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ABSTRACT

Subpopulation shift refers to the difference in the distribution of subgroups be-
tween training and test datasets. When an underrepresented subgroup becomes
predominant during testing, it can lead to significant performance degradation,
making performance prediction prior to deployment particularly important. Ex-
isting performance prediction methods often fail to address this type of shift ef-
fectively due to their usage of unreliable model confidence and mis-specified dis-
tributional distances. In this paper, we propose a novel performance prediction
method specifically designed to tackle subpopulation shifts, called Subpopulation-
Aware Two-stage Estimator (SATE). Our approach first estimates the subgroup
proportions in the test set by linearly expressing the test embedding with train-
ing subgroup embeddings. Then, it predicts the accuracy for each subgroup using
the accuracy on augmented training set, aggregating them into an overall perfor-
mance estimate. We provide theoretical proof of our method’s unbiasedness and
consistency, and demonstrate that it outperforms numerous baselines across vari-
ous datasets, including vision, medical, and language tasks, offering a reliable tool
for performance prediction in scenarios involving subpopulation shifts.

1 INTRODUCTION

In the training and deployment of machine learning models, it is common to encounter shifts in
data distribution (Shen et al., 2021). Such distributional discrepancies often result in degraded per-
formance, making performance prediction prior to deployment particularly essential, especially in
high-stakes domains like finance and medicine where the cost of errors is substantial.

A performance prediction method, also known as unsupervised accuracy estimation, typically takes
in labeled training data, trained model and unlabeled test data. Its goal is to produce a direct or
indirect measure of accuracy on test data. This serves not only as a confidence estimate but also
aids in discerning which models are more suitable for specific datasets or which datasets are more
compatible with a given model (Yu et al., 2024). This matching capability is even more important
with an ever-growing number of models and algorithms to date.

Previous researchers commonly evaluate their performance prediction methods using two types of
distribution shifts: synthetic shifts, where test datasets are generated through artificial perturba-
tions (Hendrycks & Dietterich, 2019), and natural shifts, such as training on ImageNet (Deng et al.,
2009) and testing on ImageNet-v2 (Recht et al., 2019). However, these types of distribution shifts
do not encompass all scenarios encountered in real-world applications.

One underexplored type of shift in the field of performance prediction is the subpopulation shift.
It refers to the difference in the training and testing distributions in terms of how well-represented
each subpopulation is (Sagawa et al., 2020; Santurkar et al., 2020; Yang et al., 2023). Typically,
subgroups are divided by labels and attributes. Significant performance degradation may occur
when a subgroup that is underrepresented during training becomes prevalent while testing, making
performance prediction before deployment especially necessary. Also, as highlighted in Yang et al.
(2023), no single method remains state-of-the-art across all types and degrees of subpopulation
shifts. indicating that it is improper to trust certain model without considering the test data.

In our work, we propose a performance prediction method specifically designed to address subpop-
ulation shift called Subpopulation-Aware Two-stage Estimator (SATE). It has demonstrated superior
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Figure 1: The workflow for predicting model performance under subpopulation shift conditions.
Here the label is shape (circle vs square) and the attribute is color (red vs blue). Our method is de-
composed into two main stages: subgroup proportion estimation and subgroup accuracy estimation.
First, we estimate subgroup proportions by linearly express the test embedding. Second, subgroup
accuracies are predicted using the augmented training data. The final predicted accuracy is the
weighted average of these subgroup accuracies.

performance over multiple baselines on several classical subpopulation shift datasets including vi-
sion, medical, and language tasks. Our approach leverages attribute information and decomposes the
performance prediction process into two steps. Firstly, we use the average embeddings of each train-
ing subgroup to linearly express the overall average embedding of the test data, thereby obtaining an
estimation of the subgroup proportions. Secondly, we estimate the accuracy of each subgroup using
the augmented training data. Finally, we obtain the overall predicted accuracy through a weighted
average of these subgroup accuracies. Our main contributions are as follows:

1. We propose the first unsupervised performance prediction method specifically designed for sub-
population shift and demonstrate through experiments that it outperforms numerous baselines across
multiple datasets. In settings with both subpopulation shift and covariate shift, our method improves
the Pearson’s correlation coefficient from below 0.74 to above 0.84, exceeding the best baseline.

2. We prove the unbiasedness and consistency of our method (under the presence of validation
data or specific assumptions). Additionally, through experimental validation, we discovered a linear
relationship between in-distribution accuracy and accuracy on an augmented training set. We use
this insight to perform performance prediction without accessing additional data.

3. To the best of our knowledge, we are the first to address the problem of unsupervised perfor-
mance prediction in NLP tasks. We highlight the challenges in designing synthetic datasets for NLP
and demonstrate that a simple synthetic dataset design using large language models is effective for
unsupervised performance prediction in NLP tasks.

2 PRIOR WORK

Out-of-Distribution Performance Prediction. Out-of-Distribution (OOD) Performance Predic-
tion is an important research theme to characterize the OOD behavior of machine learning models.
Its primary goal is to assess whether a machine learning model has good OOD generalization capa-
bilities and to determine where it can perform well only with unlabeled test data (Yu et al., 2024).
In this work, we focus on unsupervised performance prediction which means predicting the perfor-
mance without relying on prior results from other datasets. This problem is also called unsupervised
accuracy estimation (Diamantidis et al., 2000), since the most commonly used metric for a classi-
fier’s performance is accuracy.

