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Figure 1: Malicious attackers can collect users’ images as reference images and use diffusion models
to achieve malicious purposes. Our system, called Anti-reference, applies imperceptible perturbations
to user-uploaded images before they are published, resulting in noticeable artifacts in images or
videos generated by reference-based methods and fine-tuning approaches. This makes it easy to
recognize them as AI-generated, thus protecting the images.

Abstract

Diffusion models have revolutionized generative modeling with their exceptional1

ability to produce high-fidelity images. However, misuse of such potent tools2

can lead to the creation of fake news or disturbing content targeting individuals,3

resulting in significant social harm. In this paper, we introduce Anti-Reference,4

a novel method that protects images from the threats posed by reference-based5

generation techniques by adding imperceptible adversarial noise to the images.6

We propose a unified loss function that enables joint attacks on fine-tuning-based7

customization methods, non-fine-tuning customization methods, and human-centric8

driving methods. Based on this loss, we train a Adversarial Noise Encoder to predict9

the noise or directly optimize the noise using the PGD method. Our method shows10

certain transfer attack capabilities, effectively challenging both gray-box models11

and some commercial APIs. Extensive experiments validate the performance of12

Anti-Reference, establishing a new benchmark in image security.13

1 Introduction14

Customized diffusion models can be divided into methods that require training, Ruiz et al. (2023);15

Hu et al. (2021); Gal et al. (2022); Kumari et al. (2023) and those that do not, such as IP-Adapter16

(Ye et al., 2023a), Instant-ID (Wang et al., 2024b). Reference-based methods are widely used in17

customized image and video generation, especially in human-centered video generation, including18

portrait video creation methods(Tian et al., 2024; Chen et al., 2024; He et al., 2024; Xie et al., 2024),19

and human animation (Xu et al., 2024; Hu, 2024) , which have attracted significant attention due to20

their practical value in creating digital human avatars and enhancing film production.21

Reference-based methods that require no training offer high convenience and efficiency, but when22

misused, they can have severe negative social impacts, such as creating fake news or pornographic23
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images targeting individual victims. Existing studies use encoder attack (Salman et al., 2023) and24

diffusion attack (Van Le et al., 2023; Liang et al., 2023) to protect images from the threats posed by25

methods requiring fine-tuning, using PGD (Madry, 2017) optimization to generate adversarial noise,26

but this approach requires several minutes to protect a single image, severely limiting its practical27

application. Moreover, these methods are largely ineffective against non-trainable Reference-based28

generation methods. Therefore, developing an efficient method to protect personal images from the29

threats of Reference-based generation has become an urgent priority.30

Reference-based methods provide additional conditions through a Reference Image to enable cus-31

tomized generation. These methods can be divided into two types based on their implementation: one32

type embeds Reference features in the cross-attention layer of the denoising network using an adapter,33

such as IP-Adapter (Ye et al., 2023a); the other type embeds reference features in the self-attention34

layer of the denoising network using ReferenceNet. The approach of ReferenceNet is widely used35

for image customization generation (Team, 2023; Zhang et al., 2024b,c), Image2Video (Chen et al.,36

2023; Zhang et al., 2023), and face animation generation (Tian et al., 2024; Chen et al., 2024; He37

et al., 2024; Xie et al., 2024), and body-driven tasks (Xu et al., 2024; Hu, 2024). However, due to38

the variety of existing Reference-based generation methods, attacking a specific method has limited39

practical significance, as attackers can easily switch methods to bypass protection. Therefore, the40

motivation of this paper is to propose a universal adversarial noise generation method to address the41

threats posed by mainstream Reference-based methods.42

In practical image protection scenarios, protection methods need to address several challenges. Firstly,43

universality is a key challenge. Since Reference-based methods have many different implementations,44

and models trained on different datasets have different feature spaces, the same attack strategy45

may have very different effects on different models. Secondly, efficiency is also crucial. Existing46

methods like Anti-DreamBooth (Van Le et al., 2023) , which use PGD optimization, usually require47

hundreds of steps and significant time, severely limiting their feasibility for real-time applications.48

Finally, black-box or gray-box transferability and robustness are also central challenges. In practical49

applications, the structures and parameters of proprietary APIs like EMO (Tian et al., 2024) , Animate50

anyone (Hu, 2024) are not accessible, so attack methods must have good gray-box transferability.51

