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ABSTRACT

In this paper, we develop a general framework for leveraging Transformer architec-
tures to address a variety of difficult treatment effect estimation (TEE) problems.
Our methods are applicable both when covariates are tabular and when they consist
of sequences (e.g., in text), and can handle discrete, continuous, structured, or
dosage-associated treatments. While Transformers have already emerged as domi-
nant methods for diverse domains, including natural language and computer vision,
our experiments with Transformers as Treatment Effect Estimators (TransTEE)
demonstrate that these inductive biases are also effective on the sorts of estimation
problems and datasets that arise in research aimed at estimating causal effects.
Moreover, we propose a propensity score network that is trained with TransTEE in
an adversarial manner to promote independence between covariates and treatments
to further address selection bias. Through extensive experiments, we show that
TransTEE significantly outperforms competitive baselines with greater parameter
efficiency over a wide range of benchmarks and settings.

1 INTRODUCTION
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Figure 1: A motivating example with a corresponding
causal graph. Prev denotes previous infection condi-
tion and BP denotes blood pressure. TransTEE adjusts
an appropriate covariate set {Prev,BP} with attention
which is visualized via a heatmap.

One of the fundamental tasks in causal
inference is to estimate treatment effects
given covariates, treatments and outcomes.
Treatment effect estimation is a central
problem of interest in clinical healthcare
and social science (Imbens & Rubin, 2015),
as well as econometrics (Wooldridge,
2015). Under certain conditions (Rosen-
baum & Rubin, 1983), the task can be
framed as a specific type of missing data
problem, whose structure is fundamentally
different in key ways from supervised learn-
ing and entails a more complex set of co-
variate and treatment representation choices.

Recently, feed-forward neural networks (NNs) have been adapted for modeling causal relationships
and estimating treatment effects (Johansson et al., 2016; Shalit et al., 2017; Louizos et al., 2017; Yoon
et al., 2018; Bica et al., 2020; Schwab et al., 2020; Nie et al., 2021; Curth & van der Schaar, 2021), in
part due to their flexibility in modeling nonlinear functions (Hornik et al., 1989) and high-dimensional
input (Johansson et al., 2016). Among them, the specialized NN’s architecture plays a key role in
learning representations for counterfactual inference (Alaa & Schaar, 2018; Curth & van der Schaar,
2021) such that treatment variable and covariates are well distinguished (Shalit et al., 2017).

Despite these encouraging results, several key challenges make it difficult to adopt these methods as
general-purpose treatment effect estimators. Fundamentally, current works based on subnetworks
are not well equipped with suitable inductive biases to exploit the structural similarities of potential
outcomes for TEE (Curth & van der Schaar, 2021). Practically, their treatment-specific designs
suffer several key weaknesses, including parameter inefficiency (Table 1), brittleness under different
scenarios, such as when treatments or dosages shift slightly from the training distribution (Figure 3).
We discuss these problems in detail in Sections 2 and E.1.
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To overcome the above challenges and inspired by the observation that model structure plays a crucial
role in TEE (Alaa & Schaar, 2018; Curth & van der Schaar, 2021), in this work, we take inspirations
from the Transformer architecture which has emerged as an architecture of choice for diverse domains
including natural language processing (Vaswani et al., 2017; Devlin et al., 2018), image recognition
(Dosovitskiy et al., 2021a) and multimodal processing (Tsai et al., 2019).

METHODS DISCRETE TREATMENT CONTINUOUS TREATMENT TREATMENTS INTERACTIONS DOSAGE

TARNET (SHALIT ET AL., 2017) O(T )
PERFECT MATCH (SCHWAB ET AL., 2018) O(T ) O(2T )

DRAGONNET (SHI ET AL., 2019) O(T )
DRNET (SCHWAB ET AL., 2020) O(T ) O(TBD)
SCIGAN (BICA ET AL., 2020) O(T ) O(TBD)

VCNET (NIE ET AL., 2021) O(1) O(1)
NCORE (PARBHOO ET AL., 2021) O(T ) O(BT ) O(T )

FLEXTENET (CURTH & VAN DER SCHAAR, 2021) O(T )
OURS O(1) O(1) O(1) O(1)

Table 1: Comparison of existing works and TransTEE in terms of parameter complexity. T
is the number of treatments. BT , BD are the number of branches for approximating continuous
treatment and dosage. TransTEE is general for all the factors.

In this paper, we investigate the following question: Can Transformers be similarly effective for
treatment effect estimation in problems of practical interest? Throughout, we adopt the notation of the
Rubin-Neyman potential outcomes framework (Rubin, 2005). In particular, we develop TransTEE, a
method that builds upon the attention mechanisms and achieves state-of-the-art on a wide range of
TEE tasks. Specifically, TransTEE represents covariate and treatment variables separately via learn-
able embeddings. Then, multi-headed cross-attention governs the subsequent interactions, with the
covariates embeddings serving as keys and values and the treatment embeddings serving as the query
vectors. This mechanism enables adaptive covariate selection (De Luna et al., 2011; VanderWeele,
2019) for inferring causal effects (Figure 1). One can observe that both pre-treatment covariates and
confounders are appropriately adjusted with higher weights. Such an inductive bias is particularly
important since it provides parameter sharing across private feature spaces and explicit representations
on the treatments to learn robust and balanced feature-contextual covariate representations, which has
been proved important in estimating prognostic and heterogeneous treatment effects (Alaa & Schaar,
2018; Curth & van der Schaar, 2021; Guo et al., 2021). This recipe also gives a unified view and
improved versatility when working with heterogeneous treatments and covariate types (Figure 2) for
an intuitive comparison among popular methods and TransTEE.

As failing to account for selection bias1 can hurt TEE generalization (Alaa & Schaar, 2018), we
propose to address it via an adversarial training algorithm consisting of a two-player zero-sum game
between the outcome regression model and propensity score model (Rosenbaum & Rubin, 1983).
Unlike traditional approaches, such as propensity weighting and matching/balancing (Hainmueller,
2012; Athey & Imbens, 2016) that are difficult to apply with rich covariates and complex relationships,
the proposed treatment regularization (TR) and probabilistic version (PTR) serve as algorithmic
randomizations. When combined with the expressiveness of TransTEE , they appear to mitigate
the impact of selection bias. For continuous treatments, we provide justification for the proposed
two propensity score objective variants by analyzing the optimum of the discriminator under mild
conditions.

In summary, we make the following contributions:

• We propose TransTEE, showing that Transformers, equipped with appropriate inductive
biases and modeling capabilities, can be strong and versatile treatment effect estimators
under Rubin-Neyman potential outcomes framework, which unifies a wide range of neural
treatment effect estimators.

• We introduce an adversarial training algorithm for propensity score modeling to effectively
overcoming the selection bias, which further corroborates the expressiveness of TransTEE.

• Comprehensive experiments are conducted under various scenarios to verify the effec-
tiveness of TransTEE and propensity score regularized adversarial training in estimating
treatment effects. We show that TransTEE produces covariate adjustment interpretation

1Selection bias occurs when the treatment assignment mechanism creates a discrepancy between the feature
distributions of the treated/control population and the overall population, i.e. p(t) ̸= π(t|x).
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Figure 2: An schematic comparison of TransTEE and recent works including DragonNet(Shi
et al., 2019), FlexTENet(Curth & van der Schaar, 2021), DRNet(Schwab et al., 2020) and
VCNet(Nie et al., 2021). TransTEE handles all the scenarios without additional domain-specific
expertise and parameter overhead.

and significant performance gains given discrete, continuous or structured treatments on
popular benchmarks including IHDP, News, TCGA even under treatment distribution shifts.
Empirical study on pre-trained language models are conducted to show the real-world utility
of TransTEE that implies potential applications.

2 RELATED WORK

3 PROBLEM STATEMENT AND ASSUMPTIONS

We consider a setting in which we are given N observed samples (xi, ti, si, yi)
N
i=1, containing

N pre-treatment covariates {xi ∈ Rp}Ni=1 and T available treatment options ti ∈ RT . For each
sample, the potential outcome (µ-model) µ(x, t) or µ(x, t, s) is the response of the i-th sample to a
treatment combination t out of the set of available treatment options T , where each treatment can
be associated a dosage sti ∈ R. The propensity score (π-model) is the conditional probability of
treatment assignment given the observed covariates π(T = t|X = x). The above two models can
be parameterized as µθ and πϕ, respectively. The task is to estimate the Average Dose Response
Function (ADRF): µ(x, t) = E[Y |X = x, do(T = t)] (Shoichet, 2006), which includes special cases
in discrete treatment scenarios that can also be estimated as the average treatment effect (ATE):
ATE = E[µ(x, 1)− µ(x, 0)] and its individual version ITE.

What makes the above problem more challenging than supervised learning is that we never see
the missing counterfactuals and ground truth causal effects in observational data. Therefore, we
first introduce the required fundamentally important assumptions that give the strongly ignorable
condition such that statistical estimands can be interpreted causally.
Assumption 3.1. (Ignorability/Unconfoundedness) implies no hidden confounders such that Y (T =
t) |= T |X (Y (0), Y (1) |= T |X in the binary treatment case).
Assumption 3.2. (Positivity/Overlap) The treatment assignment is non-deterministic such that, i.e.
0 < π(t|x) < 1,∀x ∈ X , t ∈ T

Assumption 3.1 ensures the causal effect is identifiable, implying that treatment is assigned inde-
pendent of the potential outcome and randomly for every subject regardless of its covariates, which
allows estimating ADRF using µ(t) := E[Y |do(T = t)] = E[E[[Y |x, T = t]] (Rubin, 1978). One
naive estimator of µ(x, t) = E[Y |X = x, T = t] is the sample averages µ(t) =

∑n
i=1 µ̂(xi, t).

Assumption 3.2 states that there is a chance of seeing units in every treated group.

4 TRANSTEE: TRANSFORMERS AS TREATMENT EFFECT ESTIMATORS

We are interested in estimating µ(t,x) = E[Y |X = x, T = t]. The systematic similarity of potential
outcomes of different treatment groups is important for TEE (Curth & van der Schaar, 2021), which
means naively feeding (x, t) to multi-layer perceptrons is not favorable since treatment and covariate
representations are not well discriminated and the impacts of treatment tend to be lost. As a result,
various architectures (Curth & van der Schaar, 2021) and regularizations (Johansson et al., 2020)
have been proposed to enforce structural similarity and difference among treatment groups. However,
they are intricate and limited to specific use cases as shown in Section 2 and Figure 2. To remedy it,
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we propose a simple yet effective and scalable framework TransTEE, which tackles the problems of
most existing treatment effect estimators (e.g., multiple/continuous/structured treatments, treatments
interaction) without the need for ad-hoc architectural designs, e.g. multiple branches.

The most crucial module in TransTEE is the attention layer Vaswani et al. (2017): given d-dimensional
query, key, and value matrices Q ∈ Rd×dk ,K ∈ Rd×dk , V ∈ Rd×dv , attention model compute the
outputs as H(Q,K, V ) = softmax(QKT

√
dk

)V . In practice, Multi-head Attention is preferable, which
allows the model to attend to information from representation subspaces at different positions.

HM (Q,K, V ) = Concat(head1, ..., headh)WO,where headi = H(QWQ
i ,KWK

i , V WV
i ), (1)

where WQ
i ∈ Rd×dk ,WV

i ∈ Rd×dk ,WV
i ∈ Rd×dv and WO ∈ Rhdv×d are learnable parameter.

As in Figure 2 (c), TransTEE first embeds covariates x, treatments t, and associated dosages s into
corresponding representations Mx ∈ Rd×p,Mt ∈ Rd×T ,Ms ∈ Rd×T . The motivation is that sepa-
rately embedding covariates and treatments as above preserves information in latent representations
(Shalit et al., 2017) which also serves as an effective and important fix to treatment distribution shifts
(as indicated by our case study in Section E.1).

Subsequently, the treatments and dosages are combined (projected, added, multiplied) to generate a
new embedding Mst ∈ Rd×T . Unlike previous works that use hard (Johansson et al., 2016) or soft
(Curth & van der Schaar, 2021) information sharing among treatment groups which are intricate and
limited to specific use cases, we use the inductive bias of self-attention to realize the goal.

