
SymNet 2.0: Effectively handling Non-Fluents and Actions
in Generalized Neural Policies for RDDL Relational MDPs

Vishal Sharma1 Daman Arora1 Florian Geißer2 Mausam1 Parag Singla1

1Indian Institute of Technology Delhi {vishal.sharma, cs5180404, mausam, parags}@cse.iitd.ac.in
2Independent Reseacher, {florian.geisser.work}@gmail.com

Abstract

Relational MDPs (RMDPs) compactly represent
an infinite set of MDPs with an unbounded number
of objects. Solving an RMDP requires a general-
ized policy that applies to all instances of a domain.
Recently, Garg et al. proposed SymNet for this task
– it constructs a graph neural network that shares
parameters across all instances in a domain, thus
making it applicable to any instance in a zero-shot
manner. Our analysis of SymNet reveals that it
performs no better than random on 1/4th of plan-
ning competition domains. The key reasons are
its design choices: it misses important information
during graph construction, leading to (1) poor gen-
eralizability, and (2) potential non-identifiability of
different actions.
In response, our solution, SYMNET2.0, substan-
tially augments SymNet’s graph construction ap-
proach by introducing additional nodes and edges
which allow a better transfer of important informa-
tion about a domain. It also improves SymNet’s
action decoders with relevant information from ob-
jects to make different actions identifiable during
scoring. Extensive experiments on twelve competi-
tion domains, where we use imitation learning over
data generated from the PROST planner, demon-
strate that SYMNET2.0 performs vastly better than
SymNet. Interestingly, even though SYMNET2.0
is trained over data from PROST, it outperforms the
planner on several test instances due to former’s
ability to scale to large instances in a zero-shot
manner.

1 INTRODUCTION

A Relational Markov Decision Process (RMDP) (Boutilier
et al. [2001]) is a first-order representation of a planning

domain usually represented in a description language like
the Probabilistic Planning Domain Definition Language
(PPDDL) [Younes et al., 2005] or the Relational dynamic in-
fluence diagram language (RDDL) [Sanner, 2010]. Finding
solvers for an RMDP which perform well on any instance
of a domain has been a long-standing goal of AI planning
research. Motivated by the recent progress in deep neural
models, multiple works [Groshev et al., 2018, Toyer et al.,
2018, Garg et al., 2019, 2020, Ståhlberg et al., 2022] learn
generalized neural reactive policies, which are trained on
a set of (smaller) training instances, and can be transferred
to a set of (larger) test instances in a zero-shot manner. Our
focus is on learning generalized neural policies for RMDPs
expressed in RDDL, where SymNet [Garg et al., 2020] has
demonstrated initial feasibility.

However, our analysis reveals that SymNet performs no bet-
ter than random on 1/4th of the domains of the International
Probabilistic Planning Competition1 (IPPC 2011 and 2014),
and even in several others where it seemingly does well, it
performs significantly worse than PROST [Keller and Ey-
erich, 2012], the state-of-the-art online planner for RDDL
RDMPs. This points to a significant research gap between
what is possible, and what is currently achievable. In this
paper, our goal is to examine whether we can fill this gap
by a better design of the underlying neural architecture.

At a high level, SymNet compiles an RMDP instance to
an instance graph, with nodes representing object tuples,
and edges representing connections in the Dynamic Bayes
Net (DBN) corresponding to the instance. Given a state, a
Graph Attention Network [Veličković et al., 2018], on top
of the instance graph, computes embeddings for each node.
A subset of these nodes embeddings (or their aggregate) is
then passed through an action decoder network to output a
score for the ground actions. The network is typically trained
using a loss function based on reinforcement learning (RL).

We identify two key challenges with SymNet’s design
choices. First, its handling of non-fluents, variables which

1https://www.icaps-conference.org/competitions/

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<vishal.sharma@cse.iitd.ac.in>?Subject=Your UAI 2022 paper

are static throughout the application of a policy but whose
value depends on the given instance, is somewhat ad-hoc.
Many non-fluents do not directly correspond to specific
nodes in the graph, instead they are compiled away. This
leads to a significant problem with generalizability of the
network to instances where the value of those non-fluents
differs. Second, the action decoder for a ground action takes
an aggregation over as input those node embeddings that
are affected by the action; it does not necessarily take all
the objects that are arguments of the action. This can lead to
a problem of action non-identifiability: two ground actions
with different object arguments affecting the exact same set
of objects get exactly the same score. We describe these in
detail through a running example in Section 3.2.

To mitigate these issues we present SYMNET2.02, which
substantially augments SymNet’s architecture. To handle
non-fluents in a principled manner, SYMNET2.0’s instance
graph creates a node for each object tuple appearing as an
argument to any non-fluent. In order to connect these nodes
to the rest of the network it additionally creates singleton
nodes for each object in the instance. These singleton object
nodes connect to all object-tuple nodes that contain this
object. To handle action non-identifiability during decoding,
we additionally pass the embeddings of all singleton nodes
that appear as action arguments in the action.

We train both SymNet and SYMNET2.0 with imitation learn-
ing on a dataset generated by planning using PROST on
training instances; this helps us circumvent the training and
exploration issues faced by RL algorithms. Extensive ex-
periments on twelve IPPC domains demonstrate that SYM-
NET2.0 performs vastly better than SymNet, obtaining a
gain of more than 40% relative performance on half of the
domains, and a gain of approx. 50% relative performance
in the aggregate metric. We perform further studies by ana-
lyzing specific domains to characterize the various settings
in which SYMNET2.0 outperforms SymNet. Interestingly,
though SYMNET2.0 uses data generated from PROST, due
to its offline nature, which requires only a forward pass dur-
ing inference, SYMNET2.0 outperforms PROST on large
instances of several domains; in some cases by a significant
margin. This opens up new avenues for exciting research
that combines online planners with policies learned using
neural models.

