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Abstract

Recent advancements in low-light video enhancement (LLVE) have increasingly
leveraged both RGB and event cameras to improve video quality under challenging
conditions. However, existing approaches share two key drawbacks. First, they are
tuned for steady low-light scenes, so their performance drops when illumination
varies. Second, they assume every sensing modality is always available, while real
systems may lose or corrupt one of them. These limitations make the methods
brittle in dynamic, real-world settings. In this paper, we propose EVDiffuser, a
novel framework for consistent LLVE that integrates RGB and event data through
a modality-adaptive diffusion pipeline. By harnessing the powerful priors of video
diffusion models, EVDiffuser enables consistent video enhancement and gener-
alization to diverse scenarios under varying illumination, where RGB or events
may even be absent. Specifically, we first design a modality-agnostic conditioning
mechanism based on a diffusion pipeline by treating the two modalities as optional
conditions, which is fine-tuned using augmented and integrated datasets. Fur-
thermore, we introduce a modality-adaptive guidance rescaling that dynamically
adjusts the contribution of each modality according to sensor-specific characteris-
tics. Additionally, we establish a benchmark that accounts for varying illumination
and diverse real-world scenarios, facilitating future research on consistent event-
guided LLVE. Our experiments demonstrate state-of-the-art performance across
challenging scenarios (i.e., varying illumination) and sensor-based settings (e.g.,
event-only, RGB-only), highlighting the generalization of our framework.

1 Introduction

Video enhancement is a pivotal area of research in computer vision, encompassing tasks such as
denoising [32], deblurring [18]], and low-light enhancement [2]. While many methods exhibit impres-
sive performance, the inherent limitations of the sensor still constrain the video quality and realism,
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Figure 1: (a) EVDiffuser is a diffusion framework that enables modality-adaptive conditioning on
both RGB and event data for consistent LLVE. It demonstrates robustness in real-world scenarios with
varying illumination and generalizes well across multiple settings (e.g., RGB-only and event-only).
Under (b) challenging conditions characterized by extreme illumination variation, our (f) EVDiffuser
effectively reconstructs consistent, high-quality video. In contrast, existing methods either (c) produce
over-enhanced results or (d,e) fail to preserve structural details.

particularly under extreme conditions such as low light or rapid camera motion, necessitating the
integration of additional sensors. Recent advancements in event cameras, which provide exceptional
dynamic range and microsecond-level temporal resolution, have introduced new possibilities for video
reconstruction [30]] and restoration [24} 23] [42]. These capabilities enable robust performance in
extreme conditions, including high-speed motion, low-light environments, and overexposed scenes,
thereby addressing many limitations of RGB-based approaches. Among these applications, low-light
video enhancement (LLVE) has shown particular promise when leveraging event cameras.

Existing event-guided LLVE methods often assume stable input from both RGB and event modalities
under steadily low illumination in a well-controlled environment. For example, recent methods [24,
[23]] rely on both low-light, noisy RGB frames and sufficient event data, typically constrained to a
narrow illumination range (e.g., 5-25 lux). However, in real-world applications, illumination can
vary significantly, and different sensors are affected to varying degrees. RGB images may be of
high quality most of the time, only deteriorating under specific low-light conditions. The normal
quality images will still be augmented, often leading to overexposure or inconsistency in existing
methods (see Fig.[Tlc,e). In other cases, the RGB sensor may fail completely, capturing no usable
information. The RGB+event fusion approaches may also fail to work. One stable method that can
operate steadily is purely event-based event-to-video reconstruction 41111, 9], but these methods
cannot take advantage of high-quality RGB inputs when available, resulting in poor overall quality in
varying illumination(see Fig. [I]d). In summary, while current techniques may perform adequately in
specific settings with stable parameters (i.e., illumination and modalities input), they struggle with
the variability inherent in real-world conditions, where both modality availability and environmental
factors frequently change. To the best of our knowledge, no existing method can effectively handle
all these scenarios within a unified framework. Given these challenges, it is crucial to develop a
unified, comprehensive framework that can robustly handle diverse scenarios, accurately model scene
dynamics, and maintain consistent video quality despite fluctuating input conditions.