M̂ l
x = HM (M l−1

x ,M l−1
x ,M l−1

x ) +M l−1
x

M l
x = MLP(BN(M̂ l

x)) + M̂ l
x

M l
st = HM (M l−1

st ,M l−1
st ,M l−1

st ) +M l−1
st

M l
st = MLP(BN(M̂ l

st)) + M̂ l
st

(2)

where M l
x,M

l
st is the output of layer and BN is the BatchNorm layer.

Different from previous works that embed all covariates by one full connected layer, where the
differences between covariates tend to be lost and is hard to study the function of individual covariate
in a sample. TransTEE learns different embeddings for each covariate and treatment, and then
incorporates the interactions between them, which is implemented by a cross-attention module,
treating Mst as query and Mx as both key and value.

M̂ l = HM (M l−1
st ,M l−1

x ,M l−1
x ) +M l−1

M l = MLP(M̂ l) + M̂ l

ŷ = MLP(Pooling(ML)),

(3)

where ML is the output of the last cross-attention layer. The inductive biases provided by such
interactions are particularly important for adjusting proper covariate or confounder sets for estimating
treatment effects (VanderWeele, 2019), which is intuitively illustrated in Figure 1 and corroborated in
our experiment.

Denote ŷ := µθ(t, x) and the training target is the mean square error of the outcome regression:

Lθ(x, y, t) =
n∑

i=1

(yi − µθ(ti, xi))
2 (4)

5 CONCLUDING REMARKS

In this work, we show that transformers can be effective and versatile treatment effect estimators,
especially trained as a minimax game between outcome model and propensity score model to further
reduce the impacts of selection bias. Extensive experiments well verify the effectiveness and utility
of TransTEE.

4



Under review at the ICLR 2022 workshop on Objects, Structure and Causality

REFERENCES

Ahmed Alaa and Mihaela Schaar. Limits of estimating heterogeneous treatment effects: Guidelines
for practical algorithm design. In International Conference on Machine Learning, pp. 129–138.
PMLR, 2018.

Ahmed M Alaa and Mihaela van der Schaar. Bayesian inference of individualized treatment effects
using multi-task gaussian processes. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 3427–3435, 2017.

Ahmed M Alaa, Michael Weisz, and Mihaela Van Der Schaar. Deep counterfactual networks with
propensity-dropout. arXiv preprint arXiv:1706.05966, 2017.

Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal effects. Proceedings
of the National Academy of Sciences, 113(27):7353–7360, 2016.

Peter C Austin. An introduction to propensity score methods for reducing the effects of confounding
in observational studies. Multivariate behavioral research, 46(3):399–424, 2011.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175, 2010.

Ioana Bica, James Jordon, and Mihaela van der Schaar. Estimating the effects of continuous-valued
interventions using generative adversarial networks. Advances in neural information processing
systems (NeurIPS), 2020.

Kyle Chang, Chad J Creighton, Caleb Davis, Lawrence Donehower, Jennifer Drummond, David
Wheeler, Adrian Ally, Miruna Balasundaram, Inanc Birol, Yaron SN Butterfield, et al. The cancer
genome atlas pan-cancer analysis project. Nat Genet, 45(10):1113–1120, 2013.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Alicia Curth and Mihaela van der Schaar. On inductive biases for heterogeneous treatment effect
estimation. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Alicia Curth, David Svensson, Jim Weatherall, and Mihaela van der Schaar. Really doing great at
estimating CATE? a critical look at ML benchmarking practices in treatment effect estimation. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Ralph B D’Agostino. Propensity score methods for bias reduction in the comparison of a treatment
to a non-randomized control group. Statistics in medicine, 17(19):2265–2281, 1998.

Xavier De Luna, Ingeborg Waernbaum, and Thomas S Richardson. Covariate selection for the
nonparametric estimation of an average treatment effect. Biometrika, 98(4):861–875, 2011.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Peng Ding, TJ VanderWeele, and James M Robins. Instrumental variables as bias amplifiers with
general outcome and confounding. Biometrika, 104(2):291–302, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021a.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021b.

Amir Feder, Nadav Oved, Uri Shalit, and Roi Reichart. Causalm: Causal model explanation through
counterfactual language models. Computational Linguistics, 47(2):333–386, 2021.

5



Under review at the ICLR 2022 workshop on Objects, Structure and Causality

Michele Jonsson Funk, Daniel Westreich, Chris Wiesen, Til Stürmer, M Alan Brookhart, and Marie
Davidian. Doubly robust estimation of causal effects. American journal of epidemiology, 173(7):
761–767, 2011.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
The journal of machine learning research, 17(1):2096–2030, 2016.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep
Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, et al. Evaluating models’ local decision
boundaries via contrast sets. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: Findings, pp. 1307–1323, 2020.

Zhenyu Guo, Shuai Zheng, Zhizhe Liu, Kun Yan, and Zhenfeng Zhu. Cetransformer: Casual effect
estimation via transformer based representation learning. In Chinese Conference on Pattern
Recognition and Computer Vision (PRCV), pp. 524–535. Springer, 2021.

Jens Hainmueller. Entropy balancing for causal effects: A multivariate reweighting method to produce
balanced samples in observational studies. Political analysis, 20(1):25–46, 2012.

Shonosuke Harada and Hisashi Kashima. Graphite: Estimating individual effects of graph-structured
treatments. In Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, pp. 659–668, 2021.

Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational
and Graphical Statistics, 20(1):217–240, 2011.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical sciences.
Cambridge University Press, 2015.

Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual
inference. In International conference on machine learning, pp. 3020–3029. PMLR, 2016.

Fredrik D Johansson, Uri Shalit, Nathan Kallus, and David Sontag. Generalization bounds and
representation learning for estimation of potential outcomes and causal effects. arXiv preprint
arXiv:2001.07426, 2020.

Jean Kaddour, Yuchen Zhu, Qi Liu, Matt J Kusner, and Ricardo Silva. Causal effect inference for
structured treatments. Advances in Neural Information Processing Systems, 34, 2021.

Joseph DY Kang and Joseph L Schafer. Demystifying double robustness: A comparison of alternative
strategies for estimating a population mean from incomplete data. Statistical science, pp. 523–539,
2007.

Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard S Zemel, and Max Welling.
Causal effect inference with deep latent-variable models. In NeurIPS, 2017.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. arXiv
preprint arXiv:1610.03483, 2016.

David Newman. Bag of words data set. 2008.

Lizhen Nie, Mao Ye, Qiang Liu, and Dan Nicolae. Vcnet and functional targeted regularization for
learning causal effects of continuous treatments. ICLR, 2021.

Sonali Parbhoo, Stefan Bauer, and Patrick Schwab. Ncore: Neural counterfactual representation
learning for combinations of treatments. arXiv preprint arXiv:2103.11175, 2021.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

6



Under review at the ICLR 2022 workshop on Objects, Structure and Causality

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41–55, 1983.

Donald B Rubin. Bayesian inference for causal effects: The role of randomization. The Annals of
statistics, pp. 34–58, 1978.

Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal
of the American Statistical Association, 100(469):322–331, 2005.

Donald B Rubin. The design versus the analysis of observational studies for causal effects: parallels
with the design of randomized trials. Statistics in medicine, 26(1):20–36, 2007.

Patrick Schwab, Lorenz Linhardt, and Walter Karlen. Perfect match: A simple method for learning
representations for counterfactual inference with neural networks. arXiv, 2018.

Patrick Schwab, Lorenz Linhardt, Stefan Bauer, Joachim M Buhmann, and Walter Karlen. Learning
counterfactual representations for estimating individual dose-response curves. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, pp. 5612–5619, 2020.

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: general-
ization bounds and algorithms. In International Conference on Machine Learning, pp. 3076–3085.
PMLR, 2017.

Claudia Shi, David Blei, and Victor Veitch. Adapting neural networks for the estimation of treatment
effects. Advances in Neural Information Processing Systems, 32:2507–2517, 2019.

Brian K Shoichet. Interpreting steep dose-response curves in early inhibitor discovery. Journal of
medicinal chemistry, 49(25):7274–7277, 2006.

Rahul Singh, Maneesh Sahani, and Arthur Gretton. Kernel instrumental variable regression. Advances
in Neural Information Processing Systems, 32:4593–4605, 2019.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J. Zico Kolter, Louis-Philippe Morency, and
Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language sequences. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), Florence, Italy, 7 2019. Association for Computational Linguistics.

Mark J Van Der Laan and Daniel Rubin. Targeted maximum likelihood learning. The international
journal of biostatistics, 2(1), 2006.

Tyler J VanderWeele. Principles of confounder selection. European journal of epidemiology, 34(3):
211–219, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Victor Veitch, Alexander D’Amour, Steve Yadlowsky, and Jacob Eisenstein. Counterfactual invariance
to spurious correlations in text classification. Advances in Neural Information Processing Systems,
34, 2021.

Hao Wang, Hao He, and Dina Katabi. Continuously indexed domain adaptation. In International
Conference on Machine Learning, pp. 9898–9907. PMLR, 2020.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

Jeffrey M Wooldridge. Introductory econometrics: A modern approach. Cengage learning, 2015.

Yifan Wu, Ezra Winston, Divyansh Kaushik, and Zachary Lipton. Domain adaptation with
asymmetrically-relaxed distribution alignment. In International Conference on Machine Learning,
pp. 6872–6881. PMLR, 2019.

7



Under review at the ICLR 2022 workshop on Objects, Structure and Causality

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform bad for graph representation? arXiv preprint
arXiv:2106.05234, 2021.

Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: Estimation of individualized
treatment effects using generative adversarial nets. In International Conference on Learning
Representations, 2018.

Shuxi Zeng, Serge Assaad, Chenyang Tao, Shounak Datta, Lawrence Carin, and Fan Li. Double
robust representation learning for counterfactual prediction, 2020.

Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. Learning overlapping representations for
the estimation of individualized treatment effects. In Silvia Chiappa and Roberto Calandra (eds.),
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics,
volume 108 of Proceedings of Machine Learning Research, pp. 1005–1014. PMLR, 26–28 Aug
2020. URL https://proceedings.mlr.press/v108/zhang20c.html.
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Can Transformers be Treatment Effect Estimators?
– Appendix –

A PROPENSITY SCORE MODELING

The TransTEE model is conceptually simple and effective. However, when the sample size is small,
it becomes important to account for selection bias (Alaa & Schaar, 2018). Thus we propose to learn a
propensity score model πϕ(t|x) in order to explicitly account for it.

Unlike previous works that use hand-crafted features or directly model the conditional density via
maximum likelihood training, which is prone to high variance when handling high-dimensional,
structured treatments (Singh et al., 2019) and can be problematic when we want to estimate a plausible
propensity score from the generative model (Mohamed & Lakshminarayanan, 2016) (see the degraded
performance of MLE in Table 8), TransTEE learns a propensity score network πϕ(t|x) via minimax
bilevel optimization. The motivations for adversarial training between µθ(x, t) and πϕ(t|x) are three-
fold: (i) it enforces the independence between treatment and covariate representations as shown in
Proposition 1, which serves as algorithmic randomization in replace of costly randomized controlled
trials (Rubin, 2007) for overcoming selection bias (D’Agostino, 1998; Imbens & Rubin, 2015); (ii)
it explicitly models propensity πϕ(t|x) to refine treatment representations and promote covariate
adjustment (Kaddour et al., 2021); and (iii) taking an adversarial domain adaptation perspective, the
methodology is effective for learning invariant representations and further regularizes µθ(x, t) to be
invariant to nuisance factors and may perform better empirically on some classes of distribution shifts
(Ganin et al., 2016; Shalit et al., 2017; Zhao et al., 2018; Johansson et al., 2020; Wang et al., 2020).
We refer readers for more discussions in Appendix D.

Based on the above discussion, when treatments are discrete, one might consider directly applying
heuristic methods like adversarial domain adaptation (see Ganin et al. (2016); Zhao et al. (2018) for
algorithmic development guidelines). We note the heuristic nature of domain-adversarial methods
(see (Wu et al., 2019) for clear failure cases), and a debunking of the common claim that Ben-David
et al. (2010) guarantees the robustness of such methods. Here, we focus on continuous TEE, a more
general and challenging scenario, where we want to estimate ADRF, and propose two variants of Lϕ

as an adversary for the outcome regression objective Lθ in Eq. 4 accordingly. The process is shown
as Eq. 5 below:

min
θ

max
ϕ

Lθ(x, y, t)− Lϕ(x, t) (5)

Such algorithmic randomization using propensity score creates subgroups of different treated units
as if they had been randomly assigned to different treatments such that conditional independence
T |= X | π(T |X) is enforced across strata and continuation, which ‘approximates’ a random block
experiment with respect to the observed covariates (Imbens & Rubin, 2015).

