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Anti-Reference: Universal and Immediate Defense
Against Reference-Based Generation
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Figure 1: Malicious attackers can collect users’ images as reference images and use diffusion models
to achieve malicious purposes. Our system, called Anti-reference, applies imperceptible perturbations
to user-uploaded images before they are published, resulting in noticeable artifacts in images or
videos generated by reference-based methods and fine-tuning approaches. This makes it easy to
recognize them as Al-generated, thus protecting the images.

Abstract

Diffusion models have revolutionized generative modeling with their exceptional
ability to produce high-fidelity images. However, misuse of such potent tools
can lead to the creation of fake news or disturbing content targeting individuals,
resulting in significant social harm. In this paper, we introduce Anti-Reference,
a novel method that protects images from the threats posed by reference-based
generation techniques by adding imperceptible adversarial noise to the images.
We propose a unified loss function that enables joint attacks on fine-tuning-based
customization methods, non-fine-tuning customization methods, and human-centric
driving methods. Based on this loss, we train a Adversarial Noise Encoder to predict
the noise or directly optimize the noise using the PGD method. Our method shows
certain transfer attack capabilities, effectively challenging both gray-box models
and some commercial APIs. Extensive experiments validate the performance of
Anti-Reference, establishing a new benchmark in image security.

1 Introduction
Customized diffusion models can be divided into methods that require training, (2023));

Hu et al.| (2021)); |Gal et al | (2022); and those that do not, such as IP-Adapter
2023a)), Instant-ID (Wang et al., 2024b). Reference-based methods are widely used in
customized image and video generation, especially in human-centered video generation, including
portrait video creation methods(Tian et al., 2024} |Chen et al.l 2024; He et al., 2024} Xie et al., 2024),
and human animation (Xu et al., 2024} 2024) , which have attracted significant attention due to
their practical value in creating digital human avatars and enhancing film production.

Reference-based methods that require no training offer high convenience and efficiency, but when
misused, they can have severe negative social impacts, such as creating fake news or pornographic
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images targeting individual victims. Existing studies use encoder attack (Salman et al.,|2023)) and
diffusion attack (Van Le et al., 2023} |Liang et al.l 2023)) to protect images from the threats posed by
methods requiring fine-tuning, using PGD (Madryl 2017) optimization to generate adversarial noise,
but this approach requires several minutes to protect a single image, severely limiting its practical
application. Moreover, these methods are largely ineffective against non-trainable Reference-based
generation methods. Therefore, developing an efficient method to protect personal images from the
threats of Reference-based generation has become an urgent priority.

Reference-based methods provide additional conditions through a Reference Image to enable cus-
tomized generation. These methods can be divided into two types based on their implementation: one
type embeds Reference features in the cross-attention layer of the denoising network using an adapter,
such as [P-Adapter (Ye et al., 2023a)); the other type embeds reference features in the self-attention
layer of the denoising network using ReferenceNet. The approach of ReferenceNet is widely used
for image customization generation (Team) 2023} Zhang et al., | 2024blc), Image2Video (Chen et al.|
2023} |[Zhang et al.l [2023)), and face animation generation (Tian et al.| 2024} |Chen et al.| 2024; He
et al., 2024} Xie et al., 2024), and body-driven tasks (Xu et al.,|2024} Hu, [2024)). However, due to
the variety of existing Reference-based generation methods, attacking a specific method has limited
practical significance, as attackers can easily switch methods to bypass protection. Therefore, the
motivation of this paper is to propose a universal adversarial noise generation method to address the
threats posed by mainstream Reference-based methods.

In practical image protection scenarios, protection methods need to address several challenges. Firstly,
universality is a key challenge. Since Reference-based methods have many different implementations,
and models trained on different datasets have different feature spaces, the same attack strategy
may have very different effects on different models. Secondly, efficiency is also crucial. Existing
methods like Anti-DreamBooth (Van Le et al.l 2023)) , which use PGD optimization, usually require
hundreds of steps and significant time, severely limiting their feasibility for real-time applications.
Finally, black-box or gray-box transferability and robustness are also central challenges. In practical
applications, the structures and parameters of proprietary APIs like EMO (Tian et al.,[2024) , Animate
anyone (Hu, [2024)) are not accessible, so attack methods must have good gray-box transferability.
Additionally, the generated adversarial noise also needs to be robust enough to withstand common
data augmentation operations and preprocessing steps.