In this paper, we introduce EVDiffuser, a novel framework for consistent LLVE, which integrates
both RGB and event data through a modality-adaptive diffusion pipeline. As shown in Fig.[T]a, the key
insight of our framework is to condition the diffusion process on both modalities, producing consistent
videos by leveraging the powerful priors from a pre-trained video diffusion model [51]]. Specifically,
we propose a modality-agnostic training pipeline based on a diffusion model, conditioning it on both
modalities and fine-tuning it using augmented and integrated datasets. This facilitates the diffusion
model to adapt even in the absence of either RGB or event inputs. Additionally, we design a novel
modality-adaptive guidance rescaling mechanism that facilitates the integration of information from
both modalities and adaptively adjusts the guidance to accommodate varying degradation conditions.
This ensures the model effectively exploits the complementary characteristics of RGB and event
cameras. Finally, as no existing method addresses consistent LLVE under varying illumination, we



establish a benchmark that accounts for real-world illumination variability, laying the foundation for
future research across diverse applications. In our experiments, the proposed approach demonstrates
strong generalization across a wide range of scenarios, maintaining consistent LLVE performance
under varying illumination and showing robustness in different configurations (i.e., event-only and
RGB-only), even when one of the sensors is unavailable.

2 Related Work

2.1 Low-Light Video Enhancement (LLVE)

RGB-based LLVE. Normal-light video reconstruction with the input of low-light RGB frames
has been a long-standing research topic. Although many methods [53] 4, 36| 31} 45| [10] show
impressive performance, their research focuses on LLVE in stable low-light environments, assuming
the illumination is constantly low. Some methods try to reduce temporal jitter through temporal
consistency losses [4} 53 136] and multi-frame alignment [31} 45} [10], but these are not enough for
the real-world setting, where there are often unstable changes in lighting. The model design and
dataset construction of current works are designed for constant low light, making these models unable
to generalize to real-world dynamic illumination, leading to temporal discontinuities and severe
distortion in the restored video.

Multi-modal LLVE. Recent research has explored and shown promise when combining additional
sensor (e.g.event camera) with RGB camera to do the LLVE task. For example, Liu et al. [29]
synthesize pseudo-events from adjacent low-light frames, enabling artifact-free fusion while pre-
serving temporal consistency. EvLowLight [24] enhances coherence by jointly aligning motion and
spatial features across events and frames. EvLight++ [7] further refines temporal smoothness through
recurrent modules and dedicated loss functions, achieving robust noise suppression. Despite these
advancements, these methods still assume a stable low-light environment and the constant avail-
ability of both modalities. They fail to consider that different sensors have varying strengths under
changing lighting conditions, and they also overlook the possibility that some modalities may become
unavailable in real-world scenarios, leading to unsatisfactory performance in real-world settings
where illumination may fluctuate. To address this, our work aims to propose a modality-adaptive and
modality-agnostic pipeline that can handle both varying lighting conditions and uncertain modality
availability, respectively.

2.2 Video Generation Models

Foundation Models. The field of video generation has evolved rapidly by integrating advances in
image synthesis with the challenge of ensuring temporal consistency across frames. This progress
has been particularly accelerated by text-to-video models, driven by innovations in the Transformer
architecture [43]] and diffusion models [[12]]. Early works explored diverse generative frameworks:
GAN-based methods [22| 34} [39] pioneered real-time video synthesis but struggled with temporal
artifacts, while Transformer-VQVAE hybrids [11} 14} 50] improved long-range coherence through
autoregressive token prediction, albeit at increased computational costs. Recent efforts have shifted
toward diffusion-based models [S1} 28| 21], which achieve state-of-the-art quality by leveraging
scaled text-video datasets and architectural advancements like Diffusion Transformers (DiT) [35]].

Generative models in low-level vision. Generative models possess strong generalization capabilities
and encode rich prior information, making them widely applicable in various downstream low-level
vision tasks. In the domain of multi-modal low-level vision, methods such as Event-Diffusion [26]
and Temporal [S8] employ diffusion models as the backbone for event-guided image reconstruction
and restoration. Approaches like Repurposing [5]] and EGVD [36] leverage video diffusion models
combined with event cameras for frame interpolation. E2VIDiff [25] and LaSe-E2V [6] utilize
prior knowledge from pretrained image diffusion models to perform event-to-video translation. In
contrast to these methods, our method is built upon pre-trained video diffusion and introduces a
modality-agnostic training pipeline by treating the two input modalities as optional conditions. This
design enables flexible handling of different input configurations while leveraging the priors of video
diffusion models to ensure consistency under dynamic lighting conditions.
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Figure 2: Architecture of EVDiffuser: We construct our training dataset including (I) event-RGB
paired data, (I) event-to-video data, and (II) RGB-only data. To augment the dataset, random
degradation is applied to the ground truth images. The (c) degraded/low-light images and (b) event
sequences are processed using a (d) modality-agnostic DiT, with a trainable copy and LoRA.