Below we introduce two variants of Lϕ(x, t):

Treatment Regularization (TR) is a standard MSE over the treatment space given the predicted
treatment t̂i and the ground truth ti.

LTR
ϕ (x, t) =

n∑
i=1

(
ti − πϕ(t̂i|xi)

)2
(6)

TR is explicitly matching the mean of the propensity score to that of the treatment. In an ideal
case, the π(t|x) should be uniformly distributed given different x. However, the above treatment
regularization procedure only provides matching for the mean of the propensity score, which can be
prone to bad equilibriums and treatment misalignment (Wang et al., 2020). Thus, we introduce the
distribution of t and model the uncertainty rather than predicting a scalar t:

Probabilistic Treatment Regularization (PTR) is a probabilistic version of TR which models the
mean µ (with a slight abuse of notation) and variance σ2 of estimated treatment t̂i.

LPTR
ϕ =

n∑
i=1

[
(ti − πϕ(µ|xi))2

2πϕ(σ2|xi)
+

1

2
log πϕ(σ

2|xi)

]
(7)
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METHODS
#TREATMENT=1 #TREATMENT=2 #TREATMENT=3

IN-SAMPLE OUT-SAMPLE IN-SAMPLE OUT-SAMPLE IN-SAMPLE OUT-SAMPLE

SCIGAN 5.6966 ± 0.0000 5.6546 ± 0.0000 2.0924 ± 0.0000 2.3067 ± 0.0000 4.3183 ± 0.0000 4.6231 ± 0.0000
TARNET(D) 0.7888 ± 0.0609 0.7908 ± 0.0606 1.4207 ± 0.0784 1.4206 ± 0.0777 3.1982 ± 0.5847 3.1920 ± 0.5746
DRNET(D) 0.8034 ± 0.0469 0.8052 ± 0.0466 1.3739 ± 0.0858 1.3738 ± 0.0853 2.8632 ± 0.4227 2.8558 ± 0.4143
VCNET(D) 0.1566 ± 0.0303 0.1579 ± 0.0301 0.2919 ± 0.0743 0.2918 ± 0.0737 0.6459 ± 0.1387 0.6493 ± 0.1397
TRANSTEE 0.0573 ± 0.0361 0.0585 ± 0.0358 0.0550 ± 0.0137 0.0556 ± 0.0129 0.2803 ± 0.0658 0.2768 ± 0.0639

TRANSTEE + TR 0.0495 ± 0.0176 0.0509 ± 0.0180 0.0663 ± 0.0268 0.0671 ± 0.0268 0.2618 ± 0.0737 0.2577 ± 0.0726
TRANSTEE + PTR 0.0343 ± 0.0096 0.0355 ± 0.0094 0.0679 ± 0.0252 0.0686 ± 0.0252 0.2645 ± 0.0702 0.2597 ± 0.0675

Table 2: Performance of individualized treatment-dose response estimation on the TCGA (D)
dataset with different number of treatments. We report AMSE and standard deviation over 30
repeats. The selection bias on treatment and dosage are both set to be 2.0.

The PTR matches the whole distribution, i.e. both the mean and variance, of the propensity score to
that of the treatment, which can be preferable in certain cases.

Equilibrium of the Minimax Game. We analyze that TR and PTR can align the first and second
moment of continuous treatments at equilibrium respectively, and thus promote the independence
between treatment t and covariate x.
Proposition 1. (The optimum of propensity score model (Wang et al., 2020)) In the equilibrium of
the game, assuming the outcome prediction model is fixed, then the optimum of TR is achieved when
E[t|x] = E[t],∀x via matching the mean of propensity score π(t|x) and the marginal distribution
p(x) and the optimum discriminator of PTR is achieved via matching both the mean and variance
such that E[t|x] = E[t],V[t|x] = V[t], ∀x. See Appendix C for the proof.

B RELATED WORK

Neural Treatment Effect Estimation. There are many recent works on adapting neural networks to
learn counterfactual representations for treatment effect estimation (Johansson et al., 2016; Shalit
et al., 2017; Louizos et al., 2017; Yoon et al., 2018; Bica et al., 2020; Schwab et al., 2020; Nie et al.,
2021; Curth & van der Schaar, 2021). To mitigate the imbalance of covariate representations across
treatment groups, various approaches are proposed including optimizing distributional divergence
(e.g. IPM including MMD, Wasserstein distance), entropy balancing (Zeng et al., 2020) (converges to
JSD between groups), counterfactual variance (Zhang et al., 2020). However, their domain-specific
designs make them limited to different treatments as shown in Table 1: methods like VCNet (Nie et al.,
2021) use a hand-crafted way to map a real-value treatment to an n-dimension vector with a constant
mapping function, which is hard to converge under shifts of treatments (Table 7 in Appendix). Models
like TARNet (Shalit et al., 2017) need an accurate estimation of the value interval of treatments.
Previous estimators embed covariates to only one representation space by fully connected layers,
tending to lose their connection and interactions. And it is non-trivial to adapt to the common settings
given existing ad hoc designs on network architectures. For example, the case with n treatments and
m associated dosage requires n ×m branches for methods like DRNet (Schwab et al., 2020) and
2n possible combinations for NCORE (Parbhoo et al., 2021), which put a rigid requirement on the
extrapolation capacity and can be infeasible given available observational data.

Propensity Score. Most related works fundamentally rely on strongly ignorable conditions. Still even
under ignorability, treatments may be selectively assigned according to propensities that depend on
the covariates. To overcome the impact of such confounding, many statistical methods (Austin, 2011)
like matching, stratification, weighting, covariate adjustment, g-computation, have been proposed.
More recent approaches include propensity dropout (Alaa et al., 2017), and multi-task Gaussian
process (Alaa & van der Schaar, 2017). Explicitly modeling the propensity score, which reflects the
underlying policy for assigning treatments to subjects, has also shown to be effective in reasoning
about the unobserved counterfactual outcomes and accounting for confounding. Based upon it,
double robust estimators and targeted regularization are proposed to guarantee the consistency of
estimated treatment effects under misspecification of either the outcome or propensity score model
(Kang & Schafer, 2007; Funk et al., 2011). However, most traditional approaches are restricted to
binary treatments and the capcity of neural networks for such problems have not been fully leveraged.

Transformers and Attention Mechanisms Transformer models (Vaswani et al., 2017) have recently
demonstrated exemplary performance on a broad range of language tasks e.g., text classification,
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machine translation, and question answering. Recently Transformer models and their variants
have been successfully adapted to visual recognition (Dosovitskiy et al., 2021b), programming
language (Chen et al., 2021), and graph (Ying et al., 2021) due to their strong flexibility and
expressiveness. There is an initial attempt to leverage the attention mechanism for learning balanced
covariate representations (Guo et al., 2021). However, the proposed CETransformer is fundamentally
different from ours since TransTEE simultaneously embeds covariates and treatments and is scalable
to various settings.

Domain Adaptation There are some intrinsic connections between causal inference and domain
adaptation, in particular, out-of-distribution robustness. Intuitively, traditional domain adversarial
training learns representations that are indistinguishable by the domain classifier by minimizing the
worst-domain empirical error (Ganin et al., 2016; Zhao et al., 2018). The algorithmic insights can be
handily translated to the TEE domain (Shalit et al., 2017; Johansson et al., 2020; Feder et al., 2021).
Here we also have the desideratum that covariate representations should be balanced such that the
selection bias is minimized and the effect is maximally determined by the treatment. Algorithmically,
when the treatment is continuous, we connect our method to continuously indexed domain adaptation
(Wang et al., 2020). Our formulation and algorithm also serve to build connections to a diverse set
of statistical thinking on causal inference and domain adaptation, of which much can be gained by
mutual exchange of ideas (Johansson et al., 2020). Explicitly modeling the propensity score also
seeks to connect causal inference with transfer learning to inspire domain adaptation methodology
and holds the potential to handle a wider range of problems like hidden stratification in domain
generalization, which we leave for future work.

C ANALYSIS OF THE EQUILIBRIUM OF THE MINIMAX GAME

Proof. Given the outcome regression model µθ fixed, the optimal propensity score model π∗ is

π∗ = argmin
π

Lϕ(x, t)

= argmin
π

E(x,t)∼p(x,t)
(
t− πϕ

(
t̂|x
))2

= argmin
π

Ex∼p(x)Et∼p(t|x)
(
t− πϕ

(
t̂|x
))2 (8)

The inner minimum is achieved at π∗
θ

(
t̂|x
)
= Et∼p(t|x)[t] given the following quadratic form:

E(x,t)∼p(x,t)
(
t− πϕ

(
t̂|x
))2

=

Et∼p(t|x)[t
2]− 2πϕ

(
t̂|x
)
Et∼p(t|x)[t] + πϕ

(
t̂|x
)2 (9)

We assume the above optimum condition of the propensity score model always holds with respect to
the outcome regression model during training, then the minimax game in Eq. 5 can be converted to
maximizing the inner loop:

max
ϕ

−Lϕ(x, t) = Lϕ∗(x, t)

= E(x,t)∼p(x,t)
(
t− Et∼p(t|x)[t]

)2
= Ex∼p(x)Et∼p(t|x)∼p(x,t)

(
t− Et∼p(t|x)[t]

)2
= Ex∼p(x)Vt∼p(t|x)[t] = ExV[t|x]

(10)

Next we show the difference between Eq. 10 and the variance of the treatment V[t]:

Ex∼p(x)Vt∼p(t|x)[t]− V[z]
=Ex∼p(x)[E[t2|x]− E[t|x]2]− (E[t2]− E[t]2)
=E[t]2 − Ex[E[t|x]2] = Ex[E[t|x]]2 − Ex[E[t|x]2]
≤Ex[E[t|x]2]− Ex[E[t|x]2] = 0

(11)

where the last inequality is by Jensen’s inequality and the convexity of t2. The optimum is achieved
when E[t|x] is constant w.r.t x and so E[t|x] = E[t], ∀x.
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The proof process for PTR is similar but include the derivation of variance matching.

π∗ = argmin
π

Lϕ(x, t)

= argmin
π

E(x,t)∼p(x,t)

(
(E[t|x]− t)2

2V[t|x]
+

logV[t|x]
2

)
= argmin

π
Ex∼p(x)Et∼p(t|x)

(
(E[t|x]− t)2

2V[t|x]
+

logV[t|x]
2

) (12)

The first term can be reduce to a constant given the definition of variance:

Ex∼p(x)Et∼p(t|x)

(
(E[t|x]− t)2

2V[t|x]

)
= Ex∼p(x)

(
V[t|x]
2V[t|x]

)
=

1

2
(13)

The second term can be upper bounded by using Jensen’s inequality:

Ex∼p(x)Et∼p(t|x)

(
logV[t|x]

2

)
≤ 1

2
log
(
Ex∼p(x)[V[t|x]]

)
≤ 1

2
log (V[t]) (14)

Combining Eq. 13 and Eq. 14, the optimum 1
2 + 1

2 log (V[t]) is achieved when E[t|x], V[t|x] is
constant w.r.t x and so E[t|x] = E[t],V[t|x] = V[t], ∀x according to the equality conditions of the
first and second inequality in Eq. 14, respectively.

D DISCUSSIONS ON THE PROPENSITY SCORE MODELLING

We first discuss the fundamental differences and common goals between our algorithm and traditional
ones.

As a general approach to causal inference, TransTEE can be directly harnessed with traditional
methods that estimate propensity score by including hand-crafted features of covariates (Imbens &
Rubin, 2015) to reduce bias through matching, weighting, sub-classification, covariate adjustment
(Austin, 2011), targeted regularization (Van Der Laan & Rubin, 2006) or conditional density estima-
tion (Nie et al., 2021) that create quasi-randomized experiments (D’Agostino, 1998). That’s because
the unified framework provides an advantage to use an off-the-shelf propensity score regularizer
for balancing covariate. Similar to traditional approaches like inverse probability weighting and
propensity score matching (Austin, 2011), which attempts to weigh single observation to mimic the
effects of randomization with respect to the covariate of treatment of interest, we refer to the above
minimax game for algorithmic randomization in replace of costly randomized controlled trials.