To address these challenges, this paper presents Anti-Reference, the first to protect images from
the threats posed by mainstream reference-based methods and tuning-based customization methods
through the forward process. We propose a Noise Encoder based on the ViT (Dosovitskiy, 2020)
architecture, which predicts adversarial noise of the same size as the original image and overlays it to
form a protected image. To achieve a universal attack on methods requiring fine-tuning and those
that do not, we designed a unified loss function, using a weighted strategy to achieve joint attack
effects across multiple tasks, and by limiting the noise range and regularization loss to ensure the
invisibility of the noise. To enhance the robustness of adversarial noise, we also introduced some data
augmentation techniques to ensure that the adversarial noise can withstand various data enhancements
and preprocessing operations. As the model structures and weights of proprietary APIs are not
accessible, directly attacking these models is usually not feasible. To overcome this hurdle, we created
white-box proxy models that mimic the structure and behavior of these proprietary models, and we
successfully implemented attacks on these proxy models, thereby achieving gray-box transferability
attacks. Specifically, our adversarial samples have successfully transferred to closed-source APIs
(such as Animate Anyone (Hu, [2024)) and EMO (Tian et al.} 2024)). Extensive experimental results
demonstrate that Anti-Reference is highly effective in protecting images from potential security
threats posed by reference-based generation methods and fine-tuning-based approaches.

We summarize our main contributions as follows:

* We introduce a universal method for attacking customized diffusion models for the first time,
which is effective against both mainstream reference-based generation methods and those
requiring fine-tuning.

* We introduce an Adversarial Noise Encoder that executes attacks without the need for
traditional PGD optimization, significantly reducing computational time and enhancing
suitability for real-time applications.
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* We have designed transferable adversarial samples that enable gray-box attacks on com-
mercial APIs using white-box proxy models. These samples are robust, showing strong
resistance to common image transformations.

2 Related work
2.1 Custmized Diffusion Model.

Diffusion probability models|Song et al.|(2020); Ho et al.|(2020) represent a class of advanced gener-
ative models that reconstruct original data from pure Gaussian noise by learning noise distributions
at different levels. These models excel in handling complex data distributions and have marked
significant accomplishments across various fields such as image synthesis Rombach et al.| (2021));
Peebles & Xie|(2023), image editing |[Brooks et al.| (2023)); Hertz et al.| (2022), video generation [Wu
et al.[(2022); |Hu| (2024), and 3D content creation [Poole et al.|(2022). A prominent example is Stable
Diffusion Rombach et al.| (2021)), which utilizes a UNet architecture to iteratively produce images,
demonstrating robust text-to-image capabilities after extensive training on large text-image datasets.
DreamBooth Ruiz et al.| (2023)), Custom diffusion [Kumari et al.| (2023) and Textual Inversion |Gal
et al.[(2022)), adopt transfer learning to text-to-image diffusion models via either fine-tuning all the
parameters, partial parameters , or introducing and optimizing a word vector for the new concept.
LoRA (Low-Rank Adaptation) |Hu et al.|(2021)) is a popular and lightweight training technique that
significantly reduces the number of trainable parameters and is widely used for personalized or
task-specific image generation.

2.2 Reference-based Generation

In addition to the aforementioned fine-tuning methods, finetuning-free customized generation methods
can capture concepts from a single image and are widely used for tasks such as customized generation
(Ye et al., [2023a}; [Mao et al.| 2024; Zhang et al., [2024a)), identity consistency maintenance (Wang
et al., 2024b; |L1 et al., |2024])), face-driven |Tian et al.|(2024); (Chen et al.| (2024); | Xie et al. (2024), and
body-driven tasks Xu et al.|(2024); [Hu| (2024). These methods can be roughly categorized into the
Adapter approach and the ReferenceNet approach based on how the reference image features are
utilized. In the Adapter approach, the reference image is first processed by a pre-trained image feature
extractor, typically CLIP (Radford et al.,2021) image encoder or ArcFace|Deng et al.|(2019), and then
an adapter structure generates visual tokens applied to the cross-attention layers of the U-Net. The
ReferenceNet approach emphasizes the effectiveness of integrating reference image features into the
self-attention layers of LDM U-Nets, enabling customized generation while preserving appearance
context. Image-to-video technology [Chen et al.| (2023)); |Zhang et al.| (2023)) uses ReferenceNet to
maintain consistency between the generated results and the reference image. Magic Animate Xu
et al.| (2024) and Animate Anyone |Hu|(2024) combine ReferenceNet with pose control and temporal
modules to achieve body-driven generation. EMO [T1ian et al.|(2024), Ecomimic (Chen et al.| (2024)),
and X-Portrait [Xie et al|(2024), among other talking-face methods, maintain identity consistency
using ReferenceNet, generating fake videos from just a single photo. The misuse of Reference-based
Generation methods can have severe consequences, making it urgent to protect images from the
threats posed by such methods.