Follow Yu et al. (2024), most previous performance prediction methods can be categorized into three
types. (1) Model Output Property-based: Methods such as ATC (Garg et al., 2022), DoC (Guillory
et al., 2021) and NI (Ng et al., 2022) predict performance based on the model’s output (e.g. con-
fidence) on the test data. (2) Distribution Discrepancy-based: Methods like Lu et al. (2023) , Yu
et al. (2022) assess performance by evaluating some kinds of distance (e.g. Wasserstein Distance)
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between the training and test data. (3) Model Agreement-based: Methods such as Baek et al. (2022)
and Chen et al. (2021) predict performance by examining the output invariance of multiple slightly
varied models (e.g. trained with different random seed). Note that NAC (Liu et al., 2024) is designed
for the detection or evaluation of OOD models without test data and Deng & Zheng (2024) needs
additional data to supervise the accuracy estimator, which are inconsistent with our setting.

Our algorithm differs from these approaches in several key ways. First, our approach does not rely
on the model’s output on the test data. Second, rather than computing the distance between overall
distributions, our method focuses on linearly expressing the test set on the subgroup level. Finally,
in contrast to model agreement-based methods, our method does not necessitate any extra model
training. Recently, a method using VLM to extract priors for assisting failure detection has been
tested on several subpopulation shift datasets (Subramanyam et al., 2024). Our approach differs
by emphasizing dataset-level accuracy prediction, rather than estimating the probability of individ-
ual sample misclassification. Also, their method is limited to image datasets, whereas ours is not
restricted.

Subpopulation Shift. In the context of Subpopulation Shift, each data point contains several at-
tribute information a in addition to input x and label y. The entire dataset can be divided into
multiple discrete subpopulations based on the combination of labels and attributes. However, the
proportion of each subgroup may differ between the training and test datasets, causing one or more
of Spurious Correlation, Attribute Imbalance, Class Imbalance, or Attribute Generalization (Yang
et al., 2023). These types of subpopulation shifts will lead to performance degradation on the test
dataset. Various methods have been studied to address this problem, including subgroup-based
methods like GroupDRO (Sagawa et al., 2020) and IRM (Ahuja et al., 2020), data augmentation-
based methods like Mixup (Zhang et al., 2018), reweighting-based methods like Megahed et al.
(2021) and several two-stage methods such as JTT (Liu et al., 2021), CRT (Kang et al., 2019) and
DFR (Izmailov et al., 2022). These approaches aim to improve model robustness and ensure con-
sistent performance across different subgroups within the data. There have also been some methods
capable of handling subpopulation shift without attribute annotations (Hong et al., 2024; Stromberg
et al., 2024), but they all use some technique (optimal data partitioning, regularized annotation of
domains) to perform their own subgroup partitioning, therefore they are still within our framework.

A model that can better handle subpopulation shift overall may exhibit a high Worst Group Accuracy
(WGA) (Sagawa et al., 2020) because the test data could experience unpredictable changes and
underrepresented groups may become major groups. Nevertheless, overall accuracy on the test
dataset remains crucial. For instance, in a medical diagnosis application, a model must maintain a
high overall accuracy to ensure reliable diagnostic results for the entire patient population. Overall
accuracy is even more important in performance prediction’s context because we already know
where the model will be deployed on (the test data).

Data Augmentation. The goal of data augmentation is to enhance the diversity of the training set
without collecting additional samples, thereby improving the model’s generalization ability. Many
easy-to-use and effective data augmentation methods are popular in computer vision (CV), such as
cropping and flipping (Shorten & Khoshgoftaar, 2019). Thus, synthetic shifts in CV datasets are
well-designed, and most performance prediction papers use self-designed (Deng et al., 2021) or
existing synthetic datasets like ImageNet-P (Hendrycks & Dietterich, 2019) as their test sets.

However, as discussed in Feng et al. (2021), Shorten et al. (2021) and Pellicer et al. (2023), in the
Natural Language Processing (NLP) field, due to the discrete nature of language and the difficulty in
ensuring label invariance, data augmentation methods are relatively limited. Due to the above data
restrictions, to the best of our knowledge, no unsupervised performance prediction method has yet
been tested on language datasets. Note that Xia et al. (2020) and Srinivasan et al. (2021) require
the performance results of a language model on several other datasets to run a regression for per-
formance prediction, which is inconsistent with our setting where no prior historical information is
available. Rychalska et al. (2019) and Talman et al. (2022) evaluated language models on corrupted
datasets, but neither attempted to predict their performance in advance. Therefore, we believe that
exploring performance prediction in the NLP domain is both novel and challenging.

3 PROBLEM SETUP
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Notations. Following Yang et al. (2023) and Yu et al. (2024), we denote the input space as X ,
output space as Y and the attribute space as A. Considering the discrete case, |Y| = c, |A| = m.
Then we define the subpopulations by a mapping A × Y → G. |G| = c · m is the number of
subgroups. In our problem, we have a training set S and a test set T , each sample can be represented
by z = (x, y, a), where x, y, a are random variables from X ,Y,A respectively. The information
available to us consists of xS , yS , aS and xT . S can be split into c ·m subsets (S1, S2, · · · , Sc·m)
by combinations of y and a . T also consists of c ·m subsets (T1, T2, · · · , Tc·m), however we cannot
separate these subsets because the division of subpopulations on the test sets are unknown.