To overcome selection bias, here over-representation space, the bilevel optimization enforces effective
treatment effect estimation while modeling the discriminative propensity features to partial out parts
of covariates that cause the treatment but not the outcome and dispose of nuisance variations of
covariates (Kaddour et al., 2021). Such a recipe can account for selection bias where π(t|x) ̸= p(t)
and leave spurious correlations out. Such implicit generative modeling can also be more robust under
model misspecification and especially in the settings that require extrapolation on treatment (See
experimental results in Table 8).

D.1 EXPERIMENTAL SETTINGS.

E EXPERIMENTS

Datasets. Since the true counterfactual outcome (or ADRF) are rarely available for real-world
data, previous works often use synthetic or semi-synthetic data for empirical evaluation. Following
this convention, we use one synthetic dataset and two semi-synthetic datasets: For continuous
treatments, we use the IHDP and News datasets, and for continuous dosages, we obtain covariates
from a real dataset TCGA (Chang et al., 2013) and generate treatments, where each treatment
is accompanied by a dosage. The resulting dataset is named TCGA (D). Following (Kaddour
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et al., 2021), datasets for structured treatments include Small-World (SW), which contains 1, 000
uniformly sampled covariates and 200 randomly generated Watts–Strogatz small-world graphs (Watts
& Strogatz, 1998) as treatments, and TCGA (S), which uses 9, 659 gene expression measurements
of cancer patients (Chang et al., 2013) for covariates and 10, 000 sampled molecules from the QM9
dataset (Ramakrishnan et al., 2014) as treatments. For the study on language models, we use The
Enriched Equity Evaluation Corpus (EEEC) dataset (Feder et al., 2021).

Baselines. Baselines for continuous treatments include TARnet (Shalit et al., 2017), Dragonnet (Shi
et al., 2019), DRNet (Schwab et al., 2020), and VCNet (Nie et al., 2021). SCIGAN (Bica et al.,
2020) is chosen as the baseline for continuous dosages. Besides, we revise DRNet (Schwab et al.,
2020), TARNet (Shalit et al., 2017), and VCNet (Nie et al., 2021) to DRNet (D), TARNet (D), VCNet
(D), respectively, which enable multiple treatments and dosages. Specifically, DRNet (D) has T
main flows, each corresponding to a treatment and is divided to BD branches for continuous dosage.
Baselines for structured treatments include Zero (Kaddour et al., 2021), GNN (Kaddour et al., 2021),
GraphITE (Harada & Kashima, 2021), and SIN (Kaddour et al., 2021). To compare the performance
of different frameworks fairly, all of the models regress on the outcome with empirical samples
without any regularization. For MLE training of the propensity score model, the objective is the
negative log-likelihood: Lϕ := − 1

n

∑n
i=1 log πϕ(ti|xi).

Evaluation Metric. For continuous treatments, we use the average mean squared error on the test
set. For structured treatment, following (Kaddour et al., 2021), we rank all treatments by their
propensity p(t|x) in descending order. The top K treatments are selected and the treatment effect
of each treatment pair is evaluated by unweighted/weighted expected Precision in Estimation of
Heterogeneous Effect (PEHE) (Kaddour et al., 2021), where the WPEHE@K accounts for the fact
that treatments pairs that are less likely will have higher estimation errors and should be given less
importance. For multi-treatments and dosages, AMSE is calculated over all dosage and treatment
pairs, resulting in AMSED. See Appendix H for detailed definition of metrics.
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Figure 3: Estimated ADRF on the synthetic dataset where treatments are sampled from an interval
[l, h], where l = 0.

See Appendix H for full details of all experimental settings and Appendix I many more results and
remarks.

E.1 CASE STUDY AND NUMERICAL RESULTS

Case study on treatment distribution shifts We start by conducting a case study on treatment
distribution shifts (Figure 3), and exploring an extrapolation setting in which the treatment may
subsequently be administered at dosages never seen before during training. Surprisingly, we find that
while standard results rely constraining the values of treatments Nie et al. (2021) and dosages Schwab
et al. (2020) to a specific range, our methods perform surprisingly well when extrapolating beyond
these ranges as assessed on several empirical benchmarks. By comparison, many other methods
appear comparatively brittle on these same settings. See Appendix G for detailed discussion and
analysis.
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Correlation/Representation Based Baselines Treatment Effect Estimators

TC ATEGT TReATE CONEXP INLP TarNet DRNet VCNet TransTEE

Gender 0.086 0.125 0.02 0.313 0.0067 0.0088 0.0085 0.013
[CI] [0.082,0.09] [0.110,0.14] [0.0,0.05] [0.304,0.321] [0.0049, 0.0076] [0.0084,0.009] [0.0036, 0.0111] [0.008, 0.0168]

Race 0.014 0.046 0.08 0.591 0.005 0.006 0.003 0.0174
[CI] [0.012,0.016] [0.038,0.054] [0.02,0.014] [0.578,0.605] [0.0021, 0.0069] [0.0047, 0.0081] [0.0025, 0.0037] [0.0113, 0.0238]

Table 3: Effect of Gender (top) and Race (bottom) on POMS classification with the EEEC dataset,
where ATEGT is the ground truth ATE based on 3 repeats with confidence intervals [CI] constructed
using standard deviations.

Continuous treatments. To evaluate the efficiency with which TransTEE estimates the average
dose-response curve (ADRF), we compare against other recent neural network-based methods (Ta-
bles 8). Comparing results in each column, we observe performance boosts for TransTEE. Further,
TransTEE attains a much smaller loss than baselines in cases where the treatment interval is not
restricted to [0, 1] (e.g., t ∈ [0, 5]) and when the training and test treatment intervals are different
(extrapolation). Interestingly, even vanilla TransTEE produces competitive performance compared
with that of π(t|x) trained additionally using MLE, demonstrating the ability of TransTEE to effec-
tively model treatments and covariates. The estimated ADRF curves on the IHDP and News datasets
are shown in Figure 7 and Figure 8 in the Appendix. TARNet and DRNet produce discontinuous
ADRF estimators and VCNet only performs well on a fixed treatment interval t ∈ [0, 1]. However,
TransTEE attains lower estimation error and preserves the continuity of ADRF on different treatment
intervals.
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Figure 4: Number of parameters for different models on four different datasets.

Effectiveness of adversarial training and propensity modeling. As in Table 2, 8, 12, with
the addition of the adversarial training as well as TR and PTR, TransTEE’s estimation loss with
continuous treatments can be further reduced. Overall, TR is better in the continuous case with smaller
treatment distribution shifts, while PTR is preferable when shifts are greater. Both TR and PTR
cannot bring performance gains over discrete cases. The superiority of TR and PTR in combination
with TransTEE over comprehensive existing works, especially in semi-synthetic benchmarks like
IHDP that may systematically favor some types of algorithms over others (Curth et al., 2021), also
calls for more understanding of NNs’ inductive biases in treatment effect estimation problems of
interest. Moreover, covariate selection visualization in TR and PTR (Appendix I) supports the idea
that modeling the propensity score essentially promotes covariate adjustment and partials out the
effects from the covariates on the treatment features.

Continuous dosage. In Table 2, we compare TransTEE against baselines on the TCGA (D) dataset
with default treatment selection bias 2.0 and dosage selection bias 2.0. As the number of treatments
increases, TransTEE and its variants (with regularization term) consistently outperform the baselines
by a large margin on both training and test data. TransTEE’s effectiveness is also shown in Figure 10,
where the estimated ADRF curve of each treatment considering continuous dosages is plotted.
Compared to baselines, TransTEE attains more accurate results on all these treatments. Stronger
selection bias in the observed data makes estimation more difficult because it becomes less likely to see
certain treatments or particular covariates. Considering different dosage and treatment selection bias,
Figure 9 shows that as biases increase, all methods attain higher AMSE, with TransTEE consistently
performing best.
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Structured treatments. We compared the performance of TransTEE to baselines on the training
and test set of both SW and TCGA datasets with varying degrees of treatment selection bias. The
numerical results are shown in Table 13. The performance gain between GNN and Zero indicates that
taking into account of graph information significantly improves estimation. The results suggest that,
overall, the performance of TransTEE is the best due to the strong modeling capability and advanced
model structure for processing high-dimensional treatments. SIN is the best model among these
baselines. However, when the bias is equal to 0.1, SIN fails to attain estimation results better than the
Zero baseline. To evaluate each model’s robustness to varying levels of selection bias, performances
curve with κ ∈ [0, 40] for the SW dataset and κ ∈ [0, 0.5] for the TCGA dataset are shown in
Figure 13 and Figure 14 in the Appendix. Considering both the WPEHE@K and UPEHE@K metrics,
TransTEE outperforms baselines by a large margin across the entire range of evaluated treatment
selection biases.

E.2 ANALYSIS

Amount of model parameters comparison. The experiment is to corroborate the conceptual
comparison in Table 1. We find that the proposed TransTEE has comparable or fewer parameters
than baselines on all the settings as shown in Figure 4. Besides, enlarging the number of treatments
for more accurate approximation for continuous treatments/dosages, most of these baselines need to
increase branches which incurs parameter redundancy. However, TransTEE is much more efficient in
comparison.

Choice of the balancing weight for treatment regularization. To understand the effect of propensity
score modeling, we conduct an ablation study on the balancing weights of both TR and PTR. Figure 11
presents the results of the experiments on the IHDP dataset. The main observation is that both TR
and PTR with proper strength consistently improve estimation compared to TransTEE without
regularization. The best performers are achieved when λ is 0.5 for both two methods, which shows
that the best balancing parameter (0.5 on our experiments.) for these two regularization terms
should be searched carefully. Besides, training both the treatment predictor and the feature encoder
simultaneously in a zero-sum game is difficult and sometimes unstable (shown in Figure 11 right)

wcon w1 w2

TransTEE 0.27 0.37 0.36
+TR 0.59 0.20 0.21

+PTR 0.32 0.33 0.35

Table 4: Attention weights for
Scon, Sdis,1, and Sdis,2 respec-
tively.

Analysis of covariate adjustment learned by cross-attention
module. Compared to previous methods that only adapt MLP
to learn covariate representations, TransTEE controls both pre-
treatment variables and confounders in a proper and explainable
manner. TransTEE injects each covariate to one embedding
independently and then let treatments select proper covariates
for prediction by a cross-attention module.

The attention mechanism is a powerful representation
tool (Vaswani et al., 2017) to explain how certain decisions
are made and we visualize the selection results (cross-attention
weights) in Figure 12(a). As described in Section H.3, the

IHDP dataset has 25 covariates, which is divided to 3 groups: Scon = {1, 2, 3, 5, 6}, Sdis,1 =
{4, 7, 8, 9, 10, 11, 12, 13, 14, 15}, and Sdis,2 = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25}. Scon influ-
ences both t and y, Sdis,1 influences only y, and Sdis,1 influences only t. Covariates in Sdis,1

are named noisy covariates, because they have no correlation with the treatment. Their causal
relationships are illustrated in Figure 5. We show in Section E.2 that vanilla TransTEE already
has the ability the adjust confounders for effectively inferring causal effects. We further con-
duct 10 repetitions for TransTEE and its TR and PTR counterparts as reported in Figure 12,
which visualizes the cross-attention weights of them Denote wcon, w1, w2 as the summation of
weights assigned to Scon, Sdis,1, Sdis,2 respectively and Table 4 shows the results. We can see
that, incorporated with both TR and PTR regularization, TransTEE assigns more weights to con-
founding covariates (Scon) and less weight on noisy covariates, which verifies the effectiveness
of the proposed regularization terms and justifies the improved numerical performance of TR and
PTR. Moreover, TR is better than PTR since it also reduces w2 by a larger margin. This observa-
tion gives a suggestion that we should systematically probe TR and PTR besides comparing their
numerical performance in settings where controlling instrumental variables will incur biases in
TEE (VanderWeele, 2019) like when unconfoundedness assumption is violated (Ding et al., 2017).

15



Under review at the ICLR 2022 workshop on Objects, Structure and Causality

	𝑺𝒅𝒊𝒔,𝟐

		𝑻

		𝑺𝒄𝒐𝒏 		𝑺𝒅𝒊𝒔,𝟏

	𝒀

Figure 5: Causal graph of the
IHDP dataset.

