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Abstract— While convolutional neural networks (CNNs)
and vision transformers (ViTs) have advanced medical im-
age segmentation, they face inherent limitations such as
local receptive fields in CNNs and high computational com-
plexity in ViTs. This paper introduces Deconver, a nhovel net-
work that integrates traditional deconvolution techniques
from image restoration as a core learnable component
within a U-shaped architecture. Deconver replaces com-
putationally expensive attention mechanisms with efficient
nonnegative deconvolution (NDC) operations, enabling the
restoration of high-frequency details while suppressing ar-
tifacts. Key innovations include a backpropagation-friendly
NDC layer based on a provably monotonic update rule and a
parameter-efficient design. Evaluated across five datasets
(ISLES’22, Spleen, BraTS’23, GlaS, and FIVES) covering
both 2D and 3D segmentation tasks, Deconver achieves
state-of-the-art performance in Dice scores and Hausdorff
distance while reducing computational costs (FLOPs) by
up to 90% compared to leading baselines. By bridging
traditional image restoration with deep learning, this work
offers a practical solution for high-precision segmentation
in resource-constrained clinical workflows.

Index Terms— Deconvolution, Medical Image Segmenta-
tion, U-Net.
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. INTRODUCTION

Edical image segmentation is a fundamental task in

modern healthcare, enabling precise delineation of
anatomical structures and pathological regions essential for
computer-assisted diagnosis, treatment planning, and surgical
guidance. Despite advancements, achieving accurate segmen-
tation remains challenging due to inherent complexities of
medical images, such as low contrast, heterogeneous textures,
and acquisition artifacts such as motion blur or noise.

Convolutional Neural Networks (CNNs), particularly U-
Net [1] and its variants, have dominated medical image seg-
mentation due to their ability to hierarchically extract spatial
features. Extensions like 3D U-Net [2] and nnU-Net [3] further
improved performance by adapting to volumetric data and
automating architecture configurations. However, CNNs are
inherently limited by their local receptive fields, hindering
their ability to model long-range spatial dependencies, often
critical for segmenting anatomically dispersed or structurally
complex regions.

Recent efforts to address this limitation include enlarging
kernel sizes [4] or adopting Vision Transformers (ViTs).
ViT-based models like nnFormer [5] and MISSFormer [0]
excel at capturing global context via self-attention but suffer
from quadratic computational complexity relative to input
resolution. This restricts their practicality in high-resolution
medical imaging and resource-constrained clinical environ-
ments. Hybrid architectures, such as TransUNet [7] and Swin
UNETR [8], attempt to balance locality and globality by
combining convolutional and self-attention layers but often
come at the cost of increased architectural complexity. To
address this issue, more recently, SimPoolFormer [9] replaces
the computationally intensive multi-headed self-attention in
visual transformers with a lightweight SimPool operation,
complemented by a vision multilayer perceptron stream to
enhance efficiency. Similarly, MGCET [10] integrates MLP-
mixer blocks with graph convolutional modules to improve
representation power for hyperspectral image classification.
While not originally designed for medical segmentation, these
models illustrate the broader trend of replacing costly attention
mechanisms with efficient alternatives.

Deconvolution is a classical technique in image processing
widely used for deblurring and image restoration through
methods such as Wiener filtering [11] and the Richardson-
Lucy algorithm [12], the latter of which iteratively refines
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estimates of latent sources under physical constraints such
as nonnegativity. While effective as a pre-processing step in
traditional pipelines, the integration of deconvolution into deep
learning frameworks remains underexplored, where it could
synergize data-driven feature learning with the image enhance-
ment capability for improved segmentation performance.

In this work, we propose Deconver, a novel segmentation
network that integrates deconvolution as a core learnable
layer within a U-shaped architecture. Our key insight is to
replace computationally expensive attention mechanisms with
efficient deconvolution operations, enabling the restoration of
high-frequency details while suppressing artifacts. The main
contributions of this work are threefold:

o Architectural Innovation: Deconver is the first network
to incorporate deconvolution principles as a learnable
component within a deep architecture.

+ Nonnegative deconvolution layer: We introduce a
backpropagation-friendly, differentiable layer based on a
provably monotonic update rule for nonnegative deconvo-
lution, enabling stable end-to-end training using current
deep learning frameworks.

o Performance and efficiency: Deconver achieves state-
of-the-art performance on both 2D and 3D segmentation
tasks with substantially fewer computational costs and
parameters than leading baselines.

Extensive experiments across five datasets (ISLES’22, Spleen,
BraTS’23, GlaS, and FIVES) demonstrate Deconver’s su-
periority in Dice scores and boundary accuracy (Hausdorff
distance). By bridging classical image restoration with modern
deep learning, Deconver provides a practical solution for high-
precision segmentation, particularly in resource-constrained
clinical workflows.

Il. RELATED WORK
A. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have played a cen-
tral role in medical image segmentation, primarily due to their
ability to extract hierarchical spatial features. The introduction
of U-Net [1] established an encoder—decoder architecture with
skip connections that has since become the backbone of many
segmentation models. Variants have since emerged to improve
performance across different settings: 3D U-Net [2] extends
U-Net to volumetric data using 3D operations; UNet++ [13]
incorporates nested dense skip connections; and nnU-Net [3]
presents a self-adapting framework capable of configuring
itself to a wide range of tasks. Other notable CNN-based
advances include SegResNet [14], a residual U-Net variant
that won the Brain Tumor Segmentation Challenge (BraTS)
2018.

Despite their effectiveness, a key limitation of CNNss is their
inherently local receptive field, which restricts their capacity to
capture long-range spatial dependencies. This poses challenges
for segmenting anatomically complex or spatially dispersed
structures. Two major approaches have emerged to address this
issue. One involves using large kernels, as seen in MedNeXt
[15], which expands the receptive field by iteratively in-
crease kernel sizes by upsampling small kernel networks. The

other approach incorporates attention mechanisms to explicitly
model global context, paving the way for Transformer-based
and hybrid segmentation architectures.