2.3 Protective Perturbation against Diffusion.

Protecting the security of personal images is of great significance |Dong et al.[ (2023); |Qiao et al.
(2024); Dai et al.|(2024) . To protect personal images such as faces and artwork from potential
infringement when used for fine-tuning Stable Diffusion, recent research aims to disrupt the fine-
tuning process by adding imperceptible protective noise to these images. Several methods have been
developed to achieve this goal: Glaze (Shan et al., [2023)) focuses on preventing artists’ work from
being used for specific style mimicry in Stable Diffusion. It optimizes the distance between the
original image and the target image at the feature level, causing Stable Diffusion to learn the wrong
artistic style. AdvDM (Liang et al., [2023)) proposes a direct adversarial attack on Stable Diffusion
by maximizing the Mean Squared Error loss during the optimization process. This approach uses
adversarial noise to protect personal images. Anti-DreamBooth (Van Le et al.,2023)) incorporates
the DreamBooth fine-tuning process of Stable Diffusion into its consideration. It designs a bi-level
min-max optimization process to generate protective perturbations. Additionally,other research efforts
(Wang et al., 20244} [Ye et al., [2023b}; Zheng et al.| [2023) have explored generating protective noise
for images using similar adversarial perturbation methods.
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The previously mentioned methods utilize adversarial noise to influence the fine-tuning process,
preventing models from learning from tampered images. These techniques effectively target models
that require fine-tuning. However, reference-based generation methods do not rely on fine-tuning but
directly generate images from existing data, making these adversarial protections ineffective against
them. Effective protection against reference-based generation attacks requires new strategies that
can directly intervene in the image retrieval and matching mechanisms. Effective protection against
reference-based generative attacks requires the development of new strategies.
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Figure 2: [llustration of Anti-reference. To defend against customized generation attacks, we introduce
a loss function that guides the training of a noise encoder to produce adversarial perturbations,
effectively protecting source images.

3 Problem Definition

Considering the practical implications of image infringement based on Stable Diffusion, it is essential
to define the threat model in real-world scenarios. We consider two participants involved in fine-
tuning Stable Diffusion using images: the "User" Alice and the "Photo Thief" Bob. Photo Thief
Bob illicitly uses reference-based methods to exploit others’ photos for customized content, while
User Alice, wishing to safeguard her images on social media, adds adversarial noise to disrupt Bob’s
methods, aiming to induce severe artifacts in the generated content. Specifically, we explain the
workflow of the two parties as follows:

User Alice: Alice aims to protect her images from exploitation by Stable Diffusion by applying
nearly imperceptible protective perturbations, while minimizing alterations to the original images.
Her main challenge is the uncertainty of which methods Photo Thief Bob will use to fine-tune these
protected images. She also needs to ensure that these protection measures remain effective even
when the images undergo natural transformations such as cropping, compression, and blurring during
dissemination.

Photo Thief Bob: Bob downloads Alice’s photos and uses customized generation methods to create
inappropriate content. Bob can choose any mainstream fine-tuning method, including but not limited
to direct fine-tuning, LoRA, Textual Inversion, DreamBooth, or Custom Diffusion.

The goal of this work is to add imperceptible adversarial noise to images, formalized as I,4, =
I + noise, where I and 1,4, represent the original and protected images, respectively. These images
serve as inputs to customization methods, and the outputs Gen(I) and Gen(1,4,) are compared. If
Gen(I,4,) exhibits significant distortion, the protection is considered successful. We achieve this by
solving the following optimization problem:

max d(Gen([),Gen(I,q,)) subject to d' (I, Inq,) < 0, (1)

Tadv€

where M indicates the natural image manifold, d and d’ denote image distance functions, and &
represents the fidelity budget. Through this optimization process, we aim to effectively safeguard
images from unauthorized editing and translation while maintaining their fidelity.

4 Method

In Sec.[d.1] we present the overall framework, followed by details of the Noise Encoder (Sec.[4.2))
and the loss function (Sec.[d.3). Sec.[d4]describes PGD joint optimization, and Sec. 4.5 explains
white-box proxy construction for gray-box attacks.
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4.1 Overall Method

This section introduces the overall framework of the Anti-Reference method, as shown in Fig. @ Our
method consists of several key components: the Noise Encoder, a set of conditional modules, the
Denoising Unet, and a differentiable data augmentation module. The Noise Encoder adds adversarial
noise to the image, forming the protected image /,4,. The set of Reference Modules is a group of
conditional control modules that serve as the target models for the attack.