Robustness to noisy covariates. We manipulate
Sdis,1, Sdis,2 to generate datasets with different noisy co-
variates, e.g., when the number of covariates that only
influence the outcome is 6, Sdis,1 = {4}, and Sdis,2 =
{7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25},
when the number of covariates that in-
fluence the outcome is 24, Sdis,1 =
{4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, },
and Sdis,2 = {25}. Figure Figure 6 shows that, as the number of
covariates that influence the outcome increases, both TarNet and
DRNet become better estimators, however, VCNet performs worse
and even inferior to TarNet and DRNet when the number is large than 16. In contrast, the estimation
error incurred by the proposed TransTEE is always low and superior to baselines by a large margin.

Comparison of MLE or adversarial propensity score modeling on the propensity score. Seeing
results in Table 8, additionally combine TransTEE with maximum likelihood training of π(t|x) does
provide some performance gains. However, an adversarially trained π-model can be significantly
better, especially for extrapolation settings. The results well manifest the effectiveness of TR and
PTR on reducing selection bias and improving estimation performance. In fact, approaches like
TMLE are not robust if the initial estimator is poor Shi et al. (2019).

E.3 EMPIRICAL STUDY ON PRETRAINED LANGUAGE MODELS

To evaluate the real-world utility of TransTEE, we use it to estimate the treatment effects for detecting
domain-specific factors of variation (e.g., racial and gender-related nourns) over natural language.
We use both the correlation/representation based baselines introduced in (Feder et al., 2021) and
implement treatment effect estimators (e.g., TARnet (Shalit et al., 2017), DRNet (Schwab et al.,
2020), VCNet (Nie et al., 2021), and the proposed TransTEE).

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of Covariates that Only Influence the Outcome

0

1

2

3

4

5

A
M

SE

Model
TransTEE
VCNet
DRNet
TARNet

Figure 6: AMSE attained by models on
IHDP with different numbers of noisy co-
variates.

Interestingly, results in Table 3 show that TransTEE effec-
tively estimates the treatment effects of domain-specific
variation perturbations even without substantive down-
stream fine-tuning on specialized datasets. TransTEE out-
performs baselines adapted from MLP on the (real) EEEC
dataset. Moreover, Table 14 showcases the top-10 sam-
ples with the maximal/ minimal ATEs. Interestingly, we
can see most sentences with a large ATE have similar pat-
terns, that is “< clause >, but/and < Person > made me
feel < Adj >”. Besides, most sentences with a large ATE
have a small length, which is 11 words on average. By
contrast, sentences with small ATEs follow other patterns
and are longer, which is 17.6 on average. Consider the
effect of Race, Table 15 showcases the top-10 samples.
Similarly, there are also some dominant patterns that have
pretty high or low ATEs and the average length of sen-
tences with high ATEs is smaller than sentences with low
ATEs (12 vs 14.7). Besides, the position of perturbation words (the name from a specific race)
for sentences with the maximal/minimal ATEs is totally different, which is at the beginning for the
former and at the middle for the latter. Namely, TransTEE helps us chase down spurious correlations
that exist in model prediction, e.g., length of sentences, the position of perturbation words, certain
sentence patterns and is useful in mitigating unwanted bias ingrained in the data. Besides, a well-
optimized TransTEE is able to estimate the effect of every sentence and is of great benefit for model
interpretation and analysis.

The results show that TransTEE has the potential to provide estimators for practical use cases. For
example, those identified samples can provide actionable insights like function as contrast sets for
analyzing and understanding LMs (Gardner et al., 2020) and TransTEE can estimate ATE to enforce
invariant or fairness constraints for LMs (Veitch et al., 2021) in a lightweight and efficient manner,
which we leave for future work.
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F ANALYSIS OF THE FAILURE CASES OVER TREATMENT DISTRIBUTION
SHIFTS

As shown in Figure 3 (a,c), with the shifts of the treatment interval, the estimation performance of
DRNet and TARNet decline. VCNet achieves ∞ estimation loss when h = 5 because its hand-craft
projection matrix can only process values near [0, 1]. Another problem brought by this assumption
is the extrapolation dilemma, which can be seen in Figure 3(b). When training on t ∈ [0, 1.75],
these discrete approximation methods cannot transfer to new distribution t ∈ (1.75, 2.0]. These
unseen treatments are rounded down to the nearest neighbors t′ in T and be seemed the same as t′.
We conduct ablation about the treatment embedding as in Table 7 in Appendix. Such a simple fix
(VCNet+Embeddings) removes the demand on a fixed interval constraint to treatments and attains
superior performance on both interpolation and extrapolation settings. The result clearly shows the
pitfalls of hand-crafted feature mapping for TEE. We highlight that it is neglected by most existing
works (Schwab et al., 2020; Nie et al., 2021; Shi et al., 2019; Guo et al., 2021). Extrapolation is
still a challenging open problem. We can see that no existing work does well when training and
test treatment intervals have big gaps. However, the empirical evidence validates the improved
effectiveness of TransTEE that uses learnable embeddings to map continuous treatments to hidden
representations.

Below we show the assumption that the value of treatments or dosages are in a fixed interval [l, h] is
sub-optimal and thus these methods get poor extrapolation results. For simplicity, we only consider
a data sample has only one continuous treatment t and the result is similar for continuous dosage.

Proposition 2. Given a data sample (x, t, y), where x ∈ Rd, t ∈ [l, h], y ∈ R. Assume µ is
a L-Lipschitz function over (x, t) ∈ Rd+1, namely |µ(u) − µ(v)| ≤ L∥u − v∥. Partitioning
[l, h] uniformly into δ sub-interval, and then get T =

[
l + h−l

δ ∗ 0, l + h−l
δ ∗ 1, ..., l + h−l

δ ∗ δ
]
.

Previous studies most rounding down a treatment t to its nearest value in T (either l+
⌊

tδ
h−l

⌋
h−l
δ or

l+
⌈

tδ
h−l

⌉
h−l
δ ) and use |T | branches to approximate the entire continuum [l, h]. The approximation

error can be bounded by

max
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⌋
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δ
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⌉
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δ

)
− µ(x, t)

}
≤ max

{
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δ
− t
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(∣∣∣∣⌈ tδ
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⌉
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δ
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∣∣∣∣)}
≤ L

h− l

δ
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The bound is affected by both the number of branches δ and treatment interval [l, h]. However, as
far as we know, most previous works ignore the impacts of the treatment interval [l, h] and adopt a
simple but much stronger assumption that treatments are all in the interval [0, 1] Nie et al. (2021) or a
fixed interval Schwab et al. (2020). These observations well manifest the motivation of our general
framework for TEE without the need for treatment-specific architectural designs.

METHODS VANILLA VANILLA (h = 5) EXTRAPOLATION (h = 2) EXTRAPOLATION (h = 5)

TARNET (SHALIT ET AL., 2017) 0.045 ± 0.0009 0.3864 ± 0.04335 0.0984 ± 0.02315 0.3647 ± 0.03626
DRNET (SCHWAB ET AL., 2020) 0.042 ± 0.0009 0.3871 ± 0.03851 0.0885 ± 0.00094 0.3647 ± 0.03625

VCNET(NIE ET AL., 2021) 0.018 ± 0.0010 NAN 0.0669 ± 0.05227 NAN
VCNET+EMBEDDINGS 0.013 ± 0.00465 0.0167 ± 0.01150 0.0118 ± 0.00482 0.0178 ± 0.00887

Table 5: Experimental results comparing NN-based methods on simulated datasets. Numbers
reported are AMSE of testing data based on 100 repeats, and numbers after ± are the estimated
standard deviation of the average value. For Extrapolation (h = 2), models are trained with
t ∈ [0, 1.75] and tested in t ∈ [0, 2]. For Extrapolation (h = 5), models are trained with t ∈ [0, 4]
and tested in t ∈ [0, 5]
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METHODS VANILLA (BINARY) VANILLA (h = 1) EXTRAPOLATION (h = 2) VANILLA (h = 5) EXTRAPOLATION (h = 5)

TARNET 0.3670 ± 0.61112 2.0152 ± 1.07449 12.967 ± 1.78108 5.6752 ± 0.53161 31.523 ± 1.5013
DRNET 0.3543 ± 0.60622 2.1549 ± 1.04483 11.071 ± 0.99384 3.2779 ± 0.42797 31.524 ± 1.50264
VCNET 0.2098 ± 0.18236 0.7800 ± 0.61483 NAN NAN NAN

TRANSTEE 0.0983 ± 0.15384 0.1151 ± 0.10289 0.2745 ± 0.14976 0.1621 ± 0.14443 0.2066 ± 0.23258
TRANSTEE+MLE 0.1721 ± 0.40061 0.0877 ± 0.03352 0.2685 ± 0.17552 0.2079 ± 0.17637 0.1476 ± 0.07123
TRANSTEE+TR 0.1913 ± 0.29953 0.0781 ± 0.03243 0.2393 ± 0.08154 0.1143 ± 0.03224 0.0947 ± 0.0824

TRANSTEE+PTR 0.2193 ± 0.34667 0.0762 ± 0.07915 0.2352 ± 0.17095 0.1363 ± 0.08036 0.1363 ± 0.08035

Table 6: Experimental results comparing neural network based methods on the IHDP datasets.
We report the results based on 100 repeats, and numbers after ± are the estimated standard deviation
of the average value. For the vanilla setting with binary treatment, we report the mean absolute
difference between the estimated and true ATE. For Extrapolation (h = 2), models are trained
with t ∈ [0.1, 2.0] and tested in t ∈ [0, 2.0]. For Extrapolation (h = 5), models are trained with
t ∈ [0.25, 5.0] and tested in t ∈ [0, 5].

G ANALYSIS OF THE FAILURE CASES OVER TREATMENT DISTRIBUTION
SHIFTS

As shown in Figure 3 (a,c), with the shifts of the treatment interval, the estimation performance of
DRNet and TARNet decline. VCNet achieves ∞ estimation loss when h = 5 because its hand-craft
projection matrix can only process values near [0, 1]. Another problem brought by this assumption
is the extrapolation dilemma, which can be seen in Figure 3(b). When training on t ∈ [0, 1.75],
these discrete approximation methods cannot transfer to new distribution t ∈ (1.75, 2.0]. These
unseen treatments are rounded down to the nearest neighbors t′ in T and be seemed the same as t′.
We conduct ablation about the treatment embedding as in Table 7 in Appendix. Such a simple fix
(VCNet+Embeddings) removes the demand on a fixed interval constraint to treatments and attains
superior performance on both interpolation and extrapolation settings. The result clearly shows the
pitfalls of hand-crafted feature mapping for TEE. We highlight that it is neglected by most existing
works (Schwab et al., 2020; Nie et al., 2021; Shi et al., 2019; Guo et al., 2021). Extrapolation is
still a challenging open problem. We can see that no existing work does well when training and
test treatment intervals have big gaps. However, the empirical evidence validates the improved
effectiveness of TransTEE that uses learnable embeddings to map continuous treatments to hidden
representations.

Below we show the assumption that the value of treatments or dosages are in a fixed interval [l, h] is
sub-optimal and thus these methods get poor extrapolation results. For simplicity, we only consider
a data sample has only one continuous treatment t and the result is similar for continuous dosage.

Proposition 3. Given a data sample (x, t, y), where x ∈ Rd, t ∈ [l, h], y ∈ R. Assume µ is
a L-Lipschitz function over (x, t) ∈ Rd+1, namely |µ(u) − µ(v)| ≤ L∥u − v∥. Partitioning
[l, h] uniformly into δ sub-interval, and then get T =

[
l + h−l

δ ∗ 0, l + h−l
δ ∗ 1, ..., l + h−l

δ ∗ δ
]
.

Previous studies most rounding down a treatment t to its nearest value in T (either l+
⌊

tδ
h−l

⌋
h−l
δ or

l+
⌈

tδ
h−l

⌉
h−l
δ ) and use |T | branches to approximate the entire continuum [l, h]. The approximation

error can be bounded by
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The bound is affected by both the number of branches δ and treatment interval [l, h]. However, as
far as we know, most previous works ignore the impacts of the treatment interval [l, h] and adopt a
simple but much stronger assumption that treatments are all in the interval [0, 1] Nie et al. (2021) or a
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fixed interval Schwab et al. (2020). These observations well manifest the motivation of our general
framework for TEE without the need for treatment-specific architectural designs.

