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Abstract
Proposed as a solution to the inherent black-box limitations of graph neural
networks (GNNs), post-hoc GNN explainers aim to provide precise and insightful
explanations of the behaviours exhibited by trained GNNs. Despite their recent
notable advancements in academic and industrial contexts, the robustness of
post-hoc GNN explainers remains unexplored when confronted with label noise.
To bridge this gap, we conduct a systematic empirical investigation to evaluate
the efficacy of diverse post-hoc GNN explainers under varying degrees of label
noise. Our results reveal several key insights: Firstly, post-hoc GNN explainers
are susceptible to label perturbations. Secondly, even minor levels of label noise,
inconsequential to GNN performance, harm the quality of generated explanations
substantially. Lastly, we engage in a discourse regarding the progressive recovery
of explanation effectiveness with escalating noise levels.

1 Introduction

The emergence of graph neural networks (GNNs) has revolutionised machine learning on graph-
structured data [1–3]. Nevertheless, a substantial concern has been raised within the community:
GNN models can be easily manipulated/attacked [4, 5] by unnoticeable modifications. To counter
this, researchers proposed robust GNN models against diverse adversarial attacks [6, 7]. However,
a significant gap persists as current GNNs struggle to provide insightful interpretations of their
underlying mechanisms and outputs. To tackle this limitation, recent researchers proposed post-hoc
GNN explainers, designed to explain the behaviour of a trained GNN models [8–14] and some latest
work discussed the quality of interpretations generated by GNN explainers [15].

While the robustness of GNNs is a well studied phenomenon, that of post-hoc explainers has been
overlooked. As such, we question how robust are post-hoc GNN explainers in the face of label noise.
To this end, we pose two related research questions: (i) Are post-hoc GNN explainers robust to label
noise? and (ii) Does the robustness of GNN models unequivocally guarantee the effectiveness of
post-hoc explainers?

In pursuit of answers to these questions, we conduct an empirical investigation. Our focus centers
on investigating the impact of a widely existing noise form, namely label noise, on post-hoc GNN
explainers within the context of graph classification. We integrate two benchmark post-hoc explainers
(GNNEXPLAINER [8] and PGEXPLAINER [9]) into a unified evaluation framework and carefully
evaluate the effectiveness of explanations across four graph datasets, including two real-world datasets
of different topics and two synthetic datasets.

The outcomes of our study effectively answered the raised questions. Firstly, the selected benchmark
GNN explainers prove lacking in robustness against label noise, evidenced by the substantial decline in
explanation quality upon random graph label disturbances. Second, we observe that the effectiveness
of GNN explainers is severely compromised, even with minor levels of label noise, despite the robust
performance retained by the GNN models. Besides, we discuss the impracticality of one current
metric for evaluating explanations within the context of post-hoc explainer robustness analysis since
it arrives at optimal values while feeding with ambiguous labels. An additional noteworthy: beyond a
noise threshold of 50%, explanation effectiveness gradually recovers to levels comparable to those
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without noise as noise levels continue escalating. We illustrate this with specific explanation instances,
showcasing that inverted label signals enable GNN explainers to discern important features.

2 Preliminaries
GNNs and GNN Explainers. Graph neural networks (GNNs) [1, 2] have emerged as a powerful
class of deep learning models designed to handle data structured as graph, making them invaluable in
various domains [16–18]. Given a graph G = (V, E) with n nodes and corresponding node attributes
X ∈ Rn×d. GNNs can learn to generate effective property prediction across nodes, edges, and graphs.
For instance, graph G’s label is predicted as ŷ = argmaxy(GNNθ(A,X)), where A ∈ {0, 1}n×n is
the adjacency matrix summarising V and E and θ is the set of trainable parameters of GNN model.

In response to the black-box limitations of GNNs, a range of GNN explainers have been introduced [8,
9, 19, 20]. Within this context, our study focuses on post-hoc GNN explainers [14], which generate
explanations E based on trained GNN, generated explanations and graph.