To protect images from the threats posed by tuning-free customization generation methods and driving
methods, we selected the pre-trained ReferenceNet from Magic Animate and Ecomimic, as well as
the Stable Diffusion Unet, as the target models for attacking the ReferenceNet route. Additionally,
we chose the IP-Adapter as the target model for the Adapter route. The Denoising Unet utilizes
the pre-trained Stable Diffusion 1.5 Unet, as it is the most commonly used base model for various
customization generation methods. The protected image 1,4, is fed into two components: the set
of conditional modules and the Denoising Unet, where losses are calculated separately. To enhance
the robustness of the adversarial noise against real-world scenarios, we propose a differentiable data
augmentation module, which applies common data augmentations to ;.

4.2 Adversarial Noise Encoder

We propose an adversarial noise encoder (ANE) based on the Vision Transformer (ViT) Dosovitskiy
(2020) to efficiently generate adversarial noise in the pixel space, protecting images from threats
posed by generative models. The design of the encoder incorporates the following key technical
details: ANE adopts the ViT architecture with 12 Transformer layers, a hidden size of 384, and
6 attention heads. The input image is divided into 8x8 patches, making it well-suited for detailed
feature extraction and adversarial noise predict. The sequence is processed through multiple layers of
self-attention and feedforward network modules, resulting in feature vectors. ANE directly generates
adversarial noise in the pixel domain instead of relying on latent space.

To enhance robustness, we adopt adversarial training during the training process, including random
cropping and scaling, JPEG compression, Gaussian noise, and color transformations. These data
augmentation techniques improve the stability of the noise in real-world scenarios, ensuring its
effectiveness even after preprocessing or compression. In the training process, to prevent noise from
falling into local optima, noise amplitude is regulated through gradient constraints. The model is
trained at a resolution of 512x512, maintaining alignment with the common settings of the target
generative methods, thereby ensuring compatibility and effectiveness across various generation tasks.

We found that if the conditional model and the denoising Unet shown in Fig. 2] are fixed, ANE tends
to generate simple adversarial noise patterns (such as targeting specific vulnerabilities) rather than
comprehensively robust noise. This “speculative" behavior may weaken the generator’s generalization
ability. To address this, we employ a phased training approach to enhance ANE’s adaptability. In the
first phase: the denoising Unet and three kinds of conditional models (IP-Adapter|Ye et al.|(2023a))
and 3 ReferenceNet|Chen et al.[(2024); Team| (2023)); Xu et al.| (2024])) ) are fixed, and ANE is trained
to identify effective attack strategies quickly. In the second phase: we randomly perturb the impact
weights of the conditional models and switch between different customized models every 1000 steps
during training, including replacing the Unet and attaching stylized LoRA Hu et al.| (2021)) plugins.
We obtain these models from the Civitai |civ|community.

4.3 Loss Function

Diffusion Adversarial loss. In the context of diffusion, in Formula (I)), which involves maximizing
the difference between two images, is transformed into maximizing the difference in noise prediction.
Anti-Dreambooth |[Van Le et al.| (2023)) was the first to adopt this approach, which was then utilized
by subsequent methods |Wang et al.| (2024a); |Ye et al.|(2023b); [Zheng et al.|(2023)). This means that
we aim for the noise predicted by the model, €y, to have the largest possible error compared to the
actual noise ¢, thereby disrupting the model’s denoising capability. The specific loss function can be
defined as:

Ly = _Eaco,ewN(O,l),t [HE - 66(xt7 t)Hﬂ ) 2

where x is the original data, € is noise sampled from a standard normal distribution, ¢ is the time
step representing the noise level, ©; = \/azxo + /1 — Qi€ is the noisy image at time step ¢, eg (¢, t)
is the noise predicted by the model. This loss function is as same as diffusion training loss, but the
objective is completely opposite.
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Conditional Adversarial Loss. Conditional Adversarial Loss aims to attack reference-based cus-
tomization generation methods and driving techniques. Specifically, we calculate the adversarial
noise prediction loss when adversarial noise images are used as inputs for ReferenceNet or [P-adapter.
This loss deviates the noise predicted by the denoising Unet from the ground-truth noise, under
specific conditional features provided by either ReferenceNet or the IP-adapter. The conditional
adversarial loss is formulated as follows:

2
Lcon_adv - _Emg,eNN(O,l),t,c “|6 - eﬂ(xt; tv C)” ] 3 (3)
c represents the features extracted from [,4, using ReferenceNet or IP-adapter. These features
interfere with the denoising process by injecting signals into the Unet’s cross- or self-attention layers.