2 BACKGROUND AND RELATED WORK

2.1 RELATIONAL MDPS AND RDDL

A Relational Markov Decision Process (RMDP) [Boutilier
et al., 2001] domain, denoted by RM , represents
a factored MDP in a first order form as a tuple
(C, SP,A,O, T,R,H, s0, γ), where SP and A denotes the

2Code released at https://github.com/dair-iitd/symnet2

set of state, respectively, action predicates; O denotes the set
of objects, where each object is associated with a class type
in C. The set of transition functions is denoted by T , the set
of reward functions by R. Additionally, H denotes the finite
horizon and γ the discount factor. Replacing the arguments
of a predicate with an object-tuple of type-consistent objects
is called grounding the predicate. Grounding the predicates
of SP results in a set of state-variables, denoted by SPO,
and grounding the predicates of A results in a set of ground
actions, denoted by AO. An assignment to all SPO denotes
a state s ∈ PS(SPO) where PS denotes the power set. The
initial state is denoted by s0.

The Relational Dynamic Influence Diagram Language
(RDDL) [Sanner, 2010] represents an RMDP using two
components: 1) a domain description provides predicates
SP and A, object types C, as well as first-order transition
and reward functions T and R; and 2) an instance descrip-
tion specifies ground objects O, initial state s0, as well as
horizon H and discount factor γ. Furthermore, the set of
state predicates (SP) is divided into state-fluents (SF) and
non-fluents (NF), where the former are predicates where
the assignment of induced ground variables can change
over time, and the latter are predicates whose ground vari-
ables’ assignment remains static. Note that two instances in-
duced by the same domain can have different assignments of
ground variables induced by NF . We denote with OSF and
ONF the set of object tuples that appear in SF , respectively
NF . Given an RDDL instance, its transition semantics can
be represented in the form of a Dynamic Bayesian Network
(DBN) capturing dependencies among state-variables and
ground actions [Mausam and Kolobov, 2012].

2.2 TRANSFER LEARNING FOR RMDPS

We define the problem of Transfer Learning for RMDPs
(TLR) as follows. Given an RMDP RM and a set of instances
of RM expressed in RDDL, the goal of TLR is to learn a
generalized neural network N (I) parameterized by instance
I , with a (tied) set of weight parameters w independent of
I , such that N (I) takes as input a state s of instance I , and
outputs a distribution over actions in the action space of I ,
i.e. N (I) : PS(SPO) → p(AO) where p(AO) represents
a probability distribution over all ground actions AO . We
study this problem in the offline planning setting, i.e., at
execution time, the action in a given state may be identified
with minimal computation (e.g., table lookup or a forward
pass), as opposed to a deliberative lookahead search, as in
online planning.

2.3 RELATED APPROACHES

Offline planning in MDPs is a well-studied problem, e.g.,
Labeled RTDP [Bonet and Geffner, 2003], HMDPP [Key-
der and Geffner, 2008], ReTrASE [Kolobov, 2009], Glut-

ton [Kolobov et al., 2012]. Generalized planning for Rela-
tional MDPs also has a long history, with early work trying
to construct features that can transfer across instances [Fern
et al., 2003, Guestrin et al., 2003, Mausam and Weld, 2003,
Natarajan et al., 2011]. Recent work has studied generalized
planning for building fully observable non-deterministic
planners (FOND) [Bonet and Geffner, 2018, Bonet et al.,
2019]; all these works are non-neural in nature. There is
research [Toyer et al., 2018] on developing neural models
over PPDDL, but since our focus is on RMDPs expressed
in RDDL, and the architecture of neural reactive policies
is tailored to the description language, these works are not
directly comparable to ours. Issakkimuthu et al. [2018] learn
Deep Reactive Policies for RDDL domains, however, their
model is not capable of size transfer. We, instead, build
upon a series of works [Bajpai et al., 2018, Garg et al., 2019,
2020], which proposes neural solvers for RDDL. Torpido
[Bajpai et al., 2018] can only perform transfer on instances
of same size, whereas TrapsNet [Garg et al., 2019] makes
additional assumptions on the arities of state and action pred-
icates. Closest to us is SymNet (Garg et al. [2020]), which,
to our knowledge, is the only neural model for a general
RDDL RMDP. We next describe its detailed architecture.

2.4 SYMNET

Given an RDDL domain and an instance I , SymNet (Garg
et al. [2020]) solves TLR as follows: 1) first, represent I in
the form of an instance-graph, 2) use a GAT-based archi-
tecture to represent the generalized policy, 3) finally, train
the model using a suitable end-to-end loss, e.g. RL-based
or imitation learning based - we compare with both in our
experiments. Next, we will discuss these steps in detail.

Instance-Graph Construction: We start by discussing
how SymNet creates its instance-graph. In SymNet, the
purpose of the instance-graph(s) is to translate an in-
stance into graph(s) that capture interactions among various
state-variables. For this, SymNet creates |A| + 1 graphs,
Gsym = {Gd, Ga1, . . . , Ga|A|}. All graphs are derived
from the DBN of the instance: Gd captures exogenous, i.e.
action-independent effects between state-variables, and each
Gai ∈ {Ga1, . . . , Ga|A|} captures effects between state-
variables that are induced by action ai.

Recall that OSF represents the set of object tuples that
appear in state-fluents. For each osf ∈ OSF SymNet adds a
node v with label osf to each of the |A|+ 1 graphs. Edges
are introduced once all nodes are generated. In the following,
let v1 and v2 be two nodes labeled with object tuples o1,
respectively, o2. Whether an edge exists between v1 and
v2 depends on the underlying graph: 1) for Gd there is
an edge between v1 and v2 if the DBN contains a state-
variable SP (o1) that affects another state-variable SP (o2).
Note that every state-variable affects itself, hence every
node has a self-loop. 2) for Gai ∈ {Ga1, . . . , Ga|A|} there

exists an edge between v1 and v2 if there is a state-variable
SP (o1) and an action a(oa) ∈ AO of type ai ∈ A, that in
conjunction affect another state-variable SP (o2). That is, it
captures if a state-variable and some action of type ai affect
some other state-variable in the DBN.