Additionally, the generated adversarial noise also needs to be robust enough to withstand common52

data augmentation operations and preprocessing steps.53

To address these challenges, this paper presents Anti-Reference, the first to protect images from54

the threats posed by mainstream reference-based methods and tuning-based customization methods55

through the forward process. We propose a Noise Encoder based on the ViT (Dosovitskiy, 2020)56

architecture, which predicts adversarial noise of the same size as the original image and overlays it to57

form a protected image. To achieve a universal attack on methods requiring fine-tuning and those58

that do not, we designed a unified loss function, using a weighted strategy to achieve joint attack59

effects across multiple tasks, and by limiting the noise range and regularization loss to ensure the60

invisibility of the noise. To enhance the robustness of adversarial noise, we also introduced some data61

augmentation techniques to ensure that the adversarial noise can withstand various data enhancements62

and preprocessing operations. As the model structures and weights of proprietary APIs are not63

accessible, directly attacking these models is usually not feasible. To overcome this hurdle, we created64

white-box proxy models that mimic the structure and behavior of these proprietary models, and we65

successfully implemented attacks on these proxy models, thereby achieving gray-box transferability66

attacks. Specifically, our adversarial samples have successfully transferred to closed-source APIs67

(such as Animate Anyone (Hu, 2024) and EMO (Tian et al., 2024)). Extensive experimental results68

demonstrate that Anti-Reference is highly effective in protecting images from potential security69

threats posed by reference-based generation methods and fine-tuning-based approaches.70

We summarize our main contributions as follows:71

• We introduce a universal method for attacking customized diffusion models for the first time,72

which is effective against both mainstream reference-based generation methods and those73

requiring fine-tuning.74

• We introduce an Adversarial Noise Encoder that executes attacks without the need for75

traditional PGD optimization, significantly reducing computational time and enhancing76

suitability for real-time applications.77
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• We have designed transferable adversarial samples that enable gray-box attacks on com-78

mercial APIs using white-box proxy models. These samples are robust, showing strong79

resistance to common image transformations.80

2 Related work81

2.1 Custmized Diffusion Model.82

Diffusion probability models Song et al. (2020); Ho et al. (2020) represent a class of advanced gener-83

ative models that reconstruct original data from pure Gaussian noise by learning noise distributions84

at different levels. These models excel in handling complex data distributions and have marked85

significant accomplishments across various fields such as image synthesis Rombach et al. (2021);86

Peebles & Xie (2023), image editing Brooks et al. (2023); Hertz et al. (2022), video generation Wu87

et al. (2022); Hu (2024), and 3D content creation Poole et al. (2022). A prominent example is Stable88

Diffusion Rombach et al. (2021), which utilizes a UNet architecture to iteratively produce images,89

demonstrating robust text-to-image capabilities after extensive training on large text-image datasets.90

DreamBooth Ruiz et al. (2023), Custom diffusion Kumari et al. (2023) and Textual Inversion Gal91

et al. (2022), adopt transfer learning to text-to-image diffusion models via either fine-tuning all the92

parameters, partial parameters , or introducing and optimizing a word vector for the new concept.93

LoRA (Low-Rank Adaptation) Hu et al. (2021) is a popular and lightweight training technique that94

significantly reduces the number of trainable parameters and is widely used for personalized or95

task-specific image generation.96

2.2 Reference-based Generation97

In addition to the aforementioned fine-tuning methods, finetuning-free customized generation methods98

can capture concepts from a single image and are widely used for tasks such as customized generation99

(Ye et al., 2023a; Mao et al., 2024; Zhang et al., 2024a), identity consistency maintenance (Wang100

et al., 2024b; Li et al., 2024), face-driven Tian et al. (2024); Chen et al. (2024); Xie et al. (2024), and101

body-driven tasks Xu et al. (2024); Hu (2024). These methods can be roughly categorized into the102

Adapter approach and the ReferenceNet approach based on how the reference image features are103

utilized. In the Adapter approach, the reference image is first processed by a pre-trained image feature104

extractor, typically CLIP (Radford et al., 2021) image encoder or ArcFace Deng et al. (2019), and then105

an adapter structure generates visual tokens applied to the cross-attention layers of the U-Net. The106

ReferenceNet approach emphasizes the effectiveness of integrating reference image features into the107

self-attention layers of LDM U-Nets, enabling customized generation while preserving appearance108

context. Image-to-video technology Chen et al. (2023); Zhang et al. (2023) uses ReferenceNet to109

maintain consistency between the generated results and the reference image. Magic Animate Xu110

et al. (2024) and Animate Anyone Hu (2024) combine ReferenceNet with pose control and temporal111

modules to achieve body-driven generation. EMO Tian et al. (2024), Ecomimic Chen et al. (2024),112

and X-Portrait Xie et al. (2024), among other talking-face methods, maintain identity consistency113

using ReferenceNet, generating fake videos from just a single photo. The misuse of Reference-based114