We define the model under evaluation as fθ : X → Y , and we assume that it can be decomposed
into two parts, the featurizer fθF : X → H and the classifier fθC : H → Y , where H ∈ Rd is the
embedding space of dimension d.

The convergence in probability is denoted as P−→. We call ϕ̂ a consistent estimator of ϕ if

ϕ̂
P−→ ϕ⇔ lim

n→∞
Pr

(
|ϕ̂− ϕ| ≥ ϵ

)
= 0,∀ϵ > 0

We define the probability distribution as xS ∼ Psrc and xT ∼ Ptar. The train and test distribution
are both mixtures of group-wise distributions. Let g ∈ G be a subgroup index and xg be a random
variable corresponding to a sample from subgroup g, such that xg ∼ Pg . We have:

Psrc =
∑
g∈G

αgPg, Ptar =
∑
g∈G

βgPg (1)

where α, β ∈ R|G|,
∑

α =
∑

β = 1, they represent the subgroup proportions. i.e. For the same
subgroup i, Si and Ti follows the same distribution, the distribution shift in S and T is caused by
different proportions of subgroups.

Metrics. Model fθ’s underlying accuracy on T is denoted as AccT ∈ R, and we define a loss
function l : R × R → R describing the dissimilarity between the predicted output and the ground-
truth accuracy. E.g. Mean Absolute Error (MAE). The performance prediction function is defined
as h(fθ, S, T )→ R. The goal of a direct accuracy prediction method is to find h∗ so that

h∗ = argmin
h

E
T∼Ptar

[l(h(fθ, S, T ), AccT )] (2)

Corr refers to a measure of relationship between two random variables, such as Pearson’s Corre-
lation Coefficient or Spearman’s Rank Correlation Coefficient. The goal of a indirect performance
prediction method is to find h∗ so that

h∗ = argmax
h

[Corr(h(fθ, S, T ), AccT )] (3)

In the calculation above, if we only need to know which datasets are more compatible with a single
model, which previous works mainly focus on, then only T provides randomness while S and fθ
are fixed. If we need to compare multiple models together, which we take into consideration, then
we should also take expectation over S and fθ.

4 PROPOSED METHOD

4.1 MOTIVATIONS

Spurious correlation is a common issue in subpopulation shift datasets (Geirhos et al., 2020; Ye
et al., 2024) that may cause confidence-based prediction methods to fail. It refers to non-causal
relationship between an attribute a and the label y in the training set that does not hold in the test
set. Models that rely heavily on such non-causal attributes may make incorrect predictions with high
confidence when applied to the test set, thus results in unreliable confidence estimates.

Another complicating factor is that many algorithms designed to address subpopulation shifts often
involve different usage of training samples during optimization, examples including Sagawa et al.
(2020), Megahed et al. (2021), Izmailov et al. (2022). As a result, the distribution of the training
dataset may differ from the distribution the model actually fits. Therefore, methods based on the
distance between training and test datasets may fail on these algorithms.
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Inspired by the work of He et al. (2024), who demonstrated that a weighted combination of source
domains can effectively align the target dataset, our method, SATE, takes advantage of prior domain
information. Instead of relying on model confidence or overall distribution distance, SATE linearly
expresses the test set with training subgroups, evading the limitations above, thus providing a more
accurate and reliable approach to handling subpopulation shifts.

Furthermore, most subpopulation shift experiments assume the availability of a validation set to
guide model selection and evaluation (Yang et al., 2023) (Izmailov et al., 2022). Our proposed
method also has the advantage of offering flexibility in using a validation set, and we show that its
inclusion can improve the performance predictions.

4.2 ALGORITHM WORKFLOW

We decompose the performance prediction process into two steps: subgroup proportion estimation
and subgroup accuracy estimation. The final output is a weighted average of subgroup accuracies.

Algorithm 1 Two Stage Performance Prediction

Require: Labeled training data S, Unlabeled test data T , Trained model fθ, Certain data augmen-
tation method

1: Initialize HS ∈ Rd×(c·m),a ∈ Rc·m and w = 1c·m
2: Categorize S into S1 · · ·Sc·m based on labels and attribute.
3: for each subgroup Si in S do
4: Compute average embedding h̄si ← 1

|Si|
∑

x∈Si
fθF (x)

5: S′
i ← DataAugmentation(Si) {S′

i ← Vi if validation set V is available}
6: AccS′

i
← 1

|S′
i|
∑

(x,y)∈S′
i
I(fθ(x) = y) {subgroup accuracy estimation}

7: HS [:, i]← h̄si , a[i]← AccS′
i
{X[:, i]← x means assigning x to the i-th column of X}

8: end for
9: Compute average embedding of test set: h̄T ← 1

|T |
∑

x∈T fθF (x)

10: Solve the linear equation HS ·w = h̄T {subgroup proportion estimation}
11: Calculate the estimated overall accuracy ˆAccT = a ·w
12: return ˆAccT

Estimating Subgroup Proportion. For embedding vectors, we denote hT = fθ1(xT ), hTg =
fθF (xTg ) and their distributions as follows, hT ∼ PT-emb, hTg ∼ Pg-emb. Follow equation 1, overall
test embedding distribution is also a mixture: PT-emb =