Evaluation of Post-hoc GNN Explainers. We utilise two popular label-agnostic evaluation metrics:
fidelity+ (Fid+) and fidelity- (Fid−) [14]. fidelity+ measures the prediction change following the
removal of relevant features; fidelity- assesses the change by retaining only the relevant features:
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i )ŷi
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i )ŷi
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(1)
where ŷi is the predicted prediction of graph Gi and GEi

i represents the new graph obtained by keeping
features of Gi based on the mask Ei

Robustness of Post-hoc GNN Explainers. While the remarkable efficacy of GNNs has attracted
considerable academic attention, their fragile performance on the maliciously manipulated graph
also caused researchers’ concerns [4, 5]. Consequently, increasing the robustness of GNNs on
face to adversarial attacks has also been studied [6, 7]. However, the post-hoc GNN explainer’s
robustness has largely remained unexplored within the research community. More related work refer
to Appendix A, due to page limit. We hereby pose two critical research questions: Q1: Can post-hoc
GNN explainers withstand label noise? and Q2: Does the robustness of GNN models unequivocally
extend to stable fidelity of post-hoc explainers?

3 Empirical Study

To address the aforementioned research questions, we evaluate the explanation quality in terms of Fid+

and Fid− of two benchmark post-hoc GNN explainers, GNNExplainer [8] and PGExplainer [9], on
two GNN models, GCN [21] and GIN [22]. This study spans across four graph datasets, two real-world
datasets, MUTAG and Graph-Twitter, and two synthetic, BA-2motifs and BA-Multi-Shapes. A
detailed overview of these datasets, along with statistical information can be found in Table 1 in the
Appendix B.

Implementation. We integrate the implementations of GCN and GIN from PyG [23] and
GNNExplainer and PGExplainer from the original papers into a unified framework1 built with
DIG [24]. Graph classification performance is evaluated by classification accuracy (Acc), and gen-
erated explanations are measured by Fid+ and Fid−. We select the best hyper-parameters of GNN
model and explainers follow the benchmark settings of DIG.

Noisy Label Generation. We first select a set of training graph indexes according to the noisy level
(λ). Then, if the graph original label is 0, we randomly select a value from {1, 2} to replace its label.
We do not change the label of test graphs.

3.1 Results

Due to space limit, the detailed evaluation (average results of three runs displayed in Table 2-3) and
discussions are presented in Appendix C, due to the page limit. To facilitate the readers to understand

1The code is available at https://github.com/zhiqiangzhongddu/PosthocGnnExplainerRobust
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Figure 1: The performance of GNN models and explainers of different label noisy levels.

our results, we partially summarise them into Figure 1. Dark grey and yellow shadows highlight the
regions of λ ≤ 20% and λ ≥ 50%, respectively.

Q1. Post-hoc GNN explainers are susceptible to label noise. Figure 1 emphasises that both Acc
and Fid+ are significantly impacted by varying levels of label noise. The fluctuating trends of Fid+

(blue lines) underscore the instability of explanation quality, whereas the trends of Acc (red lines)
echo the findings about GNN robustness discussed in previous work [4, 5].

Observation 1. From the results in Table 2-3, we find out that Fid− decreases as λ increases from
0% to 50%. However, the definition of Fid− indicating lower values as more satisfactory contradicts
this outcome. In our scenario, confusing labels lead to ambiguous predictions, subsequently causing
Fid− → 0. We thereby argue that Fid− proves unsuitable as a valid metric within the context of
investigating post-hoc GNN explainer robustness.

Q2. The robustness of GNN models does not extend to the stable fidelity of post-hoc explainers.
Within the grey shadow regions of Figure 1, it is evident that Acc remains relatively stable, indicating
that GNN models exhibit robustness in the face of minor noisy levels. Conversely, Fid+ experiences
substantial drops at the same noise levels (λ ≤ 20%), revealing the heightened sensitivity of different
post-hoc explainers to even minor noisy levels of label noise.

Observation 2. To unveil the grey shadow regions, we present the corresponding predicted proba-
bilities of the true label of ten example test graphs in Figure 2. Although GNN models manage to
accurately classify these graphs with minor noisy levels, yet, the predicted probabilities are affected
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Figure 2: Example predicted probabilities of GNNs on four datasets of different label noisy levels.

by introduced noises, which are not represented in Acc. In contrast, these predicted probabilities
would be passed to GNN explainers as essential inputs to generate explanations, as illustrated in
Figure 4. We posit that this might the chief reason for the contrasting performance of Acc and Fid+.