Node Features: All graphs have the same set of input node
features, determined by the following rules: a) For each
parameterized predicate type P ∈ SF , a feature is added to
every node v. For each grounding P (o), the node feature of o
that corresponds to P is set to the value of P (o). The value is
fetched from the current state. b) For each unparameterized
Boolean non-fluent, a feature with its value is added to each
node. c) A feature for a parameterized Boolean non-fluent
is added to a node, if the object tuple corresponding to the
non-fluent is a subset of the object-tuple at the node.

Node Embeddings: SymNet uses a Graph Attention Net-
work (GAT) [Veličković et al., 2018], which is a specific
kind of graph neural network that leverages the attention
mechanism over a node’s neighbors for its message passing
updates. SymNet uses a GAT to compute node embeddings
for each graph in Gsym. We establish a correspondence be-
tween nodes in different graphs having the same label, i.e.,
which correspond to the same object tuple. A final node
embedding ne(v) for a node v (representing all the nodes
in different graphs having the same label) is constructed by:
ne(v) = concat(GATd(Gd)[v], ..., GATa|A|(Ga|A|)[v]).
A global embedding ge representing the complete state is
then computed as a maxpool over all node embeddings as:
ge = maxpoolv∈V (ne(v)) where V is the set of all nodes.

Action Decoding: SymNet creates a set of action decoders
(AD1, . . . , AD|A|) for each action type in the domain.
Let there be a parameterized ground action a(o) that
affects a set of state-variables Pa(o). Let args(P) denote a
function that returns the arguments of predicate P . Then,
the score of action a(o) is computed as score(a(0)) =
ADtype(a)

(
maxpoolP∈Pa(o)

(ne(args(P))), ge
)
, where

type(a) returns the type of action a. To get a policy,
softmax is taken over all action scores.

3 SYMNET2.0: A NEW ARCHITECTURE

We formally discuss the shortcomings of SymNet’s instance-
graph and its architecture. We then propose SYMNET2.0
which overcomes these challenges by effective handling of
non-fluents and actions in its architecture to learn a general-
ized neural policy.

3.1 RUNNING EXAMPLE

Recon is an IPPC domain where the agent moves in a 2D
grid-world and is equipped with tools for detecting water,
life, and taking pictures. Certain locations on the grid are
marked as hazard and if the agent uses a tool on these

locations the tool gets damaged with a high probability.
Once a tool is damaged the agent has to return to the
base location where they can repair the tool. The agent is
positively rewarded for taking pictures of cells where life is
detected. The domain has:
Objects Types: x,y,obj,agent,tool.
Non-Fluents: objAt(obj, x, y), is_up(y1,y2),
is_down(y1,y2), is_right(x1,x2),
is_left(x1,x2), base(x, y), hazard(x, y) ,
detect_prob_damaged, damage_prob(tool),
detect_prob, camera_tool(tool),
life_tool(tool), water_tool(tool),
good_pic_weight, bad_pic_weight.
State-Fluents: agentAt(agent, x, y),
damaged(tool), waterChecked(obj),
waterDetected(obj), lifeChecked(obj),
lifeChecked2(obj), lifeDetected(obj),
picTaken(obj).
Actions: up(agent), down(agent),left(agent),
right(agent), useToolOn(agent, tool,
obj), repair(agent, tool)
We consider an instance with a 2 × 2 grid, where {x1,x2}
and {y1,y2} are of type x, respectively y. There is one agent
ag1, two tools {t1,t2}, one object {o1} and hazard(x1,
y2) and objAt(o1, x2, y1) are True.

3.2 SHORTCOMINGS IN SYMNET

As motivated in Section 1, SymNet makes certain design
choices which results in sub-optimal performance on several
planning problems. First, since its instance graph is derived
from the underlying DBN, it is incapable of capturing im-
portant information present in the RDDL description in the
form of parameterized non-fluents. Specifically, SymNet’s
instance graph can only incorporate information about those
non-fluents whose arguments also appear in a state-fluent;
for all others, the information is compiled away. Second,
the score of each action is decided solely on the basis of
what state-variables the action affects. This means that any
action arguments which do not appear in state-fluents af-
fected by the action will have no impact on the action score,
resulting in action non-identifiability as demonstrated by the
following proposition. Given an action a(o), we will use the
notation Pa(o) to denote the set of state-variables (fluents)
affected by a(o).

Proposition 1. Let there be two actions a(o1) and a(o2) of
action type type(a), where o1 ̸= o2. Let both actions affect
the same set of state-variables i.e. Pa(o1) = Pa(o2). Then,
the scores computed by SymNet for both of these actions
will be identical. [see Appendix for a proof]

In our example, non-fluent objAt(obj,x,y) indicates
that the object obj is present at the location x,y, but since
there is no state-fluent with this set of arguments, the ground-
ing of this object tuple is never represented explicitly in

the instance graph. Hence, the network may not general-
ize well to instances where objects are present at different
locations than those seen during training. Further, there is
an action useToolOn(agent,tool,obj) which says
that agent uses tool on obj. Since this action only af-
fects state fluents with object tuple obj, the embedding for
tool is not incorporated during action decoding, resulting
in an identical score for two actions applying different tools
to the same object.

Because of above issues, SymNet results in learning sub-
optimal policies which do not transfer well to new instances
for several domains. Next, we describe our approach which
can handle these shortcomings in a comprehensive manner.

3.3 OUR APPROACH

To handle these shortcomings we will make two changes, 1)
we add a set of new graphs to SymNet, and 2) we add new
inputs to the action decoder. We explain these details next.

Adding Position-based Graphs: On top of graphs in Sym-
Net, we create a new set of graphs {Gp1, . . . , Gp|Ar|} that
capture what object comes at what position in a state-
variable or non-fluent. Hence, we now have Gsym2 =
{Gd, Ga1 . . . , Ga|A|, Gp1, . . . , Gp|Ar|}, where |Ar| is the
maximum arity of any predicate in the domain.

