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Abstract

Large reasoning models (LRMs) have exhib-001
ited strong performance on complex reasoning002
tasks, with further gains achievable through003
increased computational budgets at inference.004
However, current test-time scaling methods pre-005
dominantly rely on redundant sampling, ignor-006
ing the historical experience utilization, thereby007
limiting computational efficiency. To over-008
come this limitation, we propose Sticker-TTS,009
a novel test-time scaling framework that co-010
ordinates three collaborative LRMs to itera-011
tively explore and refine solutions guided by012
historical attempts. At the core of our frame-013
work are distilled key conditions—termed stick-014
ers—which drive the extraction, refinement,015
and reuse of critical information across multi-016
ple rounds of reasoning. To further enhance the017
efficiency and performance of our framework,018
we introduce a two-stage optimization strat-019
egy that combines imitation learning with self-020
improvement, enabling progressive refinement.021
Extensive evaluations on three challenging022
mathematical reasoning benchmarks, including023
AIME-24, AIME-25, and OlymMATH, demon-024
strate that Sticker-TTS consistently surpasses025
strong baselines, including self-consistency and026
advanced reinforcement learning approaches,027
under comparable inference budgets. These028
results highlight the effectiveness of sticker-029
guided historical experience utilization.030

1 Introduction031

Recent advancements in foundation models, partic-032

ularly when combined with reinforcement learn-033

ing (RL) during training, have significantly im-034

proved the capabilities of LRMs on complex in-035

ference tasks (Team et al., 2025; Guo et al., 2025;036

Yang et al., 2025; Zhao et al., 2023). Empirical037

studies demonstrate that increasing computational038

budgets during both training and inference phases039

yields consistent gains in reasoning performance.040

For example, OpenAI’s reasoning series models041

(e.g., o1 and o3) highlight how test-time scaling 042

can further boost accuracy on challenging bench- 043

marks (OpenAI, 2024a,b, 2025). Unlike RL-based 044

optimization—which incurs substantial computa- 045

tional overhead—test-time scaling offers a more 046

affordable alternative, attracting growing interest 047

for its favorable cost–performance trade-off (Chen 048

et al., 2024; Kang et al., 2024). 049

Existing researches mainly propose two lines 050

of approaches for achieving test-time scaling. A 051

common approach executes multiple independent 052

single-round inferences and selects the final an- 053

swer via majority vote (Wang et al., 2022). De- 054

spite its simplicity and robustness as a strong base- 055

line (Jiang et al., 2024), this strategy treats each 056

inference as isolated, often resulting in redundant 057

or uninformative computations. To address this 058

limitation, recent studies have proposed an iterative 059

multi-round inference method, where the model 060

incorporates prior reasoning traces or final answers 061

into subsequent inference inputs (Chen et al., 2025). 062

While this paradigm encourages history-aware rea- 063

soning, it introduces new challenges: overly ver- 064

bose reasoning histories in the input may lead 065

models to forget or overlook salient facts, and the 066

brevity of final answers makes it difficult for mod- 067

els to revise earlier outputs, even when faced with 068

inconsistencies or superior alternatives. These is- 069

sues become increasingly pronounced as reasoning 070

chains grow in length and complexity. 071

To address the aforementioned challenges, we 072

propose a novel framework aimed at striking a bal- 073

ance between overly verbose reasoning traces and 074

excessively concise final answers, thereby encour- 075

aging LRMs to explore novel solution paths by 076

leveraging historical attempts. Inspired by how hu- 077

mans approach long-form generative tasks—such 078

as writing—by distilling key intermediate ideas, 079

conclusions, or inflection points to scaffold the final 080

output, we introduce a method to distill a compact 081

set of essential solution cues from the lengthy rea- 082
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Figure 1: The overall framework of our proposed Sticker-TTS.