Example explanations of PGExplainer on molecule 717, MUTAG

w/o w/.50 w/1.

Figure 3: Explanations (bold edges) generated by PGExplainer for molecule graph 717 of MUTAG.
Observation 3. Another interesting phenomena we observed in Figure 1 is that beyond a noise
threshold of λ =50%, Fid+ gradually returns to levels comparable to those without noise as
noise levels continue to escalate. To better understand this phenomenon, we present the generated
explanations about an example molecule graph (id = 717) in Figure 3. At λ =50%, PGExplainer
fails to identity key motifs (NO2), yet sucessfully does so at λ =100%. This suggests that confusing
label signals mislead GNN models and explainers, while inverted label signals enables GNN models
to predict reverse labels while identifying important features.

4 Concluding Remarks and Future Directions
This extended abstract represents, to the best of our knowledge, the first preliminary exploration
into the robustness of post-hoc GNN explainers against label noise. Our findings introduce several
interesting research questions to the community: Firstly, we establish the susceptibility of post-hoc
GNN explainers to label noise. Secondly, our investigation highlights that the fidelity of post-hoc
explainers can be significantly impacted by minor noise, which does not conduce a noticeable
influence on the GNN model’s performance. This underscores the complexity inherent in bolstering
the robustness of post-hoc GNN explainers, necessitating dedicated efforts. Additionally, our study
unveils the impracticability of Fid− metric for explainer robustness study since it naturally gets
optimised with high noisy levels. In follow-up work, there are several promising future directions to
explore. For instance, designing robust post-hoc GNN explainers to label noise, refining explanation
evaluation metrics for comprehensive measurement, and developing large-scale benchmark datasets.
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A Related Work
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Figure 4: An overview of the workflow of selected post-hoc GNN explainers.

GNNs. Graph neural networks (GNNs) [1, 2] have emerged as a powerful class of deep learning
models designed to handle data structured as a graph, making them invaluable in various domains [16–
18]. Existing GNN models can be generally categorised into spectral models [21, 25, 26] and spatial
models [3, 22, 27] based on their inherent designs. Spectral GNNs generalise convolutional operations
to graph-structured data to process signals on graphs. For instance, [21] apply the normalised graph
Laplacian matrix on graphs to obtain a matrix of eigenvectors ordered by eigenvalues, which form an
orthonormal space. As such, the input graph signal is transformed to the orthonormal space, where
the basis is formed by eigenvectors of the normalised graph Laplacian [1]. On the other hand, spatial
GNN models, which follow the message-passing pipeline, are typically considered as a differentiable
neural generalisation of the Weisfeiler-Lehman algorithms on graphs. Messages aggregated from
the neighbour nodes and combined with the node’s features as the updated node embeddings by
considering the structural coefficients [22].

GNN Explainers. A significant gap persists as current GNNs struggle to provide insightful inter-
pretations of their underlying mechanisms and outputs. To tackle this limitation, recent researchers
proposed GNN explainers, designed to explain the behaviour of a trained GNN models [8–12]. [14]
groups existing explainers into instance- and model-level methods based on the type of generated
explanations. Further, the explanation can be generated either post-hoc (i.e., after the GNN model
training) or self-explainable (i.e., GNN model explains its predictions during training) [13]. Some of
the latest work discussed the quality of interpretations generated by GNN explainers and proposed a
set of evaluation metrics [15]. However, the robustness of GNN explainers has been overlooked. This
paper conducts a systematic empirical investigation to evaluate the efficacy of diverse post-hoc GNN
explainers under varying degrees of label noise.

B Experimental Settings

Table 1: Summary of datasets used in our empirical study.