Generation methods can have severe consequences, making it urgent to protect images from the115

threats posed by such methods.116

2.3 Protective Perturbation against Diffusion.117

Protecting the security of personal images is of great significance Dong et al. (2023); Qiao et al.118

(2024); Dai et al. (2024) . To protect personal images such as faces and artwork from potential119

infringement when used for fine-tuning Stable Diffusion, recent research aims to disrupt the fine-120

tuning process by adding imperceptible protective noise to these images. Several methods have been121

developed to achieve this goal: Glaze (Shan et al., 2023) focuses on preventing artists’ work from122

being used for specific style mimicry in Stable Diffusion. It optimizes the distance between the123

original image and the target image at the feature level, causing Stable Diffusion to learn the wrong124

artistic style. AdvDM (Liang et al., 2023) proposes a direct adversarial attack on Stable Diffusion125

by maximizing the Mean Squared Error loss during the optimization process. This approach uses126

adversarial noise to protect personal images. Anti-DreamBooth (Van Le et al., 2023) incorporates127

the DreamBooth fine-tuning process of Stable Diffusion into its consideration. It designs a bi-level128

min-max optimization process to generate protective perturbations. Additionally,other research efforts129

(Wang et al., 2024a; Ye et al., 2023b; Zheng et al., 2023) have explored generating protective noise130

for images using similar adversarial perturbation methods.131
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The previously mentioned methods utilize adversarial noise to influence the fine-tuning process,132

preventing models from learning from tampered images. These techniques effectively target models133

that require fine-tuning. However, reference-based generation methods do not rely on fine-tuning but134

directly generate images from existing data, making these adversarial protections ineffective against135

them. Effective protection against reference-based generation attacks requires new strategies that136

can directly intervene in the image retrieval and matching mechanisms. Effective protection against137

reference-based generative attacks requires the development of new strategies.138
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Figure 2: Illustration of Anti-reference. To defend against customized generation attacks, we introduce
a loss function that guides the training of a noise encoder to produce adversarial perturbations,
effectively protecting source images.

3 Problem Definition139

Considering the practical implications of image infringement based on Stable Diffusion, it is essential140

to define the threat model in real-world scenarios. We consider two participants involved in fine-141

tuning Stable Diffusion using images: the "User" Alice and the "Photo Thief" Bob. Photo Thief142

Bob illicitly uses reference-based methods to exploit others’ photos for customized content, while143

User Alice, wishing to safeguard her images on social media, adds adversarial noise to disrupt Bob’s144

methods, aiming to induce severe artifacts in the generated content. Specifically, we explain the145

workflow of the two parties as follows:146

User Alice: Alice aims to protect her images from exploitation by Stable Diffusion by applying147

nearly imperceptible protective perturbations, while minimizing alterations to the original images.148

Her main challenge is the uncertainty of which methods Photo Thief Bob will use to fine-tune these149

protected images. She also needs to ensure that these protection measures remain effective even150

when the images undergo natural transformations such as cropping, compression, and blurring during151

dissemination.152

Photo Thief Bob: Bob downloads Alice’s photos and uses customized generation methods to create153

inappropriate content. Bob can choose any mainstream fine-tuning method, including but not limited154

to direct fine-tuning, LoRA, Textual Inversion, DreamBooth, or Custom Diffusion.155

The goal of this work is to add imperceptible adversarial noise to images, formalized as Iadv =156

I + noise, where I and Iadv represent the original and protected images, respectively. These images157

serve as inputs to customization methods, and the outputs Gen(I) and Gen(Iadv) are compared. If158

Gen(Iadv) exhibits significant distortion, the protection is considered successful. We achieve this by159

solving the following optimization problem:160

max
xadv∈M

d(Gen(I),Gen(Iadv)) subject to d′(I, Iadv) ≤ δ, (1)

where M indicates the natural image manifold, d and d′ denote image distance functions, and δ161

represents the fidelity budget. Through this optimization process, we aim to effectively safeguard162

images from unauthorized editing and translation while maintaining their fidelity.163

4 Method164

In Sec. 4.1, we present the overall framework, followed by details of the Noise Encoder (Sec. 4.2)165

and the loss function (Sec. 4.3). Sec. 4.4 describes PGD joint optimization, and Sec. 4.5 explains166

white-box proxy construction for gray-box attacks.167

4



4.1 Overall Method168

This section introduces the overall framework of the Anti-Reference method, as shown in Fig. 2. Our169

method consists of several key components: the Noise Encoder, a set of conditional modules, the170