∑
g∈G βgPg-emb. So we can decompose the

expectation of test embedding group-wisely,

E(hT ) = [E(hT1
), E(hT2

), · · · , E(hTc·m)] · [β1, β2, · · · , βc·m]T (4)

From the sample perspective, we define the average embedding for subgroup Sg as h̄Sg =
1

|Sg|
∑

x∈Sg
fθF (x) and the average embedding for whole test set as h̄T = 1

|T |
∑

x∈T fθF (x).
Note that h̄Sg

and h̄T can be obtained by feeding the data into the trained featurizer and computing
their average. Then we can get w, an estimator of β, by solving the following linear equation:

h̄T = [h̄S1
, h̄S1

, · · · , h̄Sc·m ] · [w1, w2, · · · , wc·m]T (5)

It can be solve algebraically or by gradient descendant with MSE loss function.
Assumption 1. xSg and xTg follow the same distribution Pg,∀g ∈ G.
Assumption 2. Matrix HS (defined in Algorithm 1) is column full rank, i.e. mean embeddings of
different subgroups are linearly independent.

Assumption 1 is mensioned in Section 3 and it’s a common setting in the field of subpopulation
shift (Yang et al., 2023). Assumption 2 is reasonable because |h| ≫ c·m, for example, the dimension
of resnet-50 (He et al., 2016) embedding is 2048 and subgroup numbers for Waterbirds (Wah et al.,
2011) is 4.
Theorem 1. Estimated weight w is an unbiased and consistent estimator of subgroup proportion β
under Assumption 1 and 2.

5
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See Appendix E for detailed proof.

Estimating Subgroup Accuracy. If we have access to validation set V ∼ Pval, Pval =∑
g∈G γgPg , regardless of its subgroup distribution γ, we can easily get an accuracy estimator
ˆAccTg = AccVg , which is the accuracy on corresponding subgroup in validation set. This es-

timator is unbiased and consistent because corresponding subgroups follow the same distribution
(xTi

,xVi
∼ Pi). Otherwise, without validation set, we first perform data augmentation on the train-

ing set. The augmented training set is denoted as S′, and get the estimator ˆAccTg
= AccS′

g
. The

purpose of data augmentation is to eliminate the inflated accuracy resulting from the model having
previously seen the training samples.

The transformation should be label and attribute preserving. For image tasks (Waterbirds, CelebA,
CheXpert), we use one or more of the following transformations from torchvision.transforms: Ran-
domResizedCrop, RandomHorizontalFlip, RandomRotation, and ColorJitter. For the language task
(MultiNLI), inspired by Whitehouse et al. (2023), we utilize large language models to rewrite sen-
tences without altering their attributes or labels. Specifically, we use the ChatGPT-3.5-turbo and
Llama-3.1-405B for rewriting. See Appendix D for the detailed prompt. Note that we differ from
Anaby-Tavor et al. (2019), as they use simpler language models that require fine-tuning and generate
sentence from scratch after being prompted with a label, while we do not require fine-tuning and our
prompt can help ensure that the corresponding attribute remains unchanged.

Combining two components above, the predicted accuracy is:

ˆAccT = [ ˆAccT1
, ˆAccT2

, · · · , ˆAccTc·m ] · [w1, w2, · · · , wc·m]T

4.3 JUSTIFICATION OF USING DATA AUGMENTATION ON THE TRAINING SET

In this section, we will show why it is reasonable for us to use accuracy on augmented training set
AccS′

i
as an estimator of AccTi

.

Augmentation on the Line. Miller et al. (2021) proposed the idea of Accuracy-on-the-Line. They
found there exists a linear relationship between in-distribution (ID) accuracy and out-of-distribution
(OOD) accuracy on certain datasets. Holding train and test distribution fixed, varying model, hy-
perparameters, training duration etc. all result in the same linear trend. Other interesting findings
include those by Izmailov et al. (2022), which reveal a linear relationship between overall accuracy
and WGA and Baek et al. (2022), which proposed the Agreement-on-the-Line, demonstrating that
the agreement of the ID and OOD models exhibits a linear relationship.

We present a new finding regarding the linear relationship on the datasets we explored, namely
“Augmentation-on-the-Line”: ID accuracy has a linear relationship with the accuracy on augmented
training data. Figure (2) shows that for the same task and augmenting method, regardless of varying
model architectures, optimization algorithms, or subgroups it belongs to, the linear trend remains
nearly the same. Furthermore, if the augmentation method is correctly chosen, this linear trend can
be very close to y = x (the red dash line). Here we simply use untuned RandAug (Cubuk et al.,
2020) (image datasets) and LLM-rewriting (language dataset) as augmenting methods.

Theoretical Correctness. The above experimental finding can be expressed by this assumption,

Assumption 3. Augmentation on the line:

E(AccS′
g
) = kAccTg + b

AccS′
g

P−→ kAccTg
+ b

Where k and b represents the slope and bias of the above linear relationship, they are both fixed
among different subgroups and models.

Theorem 2. Under Assumptions 1, 2 and 3, predicted accuracy ˆAccT has a linear relationship
with underlying test accuracy AccT .

E( ˆAccT ) = kAccT + b

6
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Figure 2: The linear correlation between ID accuracy (y-axis) and accuracy on augmented training
data (x-axis). For image tasks, “arch1” represents ResNet50 and “arch2” is ViT; for language tasks,
“arch1” stands for BERT. The red dashed line represents the ideal y = x relationship. The linear
trend remains consistent regardless of variations in model architecture or optimization algorithms,
supporting the use of augmented training accuracy as a predictor for ID accuracy.