soning processes, which we term “stickers”. Stick-083

ers encapsulate key conceptual anchors that guide084

future reasoning. At each round, we extract and085

refine a sticker from the previous long-form rea-086

soning trace and embed it into the subsequent in-087

put. This approach encourages LRMs to explore088

alternative solutions while effectively leveraging089

past attempts. By using stickers as lightweight, ex-090

pressive intermediates, our method enhances both091

reasoning robustness and efficiency.092

In this paper, we propose Sticker-TTS, a collab-093

orative framework designed for test-time scaling094

with multiple LRMs, enabling effective utilization095

of historical experience. The framework comprises096

three key components: a Sticker Extractor, which097

distills concise and relevant insights (“stickers”)098

from previous reasoning traces; a Sticker Modifier,099

which adapts these stickers to the current context;100

and a Sticker Utilizer, which integrates them to101

guide the model towards more effective solution102

strategies. During inference, these components op-103

erate iteratively, allowing the model to synthesize104

prior knowledge with new reasoning paths. To en-105

hance the utility of this collaborative process, we106

propose a two-stage training paradigm combining107

knowledge distillation and self-improvement. Ini-108

tially, the extractor and modifier are trained on ap-109

proximately 1K distilled examples. The full frame-110

work is then used to sample collaborative reason-111

ing trajectories, which in turn serve as new training112

data to iteratively refine the modules. This cycle of113

generation and retraining progressively enhances 114

the model’s reasoning ability, demonstrating the 115

promise of sticker-based collaboration for scaling 116

test-time inference. 117

To validate the effectiveness of Sticker-TTS, 118

we evaluate our method on several challenging 119

reasoning math benchmarks, including the 2024 120

and 2025 AIME problem sets and OlymMATH, a 121

recently introduced Olympiad-level math bench- 122

mark. Our framework consistently outperforms 123

competitive baselines on both benchmarks under 124

comparable compute bugets. For example, our 125

method achieves a 12.42% relative improvement 126

over self-consistency on the AIME-25 using a 7B 127

model. On the other hand, compared to mod- 128

els trained with reinforcement learning, our ap- 129

proach performs comparably or even better across 130

multiple benchmarks—for instance, achieving a 131

9.79% relative improvement over Skywork-OR1 132

on OlymMath. Moreover, when scaling computa- 133

tion through multi-round reasoning, our method 134

demonstrates further performance gains, deliver- 135

ing an 18.75% relative improvement over Light-R1 136

on AIME-25. This demonstrates the efficiency of 137

our approach in utilizing historical experience for 138

better test-time scaling. 139

2 Method 140

Unlike traditional test-time scaling methods, our 141

approach focuses on refining and utilizing histor- 142

2



ical experiences. We provide an overview of our143

method in Section 2.1. Furthermore, we introduce144

the inference and training of our approaches in Sec-145

tion 2.2 and Section 2.3, respectively.146

2.1 Overview147

Our Sticker-TTS framework comprises three inter-148

related models: the Sticker Extractor E, the Sticker149

Modifier M , and the Sticker Utilizer U . These150

models work collaboratively through an iterative151

reasoning process. Given a reasoning trace, the152

Sticker Extractor first extracts and summarizes key153

reasoning steps and global strategies into a struc-154

tured “sticker”. The Sticker Modifier subsequently155

inspects this sticker for any mistakes, applying nec-156

essary corrections. Finally, the Sticker Utilizer gen-157

erates an enhanced reasoning trace by integrating158

the modified sticker with the original question and159

the previous trace. We show the overall procedure160

in Figure 1.161

Algorithm 1: Sticker-TTS Framework
Input :Question Q, Sticker Extractor E, Sticker

Modifier M , Sticker Utilizer U , Max
Iterations N

Output :Final Answer Afinal

1 // Initial response without sticker
2 T (0), A(0) ← U(Q) ▷ U generate response without

sticker
3 TraceList← [], AnswerList← []

4 TraceList.append(T (0)))

AnswerList.append(A(0)))

5 // Recursive Reasoning Loop
6 for k ← 1 to N do
7 // Sticker Extraction
8 s(k) ← E(T (k−1), Q)

9 // Sticker Modification
10 s(k)

′
←M(s(k),Q)

11 // Trace Generation
12 T (k), A(k) ← U(s(k)

′
, Q,A(k−1))

13 TraceList.append(T (k))

AnswerList.append(A(0)))
14 end
15 // Final Answer Derivation
16 Afinal ←MajorityV ote(AnswerList) ▷