B. Transformers

Originally introduced for natural language processing,
Transformer architectures have been successfully adapted to
computer vision tasks through Vision Transformers (ViTs)
[16], which model images as sequences of patch tokens.
Fully Transformer-based segmentation models incorporate
self-attention mechanisms in both the encoder and decoder,
offering a shift from traditional convolution-based designs.

Among these, nnFormer [5] proposes an interleaved archi-
tecture that combines local and global self-attention layers
with convolutional downsampling. MISSFormer [6] builds a
hierarchical Transformer-based encoder-decoder tailored for
medical image segmentation, enhancing both local precision
and long-range contextual reasoning. Self-attention mecha-
nisms are known to be computationally intensive, especially
on long sequences, which can hinder their scalability in
high-resolution medical imaging tasks. One solution has been
proposed in [17] by replacing attention with non-negative
matrix factorization (NMF) which was shown to reduce the
computational cost significantly while maintaining high per-
formance. Other approaches include using hybrid models.

C. Hybrid Models

To balance the strengths of convolutional and attention-
based methods, hybrid architectures have emerged as a practi-
cal solution. These models typically use a Transformer in the
encoder and adopt a CNN-based decoder. One of the earliest
hybrid models in medical imaging, TransUNet [7], incorpo-
rates a ViT encoder into the bridge of a U-Net. Extending
this work, UNETR [18] employs a full Transformer-based
encoder directly connected to a convolutional decoder via skip
connections. Swin UNETR [&] further improves upon this by
replacing the ViT encoder with Swin Transformer blocks [19],
introducing a hierarchical structure that models both local and
global dependencies efficiently across scales. While hybrid
models are effective they still come with increased complexity
and computational demands.

D. Deconvolution

Deconvolution is a fundamental technique in image process-
ing aimed at reversing the effects of blurring and restoring an
image closer to its original form [20]. Early methods such as
Wiener deconvolution [1 1] applied frequency-domain filtering
to restore degraded signals, while iterative approaches like the
Richardson-Lucy algorithm [12, 2 1] refined the image estimate
through successive likelihood-based updates.

Deconvolution methods are widely used in medical imaging
to reduce blurring and enhance resolution across modalities. In
fluorescence microscopy, they help restore fine cellular struc-
tures from blurred images [22], while in magnetic resonance
imaging (MRI) [23], computed tomography (CT) [24, 25], and
positron emission tomography (PET) [26], they improve image
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clarity and diagnostic utility. Traditional pipelines, however,
treat restoration and segmentation as separate steps, each
optimized independently. This approach fails to leverage the
potential synergy between these tasks. Therefore, We pro-
pose an end-to-end architecture incorporating deconvolution-
inspired layers for holistic segmentation, enabling the restora-
tion process to be optimized specifically for segmentation
performance rather than general image quality metrics.

[1l. METHODS
A. Notation

We denote vectors by boldface lowercase letters (e.g., x),
matrices by boldface uppercase letters (e.g., X)), and tensors
by boldface calligraphic letters (e.g., X'). For clarity, a 2D
input image is represented as a 3D tensor X € REXHXW,
where C' denotes the number of channels, and H and W
represent the spatial height and width. A 3D volumetric input
is represented as a 4D tensor X € RE*XHXW 'with D denoting
depth. Individual elements in a tensor are accessed via indices
matching its dimensions, such as X{c, h, w] for a 3D tensor
or X|c, h,w,d] for a 4D tensor.

The inner product between two tensors X and Y of identical
dimensions is denoted by

(X, V)= > Xli,...

B1,0.00N

vin] Yli, ...

7iN]a

where N is the number of tensor dimensions. The Frobenius

norm is defined as | X || = /(X, X).

B. Revisiting Deconvolution

Deconvolution is a fundamental technique in image process-
ing that seeks to reverse the effects of convolution to restore
images degraded by blurring. In medical image segmenta-
tion, deconvolution is particularly valuable for enhancing fine
anatomical details and mitigating acquisition artifacts. This
enables more precise delineation of structures such as tumors
and blood vessels by recovering high-frequency components
often lost during image acquisition.

a) Problem Formulation: Let a 2D input image be repre-
sented as X € REXH*XW where C denotes the number of
channels, and H and W represent the height and width of
the image, respectively. The objective is to recover the latent
source image 8 € RE*XHXW from the observed X, given a
known filter tensor ¥V € ROXEXM'*N' "where E represents
the number of channels of the source image, and M’ = 2M +1
and N’ = 2M + 1 are the spatial dimensions of the filter.
Deconvolution aims to find the optimal tensor S that best
approximates the observed data X as the cross-correlation of
Sand V, ie., X ~ X=8=x YV, defined as

E—1 2M 2N

i’[c,h,w] = Z Z ZSp[e,h—|—m,w+n]V[c,e,m,n],

e=0 m=0n=0

1
for ¢ ¢ {0,...,C — 1}, h € {0,...,H — 1}, and
w € {0,...,W — 1}. Here, S, = pad(S,(M,N)) €

REX(HA2M)x(W+2N) denotes the zero-padded source image,
ensuring to preserve spatial dimensions post-filtering (note

that this definition aligns with CNN conventions, applying
the filter without flipping). This formulation extends standard
convolution by allowing multi-channel inputs and outputs,
making it suitable for modern deep learning architectures.

b) Nonnegative Deconvolution (NDC): In this work, we
focus on the nonnegative deconvolution (NDC), where X > 0,
Y > 0, and & > 0. The nonnegativity constraint aligns
with the physical nature of medical imaging systems, where
intensities are inherently positive, helping suppress negative
artifacts that could mislead segmentation models. The goal
is to estimate the source image & > 0 by minimizing the
reconstruction error:

minimize £(S) = [|X — S » V|3 2)

subject to S >0,

where || - ||r denotes the Frobenius norm. This formulation im-
plicitly assumes additive Gaussian noise, which approximates
complex noise in many imaging modalities while ensuring
computational tractability.