Intuitively, these new graphs capture the relationship be-
tween object tuples in the instance, which could be part of
a state-fluent or a non-fluent, and their individual object
arguments. There is a different graph for each position that
an argument could appear in, in order to capture the relative
ordering of arguments. We next describe the set of nodes
and edges for each of the graphs in Gsym2,

1) Object Tuple Nodes: For each osf ∈ OSF we add a
vertex u to each graph in Gsym2 with label osf . Note that
these nodes are the same as those in SymNet’s instance-
graph. Similarly, for each onf ∈ ONF we add a vertex
v to each graph in Gsym2 with label onf . 3 These nodes
are added to capture the missing information available in
non-fluents which is not covered by SymNet.

2) Singleton Object Nodes: Finally, for each õ ∈ O a vertex
w with label õ is added to each graph in Gsym2 (if it is not
already added in the previous step). These new singleton
object nodes are created for message passing to and from
non-fluent based nodes. As a side benefit, we will see later
that these singleton object nodes will also be helpful in
removing action non-identifiability.

For each object-tuple o ∈ OSF ∪ ONF , and for each ob-
ject o[i] ∈ O appearing at position i in o, we add edges
e(o, o[i]) and e(o[i], o) in Gpi. This means, each graph
in {Gp1, . . . , Gp|Ar|} has bidirectional edges that capture

3In order to be memory efficient, we add these nodes only for
non-fluents taking non-default value.

Figure 1: (left): Graph capturing action-independent effects (ref. 2.4), Gd; (middle): one of the six action induced graphs
(ref. 2.4), Gdown, for the down action; (right): one of the three position-based graphs (ref. 3.3), Gp2, for the second position.
All nodes have a self loop (not shown for visual clarity). Red nodes are present in both SYMNET2.0 and SymNet, where as
blue nodes are present only in SYMNET2.0. Position-based graphs, e.g., Gp2, are present only in SYMNET2.0.

whether an object occurs at position i of any object-tuple
(of any state-variable or non-fluent). Separate adjacency for
each position is used to preserve ordering of objects in an
object-tuple. This helps in preserving semantic meaning in
predicates like is_up(a,b) where ordering of a and b
matters, hence, is_up(a,b) and is_up(b,a) should
be treated differently. Figure 1 shows the instance graphs
of SymNet and SYMNET2.0 for our running example. We
refer to the original paper of SymNet Garg et al. [2020] for
construction of Gd and Gdown. Gp2 captures what objects
appear as 2nd argument of a state-fluent/non-fluent, e.g., x1

is connected to (ag1, x1, y1) and (ag1, x1, y2).

Node Features: All newly constructed graphs have the same
set of input node features, which are described as follows:

1) State-Fluent Features: For each parameterized state
predicate type P , we add a feature to every node v. For each
grounding P (o) of P , the node feature of o that corresponds
to P is set to the value of P (o) fetched from the current
state. For all other object tuples which do not appear as
groundings of P this feature is set to the default value of
P from the domain file. We denote the set of the resulting
features with hSF (v).

2) Non-Fluent Features: For each parameterized non-fluent
predicate type N , we add a feature to every node v. For each
grounding N(o) of N , the node feature of o that corresponds
to N is set to the value of N(o). The value is fetched from
the instance description for the latter, and from the domain
description for the former. For all other object tuples which
do not appear as groundings of N this feature is set to the
default value of N from the domain file. We denote the set
of the resulting features with hNF (v).

3) Global Features: Unparameterized state-fluents and non-
fluents represent global properties relevant to all nodes,
hence, these are added as features to every node. The values

are fetched from the current state for state-fluents and from
the instance description for non-fluents. Let these features
be denoted by hG(v).

4) Type Features: For each node v with label o, we create
a one-hot encoding vector hTY (v) representing the type
of the node in the instance-graph(s). We define the type
of each object-tuple o = (o[1], . . . , o[l]) as type(o) =
(type(o[1]), . . . , type(o[l])) where the type operator is over-
loaded to return the type of object given as input to it.

The overall node feature of a node v is represented as:
h(v) = concat(hSF (v), hNF (v), hG(v), hTY (v)).

Proposition 2. Let u and v be two nodes with label ou and
ov corresponding to object tuples of some state-variables
in Gsym. Let dsym(u, v) denote the minimum distance be-
tween nodes u and v in any of the graphs in Gsym and let
dsym2(u, v) denote the minimum distance between nodes u
and v in any of the graphs in Gsym2. Then, dsym2(u, v) ≤
dsym(u, v). [see Appendix for a proof]

Proposition 2 shows that Gsym2 can have shorter distances
among nodes in the graph. This can result in better message
passing as also demonstrated in Section 4.2.3.

Node Embedding: We use the similar GAT-based ar-
chitecture as in SymNet to compute node embeddings
for each graph in Gsym2. Like in SymNet, we establish
a correspondence between nodes in different graphs
having the same label, i.e., which correspond to the
same object tuple. A final node embedding ne(v) for a
node v (representing all the nodes in different graphs
having the same label) is constructed by: ne(v) =
mlp

(
concat(GATd(Gd)[v], . . . , GATa|A|(Ga|A|)[v], . . . ,

GATp|Ar|(Gp|Ar|)[v])
)
. To represent the complete state, a

global embedding ge is then computed as a maxpool over
all node embeddings as: ge = maxpoolv∈V (ne(v)), V

being the set of all nodes.