Aggregate answers from all N traces

To obtain these components, we adopt a two-162

stage training strategy with distillation-guided self-163

improvement. At the first training stage, we initial-164

ize the framework through knowledge distillation165

from powerful teacher models. Specifically, we166

construct training data in the required format by167

distilling the teacher’s reasoning traces, then per-168

form fine-tuning to adapt all three models (E, M ,169

and U ) to their respective functional roles. Subse- 170

quently, we implement a self-improvement training 171

stage where the framework autonomously gener- 172

ates iterative reasoning traces on open-source math- 173

ematical problems. These generated experiences 174

undergo rigorous filtering based on solution valid- 175

ity and reasoning refinement trajectories, forming 176

high-quality self-distilled data. We then conduct 177

additional fine-tuning using this curated dataset to 178

further enhance the models’ ability in sticker extrac- 179

tion, error correction, and iterative optimization. 180

2.2 Recursive Reasoning Loop 181

Sticker-TTS operates through an iterative mecha- 182

nism that progressively enhances reasoning quality. 183

As illustrated in Figure 1, each iteration k (start- 184

ing from k = 1) builds upon the previous reason- 185

ing trace T (k−1) and corresponding answer A(k−1). 186

Notably, T (0) denotes the initial response generated 187

by the Sticker Utilizer U without prior sticker in- 188

tegration, and A(0) indicates the answer extracted 189

from T (0). Subsequently, our approach sequen- 190

tially invokes three phases, i.e., sticker extraction, 191

sticker modification, and trace generation, within 192

each iteration, and terminates the generation pro- 193

cess utill meeting the stopping criterion. Below, we 194

formalize the overall recursive process and provide 195

the complete algorithmic flow in Algorithm 1. 196

Prompt for Sticker Extraction

Given the solution provided below, Generate an ab-
stract of the key conditions that help solve the problem.
The abstract should include both the key conditions
and the question.
Abstract Format:
Conditions:
1. [Condition 1]
... (add more conditions as needed)
Question:
[Clearly state what is being asked.]
Requirements:
[Specify requirements that the model must meet.]
Solution to question:
[Solution]
Please provide your output strictly following ...

197

Sticker Extraction. The Sticker Extractor E is 198

designed to effectively capture the primary strategy 199

and reasoning steps while identifying weaknesses 200

in an existing reasoning trace. It takes a reason- 201

ing trace T (k−1) and the corresponding question 202

Q as input. Based on this historical trace, E ex- 203

tracts a structured sticker s(k). This sticker acts as 204

a diagnostic summary that captures the strategic 205

essence while pinpointing the most critical limita- 206
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tions within the current reasoning trace. We show207

the utilized prompt in the following table.208

Prompt for Sticker Modifier

Given a question and the abstract generated from the
solution, carefully check and verify whether the ex-
tracted key conditions contain any errors in reasoning
or incorrect conditions.
Step 1: Verify and refine the Conditions section.

- Conditions can come from the reasoning process.
... (Some other requirements are ommited) ...
Step 2: Verify the **Question** section.
- Ensure the question summary is concise ...
- If incorrect, provide a refined version.
Step 3: Generate the output.
- you should output your refined abstract in the follow-
ing format:
**Conditions:**
1. [Corrected Condition 1]
... (more conditions if necessary)
**Question:**
[Refined question summary]
Please provide your output strictly following the step
3 without other unnecessary words.

209

Sticker Modification. The Sticker Modifier M ex-210

amines the sticker s(k) to refine potential errors. Ac-211

cording to the reasoning steps and limitations sum-212

marized in the sticker, M performs fine-grained213

error analysis, including computational mistakes214

and methodological flaws. This process generates215

a revised sticker s(k)
′

that incorporates corrective216

feedback, ensuring subsequent reasoning steps ad-217

dress previously identified weaknesses. We show218

the utilized prompt in the following table.219

Prompt for Sticker Utilization

Given a question:
[Question]
Given a sticker that may be correct or incorrect:
[Sticker]
The previous answer that may be correct or incorrect:
[Answer]
Please reason step by step and put final answer in the
boxed.