Denoising Unet, and a differentiable data augmentation module. The Noise Encoder adds adversarial171

noise to the image, forming the protected image Iadv. The set of Reference Modules is a group of172

conditional control modules that serve as the target models for the attack.173

To protect images from the threats posed by tuning-free customization generation methods and driving174

methods, we selected the pre-trained ReferenceNet from Magic Animate and Ecomimic, as well as175

the Stable Diffusion Unet, as the target models for attacking the ReferenceNet route. Additionally,176

we chose the IP-Adapter as the target model for the Adapter route. The Denoising Unet utilizes177

the pre-trained Stable Diffusion 1.5 Unet, as it is the most commonly used base model for various178

customization generation methods. The protected image Iadv is fed into two components: the set179

of conditional modules and the Denoising Unet, where losses are calculated separately. To enhance180

the robustness of the adversarial noise against real-world scenarios, we propose a differentiable data181

augmentation module, which applies common data augmentations to Iadv .182

4.2 Adversarial Noise Encoder183

We propose an adversarial noise encoder (ANE) based on the Vision Transformer (ViT) Dosovitskiy184

(2020) to efficiently generate adversarial noise in the pixel space, protecting images from threats185

posed by generative models. The design of the encoder incorporates the following key technical186

details: ANE adopts the ViT architecture with 12 Transformer layers, a hidden size of 384, and187

6 attention heads. The input image is divided into 8×8 patches, making it well-suited for detailed188

feature extraction and adversarial noise predict. The sequence is processed through multiple layers of189

self-attention and feedforward network modules, resulting in feature vectors. ANE directly generates190

adversarial noise in the pixel domain instead of relying on latent space.191

To enhance robustness, we adopt adversarial training during the training process, including random192

cropping and scaling, JPEG compression, Gaussian noise, and color transformations. These data193

augmentation techniques improve the stability of the noise in real-world scenarios, ensuring its194

effectiveness even after preprocessing or compression. In the training process, to prevent noise from195

falling into local optima, noise amplitude is regulated through gradient constraints. The model is196

trained at a resolution of 512×512, maintaining alignment with the common settings of the target197

generative methods, thereby ensuring compatibility and effectiveness across various generation tasks.198

We found that if the conditional model and the denoising Unet shown in Fig. 2 are fixed, ANE tends199

to generate simple adversarial noise patterns (such as targeting specific vulnerabilities) rather than200

comprehensively robust noise. This “speculative" behavior may weaken the generator’s generalization201

ability. To address this, we employ a phased training approach to enhance ANE’s adaptability. In the202

first phase: the denoising Unet and three kinds of conditional models (IP-Adapter Ye et al. (2023a)203

and 3 ReferenceNet Chen et al. (2024); Team (2023); Xu et al. (2024) ) are fixed, and ANE is trained204

to identify effective attack strategies quickly. In the second phase: we randomly perturb the impact205

weights of the conditional models and switch between different customized models every 1000 steps206

during training, including replacing the Unet and attaching stylized LoRA Hu et al. (2021) plugins.207

We obtain these models from the Civitai civ community.208

4.3 Loss Function209

Diffusion Adversarial loss. In the context of diffusion, in Formula (1), which involves maximizing210

the difference between two images, is transformed into maximizing the difference in noise prediction.211

Anti-Dreambooth Van Le et al. (2023) was the first to adopt this approach, which was then utilized212

by subsequent methods Wang et al. (2024a); Ye et al. (2023b); Zheng et al. (2023). This means that213

we aim for the noise predicted by the model, ϵθ, to have the largest possible error compared to the214

actual noise ϵ, thereby disrupting the model’s denoising capability. The specific loss function can be215

defined as:216

Ladv = −Ex0,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥2

]
, (2)

where x0 is the original data, ϵ is noise sampled from a standard normal distribution, t is the time217

step representing the noise level, xt =
√
ᾱtx0 +

√
1− ᾱtϵ is the noisy image at time step t, ϵθ(xt, t)218

is the noise predicted by the model. This loss function is as same as diffusion training loss, but the219

objective is completely opposite.220
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Conditional Adversarial Loss. Conditional Adversarial Loss aims to attack reference-based cus-221

tomization generation methods and driving techniques. Specifically, we calculate the adversarial222

noise prediction loss when adversarial noise images are used as inputs for ReferenceNet or IP-adapter.223

This loss deviates the noise predicted by the denoising Unet from the ground-truth noise, under224

specific conditional features provided by either ReferenceNet or the IP-adapter. The conditional225

adversarial loss is formulated as follows:226

Lcon_adv = −Ex0,ϵ∼N (0,1),t,c

[
∥ϵ− ϵθ(xt, t, c)∥2

]
, (3)

c represents the features extracted from Iadv using ReferenceNet or IP-adapter. These features227

interfere with the denoising process by injecting signals into the Unet’s cross- or self-attention layers.228