NAME CAT. #GRAPHS #NODES (AVG.) #EDGES (AVG) # NODE FEAT. #CLASSES

MUTAG Real 4,337 30.3 61.5 14 2
BA-2motifs Syn. 1,000 25 51 10 2
BA-Multi-Shapes Syn. 1,000 25 51 10 2
Graph-Twitter Real 6,940 21.1 40.2 768 3

Datasets. We consider four benchmark graph classification datasets as summarised in Table 1. MUTAG
is a real-world dataset of 4,337 molecule graphs labelled according to their mutagenic effect [8].
Graph-Twitter is a real-world sentiment graph dataset of 6,940 text graphs, which is constructed
based on text sentiment analysis [14]. BA-2motifs [9] and BA-Multi-Shapes [28] are two synthetic
datasets of 1,000 random Barabasi-Albert (BA) graphs. Each graph of BA-2motifs is obtained
by attaching either HouseMotif or CycleMotif. Each graph of BA-Multi-Shapes is obtained by
attaching one of HouseMotif, WheelMotif and GridMotif. These graphs are assigned to one of the
two classes according to the type of attached motifs. We split datasets into train/valid/test (70%, 10%,
20%) subsets for the experiments. GNN models are trained on train datasets and test on test datasets.
We report the test performance with the best valid performance.
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Implementation Details. Our implementations mainly follows the settings of officially pub-
lic Pytorch code of PGExplainer [9] (https://github.com/divelab/DIG/tree/main/dig/
xgraph/PGExplainer). Particularly, we first train a GNN model (two-layers or three-layers of fixed
hidden dimension 128) and select the one with the best Acc. After, we pass trained GNN model, ob-
tained predictions and the graph to the GNN explainers to ontain explanations and compute their Fid+

and Fid− following https://github.com/divelab/DIG/tree/dig/benchmarks/xgraph. The
learning rate to train GNN models and explainers is fixed as 0.001. Other settings follow the default
their official implementations.

C Experimental Results

Table 2: Evaluation of GNN models, GNNEXPLAINER and PGEXPLAINER on real-world datasets,
with (w/) and without (w/o) label noise. For instance, λ =w/0.25 indicates 25% training node labels
are randomly manipulated. Model performance is evaluated on classification accuracy (Acc) and
explanation quality is evaluated on fidelity+ (Fid+) and fidelity- (Fid−) on test dataset.

Dataset λ GNNEXPLAINER

GCN GIN
Acc Fid+ Fid− Acc Fid+ Fid−

MUTAG

w/o 0.818 - 0.375 - 0.425 - 0.821 - 0.365 - 0.367 -
w/.25 0.768 -6.1% 0.142 -62.1% 0.144 -66.1% 0.766 -6.7% 0.163 -55.3% 0.161 -56.1%
w/.50 0.543 -33.6% 0.104 -72.3% 0.098 -76.9% 0.580 -29.4% 0.019 -94.8% 0.019 -94.8%
w/.75 0.244 -70.2% 0.290 -22.7% 0.288 -32.2% 0.254 -69.1% 0.106 -71.0% 0.110 -70.0%
w/1. 0.189 -76.9% 0.405 8.0% 0.399 -6.1% 0.213 -74.1% 0.381 4.4% 0.381 3.8%

BA-2motifs

w/o 0.980 - 0.496 - 0.496 - 0.980 - 0.486 - 0.486 -
w/.25 0.930 -5.1% 0.207 -58.3% 0.221 -55.4% 0.990 1.0% 0.205 -57.8% 0.204 -58.0%
w/.50 0.575 -41.3% 0.129 -74.0% 0.164 -66.9% 0.505 -48.5% -0.002 -100.4% -0.002 -100.4%
w/.75 0.000 -100.0% 0.235 -52.6% 0.235 –52.6% 0.000 -100.0% 0.209 -57.0% 0.200 -58.8%
w/1. 0.010 -99.0% 0.554 11.7% 0.556 12.1% 0.005 -99.5% 0.477 -1.9% 0.476 -2.1%

BAMult.S.

w/o 0.970 - 0.479 - 0.479 - 0.990 - 0.488 - 0.488 -
w/.25 0.955 -1.5% 0.230 -52.0% 0.223 -53.4% 0.985 -0.5% 0.206 -57.8% 0.202 -58.6%
w/.50 0.510 -47.4% 0.031 -93.5% 0.050 -89.6% 0.505 -49.0% 0.002 -99.6% 0.002 -99.6%
w/.75 0.010 -99.0% 0.204 -57.4% 0.198 -58.7% 0.005 -99.5% 0.217 -55.5% 0.212 -56.6%
w/1. 0.000 -100.0% 0.522 9.0% 0.528 10.2% 0.000 -100.0% 0.480 -1.6% 0.479 -1.8%