220

Sticker Utilization. The Sticker Utilizer U gener-221

ate a new reasoning path T (k) by integrating s(k)
′

222

with the original question Q and the previous an-223

swer A(k−1). The new generated T (k) and A(k)224

subsequently serve as the input for the next itera-225

tion, enabling progressive refinement. We show the226

utilized prompt in the following table.227

Stopping Criterion. The iterative loop terminates228

after N iterations, yielding N progressively refined229

reasoning traces {T (1), ..., T (k)} and correspond-230

ing answers {A(1), ..., A(k)}. To derive the final231

answer, we aggregate all N answers through the 232

majority vote approach. 233

2.3 Self-improvement Progressive Training 234

Although the design of our framework is clear, de- 235

veloping the framework’s components from scratch 236

poses significant challenges, primarily due to the 237

need for a nuanced understanding of complex rea- 238

soning patterns. To tackle this issue, we propose a 239

two-stage progressive training strategy. First, we 240

utilize knowledge distillation to align the model 241

with the target inference patterns (i.e., extracting 242

stickers, modifying stickers, and utlizing stickers). 243

Following this, we enhance the model’s perfor- 244

mance through self-improvement bootstrapping. 245

This approach not only streamlines the training pro- 246

cess but also ensures a more robust understanding 247

of the reasoning required for effective performance. 248

Initialization via Knowledge Distillation. The 249

first stage establishes capacity adaptation through 250

knowledge distillation from powerful teacher mod- 251

els. We construct task-aligned training data us- 252

ing mathematical problems marked as solvable in 253

the OpenThoughts dataset (Team, 2025) and em- 254

ploy powerful DeepSeek-R1 (Guo et al., 2025) to 255

generate high-quality reasoning traces. For train- 256

ing Sticker Extractor E, we use o3-mini (OpenAI, 257

2025) to extract structured stickers from the long- 258

form reasoning traces, which exhibit greater faith- 259

fulness compared to other reasoning models (Bao 260

et al., 2024). Subsequently, to prepare training data 261

for models Sticker Modifier M and Sticker Utilizer 262

U , we simulate error-correction scenarios. Specifi- 263

cally, we start from the flawed reasoning traces and 264

their corresponding stickers derived from the train- 265

ing data prepared for Sticker Extractor and leverage 266

DeepSeek-R1 as Sticker Modifier and Utilizer to 267

examine stickers and generate refined reasoning 268

paths. Finally, We only retain the generated data 269

from the three models to form paired training data 270

on the condition that the final reasoning trajectory 271

is completely correct. Through fine-tuning on these 272

distilled datasets, each component has preliminar- 273

ily acquired its specialized capability in extraction, 274

correction, and optimization. 275

Self-improvement Bootstrapping. To further en- 276

hance the model’s capabilities, we enable the model 277

to generate data autonomously and employ rig- 278

orous curation of the self-distilled training data. 279

Leveraging the initialized framework, we itera- 280

tively generate reasoning traces on OpenThoughts 281
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while enforcing dual filtering criteria to ensure282

