reverse each + pad
reverse dec
reverse dec + pad
reverse int
reverse int + pad
pad only
no

Figure 12: Exact match of 0.1B models trained on 1- to 8- digit float addition with different compo-
sitions of reverse formatting and zero padding on 8- to 10- digit tests.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.1M 10.3M 20.6M 30.8M
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Exact Match D8

0.1M 10.3M 20.6M 30.8M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D9

0.1M 10.3M 20.6M 30.8M
0.0

0.2

0.4

0.6

0.8

Exact Match D10

reverse only
reverse + index
no
index only

Figure 13: Exact match of 0.1B models trained on 1- to 8- digit integer addition with different
compositions of reverse formatting and index hints on 8- to 10- digit tests.

0.1M 10.3M 20.6M 30.8M
0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Exact Match D8

0.1M 10.3M 20.6M 30.8M
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Exact Match D9

0.1M 10.3M 20.6M 30.8M
0.00

0.02

0.04

0.06

0.08

0.10

Exact Match D10

reverse only
reverse + index
no
index only

Figure 14: Exact match of 0.1B models trained on 1- to 8- digit integer multiplication with different
compositions of reverse formatting and index hints on 8- to 10- digit tests.

0.1M 7.8M 15.5M
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Exact Match D8

0.1M 7.8M 15.5M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D9

0.1M 7.8M 15.5M
0.0

0.2

0.4

0.6

0.8

1.0
Exact Match D10

reverse only
reverse + index
no
index only

Figure 15: Exact match of 0.1B models trained on 1- to 8- digit integer maximum with different
compositions of reverse formatting and index hints on 8- to 10- digit tests.

C RULE-FOLLOWING CHAIN-OF-THOUGHT

The selective tasks used to train the RFFT are shown in Table 11 and we also report the maximal
length within 2k tokens context windows limitation. For the detailed prompt of these tasks we cannot
put them into papers so we include them in supplementary.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 11: Maximum length of each task that 2k context window can afford with RF-CoT

Add Sub Multiply Floordiv Mod Max DigitMax GetDigit Length

Integer 20 20 12 20 6 100 17 100 34
Float 6 5 4 - - 50 - 100 -
Fraction 3 2 3 - - 20 - - -
Scientific 3 3 3 - - 100 - - -

23

	Introduction
	NUPA test: a comprehensive benchmark for number understanding and processing ability
	Number representation
	Tasks in four categories
	Metrics about NUPA
	Performance of current LLMs

	How do tokenizer and other tricks affect NUPA?
	Tokenizer
	Tricks to improve NUPA
	Does Finetuning improve NUPA performance of LLMs?

	Is CoT suitable and valid for NUPA?
	Conclusion & Limitation
	Appendix
	NUPA Test
	Examples for each task
	Non-included tasks
	Easy/hard split of NUPA tasks
	Preprocess for NUPA tasks

	Tokenizer, PE and data formats
	Full test results of LLMs
	Tokenization
	PEs
	Data Formats
	NUPA fintuning with PE, tokenizer and representation modification

	Rule-following Chain-of-thought