See Appendix E for detailed proof. This result is not affected by β and fθ, allowing our approach to
compare various models on multiple test sets together.

Theorem 3. With the existence of validation data or the augmentation method is properly chosen
so that k = 1, b = 0, predicted accuracy ˆAccT is an unbiased and consistent estimator of underlying
test accuracy AccT .

5 EXPERIMENTS

5.1 TASKS AND MODELS

We conducted experiments on the following tasks: (1) Image Tasks: Waterbirds (Wah et al., 2011)
and CelebA (Liu et al., 2015); (2) Medical Task: CheXpert (Irvin et al., 2019); (3) Language Tasks:
MultiNLI (Williams et al., 2018) and SNLI (Bowman et al., 2015). See the Appendix for details.

For image tasks, we use two representative architectures, ResNet-50 (He et al., 2016) and Vision
Transformer (ViT) (Dosovitskiy et al., 2020), supervised pretrained on ImageNet-1k (Deng et al.,
2009). For language task, we use BERT-base-uncased (Devlin et al., 2019) as architecture. For each
task-architecture combination, we use ERM (Vapnik, 1999), GroupDRO (Sagawa et al., 2020) and
DFR (Izmailov et al., 2022) three algorithms to train the models.

5.2 BASELINES AND METRICS

ATC-MC and ATC-NE (Garg et al., 2022): First, we determine a confidence threshold based on
overall training accuracy and then use this threshold to partition the test set. Test images with
confidence above the threshold will be considered correct, otherwise incorrect. The threshold can
also be based on negative entropy (NE). Its output is a direct estimator of test accuracy.

DoC and DoE (Guillory et al., 2021): Output the difference of confidence (or entropy) between
training and test data. It’s a indirect estimator of the accuracy gap between training and test.

Neighborhood Invariance (NI) (Ng et al., 2022): Deploy different data augmentation on test
set and measure the invariance of model’s output label. Here we use NI-RandAug, which uses
augmentation from Cubuk et al. (2020). Its output is a indirect estimator of test accuracy.

Datasets Design. Unlike previous experiments on covariate shifts that can easily create a diverse
range of test sets using corruption and perturbation, the design of test sets with subpopulation shifts
is more challenging. The train-test split only provides a single test set for evaluation. This limits
our ability to comprehensively compare model performance across different degrees and types of
subpopulation shifts. Thus, to construct the test data, we designed 20 different subgroup distributions
to simulate a wide range of diverse subpopulation shifts. Note that we only control the number of
samples extracted from each subgroup, the extraction within a subgroup is still random. To construct
the training data, we randomly sampled from data outside the test sets, with the distribution as similar
as possible to the distribution of the original overall dataset. Details are provided in the appendix A.

7
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Metrics. A good performance prediction method should give a test accuracy estimation ϕT highly
correlated to the groundtruth test accuracy AccT . The following metrics are used for comparison,
(1) coefficient of determination (R2): the goodness of linearly fitting AccT with ϕT . (2) Mean
Absolute Error (MAE): the error between AccT and ϕT if used as direct estimator, or the error
between AccT and fitted value if used as indirect estimator. (3) pearson’s correlation coefficient.

5.3 RESULTS

Test Sets Characteristics. We first propose a quantitative metric for subpopulation shift and
demonstrate that the test sets we designed effectively simulate different degrees and types of sub-
population shifts. Previous work utilizes entropy and mutual information to quantify the degree of
different subpopulation shifts (Yang et al., 2023), focusing solely on the imbalance within a single
dataset. However, when considering model performance degradation, a metric that measures the dif-
ference between two datasets is more useful. To address this, we propose a new set of quantification
metrics using Jensen-Shannon (J-S) divergence. We employ the divergence in P (y), P (a), P (y|a)
as metrics for Class Imbalance, Attribute Imbalance, and Spurious Correlation, respectively. To be
specific, P (y) of training set and P (y) of test set are two discrete probability distributions, their J-S
divergence is the metric of class imbalance. See Appendix C for detailed calculation procedure.

Figure 3: The relationship between the Jensen-Shannon (J-S) divergence of P (y|a) (x-axis) and
the test accuracy (y-axis) under different subpopulation shifts. Each point represents a unique test
set, while the training data remains constant. A strong negative correlation is observed, particularly
under ERM algorithm, where higher divergence often leads to lower test accuracy. This emphasizes
the relevance of J-S divergence as a metric for subpopulation shifts and validates the efficacy of the
manually designed test sets in simulating a diverse range of subpopulation shifts for testing.

Figure (3) clearly demonstrate that divergence in P (y|a) exhibits a strong negative relationship with
ERM test accuracy across all the tasks. However, specially designed algorithms, such as GroupDRO
and DFR, may mitigate this accuracy degradation. Results are similar for P (y), but divergence in
P (a) do not lead to degraded performance (in appendix B). i.e. spurious correlation and class
imbalance will cause performance degradation in these settings, which matches with our intuition.
This result not only shows that J-S divergence is a reasonable metric for subpopulation shift but also
illustrates that our manually designed test sets effectively simulate a diverse range of distribution
shifts and the degree of shifts are relatively even.