the quality of the training data. The first crite-283

rion is solution validity. We preserve trajectories284

where the final optimized answer is correct while285

maintaining a 1:2 ratio between “error-to-correct”286

transitions (where the initial reasoning path con-287

tains errors but the final optimized answer is cor-288

rected) and “correct-to-correct” transitions (where289

the training path is already valid while undergoing290

further refinement). This ratio aligns with the statis-291

tical distribution of naturally generated reasoning292

paths, where correct initial attempts occur more293

frequently. The second criterion is correction sig-294

nificance. For selected cases where iterative refine-295

ment succeeds after previous reasoning fails, we296

limit the preceding two iterations to yield incorrect297

answers. This ensures the difficulty of the retained298

cases, which involve non-trivial corrections requir-299

ing sustained reasoning effort. Subsequent fine-300

tuning on this curated dataset enables synergistic301

enhancement of the framework: Sticker Extractor302

E improves its capacity to identify critical reason-303

ing patterns from iterative histories, Sticker Mod-304

ifier M develops robust error diagnosis through305

exposure to multi-failure recovery scenarios, and306

Sticker Utilizer U strengthens its reasoning path307

generation capability by integrating optimized rea-308

soning strategies. To prevent overfitting, we limit309

each mathematical problem to provide at most one310

qualified training instance for each framework com-311

ponent during their respective training phases.312

3 Experiments313

3.1 Experimental Setup314

Dataset and Benchmarks. We evaluate315

our method on three mathematical reason-316

ing benchmarks: AIME 2024 (MAA, 2024),317

AIME 2025 (MAA, 2025), and OlymMATH-EN-318

EASY (Sun et al., 2025). AIME offers 30 chal-319

lenging mathematical problems per year target-320

ing academically advanced high school students.321

OlymMATH-EN-EASY comprises 100 Olympiad-322

level problems, designed to rigorously evaluate323

complex reasoning capabilities with verifiable nu-324

merical solutions. For model training, we use the325

math subset of OpenThoughts (Team, 2025), an326

open synthetic reasoning dataset containing 114k327

high-quality examples.328

Evaluation Metrics. We employ two primary met-329

rics: Pass@1 and Cons@N. For baseline models,330

Pass@1 is estimated by generating 64 responses 331

per query using nucleus sampling with a top-p 332

value of 0.95 and a temperature of 0.6. In our 333

method, Pass@1 is computed directly using the 334

answer from the final iteration. Cons@N eval- 335

uates the majority vote agreement, where base- 336

line implementations generate N independent sam- 337

ples, while our method naturally accumulates N 338

responses through iterations and performs vot- 339

ing across these evolution trajectories. To en- 340

sure fair comparison, we configure generation 341

parameters consistently across models. For the 342

DeepSeek-R1-Distill-Qwen1 series, the maxi- 343

mum generation length is set to 32, 000 tokens. 344

For the Qwen2.5 series (Yang et al., 2024), the 345

maximum generation length is configured to 5, 000 346

tokens. 347

Baselines. To ensure comprehensive evaluation, 348

we consider LLMs trained via three approaches 349

as baselines, including distillation, multi-staged 350

post-training featuring RL, and test-time scaling 351

framework. For the distillation approach, we 352

adopt the DeepSeek-R1-Distill series as evalua- 353

tion baselines. For the multi-staged post-training 354

method with RL, we employ the Light-R1 se- 355

ries (Liang Wen, 2025), Skywork-OR1 series (He 356

et al., 2025), and AM-Thinking-v1 (Ji et al., 2025) 357

as baseline LLMs. For the test-time scaling frame- 358

work approach, we utilize LeaP-T-7B (Luo et al., 359

2025) and Think-Twice (Tian et al., 2025) as base- 360

lines. 361

Implementation Details. For data preparation, 362

we employ DeepSeek-R1-Distill-Qwen-7B to 363

sample 10 reasoning trajectories per mathemati- 364

cal problem in the OpenThoughts dataset. The 365

correctness rates of these trajectories are used to 366

estimate problem difficulty levels. During the 367

knowledge distillation stage, we select problems 368

with difficulty scores between 0.2 and 0.5. Re- 369

sponses from DeepSeek-R1 and o3-mini are ob- 370

tained via API calls, with sampling parameters 371

the same as the evaluation setup. For the self- 372

improvement bootstrapping stage, we curate more 373

challenging data with difficulty scores ranging 374

from 0 to 0.4. The Sticker Extractor is trained 375

using the Qwen2.5 series models, while both the 376

Sticker Modifier and Sticker Optimizer utilize the 377

DeepSeek-R1-Distill-Qwen series. Experiments 378

1https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-32B
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Method AIME 2024 AIME 2025 OlymMATH-EN-EASY

Pass@1 Cons@20 Cons@64 Pass@1 Cons@20 Cons@64 Pass@1 Cons@20 Cons@64

7B Models

DeepSeek-R1-Distill 55.52 73.33 76.67 38.54 53.33 56.67 41.88 67.00 71.00

Light-R1 57.55 76.67 80.00 42.86 53.33 60.00 46.48 65.00 74.00
Skywork-OR1 66.30 76.67 83.33 52.50 63.33 63.33 57.38 79.00 78.00

Think-Twice 56.67 73.33 76.67 43.33 56.67 56.67 53.00 55.00 58.00
LeaP-T 64.38 80.00 80.00 41.25 56.67 60.00 35.95 62.00 68.00

Ours (Stage 1, N=10) 60.00 80.00 / 40.00 60.00 / 61.00 76.00 /
Ours (Stage 2, N=10) 66.67 83.33 / 43.33 63.33 / 63.00 80.00 /

32B Models

DeepSeek-R1-Distill 72.60 83.33 86.67 54.37 70.00 73.33 65.34 86.00 87.00

Light-R1 76.77 86.67 86.67 64.79 73.33 76.67 75.53 89.00 92.00
Skywork-OR1 80.83 86.67 86.67 72.08 80.00 80.00 85.77 93.00 96.00
AM-Thinking-v1 81.15 90.00 90.00 76.25 83.33 83.33 86.25 95.00 96.00