¢) Multiplicative Update Rule: To address problem (2), we
can derive an iterative update rule inspired by Richardson-
Lucy algorithm [12] and nonnegative matrix factorization [27].
Starting with an initial guess 8© > 0, the source image at
iteration ¢ + 1 is updated as:

X *xVY~
(8D xV)x Y

where © denotes element-wise multiplication, V™~ is the
adjoint filter, which is transposed and spatially flipped (i.e.,
V7 [d,c,m,n] = Vi]c,d,2M — m,2N — n]), and the division
is element-wise. The numerator correlates residuals with the
filter, amplifying regions where S underestimates X', while the
denominator normalizes the update to prevent overshooting.
This multiplicative form inherently preserves nonnegativity
when S(© > 0.

d) Monotonicity: The key advantage of the multiplicative
update (3) is its guarantee of the reduction of the reconstruc-
tion error, which we will prove in theorem 1.

Theorem 1 (Monotonicity): Let S be the source image
at iteration {. With a nonnegative initial source S © >0 and
under the update (3), the reconstruction error e(t) £ ||X —
S® V||Z is non-increasing, i.e., e“t1) < e® for all ¢ > 0.

Proof: See Appendix for a detailed proof. [ ]

The update rule (3) also generalizes naturally to 3D vol-
umes, making it suitable for modalities like MRI and CT. In
Section III-F, we integrate this deconvolution technique as a
learnable layer within a deep neural network, enhancing multi-
scale feature maps to improve segmentation performance.

Sttt — g (3)

C. Overall Architecture

The Deconver architecture adopts a U-shaped structure
(see Fig. 1), comprising an encoder and decoder with skip
connections in between at equal resolutions. Given a 2D
input image X € RC»>*HxW yith C;, input channels and
spatial dimensions (H, W), the network outputs a logit map
of shape (Cout, H, W), where C,,; denotes the number of
target classes.
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Fig. 1: Overview of Deconver architecture.
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(a) Deconver block

(b) Deconv Mixer

(c) NDC layer

Fig. 2: Overview of Deconver block and its components.

The encoder consists of L stages, each containing a Decon-
ver block described in Section III-D. At the initial stage, a stem
layer increases the input channels to Cy (typically 32 or 64,
depending on the dataset) using a single convolutional layer
with a kernel size of (3,3). Subsequent stages downsample
feature maps using strided convolutions (stride=2), halving the
spatial dimensions while doubling the channel count until a
maximum of 512 channels is reached. Formally, the number
of output channels at stage  is set to Cy = min(Cp x 2¢, 512).
This design balances computational efficiency with the capac-
ity to learn abstract, high-level representations. As the encoder
deepens, the growing receptive field enables the capture of
global contextual relationships essential for distinguishing
semantically similar but spatially distant structures.

The decoder mirrors the encoder’s hierarchical structure
but reverses the spatial reduction via transposed convolutions

(stride=2) to upsample feature maps. At each stage, the de-
coder incorporates skip connections that concatenate upsam-
pled features with their encoder counterparts at corresponding
resolutions. These skip connections mitigate information loss
during downsampling and enhance feature reuse, ensuring
more precise localization of fine-grained structures. At the
deepest decoder layer, a pointwise convolution head (1 x 1
kernel) generates the final logit map, which can be activated
via sigmoid or softmax to produce class probabilities for
segmentation.

D. Deconver Block

A Deconver block forms the main building unit of the
proposed model. In contrast to Vision Transformer (ViT)
blocks [16] that rely on attention mechanism, our Deconver
block replaces the multi-head self-attention module with a
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learnable Deconv Mixer module (presented in Section III-E),
and substitutes layer normalization with instance normaliza-
tion [28] to better accommodate the small batch sizes often
used with 3D or high-resolution medical images.

As illustrated in Fig. 2a, the block consists of two sequen-
tial sub-modules: Deconv Mixer and Multi-Layer Perceptron
(MLP). Each sub-module is preceded by instance normaliza-
tion and followed by a residual connection. Formally, given
an intermediate feature map X € RE*HXW 4t stage ¢, the
block’s operations are defined as

Z = DeconvMixer(InstanceNorm(X)) + X,
Y = MLP(InstanceNorm(Z)) + Z, (@)

where the MLP is composed of two pointwise convolution
layers separated by a Gaussian Error Linear Unit (GELU)
activation:

MLP(X’) = PointwiseConv(GELU (PointwiseConv(X))).
®)
The MLP expands the channel dimension by a factor of «
before projecting back to the original dimension, enabling
nonlinear interaction across channels while preserving spatial
structure.

E. Deconv Mixer

As illustrated in Fig. 2b, the Deconv Mixer module pro-
cesses input features through three sequential stages: an initial
pointwise convolution, an NDC layer, and a final pointwise
convolution.

First, Deconv Mixer applies a pointwise convolution to lin-
early project each position. The output is then passed through
a ReLU activation function, enforcing nonnegativity to ensure
compatibility with the subsequent NDC layer (described in
Section III-F). This nonnegative feature map is then processed
by the NDC layer, which captures spatial dependencies and
restores high-frequency details that may have been lost in
previous layers. Finally, a second pointwise convolution is
applied to produce the output. Formally, given an input feature
map X, the Deconv Mixer can be expressed as:

X' = PointwiseConv(X),
X? = NDC(ReLU(X")),
DeconvMixer(X) = PointwiseConv(X?), (6)

where the intermediate tensors X! and X 2, and the final
output share the same shape as the input X.

F. Nonnegative Deconvolution Layer

The nonnegative deconvolution (NDC) layer forms the core
innovation of Deconver, incorporating nonnegative deconvolu-
tion (presented in Section III-B) as a learnable layer to enhance
feature representations.