Comparisons as Indirect Estimator. An indirect performance prediction metric (defined in Equa-
tion 3) has two key capabilities. (1) Model Comparison: determining which model is best suited
for a specific test set, i.e. in Equation 3, view T as a constant and fθ, S as random variables. (2)
Test Set Comparison: identifying which test set is most suitable for a particular model, view S, fθ
as constants and T as a random variable. Therefore, our results are presented separately for these
two capabilities in Figure 5a. Note that our method have two versions of output: if augmented train-
ing data is used ( ˆAccTg

= AccS′
g
), the output will be denoted as SATE; if validation data is used

( ˆAccTg = AccV ′ ), it will be denoted as SATE-val.

For model comparison, we perform regression on 6 models 20 times and take the average. For test
set comparison, we perform regression on 20 test sets 6 times and take the average. “Regression”
here means to regress the underlying accuracy on each method’s output, for DoC and DoE, we
regress ∆Acc on them, then add back training accuracy to get their predicted accuracies. Note that
Neighborhood Invariance (NI) cannot be applied to NLP datasets, thus its bar is omitted.
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Figure 4: The relationship between predicted accuracy (y-axis) and actual accuracy (x-axis) on test
set. For clarity, we separately present ATC-MC/NE and NI baselines in the top row and DoC/DoE
in the bottom row. SATE results are presented in both rows. The color of each point represents the
predictor used, while the shape indicates the model structure and training algorithm (consistent with
Figure 2). The red dashed line represents y = x; the closer the distribution aligns with this line, the
better the predictor. It is clear that SATE provides estimates with the lowest bias and variance across
all settings.

Comparison as a Direct Estimator. Since ATC can be used as direct metrics, we also compare
the results by directly calculating the MAE without regression. Note that here we consider 6 × 20
results together to demonstrate the comprehensive capability of performance predictors. Results
are shown in Figure 5b. Our method consistently achieves lower MAE across all tasks and shows
significant improvements on medical and language tasks.

(a) Results of two distinct capabilities. Subplots (1)(3) are model com-
parison while (2)(4) are test set comparison. (1)(2) are measured by R2

(higher is better) and (3)(4) are measured by MAE (lower is better). Our
method outperforms baselines in both tasks, especially in model compar-
ison. While each baseline fails significantly on at least one dataset.

(b) Comparison of MAE without re-
gression. Our method consistently
outperforms ATC, achieving signif-
icantly lower error. The inclusion of
validation set further enhances our
method’s performance in most tasks.

Real-World Shift We aim to simulate test sets that more closely reflect real-world distribution
shifts by introducing both subpopulation shift and covariate shift. Therefore, we added five types of
perturbations (Fog, Blur, Noise, Contrast and Brightness) to the original 20 test sets. For each type
of perturbation, two degrees are tested, forming 60 test sets (including the original 20). The three
algorithms are still applied, and in the end, we regress 180 results to evaluate the overall capability
of each performance prediction algorithm, which is shown in Table 1.

6 CONCLUSION

Our paper proposes a novel algorithm for model performance prediction under subpopulation shifts.
We break down the performance prediction into two steps: proportion estimation and accuracy esti-
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Table 1: Simulation of real-world distribution shifts on Waterbirds dataset, regressed over 3 algo-
rithms and 60 test sets to evaluated predictors’ overall capability. The additional 40 test sets were
created by introducing two degrees of each corruption on the original 20 test sets. SATE uniformly
outperforms all baselines under the presence of both subpopulation shifts and covariate shifts.

Corruptions Metrics ATC-MC DoE NI SATE

Fog
Correlation Coefficient ↑ 0.330 0.447 0.644 0.841
R2 ↑ 0.109 0.199 0.414 0.707
MAE ↓ 0.0174 0.0165 0.0133 0.0093

Gaussian Blur
Correlation Coefficient ↑ 0.596 0.557 0.586 0.876
R2 ↑ 0.355 0.311 0.343 0.767
MAE ↓ 0.0219 0.0223 0.0207 0.0125

Gaussian Noise
Correlation Coefficient ↑ 0.389 0.703 0.669 0.908
R2 ↑ 0.152 0.494 0.448 0.824
MAE ↓ 0.0202 0.0141 0.0151 0.0089

Contrast
Correlation Coefficient ↑ 0.428 0.736 0.616 0.910
R2 ↑ 0.183 0.543 0.379 0.827
MAE ↓ 0.0332 0.0147 0.0163 0.0090

Brightness
Correlation Coefficient ↑ 0.399 0.727 0.668 0.899
R2 ↑ 0.160 0.528 0.447 0.808
MAE ↓ 0.0199 0.0137 0.0146 0.0086

mation, effectively leveraging subgroup domain information to enhance our predictions. Extensive
experiments over multiple datasets have demonstrated that our model outperforms the baselines in
overall performance and it exhibits noticeably smaller bias when used as a direct metric, especially
when used in model comparison. In scenarios with both covariate shift and subpopulation shift,
which are closer to real-world conditions, our method also consistently outperforms all baselines.
Additionally, it is evident that the addition of a validation set also leads to a slightly better perfor-
mance in practice. This gives our method a greater advantage when validation data is available, as
many other methods cannot directly utilize it.