Image Regularization Loss. To make the adversarial noise less perceptible, we calculate the Mean229

Squared Error (MSE) of the images before and after noise addition as the regularization loss.230

Lreg = MSE(I, Iadv) (4)

Total Loss. For joint attacks, a weighted loss formulation is employed to ensure a balanced attack231

performance across various tasks by balancing the impact across all contributions. The total loss,232

incorporating adversarial, conditional adversarial, and regularization losses, is defined as follows:233

Ltotal = wadv · Ladv +
∑
i

wcon,i · Lcon_adv,i + wreg · Lreg, (5)

where, wcon,i · Lcon_adv,i represents the weighted sum of conditional adversarial losses from different234

conditional modules. Each module i targets different conditional control tasks, and wcon,i is the235

specific weight assigned to the conditional adversarial loss for module i. This paper conducts joint236

training across four conditional modules: IP-Adapter Ye et al. (2023a), Reference-only Team (2023),237

Magic Animate Xu et al. (2024), and Ecomimic’s ReferenceNet Chen et al. (2024). This approach238

allows for tailored defenses against a range of adversarial manipulations facilitated by different attack239

modules, ensuring that the influence of each module is properly scaled according to its significance240

and effectiveness in the overall defense strategy.241

4.4 PGD Joint Optimization242

We introduce our Anti-Reference (PGD) method, where adversarial noise is optimized directly243

using PGD (Projected Gradient Descent). PGD iteratively perturbs the input image I within a244

predefined bound, ensuring the noise remains imperceptible while maximizing its impact on the245

model’s predictions. Unlike the Noise Encoder, which generates noise in a single pass, PGD updates246

the noise iteratively by calculating the gradient of the loss function with respect to the image. At each247

iteration, the adversarial noise is updated as:248

I
(k+1)
adv = ΠI+ϵ

(
I
(k)
adv + α · sign

(
∇

I
(k)
adv

Ltotal

))
, (6)

where, I(k)adv is the adversarial image at iteration k, α is the step size, and ϵ defines the perturbation249

bound. The projection ΠI+ϵ ensures the noise stays within the allowed limits.250

By optimizing both Ladv and Lcon_adv, PGD effectively disrupts both the diffusion process and251

conditional adversarial predictions. Our experiments show that PGD provides strong protection252

across various reference-based customization methods, with gradually increasing noise impact while253

preserving image quality. Although the Noise Encoder generates noise faster, PGD’s iterative process254

offers stronger protection across tasks at a higher computational cost, making it ideal for scenarios255

demanding maximum protection.256

4.5 Gray-box Transfer257

This section introduces proxy-based gray-box attacks, a method that generates adversarial samples258

using a white-box model with a structure similar to the target gray-box model or a closely related259

latent space. By training DiT to generate adversarial samples on the white-box model, these samples260

also achieve high attack success rates on the gray-box model. The success of this approach relies on261

two key factors: 1) structural similarity between the white-box and gray-box models, and 2) shared262

similarity in their latent spaces. For instance, both Animate Anyone and Magic Animate are based on263

Stable Diffusion 1.5 and share the same ReferenceNet architecture, with similar datasets used for264

fine-tuning, resulting in similar latent spaces. Additionally, we successfully attacked the EMO Tian265

et al. (2024), Animate anyone Hu (2024) and other apps or APIs, as demonstrated in the experiments.266

6



SimACOurs(PGD)Input image

Magic 
animate

Reference 
only

Ip-Adapter

Dreambooth

Textual 
inversion

LoRA

Ecomimic

PhotoGuard AdvDMClean Ours(ANE)

Figure 3: Results of protection methods against customized generation threats. Our approach delivers
strong and comprehensive attack performance across scenarios.

5 Experiment267

5.1 Setup268

Training data. This paper aims to achieve general image protection, and therefore, we use 600K269

natural image-text pairs from the Laion dataset as the training set. To enhance the protection270

effectiveness for talking face and body-driven tasks, we also include the Celeb-A dataset (200K) and271

the TikTok dataset (30K) into the training data.272

Experimental details. We used 4 A100 GPUs to train on 830K image-text pairs for 4 epochs with a273

batch size of 8, employing a learning rate decay strategy with an initial value of 10−3. We utilized a274

pre-trained DiT-S/8 model with the same architecture as ANE for the Noise Encoder. During ANE275

training, adversarial noise is unrestricted; its invisibility is managed by adjusting the weight of image276

regularization loss. The weights wadv, wcon1, wcon2, wcon3, wcon4, wreg correspond to the fine-tuning277

attack methods, attacking IP-Adapter Ye et al. (2023a), Reference-only Team (2023), Magic Animate278