The NDC layer operates in a grouped manner, partitioning

an input feature map X € RQE;H *Winto G groups {X g}?zl

along the channel dimension. Each group X, € Rg%XHXW,

where C; = C'/G, is processed independently, maintaining its
own learnable filter YV, > 0 and source image S, > 0.

The layer introduces a source channel ratio R, defined as
R = E/C, where E denotes the number of source channels.
This ratio controls the channel expansion of the source image
relative to the input.

The initial source image S;O) € nggXHXW is derived
from the input feature map X through a pointwise convolution
followed by ReLU activation (See Fig. 2c). This ensures
nonnegativity while providing an adaptive and learnable/ ini;
tialization of the source. The filter V, € Rg%XRCQ XM
is initialized using the Kaiming uniform distribution [29] and
clamped to nonnegative values via ReLU before being plugged
into the update rule. Note that the filters V, are not fixed; they
are treated as learnable parameters optimized jointly with the
other network parameters during training.

The NDC layer applies a single iteration of the multi-
plicative update rule (3) to refine the source image. For
computational efficiency, we empirically found one iteration
sufficient to achieve a good trade-off between accuracy and
computational cost. The update for group g is:

Xg*V;+e
(8 4v,) « v, +e

s =s8"¢ (7)

where € = 1078 is a small positive constant to avoid division
by zero. The numerator amplifies regions where the source un-
derestimates the input, while the denominator normalizes the
update to prevent overshooting. The final output is the channel-
wise concatenation of all group outputs {S él)}_f:l, preserving
spatial resolution and expanding channel dimensions by R.
The NDC layer is fully differentiable and backpropagation-
friendly, enabling end-to-end training using modern deep
learning frameworks. Additionally, the filter V, and its adjoint
V, share the same learnable parameters, reducing parame-
ter overhead and potentially improving generalization perfor-

mance.

V. EXPERIMENTS

This section details the experimental setup, comparative
analyses, and ablation studies conducted to assess Deconver’s
effectiveness in 2D and 3D, as well as binary and multi-
class medical image segmentation tasks. We evaluate its per-
formance across five datasets, benchmark it against state-of-
the-art baselines, and analyze the impact of key architectural
design choices.

A. Experimental Setup

1) Datasets: We evaluated Deconver on five publicly avail-
able datasets, covering both 3D (ISLES’22, Spleen, and
BraTS’23) and 2D (GlaS and FIVES) medical imaging modal-
ities:

o ISLES’22 [30]: This dataset includes 250 multi-
center MRI scans, targeting ischemic stroke lesions via
diffusion-weighted imaging (DWI) and apparent diffusion
coefficient (ADC) maps. We excluded FLAIR images to
simplify the pipeline and avoid registration challenges.

e Spleen [31]: This dataset comprises contrast-enhanced
abdominal CT volumes with manual spleen annotations
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from Medical Segmentation Decathlon. In our experi-
ments, we used only the official 41 training subset and
did not use the test set.

o BraTS’23 [32-34]: This dataset consists of 1,251 multi-
parametric MRI (mpMRI) scans, including native T1-
weighted, post-Gadolinium T1-weighted, T2-weighted,
and FLAIR sequences. Ground truth labels delineate three
tumor subregions: enhancing tumor (ET), tumor core
(TC), and whole tumor (WT).

o GlaS [35, 36]: Containing 165 high-resolution H&E-
stained colorectal histopathology images, this dataset
features expert-annotated gland segmentations.

o FIVES [37]: This dataset includes 800 high-resolution
fundus photographs with manual segmentation of retinal
blood vessels.

2) Baseline Models: We compare Deconver against several
state-of-the-art baseline models, including CNNs such as nnU-
Net [3] and SegResNet [14]; hybrid convolution-transformer
architectures like UNETR [18] and Swin UNETR [8]; and
Factorizer [17], which leverages non-negative matrix factor-
ization (NMF). These baselines represent diverse approaches
to medical image segmentation.

3) Implementation Details: All models were implemented
using PyTorch and the MONAI framework, trained on a
single NVIDIA H100 GPU. We used the AdamW optimizer
with an initial learning rate of 0.0001 and weight decay
of 0.00001. A cosine annealing learning rate scheduler was
used, incorporating a 1% warm-up phase during which the
learning rate was scaled by 10. Training was conducted for
500 epochs for ISLES’22, GlaS, and FIVES, and 300 epochs
for BraTS’23. The batch size was set to 2 for BraTS’23 and 8
for all other datasets. Random patches were extracted during
training, with sizes of (64, 64,64) for ISLES’22, (96, 96, 96)
for Spleen, (128,128, 128) for BraTS’23, (256, 256) for GlaS,
and (512,512) for FIVES. Data augmentation included ran-
dom affine transformations, flipping, Gaussian noise, Gaussian
smoothing, and intensity scaling/shifting. We use the sum of
soft Dice [38] and cross-entropy losses as the training objec-
tive. For inference, a patch-based sliding window approach
with a 50% overlap and the same patch size as training was
adopted. The final binary segmentation maps were obtained
by thresholding predicted probabilities (sigmoid outputs).

4) Model Configurations: Deconver was configured with
dataset-specific hyperparameters to balance model capacity
and computational efficiency. The encoder depth (L) was set
to 4 for ISLES’22 and Spleen, 5 for BraTS’23, and 6 for GlaS
and FIVES. The base number of channels (Cj) set to 64 for
ISLES’22 and Spleen, and 32 for BraTS’23, GlaS, and FIVES.
At each encoder stage (¢), the channel dimension (C}y) was
determined by the formula C; = min(Cy x 2¢,512), doubling
the channels after each downsampling step until reaching a
maximum of 512 channels.

In the NDC layers, the number of groups (G) was set equal
to the number of input channels by default. Inspired by depth-
wise separable convolutions and validated through ablation
studies (Section IV-D), this design choice reduces computa-
tional complexity while preserving the ability to model diverse
spatial patterns. Additionally, the source channel ratio (R) was

fixed at 4, as our experiments found this to optimally balance
accuracy and efficiency. The MLP expansion factor («) was
fixed at 4 across all experiments.