G.-Twitter

w/o 0.635 - 0.605 - 0.594 - 0.665 - 0.286 - 0.262 -
w/.25 0.616 -3.0% 0.161 -73.4% 0.162 -72.7% 0.613 -7.8% 0.182 -36.4% 0.173 -34.0%
w/.50 0.556 -12.4% 0.055 -90.9% 0.054 -90.9% 0.476 -28.4% 0.074 -74.1% 0.070 -73.3%
w/.75 0.194 -69.4% 0.012 -98.0% 0.012 -98.0% 0.276 -58.5% 0.201 -29.7% 0.197 -24.8%
w/1. 0.097 -84.7% 0.121 -80.0% 0.120 -79.8% 0.162 -75.6% 0.341 19.2% 0.309 17.9%

Dataset λ PGEXPLAINER

MUTAG

w/o 0.809 - 0.307 - 0.431 - 0.823 - 0.330 - 0.482 -
w/.25 0.767 -5.2% 0.203 -33.9% 0.274 -36.4% 0.741 -10.0% 0.123 -62.7% 0.117 -75.7%
w/.50 0.531 -34.4% 0.043 -86.0% 0.094 -78.2% 0.580 -29.5% 0.003 -99.1% 0.013 -97.3%
w/.75 0.254 -68.6% 0.233 -24.1% 0.287 -33.4% 0.280 -66.0% 0.084 -74.5% 0.041 -91.5%
w/1. 0.188 -76.8% 0.377 22.8% 0.443 2.8% 0.188 -77.2% 0.366 10.9% 0.406 -15.8%

BA-2motifs

w/o 0.995 - 0.489 - 0.489 - 1.000 - 0.316 - 0.481 -
w/.25 0.985 -1.0% 0.210 -57.1% 0.213 -56.4% 0.985 -1.5% 0.024 -92.4% 0.210 -56.3%
w/.50 0.445 -55.3% -0.024 -104.9% 0.193 -60.5% 0.505 -49.5% -0.000 -100.0% -0.000 -100.0%
w/.75 0.000 -100.0% 0.129 -73.6% 0.147 -69.9% 0.005 -99.5% -0.006 -101.9% 0.209 -56.5%
w/1. 0.045 -95.5% 0.467 -4.5% 0.489 0.0% 0.010 -99.0% 0.006 -98.1% 0.463 -3.7%

BAMult.S.

w/o 0.980 - 0.482 - 0.482 - 0.985 - 0.281 - 0.485 -
w/.25 0.980 0.0% 0.214 -55.6% 0.252 -47.7% 0.975 -1.0% 0.022 -92.2% 0.143 -70.5%
w/.50 0.455 -53.6% 0.055 -88.6% 0.108 -77.6% 0.520 -47.2% 0.001 -99.6% 0.002 -99.6%
w/.75 0.005 -99.5% 0.140 -71.0% 0.144 -70.1% 0.000 -100.0% 0.016 -94.3% 0.237 -51.1%
w/1. 0.020 -98.0% 0.433 -10.2% 0.443 -8.1% 0.000 -100.0% 0.051 -81.9% 0.501 3.3%

G.-Twitter

w/o 0.633 - 0.209 - 0.333 - 0.656 - 0.275 - 0.255 -
w/.25 0.587 -7.3% 0.120 -42.6% 0.157 -52.9% 0.610 -7.0% 0.185 -32.7% 0.174 -31.8%
w/.50 0.558 -11.8% 0.063 -69.9% 0.062 -81.4% 0.429 -34.6% 0.105 -61.8% 0.030 -88.2%
w/.75 0.256 -59.6% 0.136 -34.9% 0.263 -21.0% 0.195 -70.3% 0.172 -37.5% 0.172 -32.5%
w/1. 0.092 -85.5% 0.206 -1.4% 0.307 -7.8% 0.123 -81.3% 0.274 -0.4% 0.276 8.2%