Image Regularization Loss. To make the adversarial noise less perceptible, we calculate the Mean
Squared Error (MSE) of the images before and after noise addition as the regularization loss.

Ly =MSE(I, I440) “)

Total Loss. For joint attacks, a weighted loss formulation is employed to ensure a balanced attack
performance across various tasks by balancing the impact across all contributions. The total loss,
incorporating adversarial, conditional adversarial, and regularization losses, is defined as follows:

Liotal = Wady * Lagy + § Weon,i * Lcon_adv,i + Wreg - Lreg7 5)
7

where, Weon,i * Leon adv,i represents the weighted sum of conditional adversarial losses from different
conditional modules. Each module i targets different conditional control tasks, and weon,; is the
specific weight assigned to the conditional adversarial loss for module <. This paper conducts joint
training across four conditional modules: IP-Adapter|Ye et al.[(2023a)), Reference-only [Team| (2023),
Magic Animate Xu et al.|(2024)), and Ecomimic’s ReferenceNet|Chen et al.|(2024)). This approach
allows for tailored defenses against a range of adversarial manipulations facilitated by different attack
modules, ensuring that the influence of each module is properly scaled according to its significance
and effectiveness in the overall defense strategy.

4.4 PGD Joint Optimization

We introduce our Anti-Reference (PGD) method, where adversarial noise is optimized directly
using PGD (Projected Gradient Descent). PGD iteratively perturbs the input image I within a
predefined bound, ensuring the noise remains imperceptible while maximizing its impact on the
model’s predictions. Unlike the Noise Encoder, which generates noise in a single pass, PGD updates
the noise iteratively by calculating the gradient of the loss function with respect to the image. At each
iteration, the adversarial noise is updated as:

18D = (180 + o sign (V0 Low) ) ©)

where, é];)v is the adversarial image at iteration k, « is the step size, and € defines the perturbation
bound. The projection Il . ensures the noise stays within the allowed limits.

By optimizing both L.4y and Loy adav, PGD effectively disrupts both the diffusion process and
conditional adversarial predictions. Our experiments show that PGD provides strong protection
across various reference-based customization methods, with gradually increasing noise impact while
preserving image quality. Although the Noise Encoder generates noise faster, PGD’s iterative process
offers stronger protection across tasks at a higher computational cost, making it ideal for scenarios
demanding maximum protection.

4.5 Gray-box Transfer

This section introduces proxy-based gray-box attacks, a method that generates adversarial samples
using a white-box model with a structure similar to the target gray-box model or a closely related
latent space. By training DiT to generate adversarial samples on the white-box model, these samples
also achieve high attack success rates on the gray-box model. The success of this approach relies on
two key factors: 1) structural similarity between the white-box and gray-box models, and 2) shared
similarity in their latent spaces. For instance, both Animate Anyone and Magic Animate are based on
Stable Diffusion 1.5 and share the same ReferenceNet architecture, with similar datasets used for
fine-tuning, resulting in similar latent spaces. Additionally, we successfully attacked the EMO |Tian
et al.|(2024), Animate anyone |[Hu|(2024)) and other apps or APIs, as demonstrated in the experiments.
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Figure 3: Results of protection methods agamst customized generatlon threats. Our approach delivers
strong and comprehensive attack performance across scenarios.

5 Experiment
5.1 Setup

Training data. This paper aims to achieve general image protection, and therefore, we use 600K
natural image-text pairs from the Laion dataset as the training set. To enhance the protection
effectiveness for talking face and body-driven tasks, we also include the Celeb-A dataset (200K) and
the TikTok dataset (30K) into the training data.

Experimental details. We used 4 A100 GPUs to train on 830K image-text pairs for 4 epochs with a
batch size of 8, employing a learning rate decay strategy with an initial value of 10~3. We utilized a
pre-trained DiT-S/8 model with the same architecture as ANE for the Noise Encoder. During ANE
training, adversarial noise is unrestricted; its invisibility is managed by adjusting the weight of image
regularization loss. The weights waqy, Weont , Weon2; Weon3 , Weond s Wreg cOrrespond to the fine-tuning
attack methods, attacking IP-Adapter Ye et al.| (20234), Reference-only (2023), Magic Animate
(2024), Ecomimic [Chen et al.|(2024), and image regularization, respectively. In ANE
training, the weights are set to 30, 50, 60, 30, 30, and 200, respectively; in the PGD method, the
weights are 3, 5, 5, 2, 2, and 0, respectively.