5) Evaluation Metrics: We performed stratified 5-fold cross-
validation to assess generalization to unseen data. Segmen-
tation performance was quantified using two metrics: Dice
Similarity Coefficient (DSC) and Hausdorff Distance 95th
percentile (HD95). DSC is defined as:

N
2 Zn:l g[n] y[n]

N N )
Yon=19]+ 22, yn]
where g[n],y[n] € {0,1} denote the ground truth and pre-
dicted labels for voxel n, respectively, and N represents the
total number of voxels. DSC is defined as 1 when both the
ground truth and the prediction contain only zeros. . Hausdorff
Distance is computed as:

DSC(g,y) = (8)

HD(G,Y) = i i .
(G,Y) maX{rggggggd(ay),r;lgggggd(g,y)}
)

where d(g,y) represents the Euclidean distance between
points g and y; and G and Y are sets of all pixel (or voxel)
positions on the surface of the ground truth and prediction,
respectively. The HD95 metric computes the 95th percentile of
distances rather than the maximum, providing a more robust
measure against outliers. All the results are reported as the
average over the 5-fold cross-validation.

B. Results: 3D Segmentation

1) Binary segmentation (ISLES’22 and Spleen): Table I
presents the quantitative results for ISLES’22 and Spleen. Both
variants of Deconver outperform all the baselines in terms of
DSC, with the version using a kernel size of 3 x 3 x 3 achieving
the highest DSC (78.16%) followed closely by the variant
using a larger kernel size of 5 X 5 x 5 (77.37%). In terms of
boundary delineation accuracy, measured by the HD95 metric,
Deconver demonstrated superior results, with HD9S5 values of
4.99 and 4.89 for the 3x3x 3 and 5x5x5 kernels, respectively.
On spleen segmentation, Deconver 5 x 5 x 5 delivers the top
DSC (89.20%) followed by the 3 x 3 x 3 variant which reaches
86.73%, while SegResNet records the best HD95 (76.03), with
Deconver remaining competitive (80.59-81.08).

Notably, both variants of Deconver significantly reduce
computational complexity compared to the best-performing
baselines. Deconver requires over 70% fewer FLOPs per
voxel compared to the SegResNet, one of the best performing
baselines. Additionally, Deconver uses around 85% fewer
parameters, resulting in a highly compact architecture without
sacrificing segmentation performance. Refer to Fig. 3 for
a comparison of model performance versus computational
efficiency on ISLES’22. To better understand the source of
these differences at a finer granularity, we profiled each
encoding block using the same input dimensions and number
of channels as in the first encoding layer of the architecture
for the ISLES’22 dataset. Under this setting, a Deconver block
requires only 143.2K FLOPs per voxel, compared with 443.6K
for an nnUNet block, 443.9K for a SegResNet block, and
1602.2K for a Swin UNETR block.
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TABLE I: Segmentation performance comparison on ISLES’22 and Spleen. The best results are bold, and the second-best are

underlined.
5 -
Model Params ISLES’22 Spleen segmentation
FLOPs / voxel DSC (%) HD95 | FLOPs/ voxel DSC (%) HD95
nnU-Net 22.4M 3423.5K 76.76 5.54 1014.4K 77.05 120.11
SegResNet 75.9M 2228.6K 76.85 5.18 660.3K 84.63 76.03
UNETR 133.2M 525.9K 73.74 6.54 155.8K 66.50 142.04
Swin UNETR 62.2M 4356.8K 76.58 5.55 1290.9K 85.34 109.74
Factorizer 7.5M 2266.7K 76.73 5.93 671.6K 63.65 135.06
Deconver (3x3x3) 10.5M 607.0K 78.16 4.99 179.9K 86.73 80.58
Deconver (5x5x5) 11.0M 607.0K 77.37 4.89 179.9K 89.20 81.08
Deconver (ours) Deconver (ours)
° °
78 78
77 | Factorizer SegResNet 77 SegResNet nnU-Net
9 < ° N 9 ° ° o
8 nnU-Net S T :\j Factorizer Swin UNETR
D 76 L 76
75 75
74 UNETR 74 UNETR
° °
10 30 50 70 90 110 130 150 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5
Params (M) MFLOPs / voxel
(@) (b)

Fig. 3: Comparison of DSC against the number of parameters (left) and FLOPs/voxel (right) for different models on ISLES’22.
Deconver (the variant using 3 x 3 x 3 kernel) manages to maintain the highest DSC with fewer parameters and FLOPs/voxel.

We also qualitatively examined the segmentation results, as
shown in Fig. 4. The figure presents a visual comparison of
a representative slice from the ISLES’22 (top row) and the
Spleen (bottom row) datasets, showcasing the predictions of
different models. For Deconver, we illustrate the results form
the 3 x 3 x 3 kernel variant. As evident from the figure,
Deconver provides superior segmentation quality compared
to other baselines, achieving a more accurate delineation of
the lesion while maintaining minimal false positives and false
negatives.

The qualitative results show that nnU-Net, Swin UNETR,
and UNETR undersegment in both examples, leading to clin-
ically relevant false negatives. SegResNet captures the ground
truth more completely but has introduced false-positive areas
(in the first example marked by the orange circle).

2) Multi-class Segmentation (BraTS’23): Table 1l presents
segmentation performance on BraTS’23, comparing different
models across three tumor subregions: enhancing tumor (ET),
tumor core (TC), and whole tumor (WT). Both Deconver
variants outperform all baselines in average DSC. Notably,
Deconver with a kernel size of 3 achieves the highest DSC for
ET and TC, while Deconver with a kernel size of 5 achieves
the top DSC for WT, maintaining strong overall performance.

In terms of HD95, Deconver variants demonstrate compara-
ble or superior performance relative to the leading, particularly
excelling in TC segmentation. Even when not ranked first,
Deconver consistently produces results on par with the best-
performing methods.