3 Method

EVDiffuser is a diffusion framework that processes input data through a modality-adaptive pipeline,
enabling seamless integration of heterogeneous modalities (i.e., RGB and event data) for consistent
LLVE, as illustrated in Fig.[2] Notably, our model performs robustly in dynamic scenarios with varying
illumination and can operate effectively even with a single sensor when the other is unavailable. We
begin by formalizing the problem statement for this novel video reconstruction task (see Sec.[3.1),
followed by a review of the foundational 12V model (see Sec. @ Next, we introduce our framework
for injecting modality-agnostic control based on the augmented and integrated datasets (see Sec.3.3).
Finally, we present the modality-adaptive guidance rescaling technique that adaptively leverages the
unique characteristic of each modality under varying conditions (see Sec. [3.4).

3.1 Problem Statement

We begin by defining the input data, which consists of both RGB images I € R *W > and the
corresponding event data S = {(z,yi, t\,p ) i 0 , where z* and y* represent the pixel coordinates
of each event, and ¢ and p’ denote the timestamp and polarity, respectively. In real-world applications,
the environments vary over time, such as when transitioning between indoor and outdoor scenes or
between day and night. These changes can result in significant variations in illumination, thereby
causing fluctuation and noise in both RGB and event data. In the worst scenario or in single-modality
systems, one of the modalities may become unavailable, necessitating the modality-agnostic capability
of a unified model. Given the input from both RGB and event data under varying illumination and
sensor settings, the framework aims to adaptively reconstruct a consistent, high-quality video (i.e.,
under normal-light conditions).

3.2 Video Diffusion Foundation Model

LLVE can be viewed as high-quality video generation conditioned on low-quality inputs. This
conditional generation nature inherently aligns with video diffusion models’ capability to generate
high-quality video by sampling from high-dimensional video manifolds, and therefore constitutes
an optimal foundation for our framework. Our EVDiffuser is fine-tuned based on the CogVideoX-
12V [51] model, a transformer-based video diffusion model [35] that operates in a latent space.
Specifically, we adopt the pre-trained model as the base architecture, which takes an image I €
RIXWX3 a5 input and generates a video V' € RT*HxWX3 Tg prepare the input, the image I is
first padded with zeros, resulting in a conditioned input video of size " x H x W X 3, matching
the target video’s dimensions. A variational autoencoder (VAE) encoder is then applied to the input
frames, producing a latent vector of size % X % X % x 16, which is subsequently concatenated with
the noise of the same size. A DiT [35] model ¢y is iteratively employed to denoise the noisy latent
representation over a predefined number of steps. The resulting denoised latent vector is processed
by a VAE decoder to generate the video V. In the following sections, we will describe how the RGB
images and event data are incorporated as additional conditioning inputs to the base model, yielding
our modality-agnostic model.



3.3 Modality-agnostic DiT for Consistent LLVE

By leveraging the strengths of the diffusion pipeline, we treat the two modalities as optional conditions
and fine-tune the DiT in a modality-agnostic manner to achieve consistent LLVE. In this approach,
when one modality is absent or significantly degraded, the other can serve as an optional conditioning
input. Conversely, when both modalities are available, their combined information leads to a
substantial improvement in video reconstruction quality. Notably, our method maintains temporal
consistency despite variations in the input scenarios. The architecture overview is shown in Fig. 2d).
Below, we detail the process of injecting both modalities as conditions and fine-tuning DiT in a
modality-agnostic manner.

Injecting RGB Condition. To incorporate the RGB sequence as a condition in the 12V diffusion
model, we first apply the pre-trained VAE to obtain the corresponding latent code, which is then
concatenated with the first frame latent along the frame channel. The first frame latent is introduced
for auto-regressive long video reconstruction, which will be described in the following. To preserve
the original DiT’s powerful capabilities while adapting it to our task, we apply LoRA [15] exclusively
to the image branch for parameter-efficient tuning, leaving the pre-trained DiT denoiser fully frozen.