7 LIMITATIONS

Dependency on Attribute Annotations. Our method relies on the availability of attribute annota-
tions in the training set for subgroup division. In cases where such annotations are unavailable, our
approach must be combined with unsupervised subgroup partitioning algorithms or require manual
selection of a feature from X as the attribute based on human knowledge. Furthermore, our method
assumes that these attributes are accurate and complete. However, in real-world scenarios, attribute
annotations may be noisy, incomplete, or biased, which could result in errors in both subgroup
proportion estimation and performance prediction.

Limited to Subpopulation Shifts. Our approach is specifically designed to handle subpopulation
shifts, operating under the assumption that the primary distributional changes stem from differences
in subgroup proportions between the training and testing data. It cannot effectively quantify or ad-
dress covariate shifts (changes in the overall feature distribution). Moreover, when strong covariate
shifts occur together with subpopulation shifts, the test set embedding may no longer be able to rep-
resented as a linear combination of training subgroup embeddings, leading to inaccurate proportion
estimates. As a potential direction for future work, integrating our method with other performance
prediction techniques could create a more robust predictor capable of managing both subpopulation
and covariate shifts effectively.

Challenges with Unseen Subgroups. The presence of unseen subgroups in the test set-subgroups
that do not exist in the training set-can further increase estimation errors. To address this issue, we
propose a lightweight method in appendix F for detecting the presence of unseen subgroups. This
enhancement improves the adaptability of our method to domain generalization settings.

Reproducibility Statement. To ensure the reproducibility of our results, we used untuned and
consistent random seeds during both model training and performance prediction. Our code is based
on the implementation from SubpopBench (Yang et al., 2023), with the majority of model training
parameters kept at their default settings. Additionally, the sample sizes drawn from each subgroup
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for both the training and testing datasets are clearly documented (in Appendix A), and we also
employed an untuned constant as random seed during the sampling process. Detailed code can be
found in the supplementary material.
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A DATASET DETAILS

Test Set Design. Figures 6 and 7 show the distribution of 20 test sets we artificially designed. Each
test set is represented by c×m grid, and the number of samples for each subgroup is marked in the
square center, where darker color indicate a larger number of samples.
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Figure 6: Subgroup distribution of test sets, for datasets with 4 subgroups (Waterbirds and CelebA).
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Figure 7: Subgroup distribution of test sets, for datasets with 6 subgroups (MultiNLI and SNLI).

Table 2 and 3 show some basic information about the datasets we used. Note that for SNLI, we
consider a sentence has negation if one or more of the following words appears: no, never, no-
body, nothing, not, none, nowhere, neither, nor. For other datasets, the annotations for y and a are
consistent with those in Yang et al. (2023)

Table 2: Overview of the tasks we used in experiments.
|Y| |A| meaning of y meaning of a

Waterbirds 2 2 1 if water-bird 1 if water-background
CelebA 2 2 1 if blond hair 1 if male
CheXpert 2 6 1 if no anomalies found different ethnic groups
MultiNLI 3 2 neutral, contradiction, or entailment 1 if negation appears
SNLI 3 2 neutral, contradiction, or entailment 1 if negation appears

Table 4 specifies the degree of corruptions we used in real-world shift experiments (Table 1). 20
original test sets, 20 sets with corruption 1 and 20 sets with corruption 2 together form 60 test sets
for evaluation of performance predictors.
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Table 3: Group-wise number of samples.
total train

Waterbirds 6220, 2905, 831, 1832 3000, 1400, 400, 900
CelebA 89931, 82685, 28234, 1749 8000, 7500, 3000, 500
CheXpert 68899,44917,5399,5173,44851,31229,

7170,4638,727,671,5170,3948
6889,4491,539,517,4485,3122,
717,463,72,67,517,394

MultiNLI 114909,22447,134821,3020,133215,3937 11373,2242,13228,316,11411,370
SNLI 181232,8470,188030,1188,189916,1316 3150,328,3219,77,3460,87

Table 4: Detailed degrees of corruptions used in real-world shift experiments (Table 1).
Fog Gaussian Blur Gaussian Noise Contrast Brightness

Corruption1 0.1 radius=1 sigma=1 1.2 1.2
Corruption2 0.2 radius=2 sigma=2 1.4 1.4

B ADDITIONAL RESULTS

Test Sets characteristics. Figure 8 and 9 demonstrate the relationship between J-S divergence of
P (y), P (a) and test accuracy. In most settings there is a clear negative relationship between J-S
divergence of P (y) and the test accuracy, while P (a) seems to have no relationship with it.

Predicted subgroup proportions versus actual proportions. We measured the dissimilarity be-
tween predicted subgroup proportions and actual proportions using Wasserstein distance and cross
entropy. The results are shown in Table 5

Table 5: Dissimilarity between predicted subgroup proportions and actual proportions measured by
Wasserstein Distance (WD) and Cross Entropy (CE).

Waterbirds CelebA CheXpert MultiNLI SNLI
WD 0.053 ± 0.039 0.039 ± 0.031 0.028 ± 0.008 0.049 ± 0.019 0.065 ± 0.023
CE 1.22 ± 0.15 1.19 ± 0.16 2.47 ± 0.02 1.66 ± 0.25 2.26 ± 0.36

Compare as direct estimator. Figure 10 shows the detailed comparison results of SATE and ATC
when used as an direct estimator. The predictor’s output is directly plotted on the x-axis without any
regression. SATE has lower bias and variance in most settings, outperforming ATC.

C J-S DIVERGENCE

We use J-S Divergence as a quantitative metric for subpopulation shift. In this section, we will detail
the calculation.