Similar to before, these competitive segmentation results are
achieved with significantly reduced computational complexity.
Compared to the second-best performing baseline (SegRes-
Net), Deconver uses approximately 85% fewer parameters and
over 90% fewer FLOPs.

Fig. 5 provides qualitative segmentation results on the
BraTS’23 dataset. In the first row example, Deconver suc-
cessfully captures both the centrally located enhancing tumor
and the smaller enhancing spot at the lower half, while all
other baseline models miss one or both of them (marked by
the orange circles). In the second row example, Deconver
provides a more accurate delineation of the edema region.
Conversely, nnU-Net, Swin UNETR, and UNETR significantly
undersegment the edema area, leading to incomplete tumor
coverage. SegResNet and Swin UNETR falsely predict the
normal brain tissue marked by the orange circle as edema.
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B True Positives
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Deconver nnU-Net

SegResNet

Swin UNETR UNETR

Fig. 4: Qualitative results for ISLES’22 (top row) and Spleen (bottom row). The regions of true positives are marked in blue,
false positives in green, and false negatives in red. DSC is presented for each case. SegResNet introduces false positives
in both examples (marked with the orange circle in the first row), while Swin UNETR, UNETR, and nnU-Net consistently

under-segment in both examples.

TABLE Il: Segmentation performance comparison on BraTS’23.

The best results are bold, and the second-best are underlined.

Model Params | FLOPs / voxel DSC (%) HD9S

ET TC WT Avg. ET TC WT Avg.
nnU-Net 22.6M 921.0K 86.73 9140 9325 9046 | 333 388 554 434
SegResNet 75.9M 2235.7K 86.68 9149 9344 9053 | 326 392 521 4.17
UNETR 139.8M 536.8K 8547 89.92 9264 8934 | 422 498 693 547
Swin UNETR 62.2M 4098.6K 86.71 91.27 9341 9046 | 342 394 542 436
Factorizer 7.6M 1087.5K 8599 90.51 93.13 89.88 | 3.69 436 5.68 4.67
Deconver (3x3x3) 10.6M 167.5K 87.01 9156 9342 90.66 | 3.30 380 5.63 445
Deconver (5x5x5) 11.0M 167.5K 86.97 9141 9347 90.62 | 3.50 399 559 449

C. Results: 2D Segmentation TABLE Ill: Segmentation performance comparison on 2D

We further evaluated Deconver on 2D medical image seg-
mentation tasks using the GlaS and FIVES datasets. Table III
presents the quantitative results. Deconver (5 x 5) achieved
the highest DSC on both datasets, with 92.12% on GlaS and
92.72% on FIVES. Furthermore, it obtained the lowest HD95
value on GlaS (60.49) and the second-best FIVES (30.26).
While Deconver (3 x 3) demonstrated comparable performance
relative to baseline methods, it remained outperformed by its
5 x 5 counterpart. These results suggest that larger kernel
sizes lead to improved performance in 2D medical image
segmentation.

Consistent with results on 3D datasets, Deconver demon-
strates an excellent trade-off between accuracy and compu-
tational efficiency on the GlaS and FIVES datasets. Both
Deconver variants (3 x 3 and 5 X 5) achieve superior or

datasets (GlaS and FIVES). The best results are bold, and
the second-best are underlined.

Model Params | FLOPs / pixel GlaS FIVES

DSC (%) HD95 | DSC (%) HD95
nnU-Net 20.6M 874.8K 91.61 87.17 92.65 33.01
SegResNet 25.5M 1928.8K 91.23 69.64 92.71 28.80
UNETR 120.2M 1195.1K 90.45 73.38 90.98 35.40
Swin UNETR 25.1IM 1406.0K 91.70 67.27 92.69 30.87
Deconver (3x3) | 20.6M 422.8K 91.52 68.52 92.48 35.45
Deconver (5x5) 20.8M 422.8K 92.12 60.49 92.72 30.26

competitive DSC compared to SegResNet, while requiring
over 75% fewer FLOPs per pixel. Furthermore, the parameter
count for Deconver remains close to that of nnU-Net and
SegResNet, and is nearly six times lower than UNETR.

In line with our analysis of 3D datasets, we also conducted
a qualitative evaluation of the 2D segmentation results, as
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[ necrotic/non-enhancing Tumor [} Edema

Enhancing Tumor

91.2 90.6
Ground Truth Deconver nnU-Net SegResNet Swin UNETR UNETR

Fig. 5: Qualitative results of brain tumor segmentation on BraTS’23. Tumor core (TC) is the union of red (NCR/NET) and
yellow (ET) regions, and whole tumor (WT) is the union of green (edema), red, and yellow regions. Each row displays a
sample slice from a subject in the validation set. Average DSC is presented for each case. In the first row example, all of the
baselines fail to detect part of the enhancing tumor marked by the orange circle. In the second row example, nnU-Net, Swin
UNETR and UNETR do not capture fully the edema, while SegResNet and Swin UNETR falsy predict the area marked by

the orange circle as edema.

[ False Negatives

B True Positives I False Positives

Deconver nnU-Net SegResNet Swin UNETR UNETR

Fig. 6: Qualitative results of 2D segmentation on GlaS (first row) and FIVES (second row). The regions of true positives are
marked in blue, false positives in green, and false negatives in red. DSC is presented for each case. The first row presents an
example from the validation set of the GlaS dataset, where all baseline models undersegment the gland. The second row shows
an example from the FIVES validation set, where, consistent with the quantitative results, most models perform similarly.
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TABLE IV: Ablation study on the channel ratio (R) parameter
of Deconver using ISLES’22 dataset. The best results are bold,
and the second-best are underlined.

TABLE V: Ablation study on the number of groups (G) of
Deconver using ISLES’22 dataset. The best results are bold,
and the second-best are underlined.