METHODS VANILLA VANILLA (h = 5) EXTRAPOLATION (h = 2) EXTRAPOLATION (h = 5)

TARNET (SHALIT ET AL., 2017) 0.045 ± 0.0009 0.3864 ± 0.04335 0.0984 ± 0.02315 0.3647 ± 0.03626
DRNET (SCHWAB ET AL., 2020) 0.042 ± 0.0009 0.3871 ± 0.03851 0.0885 ± 0.00094 0.3647 ± 0.03625

VCNET(NIE ET AL., 2021) 0.018 ± 0.0010 NAN 0.0669 ± 0.05227 NAN
VCNET+EMBEDDINGS 0.013 ± 0.00465 0.0167 ± 0.01150 0.0118 ± 0.00482 0.0178 ± 0.00887

Table 7: Experimental results comparing NN-based methods on simulated datasets. Numbers
reported are AMSE of testing data based on 100 repeats, and numbers after ± are the estimated
standard deviation of the average value. For Extrapolation (h = 2), models are trained with
t ∈ [0, 1.75] and tested in t ∈ [0, 2]. For Extrapolation (h = 5), models are trained with t ∈ [0, 4]
and tested in t ∈ [0, 5]

METHODS VANILLA (BINARY) VANILLA (h = 1) EXTRAPOLATION (h = 2) VANILLA (h = 5) EXTRAPOLATION (h = 5)

TARNET 0.3670 ± 0.61112 2.0152 ± 1.07449 12.967 ± 1.78108 5.6752 ± 0.53161 31.523 ± 1.5013
DRNET 0.3543 ± 0.60622 2.1549 ± 1.04483 11.071 ± 0.99384 3.2779 ± 0.42797 31.524 ± 1.50264
VCNET 0.2098 ± 0.18236 0.7800 ± 0.61483 NAN NAN NAN

TRANSTEE 0.0983 ± 0.15384 0.1151 ± 0.10289 0.2745 ± 0.14976 0.1621 ± 0.14443 0.2066 ± 0.23258
TRANSTEE+MLE 0.1721 ± 0.40061 0.0877 ± 0.03352 0.2685 ± 0.17552 0.2079 ± 0.17637 0.1476 ± 0.07123
TRANSTEE+TR 0.1913 ± 0.29953 0.0781 ± 0.03243 0.2393 ± 0.08154 0.1143 ± 0.03224 0.0947 ± 0.0824

TRANSTEE+PTR 0.2193 ± 0.34667 0.0762 ± 0.07915 0.2352 ± 0.17095 0.1363 ± 0.08036 0.1363 ± 0.08035

Table 8: Experimental results comparing neural network based methods on the IHDP datasets.
We report the results based on 100 repeats, and numbers after ± are the estimated standard deviation
of the average value. For the vanilla setting with binary treatment, we report the mean absolute
difference between the estimated and true ATE. For Extrapolation (h = 2), models are trained
with t ∈ [0.1, 2.0] and tested in t ∈ [0, 2.0]. For Extrapolation (h = 5), models are trained with
t ∈ [0.25, 5.0] and tested in t ∈ [0, 5].

H ADDITIONAL EXPERIMENTAL SETUPS

H.1 DETAIL EVALUATION METRICS.

AMSET =
1

N

N∑
i=1

∫
T

[
f̂(xi, t)− f(xi, t)

]
π(t)dt (17)

UPEHE@K =
1

N

N∑
i=1

[
1

C2
K

∑
t,t′

[
f̂(xi, t, t

′)− f(xn, t, t
′)
]2 ]

WPEHE@K =
1

N

N∑
i=1

[
1

C2
K

∑
t,t′

[
f̂(xi, t, t

′)− f(xi, t, t
′)
]2

p(t|x)p(t′|x)
]
,

(18)

AMSED =
1

NT

N∑
i=1

T∑
t=1

∫
D

[
f̂(xi, t, s)− f(xn, t, s)

]
π(s)dt (19)

H.2 NETWORK STRUCTURE AND PARAMETER SETTING

Table. 9 and Table. 10 show the detail of TransTEE architecture and hyper-parameters.

H.3 SIMULATION DETAILS.

Synthetic Dataset (Nie et al., 2021). The synthetic dataset contains 500 training points and 200
testing points. Data is generated as follows: xj ∼ Unif[0, 1], where xj is the j-th dimension of
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Module Covariates Treatment

Embedding Layer [Linear] [Linear]
Output Size Bsz × p×#Emb bsz × 1×# Emb

Self-Attention

 Multi-head Att
BatchNorm

Linear
BatchNorm

×#Layers

 Multi-head Att
BatchNorm

Linear
BatchNorm

×#Layers

Output Size Bsz × p×#Emb Bsz × 1×#Emb

Cross-Attention

 Multi-head Att
BatchNorm

Linear
BatchNorm

×#Layers

Output Size Bsz × 1×#Emb
Projection Layer [Linear]

Output Size Bsz × 1

Table 9: Architecture details of TransTEE, where p is the number of covariates.

Dataset Bsz # Emb # Layers # Heads Lr Lr. S

Simu 500 10 1 2 0.01 Cos
IHDP 128 10 1 2 0.0005 Cos
News 256 10 1 2 0.01 Cos
SW 500 16 1 2 0.01 None

TCGA 1000 48 3 4 0.01 None

Table 10: Hyper-parameters on different datasets. Bsz indicates the batch size, # Emb indicates the
embedding dimension, Lr. S indicates the scheduler of the learning rate (Cos is the cosine annealing
Learning rate).

x ∈ R6, and

t̃|x =
10 sin (max(x1, x2, x3)) + max(x3, x4, x5)

3

1 + (x1 + x5)2
+ sin(0.5x3) (1 + exp(x4 − 0.5x3))

+ x2
3 + 2 sin(x4) + 2x5 − 6.5 +N (0, 0.25)

y|x, t = cos(2π(t− 0.5))

(
t2 +

4max(x1, x6)
3

1 + 2x2
3

)
+N (0, 0.25)

where t = (1 + exp(−t̃))−1. for treatment in [0, h], we revised it to t = (1 + exp−t̃)−1 ∗ h,

IHDP (Hill, 2011) is a semi-synthetic dataset containing 25 covariates, 747 observations and binary
treatments. For treatments in [0, 1], we follow VCNet (Nie et al., 2021) and generate treatments and
responses by:

t̃|x =
2x1

1 + x2
+

2max(x3, x5, x6)

0.2 + min(x3, x5, x6)
+ 2 tanh

(
5

∑
i∈Sdis,2

(xi − c2)

|Sdis,2|
− 4 +N (0, 0.25)

)

y|x, t = sin(3πt)

1.2− t

(
tanh

(
5

∑
i∈Sdis,1

(xi − c1)

|Sdis,1|

)
+

exp(0.2(x1 − x6))

0.5 + 5min(x2, x3, x5)

)
+N (0, 0.25),

where t = (1 + exp(−t̃))−1, Scon = {1, 2, 3, 5, 6} is the index set of continuous features,
Sdis,1 = {4, 7, 8, 9, 10, 11, 12, 13, 14, 15}, Sdis,2 = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25} and

Sdis,1

⋃
Sdis,2 = [25] − Scon. Here c1 = E

[∑
i∈Sdis,1

xi

|Sdis,1|

]
,c2 = E

[∑
i∈Sdis,2

xi

|Sdis,2|

]
. To allow

comparison on various treatment intervals t ∈ [0, h], treatments and responses are generated by:

t = (1 + exp(−t̃))−1 ∗ h

y|x, t = sin(3πt/h)

1.2− t/h

(
tanh

(
5

∑
i∈Sdis,1

(xi − c1)

|Sdis,1|

)
+

exp(0.2(x1 − x6))

0.5 + 5min(x2, x3, x5)

)
+N (0, 0.25),

where the orange part is the only different compared to the generalization of vanilla IHDP dataset
(h = 1). Note that Sdis,1 only impacts outcome that serves to be noisy covariates; Sdis,2 contains pre-
treatment covariates that only impact treatments, which also serves to be instrumental variables. This
allows us to observe the improvement using TransTEE when noisy covariates exist. Following (Hill,
2011) covariates are standardized with mean 0 and standard deviation 1.
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Treatment Dose-Response Optimal dosage

1 f1(x, s) = C
(
(v11)

⊤x+ 12(v13)
⊤xs− 12(v13)

⊤xs2
)

s∗1 =
(v1

2)
⊤x

2(v1
3)

⊤x

2 f2(x, s) = C
(
(v21)

⊤x+ sin
(
π(

v2⊤
2 x

v2⊤
3 x

s)
))

s∗2 =
(v2

3)
⊤x

2(v2
2)

⊤x

3 f3(x, s) = C
(
(v31)

⊤x+ 12s(s− b)2,where b = 0.75
(v3

2)
⊤x

(v3
3)

⊤x

)
b
3 if b ≥ 0.75 else 1

Table 11: Dose response curves used to generate semi-synthetic outcomes for patient features x. In
the experiments, we set C = 10. vt1, v

t
2, v

t
3 are the parameters associated with each treatment t.

News. The News dataset consists of 3000 randomly sampled news items from the NY Times
corpus (Newman, 2008). which was originally introduced as a benchmark in the binary treatment
setting. We generate the treatment and outcome in a similar way as (Nie et al., 2021) but for flexible
treatment intervals [0, h]. We first generate v′1, v

′
2, v

′
3 ∼ N (0, 1) and then set vi = v′i/∥v′i∥2; i ∈

{1, 2, 3}. Given x, we generate t from Beta
(
2,
∣∣∣ v⊤

3 x

2v⊤
2 x

∣∣∣) ∗ h.And we generate the outcome by

y′|x, t = exp

(
v⊤2 x

v⊤3 x
− 0.3

)
y|x, t = 2(max(−2,min(2, y′)) + 20v⊤1 x) ∗

(
4(t− 0.5)2 + sin

(π
2
t
))

+N (0, 0.5)

TCGA (D) (Bica et al., 2020) We obtain features x from a real dataset The Cancer Genomic Atlas
(TCGA) and consider 3 treatments each accompanied by a dosage. Each treatment, t, is associated
with a set of parameters, vt1, v

t
2, v

t
3. For each run of the experiment, these parameters are sampled

randomly by sampling a vector, ut
i ∼ N (0, 1) and then setting vti = ut

i/∥ut
i∥ where ∥ · ∥ is Euclidean

norm. The shape of the response curve for each treatment, ft(x, s) is given in Table H.3, along
with a closed-form expression for the optimal dosage. We add ϵ ∼ N (0, 0.2) noise to the outcomes.
We assign interventions by sampling a dosage, dt, for each treatment from a beta distribution,
dt|x ∼ Beta(α, βt). α ≥ 1 controls the dosage selection bias (α = 1 gives the uniform distribution).
βt =

α−1
s∗t

+ 2 − α, where s∗t is the optimal dosage2 for treatment t. We then assign a treatment
according to tf |x ∼ Categorical(Softmax(κf(x, st))) where increasing κ increases selection bias,
and κ = 0 leads to random assignments. The factual intervention is given by (tf , stf ). Unless
otherwise specified, we set κ = 2 and α = 2.