Xu et al. (2024), Ecomimic Chen et al. (2024), and image regularization, respectively. In ANE279

training, the weights are set to 30, 50, 60, 30, 30, and 200, respectively; in the PGD method, the280

weights are 3, 5, 5, 2, 2, and 0, respectively.281

We implement the Anti-Reference (PGD) method under the following parameter settings. The step282

size α is set to 1 × 10−3, and the number of iterations T is 300. The perturbation is constrained283

within an ℓ∞ norm ball of 0.05, corresponding to a maximum perturbation magnitude of 13
255 per284

pixel. These settings are chosen to balance the attack’s effectiveness and noise invisibility. For more285

implementation details, please see the supplementary materials.286

Baseline methods. We use PhotoGuard (Salman et al., 2023), AdvDM (Liang et al., 2023), and287

SimAC (Wang et al., 2024a) as baselines, with SimAC being an improved version of the classic288

Anti-DreamBooth (Van Le et al., 2023). We systematically evaluate the protection effectiveness of289

our method and the baseline methods across seven customization generation tasks, including three290

fine-tuning-based methods: DreamBooth, LoRA, and Textual Inversion; two tuning-free methods:291

IP-Adapter and reference-only; and two tasks involving human figure animation: Magic Animate and292

Ecomimic.293

Evaluation benchmarks. In constructing the evaluation dataset, we follow previous works. For294

subject-driven generation, we select 10 subject categories from the DreamBooth dataset Ruiz et al.295

(2023), with 3 to 5 images per category. For face-driven tasks, we use 10 identities from the CelebA-296

7



HQ dataset. For each subject or individual, we generate a total of 200 images using 10 different297

prompts for quantitative evaluation. For face-driven and body animation tasks, we generate 200298

images using CelebA-HQ and TikTok data, respectively, for quantitative comparison.299

Evaluation metrics. In our evaluation of person-centric image generation quality, we utilized ISM300

(Identity Score Matching) metrics (Van Le et al., 2023) to assess protection effectiveness, where301

lower ISM scores indicate more effective disruption of individual identity in the generated images.302

Additionally, we measured general image quality using Aesthetics Score (AI, 2023) and CLIP-IQA303

(CLIP Image Quality Assessment) (Wang et al., 2023), which evaluate the naturalness and perceptual304

quality of images. These metrics were applied across all frames for tasks involving human body and305

face-driven content. Lower values in these metrics indicate better image protection effectiveness.306

5.2 Quantitative Evaluation307

In this section, we present the quantitative evaluation results and time cost for our method and308

baselines across seven customized generation methods. For all baseline methods, we use their default309

code and settings to learn adversarial noise. The results of our two methods used for calculating310

quantitative metrics are all obtained through joint optimization while results of other baselines are311

optimized independently on each generation method.312

Critical Oversight. When training Dreambooth with adversarial images, we followed the common313

practice of not fine-tuning the CLIP text encoder. The protection performance of Anti-Dreambooth314

and SimAC relies on the flawed assumption that Bob fine-tunes the CLIP text encoder. See the315

supplementary materials for details.316

Table 1: Quantitative comparison on ISM Score.
Bold values denote best performance.

Method Ours
(PGD)

Ours
(ANE)

Sim
AC

Adv
DM

Photo
Guard Clean

Dreambooth 0.029 0.078 0.051 0.077 0.081 0.287
LoRA 0.005 0.017 0.008 0.015 0.022 0.085
Textual Inversion 0.011 0.123 0.018 0.018 0.304 0.336
IP-Adapter 0.197 0.226 0.225 0.225 0.242 0.233
Reference-only 0.038 0.198 0.096 0.096 0.295 0.348
Echomimic 0.655 0.574 0.673 0.668 0.677 0.715
Magic Animate 0.163 0.221 0.236 0.236 0.134 0.308

Table 2: Quantitative comparison on Aesthetic
Score. Bold values denote best performance.

Method Ours
(PGD)

Ours
(ANE)

Sim
AC

Adv
DM

Photo
Guard Clean

Dreambooth 5.345 5.716 5.687 5.874 5.935 5.985
LoRA 5.511 5.694 5.719 5.823 5.856 5.951
Textual Inversion 4.344 4.988 4.552 5.400 5.723 5.971
IP-Adapter 5.548 5.930 5.771 6.050 5.961 6.241
Reference-only 4.836 5.480 4.847 5.384 5.996 6.216
Echomimic 5.506 5.370 5.377 5.631 5.461 5.817
Magic Animate 4.451 4.716 5.057 4.988 4.582 4.951

Table 3: Quantitative comparison on CLIP-IQA.
Bold metrics represent methods that rank 1st.