We implement the Anti-Reference (PGD) method under the following parameter settings. The step
size o is setto 1 x 1073, and the number of iterations 7 is 300. The perturbation is constrained
within an ¢, norm ball of 0.05, corresponding to a maximum perturbatlon magnitude of 2> 25 = per
pixel. These settings are chosen to balance the attack’s effectiveness and noise invisibility. For more
implementation details, please see the supplementary materials.

Baseline methods. We use PhotoGuard (Salman et al}, 2023), AdvDM (Liang et al},[2023), and
SimAC (Wang et al, [2024d) as baselines, with SimAC being an improved version of the classic

Anti-DreamBooth (Van Le et al.| 2023). We systematically evaluate the protection effectiveness of
our method and the baseline methods across seven customization generation tasks, including three
fine-tuning-based methods: DreamBooth, LoRA, and Textual Inversion; two tuning-free methods:
IP-Adapter and reference-only; and two tasks involving human figure animation: Magic Animate and
Ecomimic.

Evaluation benchmarks. In constructing the evaluation dataset, we follow previous works. For
subject-driven generation, we select 10 subject categories from the DreamBooth dataset Ruiz et al |
(2023), with 3 to 5 images per category. For face-driven tasks, we use 10 identities from the CelebA-
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HQ dataset. For each subject or individual, we generate a total of 200 images using 10 different
prompts for quantitative evaluation. For face-driven and body animation tasks, we generate 200
images using CelebA-HQ and TikTok data, respectively, for quantitative comparison.

Evaluation metrics. In our evaluation of person-centric image generation quality, we utilized ISM
(Identity Score Matching) metrics (Van Le et al.| [2023) to assess protection effectiveness, where
lower ISM scores indicate more effective disruption of individual identity in the generated images.
Additionally, we measured general image quality using Aesthetics Score (AL |2023) and CLIP-IQA
(CLIP Image Quality Assessment) (Wang et al.,2023), which evaluate the naturalness and perceptual
quality of images. These metrics were applied across all frames for tasks involving human body and
face-driven content. Lower values in these metrics indicate better image protection effectiveness.

5.2 Quantitative Evaluation

In this section, we present the quantitative evaluation results and time cost for our method and
baselines across seven customized generation methods. For all baseline methods, we use their default
code and settings to learn adversarial noise. The results of our two methods used for calculating
quantitative metrics are all obtained through joint optimization while results of other baselines are
optimized independently on each generation method.

Critical Oversight. When training Dreambooth with adversarial images, we followed the common
practice of not fine-tuning the CLIP text encoder. The protection performance of Anti-Dreambooth
and SimAC relies on the flawed assumption that Bob fine-tunes the CLIP text encoder. See the
supplementary materials for details.

Table 1: Quantitative comparison on ISM Score.  Table 2: Quantitative comparison on Aesthetic

Bold values denote best performance. Score. Bold values denote best performance.
Ours Ours Sim Adv Photo Ours Ours Sim Adv Photo
Method (PGD) (ANE) AC DM Guard Clan Method (PGD) (ANE) AC DM Guard Clan
Dreambooth 0.029 0.078 0.051 0.077 0.081 0.287 Dreambooth 5345 5716 5.687 5.874 5935 5.985
LoRA 0.005 0.017 0.008 0.015 0.022 0.085 LoRA 5511 5694 5719 5.823 5856 5.951
Textual Inversion 0.011 0.123 0.018 0.018 0.304 0.336 Textual Inversion 4.344 4.988 4.552 5.400 5.723 5.971
IP-Adapter 0.197 0226 0.225 0.225 0.242 0.233 IP-Adapter 5548 5.930 5.771 6.050 5.961 6.241
Reference-only ~ 0.038 0.198 0.096 0.096 0.295 0.348 Reference-only  4.836 5.480 4.847 5.384 5.996 6.216
Echomimic 0.655 0.574 0.673 0.668 0.677 0.715 Echomimic 5506 5.370 5.377 5.631 5.461 5817
Magic Animate  0.163 0.221 0.236 0.236 0.134 0.308 Magic Animate 4451 4.716 5.057 4.988 4.582 4.951

Table 3: Quantitative comparison on CLIP-IQA. Table 4: Time Cost of Table 5: Our method
Bold metrics represent methods that rank 1st. ~ Defense Methods. Our matches SOTA perfor-

Method Ours Ours Sim Adv Photo method (ANE) shows a mance in adversarial
ehe (PGD) (ANE) AC DM Guard ~ " significant advantage.  noise invisibility.