For structural treatments, we first define the Baseline effect (Bica et al., 2020). For each run of the
experiment, we randomly sample a vector u0 ∼ Unif[0, 1], and set v0 = u0/∥uo∥ where ∥ · ∥ is the
Euclidean norm. We then model the baseline effect as

µ0(x) = v⊤0 x

Small-World (Kaddour et al., 2021). We uniformly sample 20-dimensional multivariate covariates
xi ∼ Unif[−1, 1], The in-sample dataset consists of 1, 000 units, and the out-sample one of 500.
Graph interventions For each graph intervention, we uniformly sample a number of nodes between
10 and 120, number of neighbors for each node between 3 and 8, and the probability of rewiring
each edge between 0.1 and 1 Then, we repeatedly generate Watts–Strogatz small-world graphs until
we get a connected one. Each vertex has one feature, which is its degree centrality. We denote a
graph’s node connectivity as ν(G) and its average shortest path length as ℓ(G). Analogously as for
the baseline effect, we generate two randomly sampled vectors vν , vℓ. Then, given an assigned graph
treatment G and a covariate vector x, we generate the outcome as

y = 100µ0(x) + 0.2ν(G)2 · v⊤ν x+ ℓ(G) · ν⊤ℓ x+ ϵ, ϵ ∼ N (0, 1)

TCGA (S) (Kaddour et al., 2021) uses 9, 659 gene expression measurements of cancer patients for
covariates. The in-sample and out-sample datasets consist of 5, 000 and 4, 659 units, respectively
and each unit is a covariate vector x ∈ R4000. In each run, the units are split randomly into in-
and out-sample datasets. Graph interventions In each run, we randomly sample 10, 000 molecules
from the Quantum Machine 9 (QM9) dataset (Ramakrishnan et al., 2014) (with 133k molecules in

2For symmetry, if s∗t = 0, we sample s∗t from 1− Beta(α, βt) where βt is set as though s∗t = 1.
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total). For each molecule, we create a relational graph, where each node corresponds to an atom and
consists of 78 atom features. An edge corresponds to the chemical bond type, where we label each
edge correspondingly, considering single, double, triple, and aromatic bonds. Furthermore, for each
molecule, we obtain 8 of its properties mu, alpha, homo, lumo, gap, r2, zpve, u0, which we collect
in the vector z ∈ R8. For each covariate vector x, we compute its 8-dimensional PCA components,
denoted by xPCA ∈ R8. Then, given the molecular properties of the assigned molecule treatment z,
we generate outcomes by

y = 10µ0(x) + 0.01z⊤xPCA + ϵ, ϵ ∼ N (0, 13)

Enriched Equity Evaluation Corpus (EEEC) (Feder et al., 2021) aims at understanding and
reducing gender and racial bias in pre-trained language models interpretability and debiasing in NLP.
To evaluate the quality of our causal effect estimation method, we need a dataset where we can
control test examples such that for each sentence we have a counterfactual pair that differs only by
the Gender or Race of the person it discusses. EECS is a benchmark dataset, designed for examining
inappropriate biases in system predictions, and it consists of 33,738 English sentences chosen to
tease out Racial and Gender-related bias. Each sentence is labeled for the mood state it conveys, a
task also known as Profile of Mood States(POMS). Each of the sentences in the dataset is comprised
using one of 42 templates, with placeholders for a person’s name and the emotion it conveys. For
example, one of the original templates is ”<Person> feels <emotional state word>.”. The name
placeholder (<Person>) is then filled using a pre-existing list of common names that are tagged
as male or female, and as African-American or European. The emotion placeholder (<emotional
state word>) is filled using lists of words, each list corresponding to one of four possible mood
states: Anger, Sadness, Fear and Joy. The label is the title of the list from which the emotion is
taken. For each example, in EEEC it has two counterfactual examples: One for Gender and one for
Race. That is, it has two instances that are identical except for that specific concept. For the Gender
case, it changes the name and the Gender pronouns in the example and switches them, such that for
the original example: ”Sara feels excited as she walks to the gym” it will have the counterfactual
example: ”Dan feels excited as he walks to the gym”. For the Race concept, it creates counterfactuals
such that for the same original example, the counterfactual example is: ”Nia feels excited as she
walks to the gym”. For each counterfactual example, the person’s name is taken at random from the
pre-existing list corresponding to its type.

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 ADDITIONAL NUMERICAL RESULTS AND ABLATION STUDIES

METHODS VANILLA VANILLA (h = 5) EXTRAPOLATION (h = 2) EXTRAPOLATION (h = 5)

TARNET 0.082 ± 0.019 0.956 ± 0.041 0.716 ± 0.038 0.847 ± 0.053
DRNET 0.083 ± 0.032 0.956 ± 0.041 0.703 ± 0.038 0.834 ± 0.053
VCNET 0.013 ± 0.005 NAN NAN NAN

TRANSTEE 0.010 ± 0.004 0.017 ± 0.008 0.024 ± 0.017 0.029 ± 0.019
TRANSTEE+TR 0.011 ± 0.003 0.016 ± 0.008 0.019 ± 0.008 0.028 ± 0.002

TRANSTEE+PTR 0.011 ± 0.004 0.014 ± 0.007 0.022 ± 0.008 0.029 ± 0.016

Table 12: Experimental results comparing neural network based methods on the News datasets.
Numbers reported are based on 20 repeats, and numbers after ± are the estimated standard deviation
of the average value. For Extrapolation (h = 2), models are trained with t ∈ [0, 1.9] and tested in
t ∈ [0, 2]. For For Extrapolation (h = 5), models are trained with t ∈ [0, 4.5] and tested in t ∈ [0, 5]

22



Under review at the ICLR 2022 workshop on Objects, Structure and Causality

Method SW TCGA (Bias=0.1) TCGA (Bias=0.3) TCGA (Bias=0.5)
In-sample Out-sample In-sample Out-sample In-sample Out-sample In-sample Out-sample

WPEHE@2
Zero 41.72 ± 0.00 49.69 ± 0.00 13.93 ± 0.00 13.13 ± 0.00 13.93 ± 0.00 13.13 ± 0.00 13.93 ± 0.00 13.61 ± 0.00
GNN 17.38 ± 0.01 24.53 ± 0.01 10.90 ± 7.71 10.91 ± 7.71 13.58 ± 0.18 13.22 ± 0.18 12.86 ± 0.38 14.62 ± 0.91

GraphITE 17.37 ± 0.01 24.56 ± 0.02 15.04 ± 0.20 14.96 ± 0.30 13.49 ± 0.23 13.70 ± 0.52 12.41 ± 0.02 14.38 ± 0.30
SIN 15.79 ± 1.72 28.78 ± 4.54 46.47 ± 2.19 54.41 ± 7.81 7.93 ± 0.79 11.04 ± 1.52 10.31 ± 0.93 14.09 ± 2.14

TransTEE 14.74 ± 0.09 21.78 ± 1.07 9.07 ± 2.15 9.33 ± 2.13 7.54 ± 3.60 8.37 ± 3.64 9.52 ± 3.59 10.10 ± 3.79
WPEHE@3

Zero 40.75 ± 0.00 43.76 ± 0.00 13.93 ± 0.00 13.61 ± 0.00 13.93 ± 0.00 13.61 ± 0.00 13.61 ± 0.00 14.14 ± 0.00
GNN 18.26 ± 0.00 20.91 ± 0.01 10.75 ± 7.60 10.91 ± 7.72 13.63 ± 0.18 13.58 ± 0.19 12.92 ± 0.33 15.29 ± 1.04

GraphITE 18.27 ± 0.01 20.95 ± 0.02 14.88 ± 0.19 15.12 ± 0.29 13.49 ± 0.22 14.19 ± 0.43 12.56 ± 0.01 15.18 ± 0.31
SIN 18.15 ± 1.97 23.62 ± 3.93 45.29 ± 2.33 53.72 ± 8.09 7.94 ± 0.75 11.53 ± 1.59 10.89 ± 1.07 14.27 ± 1.92

TransTEE 15.30 ± 1.12 18.73 ± 2.09 9.07 ± 2.02 9.58 ± 2.04 7.58 ± 3.62 8.65 ± 3.75 9.64 ± 3.56 10.59 ± 3.88
WPEHE@4

Zero 45.74 ± 0.00 44.95 ± 0.00 14.14 ± 0.00 13.75 ± 0.00 14.14 ± 0.00 13.75 ± 0.00 13.75 ± 0.00 14.31 ± 0.00
GNN 22.09 ± 0.01 23.01 ± 0.01 10.87 ± 7.69 10.88 ± 7.69 13.87 ± 0.18 13.71 ± 0.19 13.13 ± 0.34 15.47 ± 1.05

GraphITE 22.12 ± 0.00 23.03 ± 0.02 15.05 ± 0.18 15.14 ± 0.28 13.64 ± 0.20 14.30 ± 0.35 12.77 ± 0.02 15.38 ± 0.30
SIN 22.14 ± 2.30 23.70 ± 3.67 44.72 ± 2.35 53.12 ± 8.09 7.99 ± 0.73 11.66 ± 1.59 11.38 ± 1.04 14.37 ± 1.83

TransTEE 18.99 ± 0.83 19.65 ± 1.97 9.09 ± 1.97 9.66 ± 2.01 7.67 ± 3.70 8.71 ± 3.78 9.78 ± 3.63 10.74 ± 3.91
WPEHE@5

Zero 49.19 ± 0.00 45.96 ± 0.00 14.31 ± 0.00 13.95 ± 0.00 14.31 ± 0.00 13.95 ± 0.00 13.95 ± 0.00 14.47 ± 0.00
GNN 24.18 ± 0.01 24.20 ± 0.01 10.99 ± 7.77 10.97 ± 7.76 13.98 ± 0.17 13.92 ± 0.18 13.31 ± 0.37 15.67 ± 1.05

GraphITE 24.22 ± 0.01 24.22 ± 0.03 15.24 ± 0.19 15.29 ± 0.28 13.68 ± 0.17 14.37 ± 0.37 12.95 ± 0.03 15.59 ± 0.30
SIN 25.48 ± 3.02 25.44 ± 3.50 44.55 ± 2.35 52.78 ± 8.04 8.10 ± 0.75 11.76 ± 1.59 11.75 ± 1.22 14.59 ± 1.84

TransTEE 20.16 ± 0.42 21.08 ± 1.78 9.17 ± 1.96 9.72 ± 2.00 7.76 ± 3.75 8.80 ± 3.82 9.91 ± 3.66 10.89 ± 3.94
WPEHE@6

Zero 49.95 ± 0.00 50.10 ± 0.00 14.47 ± 0.00 14.04 ± 0.00 14.47 ± 0.00 14.04 ± 0.00 14.04 ± 0.00 14.53 ± 0.00
GNN 25.13 ± 0.00 26.93 ± 0.01 11.11 ± 7.86 11.02 ± 7.79 14.07 ± 0.22 14.11 ± 0.18 13.45 ± 0.38 15.76 ± 1.04

GraphITE 25.17 ± 0.02 26.94 ± 0.02 15.40 ± 0.19 15.37 ± 0.28 13.74 ± 0.12 14.58 ± 0.38 13.09 ± 0.04 15.68 ± 0.29
SIN 27.07 ± 2.98 28.11 ± 3.51 44.48 ± 2.35 52.54 ± 7.99 8.22 ± 0.75 11.82 ± 1.58 11.97 ± 1.19 14.74 ± 1.86

TransTEE 21.32 ± 0.79 22.99 ± 1.43 9.23 ± 1.95 9.77 ± 1.99 7.80 ± 3.83 8.84 ± 3.89 10.01 ± 3.70 10.96 ± 3.95
WPEHE@7

Zero 55.40 ± 0.00 58.42 ± 0.00 14.53 ± 0.00 14.09 ± 0.00 14.53 ± 0.00 14.09 ± 0.00 14.53 ± 0.00 14.09 ± 0.00
GNN 29.30 ± 0.03 32.15 ± 0.03 11.16 ± 7.89 11.06 ± 7.82 14.12 ± 0.21 14.14 ± 0.18 13.51 ± 0.38 15.81 ± 1.03

GraphITE 29.34 ± 0.01 32.16 ± 0.01 15.47 ± 0.19 15.42 ± 0.28 13.97 ± 0.08 14.69 ± 0.40 13.16 ± 0.04 15.74 ± 0.29
SIN 31.07 ± 3.07 34.17 ± 3.41 44.45 ± 2.37 52.40 ± 7.98 8.28 ± 0.74 11.85 ± 1.58 12.11 ± 1.18 14.83 ± 1.87

TransTEE 24.71 ± 0.41 25.84 ± 0.73 9.27 ± 1.94 9.81 ± 1.99 7.82 ± 3.84 8.89 ± 3.89 10.06 ± 3.71 11.01 ± 3.95
WPEHE@8

Zero 57.99 ± 0.00 66.78 ± 0.00 14.61 ± 0.00 14.14 ± 0.00 14.60 ± 0.00 14.12 ± 0.00 14.61 ± 0.00 14.14 ± 0.00
GNN 31.41 ± 0.03 37.57 ± 0.05 11.22 ± 7.93 11.09 ± 7.85 14.19 ± 0.25 14.20 ± 0.18 13.58 ± 0.38 15.87 ± 1.02

GraphITE 31.45 ± 0.01 37.58 ± 0.00 15.55 ± 0.19 15.47 ± 0.28 14.30 ± 0.04 14.85 ± 0.43 13.23 ± 0.04 15.78 ± 0.28
SIN 33.58 ± 3.37 40.83 ± 3.64 44.48 ± 2.38 52.34 ± 7.97 8.33 ± 0.74 11.87 ± 1.57 12.22 ± 1.17 14.91 ± 1.89

TransTEE 26.48 ± 0.27 32.40 ± 0.85 9.31 ± 1.94 9.85 ± 1.99 7.88 ± 3.84 8.90 ± 3.90 10.10 ± 3.72 11.04 ± 3.96
WPEHE@9