Method Ours
(PGD)

Ours
(ANE)

Sim
AC

Adv
DM

Photo
Guard Clean

Dreambooth 0.550 0.552 0.561 0.631 0.623 0.648
LoRA 0.566 0.579 0.591 0.662 0.634 0.642
Textual Inversion 0.444 0.462 0.500 0.599 0.583 0.653
IP-Adapter 0.445 0.517 0.483 0.566 0.416 0.545
Reference-only 0.584 0.608 0.341 0.523 0.473 0.622
Echomimic 0.419 0.527 0.319 0.573 0.500 0.556
Magic Animate 0.225 0.202 0.184 0.191 0.196 0.217

Table 4: Time Cost of
Defense Methods. Our
method (ANE) shows a
significant advantage.

Method GPU(s) CPU(s)

Ours(PGD) 846 -
Ours(ANE) 0.21 1.05
AdvDM 212 -
PhotoGuard 66 -
SimAC 51 -

Table 5: Our method
matches SOTA perfor-
mance in adversarial
noise invisibility.
Method PSNR (↑) SSIM (↑)

Ours(PGD) 30.39 0.762
Ours(ANE) 29.00 0.713
AdvDM 38.04 0.939
PhotoGuard 32.25 0.822
SimAC 32.17 0.811

Effectiveness. From Fig. 3 and Tables 1 to 3, it is evident that our two methods exhibit more317

comprehensive and thorough attack effects compared to the baseline. Our PGD method effectively318

protects images from the threats of 7 customized generation methods, and our ANE method also319

demonstrates effectiveness across all tasks. Specifically, in terms of the most critical ISM metric for320

measuring the effectiveness of attacks, our method achieved leading results. Our method also holds321

certain advantages in the Aesthetic-Score and CLIP-IQA metrics.322

Time Cost. Table 4 shows a comparison of the time required to protect a single image using our323

method versus the baseline methods. Our method takes only one thousandth of the time required by324

the baseline methods. This improvement in efficiency marks a crucial advancement from academic325

research to practical application, laying the foundation for real-world implementation in AI security.326

Invisibility. Table 5 shows a comparison of adversarial noise invisibility. Compared to the baseline,327

our method produces slightly more noticeable noise, with a trade-off between invisibility and328
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Figure 5: Gray-box Attack on Tongyi APIs. Our method successfully compromises both face- and
body-driven generation.

effectiveness. Our approach, which attacks multiple customized generation methods, faces greater329

convergence challenges than single-task methods, making comparable invisibility difficult to achieve.330

5.3 Gray-Box Performance331

In this section, we demonstrate the gray-box transferability of our method. We tested the closed-332

source face-driven method EMO (Tian et al., 2024) and body-driven method Animate Anyone (Hu,333

2024) on the Tongyi app ton (2024). Without access to model parameter, our method shows excellent334

gray-box transferability, with noticeable artifacts in their outputs.335

5.4 Robustness Test336

Prompt Mismatch. When Bob customizes concepts with Stable Diffusion, his prompts may differ337

from Alice’s assumptions during noise generation. PGD-based methods (Van Le et al., 2023),338

typically trained with fixed prompts (e.g., "a photo of sks person"), suffer under prompt shifts. As339

shown in Fig. 4, ANE trained on large-scale image-text pairs remains robust to such mismatches.340

Image Transformations. Our method is robust to common image transformations, such as JPEG341

compression, crop & resize, noise addition, and color transformations. See supplementary materials342

for more quantitative results. Our method demonstrates significantly stronger robustness compared to343

baseline approaches.344

6 Conclusion345

This paper introduces Anti-Reference, a novel and effective method for protecting images from the346

threats posed by mainstream Reference-based generation methods and fine-tuning-based methods.347

Utilizing a Noise Encoder based on the DiT architecture and a unified loss function, our approach348

offers universal and efficient protection against various adversarial attacks. Additionally, the in-349

troduction of data augmentation techniques and black-box transfer capabilities through white-box350

proxy models ensures robust and scalable defenses. Extensive experiments validate the effectiveness351

of Anti-Reference in protecting images from unauthorized customized generation, setting a new352

standard in the fields of privacy protection and information security.353
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Supplementary Materials of "Anti-Reference: Universal and Immediate
Defense Against Reference-Based Generation"

A Critical Oversight

It is worth noting that when training Dreambooth with adversarial images, we did not fine-tune the
CLIP text encoder, which aligns with the common practice in the community. We found that the
good protection performance of Anti-Dreambooth and SimAC is based on the incorrect assumption
that Bob will fine-tune the CLIP text encoder. As shown in Figure 6, when Bob does not fine-tune
the CLIP text encoder during Dreambooth training, both of these image protection methods show a
significant drop in performance, regardless of whether the CLIP text encoder was fine-tuned during
the noise learning process. Our method does not suffer from this issue.