Ours (Stage 1, N=10) 70.00 90.00 / 70.00 80.00 / 79.00 88.00 /
Ours (Stage 2, N=10) 76.67 93.33 / 73.33 80.00 / 78.00 90.00 /

Table 1: Evaluation results on three mathematical reasoning benchmarks. Note that while our method reports answers
via Cons@N, its associated reasoning cost is comparable to Cons@2N. To ensure fair comparison, performance
comparisons are conducted with aligned reasoning consumption. We additionally provide baseline reference
performance at larger N values for context. The best and second-best results are highlighted in bold and underlined,
respectively.

are conducted across two model scales: 7B and379

32B. As for the SFT configuration, the maximum380

context length is 20, 000 tokens. The Sticker Ex-381

tractor is trained with a batch size of 96 and a382

learning rate of 1 × 10−5. The Sticker Modifier383

and Sticker Utilizer are trained with a batch size of384

128 and a learning rate of 2× 10−5. The detailed385

information of SFT configuration is in Appendix A.386

3.2 Main Results387

Table 1 presents the performance of our method and388

other baselines on three representative mathemati-389

cal reasoning datasets. We can make the following390

observations:391

• Superior Performance. Our proposed method392

demonstrates better or comparable performance393

compared to other baselines. After the first train-394

ing stage of distillation, our method already sur-395

passes models trained through distillation and396

test-time scaling framework. Following the sec-397

ond training stage, our method outperforms most398

baselines, and even exceeds some models devel-399

oped via multi-staged post-training featuring RL,400

such as Light-R1. Its performance is compara-401

ble to the current state-of-the-art open-source rea-402

soning model AM-Thinking-v1 with the metric403

of Cons@20. This two-stage progression indi-404

cates that the initial knowledge distillation suc-405

cessfully adapts the framework’s components to406

their functional roles, while the subsequent self- 407

improvement bootstrapping enables synergistic ca- 408

pability enhancement of the framework. The sus- 409

tained performance gains confirm our framework’s 410

powerful capacity for reasoning path optimization 411

and generation. 412

• Scalability Across Model Sizes. Our method 413

demonstrates effectiveness across different model 414

scales, achieving considerable improvements with 415

both 7B and 32B parameter variants. This scala- 416

bility demonstrates that our framework adapts well 417

to varying model capability levels. Our framework 418

enables effective division of labor regardless of 419

base model size, with each component specializing 420

in its respective task while maintaining coherent 421

collaboration. 422

• Enhanced Reasoning Efficiency. Our method 423

achieves substantial performance with favorable 424

reasoning cost. After the two-stage training, our 425

method attains superior results with only N=10 it- 426

erations, outperforming the Cons@64 performance 427

of most baselines. Additionally, we vary the iter- 428

ation number N and examine the Cons@N per- 429

formance of our method on the OlympMATH-EN- 430

EASY benchmark. As illustrated in Figure 2, our 431

model achieves effective test-time scaling as N in- 432

creases. Notably, since the Sticker Extractor oper- 433

ates as a model featuring short CoT, demonstrating 434
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Figure 2: Cons@N performance on OlymMATH-EN-
EASY across varying iteration counts N of 7B model.

Method AIME 2024
(Cons@20)

AIME 2025
(Cons@20)

7B Models

Ours (Stage 2, N=10) 83.33 63.33
Early Exit 70.00 56.67
Parallel Sampling (P=2, Q=5) 80.00 60.00
Parallel Sampling (P=5, Q=2) 80.00 56.67

32B Models

Ours (Stage 2, N=10) 93.33 80.00
Early Exit 86.67 76.67
Parallel Sampling (P=2, Q=5) 93.33 73.33
Parallel Sampling (P=5, Q=2) 86.67 76.67

Table 2: Performance comparison under different itera-
tion strategies.

substantially lower reasoning cost compared to the435

long-CoT Sticker Modifier and Optimizer, the total436

reasoning cost at N=10 remains comparable to that437

of Cons@20 setups for long-CoT models. This438

efficiency stems from our framework’s enhanced439

capacity to perceive and learn from historical expe-440

riences. Each iteration effectively distills insights441

from prior attempts instead of conducting history-442

unaware parallel sampling.443

3.3 Further Analysis444

Reasoning Depth. Since our method continually445

refines its outputs by leveraging the history of prior446

responses, we can vary the number of iterations447

N to control the reasoning depth. We examine448

two strategies: early exit and parallel sampling.449

For early exit, an additional stopping criterion is450

introduced where the iteration terminates if the cur-451

rent response’s answer matches that of the previous452

iteration. For parallel sampling, we partition the453

sampling process into P parallel chains, each exe-454

cuting Q iterations per query, ensuring PQ = N .455

The results of these experiments are presented in456

Table 2. Overall, we can have two major obser-457

Method AIME 2024
(Cons@20)