The detailed evaluation results are reported in Table 2 and Table 3. To facilitate the readers to under
our results, we partially summarise them into Figure 1. The discussion of the results is shown in
Section 3.1, here we present some overall insights.
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Table 3: Evaluation of GNN models, GNNExplainer and PGExplainer on real-world datasets, with
(w/) and without (w/o) data manipulation. For instance, λ =w/0.5 indicates 5% training node labels
are randomly manipulated. Model performance is evaluated on classification accuracy (Acc) and
explanation quality is evaluated on fidelity+ (Fid+) and fidelity- (Fid−) on test dataset.

Dataset λ GNNExplainer
GCN GIN

Acc Fid+ Fid− Acc Fid+ Fid−

MUTAG

w/o 0.818 - 0.375 - 0.425 - 0.821 - 0.365 - 0.367 -
w/.5 0.798 -2.4% 0.337 -10.1% 0.334 -21.4% 0.798 -2.8% 0.344 -5.8% 0.336 -8.4%

w/.10 0.790 -3.4% 0.212 -43.5% 0.215 -49.4% 0.794 -3.3% 0.285 -21.9% 0.276 -24.8%
w/.15 0.787 -3.8% 0.166 -55.7% 0.171 -59.8% 0.737 -10.2% 0.208 -43.0% 0.204 -44.4%
w/.20 0.778 -4.9% 0.151 -59.7% 0.156 -63.3% 0.786 -4.3% 0.195 -46.6% 0.192 -47.7%

BA-2motifs

w/o 0.980 - 0.496 - 0.496 - 0.980 - 0.486 - 0.486 -
w/.5 0.990 1.0% 0.423 -14.7% 0.397 -20.0% 0.985 0.5% 0.440 -9.5% 0.439 -9.7%

w/.10 0.990 1.0% 0.415 -16.3% 0.389 -21.6% 0.995 1.5% 0.364 -25.1% 0.363 -25.3%
w/.15 0.970 -1.0% 0.345 -30.4% 0.342 -31.0% 0.965 -1.5% 0.274 -43.6% 0.274 -43.6%
w/.20 0.950 -3.1% 0.248 -50.0% 0.250 -49.6% 0.970 -1.0% 0.231 -52.5% 0.230 -52.7%

BAMult.S.

w/o 0.970 - 0.479 - 0.479 - 0.990 - 0.488 - 0.488 -
w/.5 0.980 1.0% 0.392 -18.2% 0.437 -8.8% 0.985 -0.5% 0.530 8.6% 0.429 -12.1%

w/.10 0.980 1.0% 0.335 -30.1% 0.313 -34.7% 0.980 -1.0% 0.365 -25.2% 0.363 -25.6%
w/.15 0.975 0.5% 0.294 -38.6% 0.294 -38.6% 0.985 -0.5% 0.334 -31.6% 0.333 -31.8%
w/.20 0.990 2.1% 0.294 -38.6% 0.298 -37.8% 0.960 -3.0% 0.218 -55.3% 0.228 -53.3%

G.-Twitter

w/o 0.635 - 0.605 - 0.594 - 0.665 - 0.286 - 0.262 -
w/.5 0.612 -3.6% 0.523 -13.6% 0.515 -13.3% 0.651 -2.1% 0.247 -13.6% 0.229 -12.6%

w/.10 0.638 0.5% 0.244 -59.7% 0.244 -58.9% 0.639 -3.9% 0.261 -8.7% 0.246 -6.1%
w/.15 0.623 -1.9% 0.192 -68.3% 0.189 -68.2% 0.620 -6.9% 0.202 -29.4% 0.192 -26.7%
w/.20 0.635 0.0% 0.186 -69.3% 0.187 -68.5% 0.619 -6.9% 0.194 -32.2% 0.189 -27.9%