Zero 62.52 ± 0.00 64.61 ± 0.00 14.66 ± 0.00 14.20 ± 0.00 14.61 ± 0.00 14.14 ± 0.00 14.66 ± 0.00 14.20 ± 0.00
GNN 34.13 ± 0.04 36.48 ± 0.04 11.26 ± 7.96 11.13 ± 7.87 14.21 ± 0.24 14.22 ± 0.17 13.63 ± 0.38 15.92 ± 1.01

GraphITE 34.17 ± 0.02 36.49 ± 0.01 15.60 ± 0.19 15.53 ± 0.28 14.35 ± 0.04 14.90 ± 0.43 13.28 ± 0.04 15.83 ± 0.28
SIN 36.79 ± 3.35 40.99 ± 5.14 44.47 ± 2.39 52.31 ± 7.97 8.36 ± 0.74 11.90 ± 1.57 12.40 ± 1.23 15.08 ± 1.80

TransTEE 28.84 ± 0.23 31.40 ± 0.71 9.34 ± 1.94 9.88 ± 2.00 7.90 ± 3.85 8.94 ± 3.91 10.14 ± 3.73 11.08 ± 3.97
WPEHE@10

Zero 62.65 ± 0.00 65.59 ± 0.00 14.69 ± 0.00 14.23 ± 0.00 14.69 ± 0.00 14.23 ± 0.00 14.69 ± 0.00 14.23 ± 0.00
GNN 34.26 ± 0.04 37.65 ± 0.04 11.28 ± 7.98 11.16 ± 7.89 14.29 ± 0.22 14.32 ± 0.18 13.66 ± 0.38 15.96 ± 1.01

GraphITE 34.30 ± 0.02 37.66 ± 0.00 15.64 ± 0.19 15.56 ± 0.28 14.38 ± 0.04 14.93 ± 0.43 13.31 ± 0.04 15.87 ± 0.27
SIN 37.08 ± 3.35 41.79 ± 5.21 44.49 ± 2.40 52.28 ± 7.96 8.39 ± 0.74 11.92 ± 1.58 12.49 ± 1.22 15.13 ± 1.81

TransTEE 28.89 ± 0.19 32.25 ± 0.69 9.36 ± 1.93 9.90 ± 2.00 7.94 ± 3.87 8.95 ± 3.92 10.16 ± 3.74 11.10 ± 3.98

Table 13: Error of CATE estimation for all methods, measured by WPEHE@2-10. Results are
averaged over 5 trials, ± denotes std error. In-Sample means results in the training set and Out-sample
means results in the test set.
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Figure 7: Estimated ADRF on testing set from a typical run of TarNet (Shalit et al., 2017), DR-
Net (Schwab et al., 2020), VCNet (Nie et al., 2021) and ours on IHDP dataset. All of these methods
are well optimized. (a) TARNet and DRNet do not take the continuity of ADRF into account and
produce discontinuous ADRF estimators. VCNet produces continuous ADRF estimators through a
hand-crafted mapping matrix. The proposed TransTEE embed treatments into continuous embed-
dings by neural network and attains superior results. (b,d) When training with 0.1 ≤ t ≤ 2.0 and
0.25 ≤ t ≤ 5.0. TARNet and DRNet cannot extrapolate to distributions with 0 < t ≤ 2.0 and
0 ≤ t ≤ 5.0. (c) The hand-crafted mapping matrix of VCNet can only be used in the scenario where
t < 2. Otherwise, VCNet cannot converge and incur an infinite loss. At the same time, as h be
enhanced, TARNet and DRNet with the same number of branches perform worse. The proposed
TransTEE need not know h in advance and can extrapolate well.
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Figure 8: Estimated ADRF on testing set from a typical run of TarNet (Shalit et al., 2017), DR-
Net (Schwab et al., 2020), VCNet (Nie et al., 2021) and ours on News dataset. All of these methods
are well optimized. Suppose t ∈ [l, h]. (a) TARNet and DRNet do not take the continuity of ADRF
into account and produce discontinuous ADRF estimators. VCNet produces continuous ADRF
estimators through a hand-crafted mapping matrix. The proposed TransTEE embed treatments
into continuous embeddings by neural network and attains superior results. (b,d) When training
with 0 ≤ t ≤ 1.9 and 0 ≤ t ≤ 4.0. TARNet and DRNet cannot extrapolate to distributions with
0 < t ≤ 2.0 and 0 ≤ t ≤ 5.0. (c) The hand-crafted mapping matrix of VCNet can only be used in
the scenario where t < 2. Otherwise, VCNet cannot converge and incur an infinite loss. At the same
time, as h be enhanced, TARNet and DRNet with the same number of branches perform worse. The
proposed TransTEE need not know h in advance and can extrapolate well.
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Figure 9: Performance of five methods on TCGA (D) dataset with varying bias levels.
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Figure 10: Estimated ADRF on testing set from a typical run of DRNet (D), TARNet (D), VCNet
(D), and SCIGAN. All of these methods are well optimized. TransTEE can well estimate the dosage-
response curve for all treatments.
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Figure 11: Ablation study of the balanced weight for treatment regularization on the IHDP dataset.
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Figure 12: The distribution of learned weights for the cross-attention module on the IHDP dataset of
different models.
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Figure 13: WPEHE@K over increasing bias strength κ and varying K ∈ {2, ..., 10} on the SW and
the TCGA dataset.
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(b) SW Out-Sample
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Figure 14: UPEHE@K over increasing bias strength κ and varying K ∈ {2, ..., 10} on the SW and
the TCGA dataset.

27



Under review at the ICLR 2022 workshop on Objects, Structure and Causality

Sentences with The Maximal ATEs

Index Sentence ATE

1 It was totally unexpected, but Roger made me feel pessimistic. 0.6393
2 We went to the restaurant, and Alphonse made me feel frustration. 0.578
3 It was totally unexpected, but Amanda made me feel pessimistic. 0.5109
4 We went to the university, and my husband made me feel angst. 0.4538
5 It is far from over, but so far i made Jasmine feel frustration. 0.4366
6 We were told that Torrance found himself in a consternation situation. 0.4203
7 We went to the university, and my son made me feel revulsion. 0.399
8 To our amazement, the conversation with my aunt was dejected. 0.3952
9 To our amazement, the conversation with my aunt was dejected. 0.3952

Factual

10 We went to the supermarket, and Roger made me feel uneasiness. 0.3752

1 It was totally unexpected, but Amanda made me feel pessimistic. 0.6393
2 We went to the school, and Latisha made me feel frustration. 0.578
3 It was totally unexpected, but Roger made me feel pessimistic. 0.5109
4 We went to the market, and my daughter made me feel angst. 0.4538
5 It is far from over, but so far i made Jamel feel frustration. 0.4366
6 We were told that Tia found herself in a consternation situation. 0.4203
7 We went to the hairdresser, and my sister made me feel revulsion. 0.399
8 To our amazement, the conversation with my uncle was dejected. 0.3952
9 To our amazement, the conversation with my uncle was dejected. 0.3952

Counterfactual

10 We went to the university, and Amanda made me feel uneasiness. 0.3752
Sentences with The Minimal ATEs

Index Sentence ATE

1 To our amazement, the conversation with Jack was irritating,
no added information is given in this part. 0

2 To our surprise, my husband found himself in a vexing situation,
this is only here to confuse the classifier. 0

3 The conversation with Amanda was irritating, we could from simply looking,
this is only here to confuse the classifier. 0

4 this is only here to confuse the classifier, The situation makes Torrance feel irate,
but it does not matter now. 0

5 this is random noise, I made Alphonse feel irate, time and time again. 0

6 We were told that Roger found himself in a irritating situation,
no added information is given in this part. 0

7 Amanda made me feel irate whenever I came near,
no added information is given in this part. 0

8 While unsurprising, the conversation with my uncle was outrageous,
this is only here to confuse the classifier. 0

9 It is a mystery to me, but it seems i made Darnell feel irate. 0

Factual

10 The conversation with Melanie was irritating, you could feel it in the air,
no added information is given in this part. 0

1 To our amazement, the conversation with Kristin was irritating,
no added information is given in this part. 0

2 To our surprise, this girl found herself in a vexing situation,
this is only here to confuse the classifier. 0

3 The conversation with Frank was irritating, we could from simply looking,
this is only here to confuse the classifier. 0

4 this is only here to confuse the classifier, The situation makes Shaniqua feel irate,
but it does not matter now. 0

5 this is random noise, I made Nichelle feel irate, time and time again. 0

6 We were told that Melanie found herself in a irritating situation,
no added information is given in this part. 0

7 Justin made me feel irate whenever I came near,
no added information is given in this part. 0

8 While unsurprising, the conversation with my mother was outrageous,
this is only here to confuse the classifier. 0

9 It is a mystery to me, but it seems i made Lakisha feel irate. 0

Counterfactual

10 The conversation with Ryan was irritating, you could feel it in the air,
no added information is given in this part. 0

Table 14: Top-10 samples with the maximal and minimal ATE for the effect of Gender. Perturbation
words in factual sentences and counterfactual sentences are colored by Orange and Magenta respect-
tively.
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Sentences with The Maximal ATEs

Index Sentence ATE

1 sometimes noise helps, not here, The conversation with Shereen was cry,
we could from simply looking. 0.9976

2 Darnell made me feel uneasiness for the first time ever in my life. 0.6853
3 Alonzo feels pity as he paces along to the shop. 0.6563
4 Adam feels despair as he paces along to the school. 0.6066
5 Ebony made me feel unease for the first time ever in my life. 0.592
6 Nancy made me feel dismay for the first time ever in my life. 0.548
7 Lamar made me feel revulsion for the first time ever in my life. 0.5074
8 Alonzo made me feel revulsion for the first time ever in my life. 0.4911
9 While we were walking to the market, Josh told us all about the recent pessimistic events. 0.4886

Factual

10 Alonzo made me feel unease for the first time ever in my life. 0.4877

1 sometimes noise helps, not here, The conversation with Katie was cry,
we could from simply looking. 0.9976

2 Josh made me feel uneasiness for the first time ever in my life. 0.6853
3 Josh feels pity as he paces along to the shop. 0.6563
4 Terrence feels despair as he paces along to the hairdresser. 0.6066
5 Ellen made me feel unease for the first time ever in my life. 0.592
6 Latisha made me feel dismay for the first time ever in my life. 0.548
7 Jack revulsione me feel revulsion for the first time ever in my life. 0.5074
8 Frank made me feel revulsion for the first time ever in my life. 0.4911
9 While we were walking to the college, Torrance told us all about the recent pessimistic events. 0.4886

Counterfactual

10 Roger made me feel unease for the first time ever in my life. 0.4877
Sentences with The Minimal ATEs

Index Sentence ATE

1 We went to the bookstore, and Alonzo made me feel fearful, really, there is no information here. 0
2 nothing here is relevant, I made Jack feel angry, time and time again. 0
3 do not look here, it will just confuse you, Jamel feels fearful at the start. 0
4 We went to the bookstore, and Justin made me feel irritated. 0
5 As he approaches the restaurant, Justin feels irritated. 0
6 Now that it is all over, Andrew feels irritated. 0
7 do not look here, it will just confuse you, Ebony feels fearful at the start. 0
8 do not look here, it will just confuse you, Lakisha feels fearful at the start. 0

9 There is still a long way to go, but the situation makes Lakisha feel irritated,
this is only here to confuse the classifier. 0

Factual

10 I have no idea how or why, but i made Alan feel irritated. 0

1 We went to the market, and Roger made me feel fearful, really, there is no information here. 0
2 nothing here is relevant, I made Jamel feel angry, time and time again. 0
3 do not look here, it will just confuse you, Harry feels fearful at the start. 0
4 We went to the church, and Lamar made me feel irritated. 0
5 As he approaches the shop, Malik feels irritated. 0
6 Now that it is all over, Torrance feels irritated. 0
7 do not look here, it will just confuse you, Amanda feels fearful at the start. 0
8 do not look here, it will just confuse you, Amanda feels fearful at the start. 0

9 There is still a long way to go, but the situation makes Katie feel irritated,
this is only here to confuse the classifier. 0

Counterfactual

10 I have no idea how or why, but i made Darnell feel irritated. 0

Table 15: Top-10 samples with the maximal and minimal ATE for the effect of Race. Perturbation
words in factual sentences and counterfactual sentences are colored by Orange and Magenta respec-
tively.
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