Ratio (R) | Params FLOPs / voxel DSC (%) HD9Y95 Groups (G) | Params FLOPs / voxel DSC (%) HD95
1.0 7.8M 425.8K 71.39 5.07 1 57.21M 607.4K 77.76 5.08
2.0 8. 7M 486.2K 77.32 5.17 8 16.18M 607.1K 77.90 5.05
4.0 10.5M 607.0K 78.16 4.99 Channels 10.48M 607.0K 78.16 4.99

shown in Fig. 6. The first row illustrates an example from
the GlaS dataset, highlighting clear distinctions among the
models. All baseline methods, notably nnU-Net and Swin
UNETR, fail to completely segment the lowest gland, resulting
in substantial false negatives, particularly in its central region.
In contrast, Deconver accurately captures the full glandular
structure, achieving an almost perfect segmentation mask. We
used Deconver with the kernel size of 5 for this experiment.
The second row presents segmentation results from the
FIVES dataset. Here, as anticipated by quantitative metrics,
most models produce consistently accurate segmentations,
with minimal observable differences between their outputs.
Just one notable observation is that UNETR produces a higher
number of false positives compared to the other methods.

D. Ablation Studies

To better understand the impact of parameter and key
architectural choices on Deconver, we performed five ablation
studies on the ISLES’22 dataset. We evaluated three key
hyperparameters of NDC layers: the source channel ratio (R),
the number of groups (&), and the number of iterations of our
multiplicative update (3). We also evaluated two architectural
aspects: (i) the number of encoding stages (L) in the U-shaped
backbone, and (ii) the contribution of different components in
the Deconver block by selectively removing the Deconv Mixer
or the MLP modules (see Fig. 2a). In all ablation experiments,
we varied one parameter while keeping the others fixed to
assess its independent effect. We also used the kernel size of
(3,3,3), which was found to be optimal for the ISLES’22
dataset.

1) Channel Ratio (R): In this experiment, we fixed G to
the number of channels and varied R to analyze its effect
on the performance (Table IV). We observe that increasing R
from 1 to 2 does not change the results significantly, while
increasing it from 1 to 4 leads to major improvements in DSC
and HD95. However, these gains come at the cost of increased
computational complexity as both the number of parameters
and FLOPs increase by 35.23% and 42.55% respectively.

2) The Number of Groups (G): In this experiment, we fixed
R = 4 and varied G to assess its impact (Table V). The results
reveal a surprising pattern. Decreasing G leads to a significant
increase in parameters without proportional improvements in
DSC. In particular, setting G = 1 drastically inflates the size of
the model (almost 5 times more parameters) while providing
no gains, setting GG to the number of channels achieves the best
DSC and HD95 while keeping the model compact. Notably,
changing the Groups parameter does not lead to major changes
in the FLOPs.

TABLE VI: Ablation study on the number of iterations of the
multiplicative update rule using ISLES’22 dataset. Best results
are bold.

Iterations | Params FLOPs /voxel DSC (%) HD95
1 10.48M 607.0K 78.16 4.99
2 10.48M 609.06K 77.19 5.17

TABLE VII: Ablation study on the number of encoding stages
(L) using ISLES’22 dataset. The best results are bold, and the
second-best are underlined.

Stages (L) | Params FLOPs / voxel DSC (%) HD9Y95
3 2.6M 542.25K 77.46 5.09
4 10.48M 607.0K 78.16 4.99
5 24.23M 630.78K 78.01 5.06

In general, these studies show that higher channel ratios
improve segmentation quality but increase computational cost,
while a higher number of groups significantly reduces the
number of parameters while improving the performance. The
best results are achieved when G is set to the number of
channels and R = 4, as this configuration produces optimal
segmentation accuracy with minimal overhead.

3) The Number of Iterations of Multiplicative Update: In this
experiment, we report the results of increasibng the number
of iterations of the multiplicative update (3) from one to two
while keeping all other settings fixed to see the effect on
the performance (Table VI). We observe that using a single
iteration already provides the highest DSC (78.16%) with the
lowest computational overhead, confirming the efficiency of
our default design choice. Increasing the iterations to two
reduces segmentation accuracy while incurring extra FLOPs,
suggesting that additional updates may introduce redundancy
rather than improving feature refinement.

4) Model Depth: In this experiment, we varied the number
of encoding stages (L) in the U-shaped backbone (Fig. 1),
with the number of decoding blocks (i.e., L) being one less
than that of encoding (i.e., L + 1). The results in Table VII
show that moving from L = 3 to L = 4 stages improves DSC
from 77.46% to 78.16%, while the parameter count increases
by around 300% (from 2.6M to 10.5M). Further increasing
the depth to L = 5 stages reduces the performance (78.01%),
while raising the parameter count by over 130% (from 10.5M
to 24.2M). These findings suggest that our inital choice of
L = 4 stages achieve the best balance between accuracy and
model complexity.

5) Subblocks of Deconver Block: In this experiment, we
analyzed the contribution of each component in the Deconver
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TABLE VIII: Ablation study on the effect of different compo-
nents in the Deconver block using ISLES’22 dataset. The best
results are bold, and the second-best are underlined.

Included block Params FLOPs / voxel DSC (%) HD95
MLP 6.41M 333.7K 72.08 9.90
Deconv Mixer 6.99M 336.4K 77.30 4.85
Deconv Mixer + MLP 10.48M 607.0K 78.16 4.99

block by testing configurations with only MLP, only Deconv
Mixer, and the full combination (see Fig. 2a). As shown
in Table VIII, using only MLP results in the weakest per-
formance (72.08% DSC), given that the parameter count is
39% lower compared to the full block (6.4M vs. 10.5M).
Deconv Mixer alone improves DSC to 77.30% and achieves
the best HD95 (4.85), with 33% fewer parameters than the
full model (7.0M vs. 10.5M). Combining both modules yields
the highest DSC (78.16%) and competitive HD95 (4.99), at
the cost of increased complexity. These findings confirm that
both components are complementary: Deconv Mixer is crucial
for spatial detail, while MLP models channel interactions, and
together they provide the strongest overall performance.