Action Decoding: To address the issue with SymNet’s de-
coding, while computing the score of a parameterized action
a(o), we also give as input the node embeddings of each
object occurring as a parameter in a(o) along with the node
embeddings of the nodes it affects. This leads to unique
identification of each action as its parameters uniquely
identify it. Formally, let there be a parameterized ground
action a(o) that affects a set of state-variables Pa(o) and
let o = (o[1], . . . , o[n]) then, the score score(a(o))
is given as: ADtype(a)

(
ne(o[1]), . . . , ne(o[n]),

maxpoolP∈Pa(o)
(ne(args(P))), ge

)
. This implies

that scores computed by SYMNET2.0 for two actions
a(o1) and a(o2) with o1 ̸= o2 and Pa(o1) = Pa(o2) (ref.
Proposition 1), will (in general) be different from each other
(follows from the formula used for score computation).

3.4 TRAINING ALGORITHM

We use a two phase process to train SYMNET2.0 using
imitation learning. In the first phase, referred to as dataset
generation, for each training instance in the set of train-
ing instances Itr we use the PROST [Keller and Eyerich,
2012] planner, a state-of-the-art UCT-based online proba-
bilistic planner, to generate a set of trajectories τ1, . . . , τM ,
where each trajectory is a sequence of state-action pairs
⟨s0, a0, . . . , sH−1, aH−1⟩. To compute dataset Di we first
compute the union of all state-action pairs among all tra-
jectories. Since PROST is a sampling-based planner with
time-limited lookahead, different trajectories can potentially
contain state-action pairs (s, ai) and (s, aj), i.e. pairs which
share the same state, but where a different action is applied.
This may cause problems for the underlying neural learner.
We circumvent this by only keeping the action which occurs
most frequently for a given state and leave the exploration
of other solutions for the future work.

In the second phase, referred to as neural learning, SYM-
NET2.0 is trained using supervised learning using the
dataset generated in Phase 1 above. During training, we
divide each Di into batches and we consume all batches
of Di before moving to the dataset of the next instance. A
cross-entropy based loss is used during training. During
inference we take an argmax over the action distribution
to decide the action to be taken. Recall that the underlying
GAT as well as the action decoder in SYMNET2.0 (and
SymNet) share their respective parameters, making weight
learning independent of a specific instance, and hence, these
architectures seamlessly generalize to train/test instances of
different sizes. We note that in the work done by Garg et al.
[2020], SymNet was trained using an RL based loss. For a
fair comparison, we experiment with SymNet using both
kinds of losses, i.e., an RL based loss and imitation learning
based loss, as described above.

3.5 REPRESENTATIONAL CAPABILITIES

SymNet is a special case of SYMNET2.0 in the following
sense: (a) We set all the weights of GATs applied on the
position-based Graphs ({Gp1, . . . , Gp|Ar|}) to 0 rendering
them inactive. We note that since there are no new edges
added in the DBN-based graphs ({Gd, Ga1, . . .Ga|A|}), any
singleton nodes added in SYMNET2.0 do not participate in
the message passing in these graphs. (b) We zero out the
node embedding of any node which do not correspond to a
node embedding for a state-fluent. Then, it is easy to see that
the architecture SYMNET2.0 reduces to that of SymNet.

If the path length required for the propagation of relevant in-
formation required for learning an optimal policy is greater
than the message passing depth then there is no possibil-
ity of finding such an optimal policy. Proposition 2 shows
that SYMNET2.0, due to its architecture, never increases
this required path length compared to SymNet. Hence, any
policy which can be represented optimally by SymNet can
also be represented by SYMNET2.0. However, the theoret-
ical question that given a sufficient number of messaging
passing steps, is it always possible for SYMNET2.0 to rep-
resent/learn the optimal policy for RDDL RMDPs, is still
open and a direction for future work. Recently, Ståhlberg
et al. [2022] concluded that generalized policies that can not
be written in two-variable counting logic (C2 logic) can not
be represented/learned using Graph Neural Networks. Char-
acterizing and finding RDDL domains where the optimal
policy can be written in C2 logic however is still an open
problem to the best of our knowledge.

4 EXPERIMENTS

With our experiments, we want to answer three key ques-
tions. (1) IPPC performance: does SYMNET2.0 result in
better performance on IPPC instances compared to Sym-
Net? (2) how well does SYMNET2.0 generalize to instances
that go far beyond the size of the largest IPPC instances,
compared to other approaches? (3) how well does SYM-
NET2.0 generalize to instances where there is a significant
difference between the non-fluents of the test instance and
the non-fluents seen during training?

4.1 EXPERIMENTAL SETUP

Domains: We evaluate all models on twelve IPPC 2011
and 2014 domains: Academic Advising (Acad), Crossing
Traffic (CT), Game of Life (GoL), Navigation (Nav), Skill
Teaching (Skill), Sysadmin (Sys), Tamarisk (Tam), Traf-
fic, Wildfire (Wild), Recon, Triangle Tireworld (TT) and
Elevators (Elev) (ref. Appendix for domain descriptions).
For each domain, we pick IPPC instances 1-3 as training
instances, validate on instance 4 and test on instances 5-10
(unless stated otherwise). We validate on instance 4 by eval-

uating the checkpoints saved during training and picking
the one with the best reward for final testing.

Algorithms & Settings: SymNet is the only published work
for the task of training a generalized neural policy for RDDL
RMDPs. It uses RL to train, which, in our preliminary ex-
periments, suffers from exploration issues, due to the sparse
rewards inherent to many IPPC domains. Since SYMNET2.0
is trained using imitation learning (IL), we create a stronger
baseline by training the SymNet architecture also with the IL
data. We name this system SymNet-IL. To construct IL data,
for each training instance, we run PROST4 in its default
setting and collect 100 trajectories, which are converted to
(state, action) pairs and used as IL training data.

SymNet is trained for 12 hours (as per original paper’s
setting). SYMNET2.0 and SymNet-IL are trained for 500
epochs with a maximum allowed training time of 12 hours
(for parity). However, in practice, both IL-based models are
much faster to train and take no more than 7 hours training
(including data generation) in any domain.