Dreambooth 0.550 0.552 0.561 0.631 0.623 0.648 Method GPU(s) CPU(s) Method PSNR (1) SSIM (1)
LoRA 0.566 0.579 0.591 0.662 0.634 0.642

Textual Tnversion 0.444 0.462 0.500 0.599 0.583 0.653 Ours(PGD) 846 - Ours(PGD) ~ 30.39  0.762
IP-Adapter 0.445 0.517 0.483 0.566 0.416 0.545 Ours(ANE) 021 1.05 Ours(ANE) ~ 29.00  0.713
Reference-only  0.584 0.608 0.341 0.523 0.473 0.622 AdvDM 212 - AdvDM 38.04 0939
Echomimic 0.419 0.527 0.319 0.573 0.500 0.556 PhotoGuard 66 - PhotoGuard ~ 32.25  0.822
Magic Animate  0.225 0.202 0.1840.191 0.196 0.217 SimAC 51 - SimAC 3217 0811

Effectiveness. From Fig. [3] and Tables [I] to [3] it is evident that our two methods exhibit more
comprehensive and thorough attack effects compared to the baseline. Our PGD method effectively
protects images from the threats of 7 customized generation methods, and our ANE method also
demonstrates effectiveness across all tasks. Specifically, in terms of the most critical ISM metric for
measuring the effectiveness of attacks, our method achieved leading results. Our method also holds
certain advantages in the Aesthetic-Score and CLIP-IQA metrics.

Time Cost. Table 4 shows a comparison of the time required to protect a single image using our
method versus the baseline methods. Our method takes only one thousandth of the time required by
the baseline methods. This improvement in efficiency marks a crucial advancement from academic
research to practical application, laying the foundation for real-world implementation in Al security.

Invisibility. Table[5]shows a comparison of adversarial noise invisibility. Compared to the baseline,
our method produces slightly more noticeable noise, with a trade-off between invisibility and
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effectiveness. Our approach, which attacks multiple customized generation methods, faces greater
convergence challenges than single-task methods, making comparable invisibility difficult to achieve.

5.3 Gray-Box Performance

In this section, we demonstrate the gray-box transferability of our method. We tested the closed-
source face-driven method EMO (Tian et al., 2024) and body-driven method Animate Anyone
2024) on the Tongyi app [ton ( 2024). Without access to model parameter, our method shows excellent
gray -box transferability, with noticeable artifacts in their outputs.

5.4 Robustness Test

Prompt Mismatch. When Bob customizes concepts with Stable Diffusion, his prompts may differ
from Alice’s assumptions during noise generation. PGD-based methods (Van Le et al 2023),
typically trained with fixed prompts (e.g., "a photo of sks person"), suffer under prompt shifts. As
shown in Fig. @ ANE trained on large-scale image-text pairs remains robust to such mismatches.

Image Transformations. Our method is robust to common image transformations, such as JPEG
compression, crop & resize, noise addition, and color transformations. See supplementary materials
for more quantitative results. Our method demonstrates significantly stronger robustness compared to
baseline approaches.

6 Conclusion

This paper introduces Anti-Reference, a novel and effective method for protecting images from the
threats posed by mainstream Reference-based generation methods and fine-tuning-based methods.
Utilizing a Noise Encoder based on the DiT architecture and a unified loss function, our approach
offers universal and efficient protection against various adversarial attacks. Additionally, the in-
troduction of data augmentation techniques and black-box transfer capabilities through white-box
proxy models ensures robust and scalable defenses. Extensive experiments validate the effectiveness
of Anti-Reference in protecting images from unauthorized customized generation, setting a new
standard in the fields of privacy protection and information security.
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Supplementary Materials of ''Anti-Reference: Universal and Immediate
Defense Against Reference-Based Generation'

A Critical Oversight

It is worth noting that when training Dreambooth with adversarial images, we did not fine-tune the
CLIP text encoder, which aligns with the common practice in the community. We found that the
good protection performance of Anti-Dreambooth and SimAC is based on the incorrect assumption
that Bob will fine-tune the CLIP text encoder. As shown in Figure[6 when Bob does not fine-tune
the CLIP text encoder during Dreambooth training, both of these image protection methods show a
significant drop in performance, regardless of whether the CLIP text encoder was fine-tuned during
the noise learning process. Our method does not suffer from this issue.