V. CONCLUSION AND DISCUSSION

In this work, we introduce Deconver, a powerful seg-
mentation network that integrates nonnegative deconvolution
(NDC) as a learnable module within a U-shaped architecture.
By replacing computationally expensive attention mechanisms
with efficient deconvolution operations, Deconver restores
high-frequency details while effectively suppressing artifacts.
Compared with other methods like Wiener filtering, our decon-
volution method integrates more naturally into deep networks
as it operates in the spatial domain using simple convolution
and elementwise multiplication operations. Moreover, it en-
forces the non-negativity inherent to image data and avoids
dependence on additional Fourier transforms and frequency
domain priors.

Extensive experiments on five diverse medical imaging
datasets (ISLES’22, Spleen, BraTS’23, GlaS, and FIVES)
demonstrate that Deconver consistently achieves state-of-the-
art segmentation performance, outperforming or matching
leading CNN- and Transformer-based models while signifi-
cantly reducing computational costs. Notably, Deconver re-
duces FLOPs by up to 90% compared to attention-based base-
lines, making it well-suited for resource-constrained clinical
applications. Ablation studies further highlight the importance
of key design choices, such as the source channel ratio
and grouping strategy in NDC layers, in balancing accuracy
and efficiency. We believe Deconver represents a promising
step toward high-precision, computationally efficient medical
image segmentation, bridging the gap between classical image
restoration and modern deep learning. While our results are
consistent across our benchmarks, clinical data inevitably
contain fluctuations such as scanner-related noise or patient
motion, which may influence segmentation in practice. Beyond
the datasets used here, evaluating Deconver on additional
modalities such as ultrasound and X-ray will be important

to further establish generalizability. The choice of hyper-
parameters could also affect performance when adapting to
new datasets. Future work, includes extending the framework
beyond segmentation to other tasks such as classification
and to further optimize the implementation for faster, more
memory-efficient training and inference.

APPENDIX
PROOF OF THEOREM 1

We prove the theorem using the majorization-minimization
(MM) framework. This involves iteratively minimizing a
surrogate function that upperbounds the original objective.
The MM approach guarantees a monotonic decrease in the
reconstruction error £(S8) through two key steps:

1) Majorization: Construct a surrogate function Q(S |
SW) that satisfies:

QS| 8Y) > &(S), (10)

for all S, with equality when S = S ®),
2) Minimization: Update the source to minimize the sur-
rogate:

S = argmin Q(S | )
5>0

(1)

Combining these, we directly obtain:
g(s(tJrl)) < Q(S(t“) |S(t)) < Q(S(t) ‘ S(t)) - E(S(t)),

proving the reconstruction error is non-increasing across iter-
ations.

Step 1: Majorization
Let’s first expand the reconstruction error as

E(S) =lx - S Vi

= X[ - 2(xX, S+ V) + IS« V[E.  (12)

The main challenge lies in majorizing the quadratic term
|S*V||%. To achieve this, we apply the elementwise Cauchy—
Schwarz inequality to (S * V)2. For each output element
(¢, h,w), define:

S,ld, b+ m,w + n]V[c,d, m,n|
\/Sz(vt) [d,h +m,w+ n]V[c,d,m,n]

Ad,m,n -

Bamn = \/S](f) [d, h +m,w + n|Vl]e,d, m,n],

where Sz(f) = pad(8® (M, N)) and S, = pad(S, (M, N)).
By Cauchy-Schwarz, we have:

2
( Z Ad,m,,anﬂrL,n) < <

d,m,n

Z Ai,m,n)( Z Bﬁ,m,n)'

d,m,n d,m,n

Substituting back and using the definition of cross-correlation,
we obtain:
2

(S*V)? < (;(t) « v) ® (s(t) . v) a3
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Where (-)? denotes elementwise squaring. Summing over all
elements gives:

S2
1S+ V|E < hz <S(t) *V) [e, hyw] - (S(t) * V) [e, h, w]
82
_ (2 ®
This constructs the majorizing surrogate function:
2

QS| 81) = X[} - 22,55 V) + (o5 4 V.80 4 V)

5)

Step 2: Minimization

To minimize the surrogate function Q(S | 8®), we first
derive its gradient with respect to S.

Linear Term Gradient: The linear term (X,8 x V) has
gradient:

IS *V)[ec, h,w]

6S[d’ now'l

(16)

Expanding the cross-correlation (8 * V)¢, h, w], we find that
the partial derivative is nonzero when:

Vs(X,SxV)[d, b, w']

= X[e,h

c,h,w

h+m=h+M, w+n=w +N. (17)
Thus,
IS *V)[c,h,w] | V[c,d',m,n], if (17) holds, (18)
oS[d',n',w'] o, otherwise.

Substituting back, Vs(X,8 x« V)[d', I/,

>

c,m,n

w'] simplifies to:

X(e,h —m+ M,w' —n+ N]|Vc,d,m,n].

Recognizing this as a cross-correlation operation, we obtain:
Vs(X,8xV) =X V. (19)

Quadratic Term Gradient: Using (19) together with chain
rule, the gradient of the quadratic term can be derived as

s? 28
G ()
V(o * V.8 V) = 5 o [(8W V)<V
(20)
Solving for S®*+1) : Combining both gradients and setting the
total gradient VsQ(S | 8®) = 0 yields

28
“2AX V)45 © [(s(t)*v)*v } —0. Q@1
Solving for S, we derive the multiplicative update rule:
St _ g o XV

(8D xV)x Y~

If for any index (d, h, w), we have (8« V«V7)[d, h, w] =
0, then the nonnegativity of X, V, and s implies (X
V7)[d,h,w] = 0. In this case, the indeterminate form 0/0
is resolved by setting STV [d, h, w] = 0, thereby preserving
nonnegativity.

(1]

(2]
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