We are guided by the literature on domain independent
planning, where the goal is to develop a single planner
that can work on any domain. So, we do not apply any
domain specific hyperparameter tuning, and use a fixed
neighborhood size of 1 in the GAT for all domains. Section
4.2.1 briefly discusses the effect of this hyperparameter.

Finally, we also compare against PROST. We emphasize
that any direct comparison with PROST is not meaningful,
as PROST is an online planner that uses interleaved plan-
ning and execution and the other three models are offline
planners. Note that the neural (offline) planners require only
a forward pass for each step of execution and hence are
very fast during testing. In contrast, PROST is evaluated in
its default setting on test instances. Nevertheless, we still
include the comparison with PROST in terms of rewards
obtained to gain a deeper insight into our results (generally,
the expectation is that PROST will perform better as it can
perform target interleaved exploration for the states that are
actually reached). This implies that at test time it will be
slower than the other approaches, but its overall training plus
test time can still be lower. We do not report comparison of
running times due to the aforementioned reasons.

Evaluation Metric: We follow existing literature on neural
MDP solvers [Bajpai et al., 2018, Garg et al., 2019, 2020]
and use the evaluation metric (α) that outputs a number
between 0 and 1, with 0 denoting a performance equal to
random, and 1 denoting the best reward amongst all com-
parison approaches. In more detail, for a given domain, we
run the train-validate-test cycle 3 times for each model m
(neural models, PROST, and random policy). For the rth

run of m, we execute its policy for 200 episodes on each
test instance i, and store the average long term reward as

4https://github.com/prost-planner/prost

V (m, i, r). The maximum value of V (m, i, r) is denoted
as Vmax(i), and Vrand(i) is the long term reward of the
random policy.

Next, we assess the relative performance of a policy by com-
puting a normalized metric α(m, i, r) = V (m,i,r)−Vrand(i)

Vmax(i)−Vrand(i)
.

To estimate the performance of a model m on a domain, we
compute α(m) = 1

|r|
∑

r
1
|i|

∑
i α(m, i, r). If this metric is

1, that means that it outputs the best score in every instance.
A negative value denotes that it outputs worse than random
policies on average.

4.2 RESULTS

Table 1 reports our main result – all models tested on 12
IPPC domains in the setting described above. Each (m, d)th

entry represents α(m): the performance of algorithm m
on domain d. The last column shows the mean over all
12 domains. Results of PROST are in gray color, as those
numbers are not suitable for a direct comparison, but give
a deeper insight into the overall performance quality. The
bold values show the neural model with maximum α(m).

Overall, SYMNET2.0 outperforms SymNet-IL and RL
based SymNet by vast margins of +22 and +36 points,
respectively. In particular, SYMNET2.0 is better than the
improved baseline SymNet-IL in 10 out 12 IPPC domains,
and very close in the eleventh (TT). SymNet-IL gets supe-
rior results compared to SymNet, underscoring the difficulty
in RL based training, and the value of imitation learning. An-
other noteworthy point is that in no domain is SYMNET2.0’s
performance close to or worse than random (see Recon and
Skill for comparison with SymNet-IL), suggesting that the
new instance graph with a better treatment of non-fluents
improves the overall model generalization. A paired T-test5

comparing the mean rewards across 72 instances (12 do-
mains with 6 test instances each) shows that our gain over
SymNet is statistically significant with a p-value of 0.9994
(see Appendix for details).

4.2.1 Ablation on Neighborhood Size

We determine the influence of neighborhood size of the
GAT, by varying this hyperparameter from 1 to 3. For both
Symnet-IL and SYMNET2.0, increasing the neighborhood
size to 2 increases the performance in some domains (TT,
Acad, Elev, Skill and Recon), but decreases performance in
others, causing an overall decrease in performance. For best
performance on a domain, this hyperparameter tuning could
be easily done on the validation instance. Detailed results
are available in the Appendix in Table 2. For the remainder,
unless otherwise stated, we set this parameter to 1.

5https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.ttest_rel.html

IPPC Test Instances 5-10

Model TT CT Acad Elev Tam Nav GoL Skill Sys Wild Traffic Recon Mean

PROST 0.53 0.86 0.47 1.00 0.94 0.88 1.00 1.00 0.65 0.70 1.00 0.99 0.84
SymNet 0.00 0.37 0.58 0.31 0.55 0.53 0.20 -0.40 0.62 0.27 0.00 0.03 0.26
SymNet-IL 0.83 0.91 0.72 0.38 0.63 0.56 0.20 -0.50 0.49 0.72 -0.18 0.03 0.40
SYMNET2.0 0.81 0.95 0.82 0.44 0.92 0.47 0.29 0.43 0.94 0.77 0.28 0.30 0.62

Larger Instances

Model TT CT Acad Elev Tam Nav GoL Skill Sys Wild Traffic Recon Mean

PROST 0.09 0.55 0.39 1.00 0.90 0.44 0.91 1.00 0.36 1.00 1.00 0.78 0.70
SymNet 0.00 0.14 0.60 0.15 0.43 0.41 0.60 -0.82 0.51 0.09 0.25 0.02 0.20
SymNet-IL 0.96 0.62 0.63 0.22 0.52 0.19 0.25 -0.79 -0.65 0.22 0.03 0.02 0.19
SYMNET2.0 0.95 0.89 0.77 0.19 0.94 0.95 0.84 0.34 0.46 0.20 0.39 0.32 0.60

Table 1: Comparison between SYMNET2.0 and the baselines on 12 IPPC domains. All models are trained on (smaller)
instances 1-3 and validated on instance 4. Upper part shows results on IPPC test instances 5-10 and lower part shows results
on much larger instances than those in the IPPC. Bold values show the best performer among all neural models.

Figure 2: Performance trends on instances of increasing size: PROST deteriorates, but SYMNET2.0 remains robust.