AIME 2025
(Cons@20)

7B Models

Ours (Stage 2, N=10) 83.33 63.33
Extractor Ablation 73.33 53.33
Modifier Ablation 70.00 53.33
Full Ablation 70.00 50.00

Table 3: Ablation study in Sticker-TTS.

Method AIME 2024 AIME 2025

Pass@1 Cons@20 Pass@1 Cons@20

32B Models

DeepSeek-R1-Distill 72.60 83.33 54.37 70.00
Light-R1 76.77 86.67 64.79 73.33
Sticker Utilizer 75.68 86.67 58.54 73.33

Table 4: Evaluation results of the 32B Sticker Utilizer.

vations. Firstly, increasing test time enables our 458

method to better learn from experience. While the 459

early exit strategy reduces the average number of it- 460

erations, it appears detrimental to the refinement of 461

stickers through deeper iterations, thereby limiting 462

the depth of perception and learning from histor- 463

ical responses. Secondly, with the same reason- 464

ing costs, deeper iterations yield consistent perfor- 465

mance gains over other methods, indicating that our 466

method effectively leverages historical responses 467

for sustained optimization. This suggests that the 468

interplay among the three Sticker components pro- 469

gressively strengthens the consensus and accuracy 470

of the reasoning outcome. 471

Ablation Study. To assess the effectiveness of 472

components in our framework, we conduct ablation 473

experiments focusing on the Sticker Extractor and 474

Sticker Modifier. Three configurations are tested: 475

(1) Extractor Ablation: Directly feeding raw rea- 476

soning traces to the Sticker Modifier without sticker 477

extraction; (2) Modifier Ablation: Using unmod- 478

ified stickers from the Extractor to generate new 479

traces; (3) Full Ablation: Generating new traces 480

directly from the original reasoning path without 481

sticker involvement. As shown in Table 3, perfor- 482

mance declines under individual component abla- 483

tion, while full ablation causes the most significant 484

degradation. This demonstrates that both compo- 485

nents serve critical roles: the Sticker Extractor’s 486

strategy abstraction prevents the Sticker Modifier 487

from being overwhelmed by details in reasoning 488

traces, while the Sticker Modifier’s error correction 489

ensures sticker quality for subsequent optimization. 490

The compounded performance loss under full abla- 491
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tion suggests that intermediate sticker representa-492