Dataset λ PGExplainer

MUTAG

w/o 0.809 - 0.307 - 0.431 - 0.823 - 0.330 - 0.482 -
w/.5 0.807 -0.2% 0.294 -4.2% 0.366 -15.1% 0.780 -5.2% 0.281 -14.8% 0.308 -36.1%

w/.10 0.789 -2.5% 0.249 -18.9% 0.322 -25.3% 0.786 -4.5% 0.261 -20.9% 0.262 -45.6%
w/.15 0.787 -2.7% 0.236 -23.1% 0.316 -26.7% 0.767 -6.8% 0.200 -39.4% 0.193 -60.0%
w/.20 0.767 -5.2% 0.206 -32.9% 0.294 -31.8% 0.759 -7.8% 0.144 -56.4% 0.132 -72.6%

BA-2motifs

w/o 0.995 - 0.489 - 0.489 - 1.000 - 0.316 - 0.481 -
w/.5 0.973 -2.2% 0.380 -22.3% 0.420 -14.1% 0.975 -2.5% 0.310 -1.9% 0.446 -7.3%

w/.10 0.971 -2.4% 0.320 -34.6% 0.331 -32.3% 0.995 -0.5% 0.282 -10.8% 0.378 -21.4%
w/.15 0.970 -2.5% 0.284 -41.9% 0.285 -41.7% 0.985 -1.5% 0.004 -98.7% 0.343 -28.7%
w/.20 0.950 -4.5% 0.267 -45.4% 0.282 -42.3% 0.980 -2.0% 0.023 -92.7% 0.240 -50.1%

BAMult.S.

w/o 0.980 - 0.482 - 0.482 - 0.985 - 0.281 - 0.485 -
w/.5 0.965 -1.5% 0.258 -46.5% 0.360 -25.3% 0.980 -0.5% 0.257 -8.5% 0.438 -9.7%

w/.10 0.970 -1.0% 0.246 -49.0% 0.253 -47.5% 0.985 0.0% 0.236 -16.0% 0.288 -40.6%
w/.15 0.955 -2.6% 0.228 -52.7% 0.229 -52.5% 0.985 0.0% 0.102 -63.7% 0.326 -32.8%
w/.20 0.958 -2.2% 0.218 -54.8% 0.218 -54.8% 0.985 0.0% 0.051 -81.9% 0.271 -44.1%

G.-Twitter

w/o 0.633 - 0.209 - 0.333 - 0.656 - 0.275 - 0.255 -
w/.5 0.633 0.0% 0.168 -19.6% 0.213 -36.0% 0.638 -2.7% 0.192 -30.2% 0.175 -31.4%

w/.10 0.638 0.8% 0.149 -28.7% 0.186 -44.1% 0.629 -4.1% 0.191 -30.6% 0.174 -31.8%
w/.15 0.619 -2.2% 0.125 -40.2% 0.178 -46.6% 0.632 -3.7% 0.191 -30.6% 0.188 -26.3%
w/.20 0.594 -6.2% 0.124 -40.7% 0.161 -51.7% 0.596 -9.2% 0.186 -32.4% 0.176 -31.0%

Based on the experimental results, we addressed two key conclusions in Section 3.1: (1) Post-hoc
GNN explainers are susceptible to label noise; (2) The robustness of GNN models does not extend to
the stable fidelity of post-hoc explainers. On the one hand, in order to understand why Fid+ decreases
with λ → 0.5, we conducted additional experiments and presented them in Figure 2. Discussions
are summarised as Observation 2. Briefly, the Fid+ decreases because the label noises affect the
GNN model’s predicted probability on the graph’s true label, and this predicted probability plays a
significant role in explanation generation. On the other hand, to understand why Fid+ increases with
λ → 1, we tried to explain it with a group of examples, as shown in Figure 3 and summarise it as
Observation 3. Notably, we posit that confusing label signals mislead GNN models and explainers,
while inverted label signals enable GNN models to predict reverse labels while identifying important
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features. Yet, this is just an informal conclusion. This abstract paper wants to reveal these trending
research questions to the community. In the end, from the results in Table 2-3, we find out that Fid−

decreases as λ increases from 0% to 50%. However, the definition of Fid− indicating lower values
as more satisfactory contradicts this outcome. In our scenario, confusing labels lead to ambiguous
predictions, subsequently causing Fid− → 0. We thereby argue that Fid− proves unsuitable as a
valid metric within the context of investigating post-hoc GNN explainer robustness (Observation 1).
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