4.2.2 Offline vs. Online Planning on Larger Instances

When comparing results of the online planner (PROST)
with SYMNET2.0, we find that, overall, generalized neural
policies are not able to match up to interleaved planning and
execution. This is not entirely surprising, since the latter can
target exploration based on specific observed outcomes of
actions taken earlier. However, interestingly, we find that
in a few domains (e.g., TT, Acad), SYMNET2.0 is able to
outperform PROST. We hypothesize that this could be due to
SYMNET2.0’s ability to generalize well to large instances.

To test this hypothesis, we create four new test instances6 for
each domain (we call them instances 11 to 14), with sizes
much larger than IPPC instances.7 For some of the domains
our instance#14 has three times the number of objects of
IPPC’s instance#10. For example, TT instance#10 has 66
grid cells, where our instance#14 has 190. Similarly, Acad
instance#10 has 30 courses, where our instance#14 has 90.
See Appendix for details on exact sizes. Additionally, we

6We will release these instance files for further research.
7generated using the official scripts provided by the IPPC at

https://github.com/ssanner/rddlsim

increase the horizon to 100 for these larger instances.

Table 1 shows the comparison. We first notice that the gap
between SymNet-IL and SYMNET2.0 increases drastically,
when tested on larger instances (compared to previous exper-
imental setting). This suggests that SYMNET2.0 generalizes
more robustly to large problem sizes. We then compare the
same gaps between PROST and SYMNET2.0, and find that,
in aggregate, SYMNET2.0 closes in on PROST, and reduces
the performance gap. In 8 of 12 domains (TT, CT, Acad,
Tam, Nav, GoL, Traffic, Recon) the gap is reduced, whereas
it gets worse in only 4 domains.

Figure 2 shows that PROST’s relative performance starts to
drop, as size increases. Two interesting cases are GoL and
Tam, where in aggregate SYMNET2.0 performs worse than
PROST, but in the figure, we observe that for the largest
instances (13 and 14), it starts to outperform PROST. We
conjecture that the reason for such results is that larger
instances have larger state spaces, branching factors and
reward horizon, due to which UCT based online planners
like PROST may struggle to find high reward trajectories.
In such scenarios, the size-invariance of generalized neural
policies makes their additional benefit even more evident.

Figure 3: Coverage of SYMNET2.0 (left) and SymNet-IL
(right) on grid size 20× 20 when trained on grid size 5× 5.

4.2.3 Generalization to Changing Non-fluents

Non-fluents of a domain control the underlying structure and
parameters that affect the transition model and are critical
for finding a good policy for a given instance. The non-
fluent values vary from instance to instance, and hence it
is important for a generalized policy to be robust to these
changes. In most IPPC domains, these non-fluents vary con-
siderably and hence our results in Table 1 already provide
some evidence for our model’s ability to adapt. However,
we hypothesize that the gains should not be attributed only
to a better non-fluent handling, but also to the newly added
singleton nodes. We believe that these singletons facilitate
better localization and sharing of information.

To verify this, we create a simple variation of the Navigation
domain (without action stochasticity) and vary the goal non-
fluents. Similar to a regular Navigation domain, the robot
always starts at the lower right corner of a 2D-grid and has
to reach a goal using five actions: North, South, East, West
and noop. It gets a reward of 0 on reaching the goal and
-1 otherwise. A state-fluent robotAt(x,y) and a non-
fluent goalAt(x,y) specify the locations of robot and
goal respectively. In IPPC instances, the goal non-fluent is
always at the upper right corner. However, in our experiment,
we test the model by marking each grid cell as the goal in
turn – essentially checking the model’s ability to learn to
solve simple path planning problems.

We train SymNet-IL and SYMNET2.0 on instances of size
5× 5. The dataset for this experiment was generated using
a human policy rather than PROST. To factor out any lack
of diversity, we create 24 training instances, one for each
grid cell as a goal. For validation we create three instances
of size 11 × 11 where the goal is kept at locations (4, 4),
(4, 7), and (5, 5) (ref. Figure 3) and the model with the best
average reward on these is selected. For testing, a total of
399 instances of size 20×20 are used. In Figure 3, we report
the fraction of test instances for both the models where the
robot is able to reach the goal averaged over three different
runs. Each cell has one of the four colors: black, dark grey,
light grey and white, denoting the coverage ratios of 0/3,
1/3, 2/3 and 3/3, respectively, for instances where the goal is
located at that cell. Clearly, the coverage for SYMNET2.0

is enormously higher than for SymNet-IL.

Further analysis reveals that the instance graphs of both
models already incorporate the knowledge of goal(x,y)
as a feature in node (x,y). Hence, the better coverage
of SYMNET2.0 cannot be due to a better handling of non-
fluents. The main difference in the two graphs is the addition
of singleton nodes and corresponding edges between object
tuple nodes (x,y) in the position based graphs in Gsym2.
We believe that these singleton nodes lead to better infor-
mation exchange among nodes. Nodes x and y can act as
representatives of rows and columns: if the goal is at lo-
cation (x,y), then the node x could learn features like
robotAt(x,*) ∧ goalAt(x,*) (* represents don’t
care), i.e., a feature that signifies whether the robot is in the
same column (analogously row) as the goal. In case of Sym-
Net, singleton nodes are absent, hence it requires message
passing steps of arbitrary length to localize the goal, thus,
hurting its generalizability.

5 CONCLUSION

We present SYMNET2.0, a neural architecture for learning
generalized policies for relational MDP domains expressed
in RDDL. Its key technical contribution is a better han-
dling of non-fluents by creating nodes for object tuples that
occur as arguments to a non-fluent. It also creates single-
ton object nodes, when not present, and uses these in the
action decoder, which mitigates the problem of action non-
identifiability in the previous SymNet system. Extensive
experiments reveal that not only is SYMNET2.0 vastly su-
perior to SymNet, it is also more robust to large instance
sizes, and generalizes well with changing non-fluents. Di-
rections for future work include combining PROST with
SYMNET2.0, and extending it to other settings such as Con-
current MDPs [Mausam and Weld, 2004] and POMDPs.