Clean images
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Figure 6: We have identified a critical oversight in the current SimAC method; when Bob does
not train the Text Encoder while training Dreambooth, the protection effectiveness of the images is
significantly compromised.

B Detail of Evaluation Metrics

For evaluating the quality of person-centric image generation, we used widely adopted metrics ISM
(Van Le et al., 2023) to quantify the generation quality, where lower ISM represent better protection
effectiveness. Additionally, we employed two general image quality assessment metrics, Aesthetic
Score (AI, 2023) and CLIP-IQA (Wang et al., 2023). For human body and face-driven tasks, we
calculated quantitative metrics across all frames.

• ISM (Identity Score Matching): Measures the cosine similarity between the features of the
generated face and the original face to evaluate how well the generated image maintains the
identity of the subject.

• Aesthetic Score: An aesthetic assessment metric that utilizes a linear estimator built on top
of CLIP to predict the aesthetic quality of images.

• CLIP-IQA (CLIP Image Quality Assessment): Uses CLIP (Contrastive Language-Image
Pretraining) to evaluate the perceptual quality of images by assessing how well the visual
features of the image align with text descriptions.

C Transferability of Adversarial Noise Across Model Architectures

Due to the architectural differences among SD1.5, SD2.0, and SD-XL, their latent spaces significantly
differ. We have conducted experiments with adversarial noise on SD1.5, but it could not be generalized
to SD-XL. This issue is not unique to our method; there are no successful transfer precedents in this
field. Table. 6 shows the transferability results for Anti-Reference, where noise can be transferred
between SD1.4 and SD1.5 due to their similar architectures and latent spaces. We perform a joint
attack across models with different architectures, and experimental results show that this strategy
effectively enables simultaneous attacks on methods with varying backbones.
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Table 6: Transferability results of adversarial attacks across different SD architectures.
Attack SD1.4 SD1.5 SD2.0 SD-XL
SD1.5 ✓ ✓ ✗ ✗
SD2.0 ✗ ✗ ✓ ✗
SD-XL ✗ ✗ ✗ ✓
Joint attack on SD1.5, 2.0, XL ✓ ✓ ✓ ✓

D Human Evaluation

To further validate the effectiveness of our proposed methods in perceptual scenarios, we conducted
a human evaluation study via an online questionnaire. Participants were presented with a series of
images generated by different models using both clean and adversarial inputs. They were asked to
determine whether each image exhibited visible artifacts or distortions. All images were presented in
randomized order, and participants were not informed which ones contained adversarial perturbations
to minimize bias.

A total of 30 participants took part in the evaluation, each reviewing 50 image samples. For each
image, they were instructed to answer two questions: (1) whether the image contained visible artifacts,
and (2) whether it exhibited noticeable distortions. The evaluated samples included adversarial images
generated by our two proposed methods: PGD (Projected Gradient Descent) and ANE (Adversarial
Noise Embedding).

As shown in Tab. 7, the results demonstrate that the PGD method is highly effective at introducing
perceptible artifacts. Meanwhile, our ANE method also achieves strong perceptual impact, producing
noticeable distortions in the generated images. Both methods successfully mislead the generation
models while being perceptible to human observers, highlighting their practical utility and robustness
in adversarial attack settings.

Table 7: Percentage of users judging the attack as successful (obvious artifacts observed). Bold
metrics indicate top-ranked methods.

Method Ours(PGD) Ours(ANE) SimAC AdvDM PhotoGuard

Dreambooth 100 100 93 85 90
LoRA 97 92 94 69 93
Textual Inversion 100 100 96 85 89
IP-Adapter 93 89 72 65 67
Reference-only 96 94 96 87 93
Echomimic 100 100 100 94 98
Magic Animate 100 100 100 100 100

E Limitations and Future Work

While our method inherits the common challenge of imperceptible adversarial cues—shared by most
SOTA defenses—it remains effective in disrupting generation outputs across models. Our approach
is built on SD 1.5 to align with widely-used reference-based generation systems, with results on
SD-XL and SD3 included in the supplementary. Future work will extend compatibility to emerging
architectures such as Diffusion Transformers.

F More Robustness Test Results

Figure 7 and 8 shows that our method is robust to common image transformations, such as JPEG
compression, crop & resize, noise addition, and color transformations.
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Figure 7: More robustness test results: Our method (ANE) is robust against common image transfor-
mations.
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Figure 8: More robustness test results: Our method (PGD) is robust against common image transfor-
mations.
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