tions are likely essential for navigating the internal493

complexity of reasoning traces. Without structured494

stickers, the framework struggles to maintain strate-495

gic focus during iterative refinement, potentially496

propagating errors or becoming trapped in flawed497

reasoning patterns.498

Sticker Utilizer Analysis. We conduct standalone499

evaluations of the 32B Sticker Utilizer after the500

two-stage training, without the collaboration of501

the other two models. As shown in Table 4,502

the Sticker Utilizer achieves superior performance503

compared to DeepSeek-R1-Distill-32B while504

matching Light-R1 in Cons@20 metrics. This505

demonstrates that training models to optimize rea-506

soning paths enhances intrinsic reasoning capabili-507

ties. Notably, while the Sticker Utilizer’s Pass@1508

score is lower than Light-R1, likely due to differ-509

ences in training objectives, its Cons@20 equiva-510

lence shows that the majority vote strategy effec-511

tively overcomes the instability of single run by ag-512

gregating diverse valid trajectories. This suggests513

that the Sticker Utilizer possesses strong reason-514

ing potential, and its generation stability could be515

enhanced with further calibration.516

4 Related Work517

Test-Time Scaling Techniques. Recent advances518

have proposed a range of decoding strategies519

to enhance reasoning accuracy during inference.520

A prominent line of work involves performing521

multiple sampling passes and selecting the fi-522

nal answer via majority voting, as exemplified523

by the self-consistency method (Wang et al.,524

2022). Building on this, confidence-weighted self-525

consistency (Taubenfeld et al., 2025) reduces the526

number of required samples by incorporating an-527

swer uncertainty. Beyond independent sampling,528

recent approaches leverage multiple rounds of529

generation informed by previous attempts, such530

as feeding the full prior answer back into the531

model (Tian et al., 2025) or adopting parallel think-532

ing mechanisms (Luo et al., 2025). However, these533

long-form reasoning processes impose a significant534

burden on the model’s long-context capabilities (Li535

et al., 2023), while overly brief answers limit the536

potential to leverage historical attempts effectively.537

Moreover, existing methods primarily focus on538

prompt design and offer limited support for iter-539

ative improvement through training. In contrast,540

our proposed framework introduces stickers, which 541

are succinct, distilled cues extracted from extended 542

reasoning traces, to guide the utilization of histor- 543

ical solutions. Furthermore, complemented by a 544

two-stage training strategy that combines imitation 545

learning and self-improvement, our framework en- 546

ables continual enhancement of test-time reasoning 547

performance. 548

Reinforcement Learning for Reasoning. With 549

the help of RL, LRMs have achieved signif- 550

icant progress. Especially, OpenAI’s o1 se- 551

ries 2, DeepSeek-R1 (Guo et al., 2025), and Kimi 552

K1.5 (Team et al., 2025) have achieved surpris- 553

ing math and code performance by training with 554

outcome-based reward on large scale. Complemen- 555

tary to this, methods like VC-PPO (Yuan et al., 556

2025), and Light-R1 (Wen et al., 2025) investigate 557

alternative reward formulations, curriculum learn- 558

ing, and multi-stage training to enhance reason- 559

ing capabilities. The proliferation of open-source 560

frameworks—including SimpleRL (Zeng et al., 561

2025) and STILL series work (Chen et al., 2025)- 562

has played a vital role in replicating and scaling RL 563

pipelines, promoting reproducibility and accelerat- 564

ing broader adoption. These advances collectively 565

provide a robust foundation for efficient and reli- 566

able RL training in large models. Our approach is 567

decoupled from the underlying model, making it 568

pluggable with the aforementioned models to en- 569

hance their test-time scalability and performance. 570

Additionally, our training strategy can be applied 571

to further improve the overall performance. 572

5 Conclusion 573

In this paper, we explore how to enhance the test- 574

time scaling performance of LRMs. We propose 575

a novel sticker-based test-time scaling framework 576

which consists of three modules: a Sticker Extrac- 577

tor to distill concise and relevant insights (“stick- 578

ers”) from previous reasoning traces; a Sticker Mod- 579

ifier to adapt these stickers to the current context; 580

and a Sticker Utilizer to integrate them to guide 581

the model towards more effective solution strate- 582

gies. During inference, these components operate 583

iteratively, allowing the model to synthesize prior 584

knowledge with new reasoning paths. Extensive ex- 585

periments validate its effectiveness, demonstrating 586

its superiority over strong baselines. 587

2https://openai.com/o1/
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Limitations588

In this paper, we present a sticker-based test-time589

scaling framework to enhance reasoning capaci-590

ties of LRMs during inference. Beyond DeepSeek-591

R1-Distill model, we believe our framework can592

be employed in broader LRMs, which have not593

been explored owing to the computational costs.594

Additionally, our method mainly focus on utiliz-595

ing supervised fine-tuning (i.e., RFT) to train each596

module in the framework. However, in the future,597

we can further employ RL to train the whole frame-598

work, which is an multi-agent system in essence.599

Limited by the computational costs, we conduct ex-600

periments on models up to 32B in size, and future601

work may explore validating our proposed method602

on even larger models.603
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A SFT Configuration748

We utilize the huggingface Transformers (Wolf749

et al., 2019) to implement our experiments, using750

Flash Attention (Dao et al., 2022) and DeepSpeed751

ZeRO Stage 3 to optimize the training efficiency.752

We employ AdamW optimizer (Loshchilov and753

Hutter, 2019) with β1 = 0.9 and β2 = 0.95, and754

use the cosine learning rate scheduler. We use755

BFloat16 mixed precision, with a warmup ratio of756

0.1 and a weight decay of 0.1 to ensure training757

stability. To enhance computational efficiency, we758

apply gradient checkpointing strategy (Chen et al.,759

2016).760
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