For example, consider the training distribution [100, 100, 100, 100] and the test distribution [200,
100, 50, 50]. Each number represents the number of samples in a subgroup.

J-S Divergence of P (y). (1) Combine: Merge by y, the two distributions become [200, 200] and
[300, 100]. (2) Normalize: After normalization, they become [0.5, 0.5] and [0.75, 0.25]. At this
point, both distributions are in the form of discrete probability distributions. (3) Compute: Use the
standard J-S divergence calculation method to compute the divergence between these two vectors,
which yields the final result, which is 0.221 in this example. Note that J-S Divergence of P (a) is
similar to this one, only differs in that we should merge by a.

J-S Divergence of P (y|a). (1) Group by a: Calculate J-S Divergence of P (y) for each a ∈ A re-
spectively, denoted as JSya (2) Weighted sum: J-S Divergence of P (y|a) =

∑
a∈A PT (a) · JSya,

where PT (a) means the proportion of samples with attribute a within test set.
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Figure 8: The relationship between the Jensen-Shannon (J-S) divergence of P (y) (x-axis) and the
accuracy on test datasets (y-axis) under different degree of subpopulation shifts. There exist a clear
negative relationship between divergence in P (y) and the test accuracy.

Figure 9: The relationship between the Jensen-Shannon (J-S) divergence of P (a) (x-axis) and the
accuracy on test datasets (y-axis) under different degree of subpopulation shifts. Their relationship
is not significant.

Figure 10: The relationship between predicted accuracy and actual test accuracy. Here we plot the
predictor’s output directly without doing any regression. Our method has lower bias and variance
than ATC in most settings, indicating SATE is a better direct performance estimator in these cases.
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D LLM-AUGMENTING

Prompt Part 1. In MultiNLI and SNLI tasks, the relationship between two sentences is label y
and the exsistence of negation is attribute a, so the following prompt is designed to ensure that
after rewriting, y and a still remain the same. We use ChatGPT-3.5-turbo for MultiNLI task and
Llama-3.1-405b for SNLI task.

User:

Respectively rewrite the following two sentences, changing
their expression without altering the original meaning.
Also, ensure that the relationship between the meanings of
the two sentences remains unchanged (neutral, entailment
or contradiction). Furthermore, make sure that if there is
negation in the original, it cannot be removed; if there is
no negation, it cannot be added. Avoid using obscure words.
Each element should be a token.

Prompt Part2. This section shows the in-context learning we used during the LLM-augmenting.

User:

Fun for adults and children. [SEP] Fun for only children.

Assistant:

Adults and children all consider it funny. [SEP] Only
children consider it funny.

User:

You and I both fought him and he nearly took us. [SEP]
Neither you nor myself have ever fought him.

Assistant:

You and I both faced him in battle and he nearly defeated
us. [SEP] Neither you nor I have ever faced him in battle.

After that, the sentences to be rewrited will be provided to the LLM in the same format.

E PROOFS

Proof of Theorem 1.

Proof. Assumption 1 guarantees

hSg
,hTg

∼ Pg-emb,∀g ∈ G
together with law of large numbers, we have

h̄Sg

P−→ E(hSg
) = E(hTg

),∀g ∈ G

h̄T
P−→ E(hT )

Assumption 2 ensures that Equation 5 has a unique solution. Take probability limit over both sides
of Equation 5 and compare it Equation 4, we can get

w
P−→ β

The proof for unbiasedness follows similar steps as the proof for consistency.
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Proof of Theorem 2.

Proof. because
ˆAccT =

∑
g∈G

wg
ˆAccTg ,

ˆAccTg = AccS′
g

with Therorem 1 and Assumption 3,

E( ˆAccT ) =
∑
g∈G

βgE(AccS′
g
) = k

∑
g∈G

βgAccTg
+ b = kAccT + b

F UNSEEN SUBGROUP DETECTION

Here we develop a lightweight method to detect unseen subgroups after the first step of SATE. We
use Mean Square Error (MSE) of the linear decomposition as the indicator of the existence of unseen
subgroups. Larger MSE indicates higher probability that the test set contains unseen subgroup.

We conducted experiments on the NICO++, a commonly used domain generalization benchmark, to
evaluate our detection method. The experimental setup and findings are as follows:

Benchmark Setup: We utilized the NICO++ (Zhang et al., 2022) dataset, focusing on y ∈
{0, 1, 2, 3, 4, 5} and a ∈ {0, 1, 2, 3, 4, 5}, resulting in 36 subgroups in total. The training data
followed the original split, where subgroup (5, 4) was absent. While all 36 subgroups were present
in the original test split.

Test Sets: To simulate various conditions, we created 50 test sets, each comprising k randomly
selected subgroups from the original test set.

Evaluation: We evaluate the effectiveness of detection by the Area Under the Curve (AUC) be-
tween the existence of unseen subgroup and the MSE of linear decomposition.

Table 6: the Area Under the Curve (AUC) between the existence of unseen subgroup and the MSE
of linear decomposition.

k 5 10 20
AUC 0.950 0.895 0.869

These results demonstrate that while using linear decomposition to estimate subgroup proportions,
MSE is a reliable metric for detecting unseen domains. It consistently performs well when the
number of subgroups in the test set becomes large (k = 10, 20), further extending the applicability
of our method to domain generalization scenarios.
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