Acknowledgements

Vishal Sharma is supported by TCS Research Scholar Fel-
lowship. Mausam and Parag Singla are/were supported by
IBM SUR awards, and Visvesvaraya Young Faculty Fellow-
ship by Govt. of India. Mausam is supported by grants from
Huawei, Google, Bloomberg, and a Jai Gupta Chair Fellow-
ship. Parag Singla was supported by the DARPA Explain-
able Artificial Intelligence (XAI) Program #N66001-17-2-
4032. We thank IIT Delhi HPC facility8 for computational
resources. We thank Gobind Singh and Siddhant Mago for
discussions during the initial phase. Any opinions, findings,
conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the
views or official policies, either expressed or implied, of the
funding agencies.

8https://supercomputing.iitd.ac.in

References

Aniket Bajpai, Sankalp Garg, and Mausam. Transfer of
deep reactive policies for MDP planning. In Annual
Conference on Neural Information Processing Systems
(NeurIPS), pages 10988–10998, 2018.

Blai Bonet and Hector Geffner. Labeled RTDP: improving
the convergence of real-time dynamic programming. In
Enrico Giunchiglia, Nicola Muscettola, and Dana S. Nau,
editors, Proceedings of the Thirteenth International Con-
ference on Automated Planning and Scheduling (ICAPS
2003), June 9-13, 2003, Trento, Italy, pages 12–21. AAAI,
2003.

Blai Bonet and Hector Geffner. Features, projections, and
representation change for generalized planning. Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
2018.

Blai Bonet, Guillem Frances, and Hector Geffner. Learning
features and abstract actions for computing generalized
plans. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 33, pages 2703–2710, 2019.

Craig Boutilier, Raymond Reiter, and Bob Price. Symbolic
dynamic programming for first-order mdps. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
volume 1, pages 690–700, 2001.

Alan Fern, Sungwook Yoon, and Robert Givan. Approxi-
mate policy iteration with a policy language bias. Ad-
vances in neural information processing systems, 16,
2003.

Sankalp Garg, Aniket Bajpai, and Mausam. Size indepen-
dent neural transfer for RDDL planning. In Proceedings
of the International Conference on Automated Planning
and Scheduling, volume 29, pages 631–636, 2019.

Sankalp Garg, Aniket Bajpai, and Mausam. Symbolic net-
work: generalized neural policies for relational mdps. In
International Conference on Machine Learning, pages
3397–3407, 2020.

Edward Groshev, Aviv Tamar, Maxwell Goldstein, Sid-
dharth Srivastava, and Pieter Abbeel. Learning gener-
alized reactive policies using deep neural networks. In
2018 AAAI Spring Symposium Series, 2018.

Carlos Guestrin, Daphne Koller, Chris Gearhart, and Neal
Kanodia. Generalizing plans to new environments in
relational mdps. In Proceedings of the 18th international
joint conference on Artificial intelligence, pages 1003–
1010, 2003.

Murugeswari Issakkimuthu, Alan Fern, and Prasad Tade-
palli. Training deep reactive policies for probabilistic
planning problems. In Proceedings of the International

Conference on Automated Planning and Scheduling, vol-
ume 28, 2018.

Thomas Keller and Patrick Eyerich. Prost: Probabilis-
tic planning based on uct. In Twenty-Second Interna-
tional Conference on Automated Planning and Schedul-
ing, 2012.

Emil Keyder and Hector Geffner. The hmdpp planner for
planning with probabilities. Sixth International Planning
Competition at ICAPS, 8, 2008.

Andrey Kolobov. Integrating paradigms for approximate
probabilistic planning. In (ICAPS’09) 19th International
Conference on Automated Planning and Scheduling, Doc-
toral Consortium, 2009.

Andrey Kolobov, Peng Dai, Mausam Mausam, and Daniel
Weld. Reverse iterative deepening for finite-horizon mdps
with large branching factors. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing, volume 22, pages 146–154, 2012.

Mausam and Andrey Kolobov. Planning with Markov Deci-
sion Processes: An AI Perspective. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2012.

Mausam and Daniel Weld. Solving relational MDPs with
first-order machine learning. In Proceedings of the Work-
shop on Planning under Uncertainty and Incomplete In-
formation, at ICAPS, 2003.

Mausam and Daniel S. Weld. Solving concurrent markov
decision processes. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence (AAAI),
pages 716–722, 2004.

Sriraam Natarajan, Saket Joshi, Prasad Tadepalli, Kristian
Kersting, and Jude Shavlik. Imitation learning in rela-
tional domains: A functional-gradient boosting approach.
In Twenty-Second International Joint Conference on Arti-
ficial Intelligence, 2011.

Scott Sanner. Relational dynamic influence diagram lan-
guage (rddl): Language description. Unpublished ms.
Australian National University, 32:27, 2010.

Simon Ståhlberg, Blai Bonet, and Hector Geffner. Learning
general optimal policies with graph neural networks: Ex-
pressive power, transparency, and limits. Proceedings of
the 32nd International Conference on Automated Plan-
ning and Scheduling, 2022.

Sam Toyer, Felipe Trevizan, Sylvie Thiébaux, and Lexing
Xie. Action schema networks: Generalised policies with
deep learning. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. International Conference on Learn-
ing Representations, 2018.

Håkan LS Younes, Michael L Littman, David Weissman,
and John Asmuth. The first probabilistic track of the
international planning competition. Journal of Artificial
Intelligence Research, 24:851–887, 2005.

	Introduction
	Background and Related Work
	Relational MDPs and RDDL
	Transfer Learning for RMDPs
	Related Approaches
	SymNet

	SymNet2.0: A New Architecture
	Running Example
	Shortcomings in SymNet
	Our Approach
	Training Algorithm
	Representational Capabilities

	Experiments
	Experimental Setup
	Results
	Ablation on Neighborhood Size
	Offline vs. Online Planning on Larger Instances
	Generalization to Changing Non-fluents

	Conclusion