Does Alice fine-tune the text encoder ?

True False

{ s

Clean images

Does Bob fine-tune
the text encoder ?

Figure 6: We have identified a critical oversight in the current SimAC method; when Bob does
not train the Text Encoder while training Dreambooth, the protection effectiveness of the images is
significantly compromised.

B Detail of Evaluation Metrics

For evaluating the quality of person-centric image generation, we used widely adopted metrics ISM
(Van Le et al} [2023)) to quantify the generation quality, where lower ISM represent better protection
effectiveness. Additionally, we employed two general image quality assessment metrics, Aesthetic

Score 2023) and CLIP-IQA (Wang et al.,[2023). For human body and face-driven tasks, we

calculated quantitative metrics across all frames.

* ISM (Identity Score Matching): Measures the cosine similarity between the features of the
generated face and the original face to evaluate how well the generated image maintains the
identity of the subject.

* Aesthetic Score: An aesthetic assessment metric that utilizes a linear estimator built on top
of CLIP to predict the aesthetic quality of images.

* CLIP-IQA (CLIP Image Quality Assessment): Uses CLIP (Contrastive Language-Image
Pretraining) to evaluate the perceptual quality of images by assessing how well the visual
features of the image align with text descriptions.

C Transferability of Adversarial Noise Across Model Architectures

Due to the architectural differences among SD1.5, SD2.0, and SD-XL, their latent spaces significantly
differ. We have conducted experiments with adversarial noise on SD1.5, but it could not be generalized
to SD-XL. This issue is not unique to our method; there are no successful transfer precedents in this
field. Table. |§| shows the transferability results for Anti-Reference, where noise can be transferred
between SD1.4 and SD1.5 due to their similar architectures and latent spaces. We perform a joint
attack across models with different architectures, and experimental results show that this strategy
effectively enables simultaneous attacks on methods with varying backbones.
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Table 6: Transferability results of adversarial attacks across different SD architectures.

Attack SD14 SD1.5 SD2.0 SD-XL
SD1.5 v v X X
SD2.0 X X v X
SD-XL X X X v
Joint attack on SD1.5, 2.0, XL Ve v v Ve

D Human Evaluation

To further validate the effectiveness of our proposed methods in perceptual scenarios, we conducted
a human evaluation study via an online questionnaire. Participants were presented with a series of
images generated by different models using both clean and adversarial inputs. They were asked to
determine whether each image exhibited visible artifacts or distortions. All images were presented in
randomized order, and participants were not informed which ones contained adversarial perturbations
to minimize bias.

A total of 30 participants took part in the evaluation, each reviewing 50 image samples. For each
image, they were instructed to answer two questions: (1) whether the image contained visible artifacts,
and (2) whether it exhibited noticeable distortions. The evaluated samples included adversarial images
generated by our two proposed methods: PGD (Projected Gradient Descent) and ANE (Adversarial
Noise Embedding).

As shown in Tab.[/] the results demonstrate that the PGD method is highly effective at introducing
perceptible artifacts. Meanwhile, our ANE method also achieves strong perceptual impact, producing
noticeable distortions in the generated images. Both methods successfully mislead the generation
models while being perceptible to human observers, highlighting their practical utility and robustness
in adversarial attack settings.

Table 7: Percentage of users judging the attack as successful (obvious artifacts observed). Bold
metrics indicate top-ranked methods.

Method Ours(PGD) Ours(ANE) SimAC AdvDM PhotoGuard
Dreambooth 100 100 93 85 90
LoRA 97 92 94 69 93
Textual Inversion 100 100 96 85 89
IP-Adapter 93 89 72 65 67
Reference-only 96 94 96 87 93
Echomimic 100 100 100 94 98
Magic Animate 100 100 100 100 100

E Limitations and Future Work

While our method inherits the common challenge of imperceptible adversarial cues—shared by most
SOTA defenses—it remains effective in disrupting generation outputs across models. Our approach
is built on SD 1.5 to align with widely-used reference-based generation systems, with results on
SD-XL and SD3 included in the supplementary. Future work will extend compatibility to emerging
architectures such as Diffusion Transformers.

F More Robustness Test Results

Figure [7]and [§] shows that our method is robust to common image transformations, such as JPEG
compression, crop & resize, noise addition, and color transformations.
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Figure 7: More robustness test results: Our method (ANE) is robust against common image transfor-
mations.
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Figure 8: More robustness test results: Our method (PGD) is robust against common image transfor-
mations.
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