Injecting Event Condition. We adopt a design similar to that of ControlNet [55] in EVDiffuser to
incorporate event data as an additional conditioning input. To extract the latent features of the event
sequence, we first encode the event data into a voxel grid with three channels and then apply the
image VAE to encode the event data, thereby fully utilizing the pre-trained VAE. Next, we create a
trainable copy of the pre-trained denoising DiT to process the latent feature of the event data. We use
the first 18 blocks from the original denoising DiT to form the condition DiT for the event branch. In
the event branch, we extract the output feature from each DiT block, process it with a zero-initialized
linear layer, and add the resulting feature to the corresponding feature of the denoising DiT.

Fine-tuning a Modality-agnostic DiT. To train the DiT in a modality-agnostic manner and ensure
its adaptability to varying degradation conditions and settings, we construct a comprehensive training
dataset that includes videos paired with event data across multiple scenarios. The training dataset
consists of three components, as shown in Fig. a): I) First, we incorporate the RGB-event paired
dataset from SDE [23] to facilitate event-guided low-light enhancement. In this setup, both low-light
RGB images and event data are provided as conditioning inputs, with the model denoising them
to predict the corresponding normal-light RGB sequence. To further enhance the model to handle
varying illumination conditions, we introduce random degradations to normal-light RGB images,
simulating dynamic lighting scenarios. These degraded images are then used as RGB inputs to
reconstruct the original normal-light sequence. II) To enable the model to handle more extreme
scenarios where the RGB input may fail entirely, we incorporate the E2V dataset from V2E2V [30],
where the RGB input is replaced with zeros. III) Additionally, to stabilize the training of the image
branch, we include a separate RGB-only low-light enhancement dataset for fine-tuning the model,
where the event input is replaced with zeros accordingly. In this work, we select the SDSD dataset [45]
as our RGB-only dataset. Based on these augmented and integrated datasets, the DiT is endowed
with modality-agnostic capabilities and is robust to varying environments, enabling consistent LLVE.
Notably, we do not use any dataset with varying illumination to train our model; nevertheless, it
can seamlessly adapt to challenging, variable scenarios (see Fig. ), demonstrating the zero-shot
generalization of our framework.

Furthermore, to facilitate the reconstruction of long videos, we introduce random noise into the first
frame condition and randomly replace the condition with zeros. During inference, the initial batch
of the video is predicted using the zeros-initialized first frame, and the subsequent batch of video
frames is predicted in an auto-regressive manner, with the final predicted frame from the previous
batch serving as the first frame for the next batch.

3.4 Modality-adaptive Guidance Rescaling

Since our framework is based on a diffusion pipeline with modality-agnostic conditions. To further
consider the unique characteristics of each modality, it is feasible to incorporate modality-adaptive
guidance rescaling for each condition. To this end, Classifier-Free Guidance [13] is a promising
strategy to adapt the sampling pipeline.

Classifier-Free Guidance (CFG). The model is trained in a modality-conditional framework, with
both modalities randomly selected from the three datasets previously mentioned. Additionally, during



training, each modality is dropped with a predefined probability (i.e., 0.2), facilitating the co-training
of both unconditioned and conditioned models for each modality. The unconditioned model tends
to be more conservative, striving to generalize across all randomly selected conditions. In contrast,
the modality-conditioned model specializes in a specific environment. When applying CFG to our
modality-agnostic denoising framework, we compute the discrepancy between the prediction made
by the modality-specific model and the conservative model without conditioning.

Modality-Adaptive Guidance Rescaling. Consider a denoising model (i.e., modality-agnostic DiT),
denoted as € (x, cf, ., t), that performs modality-adaptive generation. The CFG is implemented by
adjusting the denoising process at each timestep ¢ as follows:

60(x7cfvce7t) :60(X7Cf7®,t)
+we<€9(xa Cf;C67t) - EG(Xa Cf7®at)> (H
+w.f(€9(xvcf’ceat) —eo(x,9, ¢, t)),

where c; and c. represent the modality conditions for RGB images and events, respectively, and
wy denotes the corresponding guidance scale. For our modality-adaptive Guidance Rescaling, w., is
adapted to represent the degradation degree (i.e., illumination) in order to exploit valuable information
from each modality to accommodate the varying environment. Specifically, the illumination prior map
is firstly extracted as L;;; = meancxuxw (I) € RT, where meancx i xw represents the operation
that computes the mean values across the channel (C') and spatial dimensions (H x W) for each
frame. Then, w, is computed based on the illumination map, with wy = al;; and w, = a(1 — L),
where « is a pre-define coefficient to balance the guidance. Intuitively, this formulation ensures that
when illumination is low, a larger value of w, directs the model towards emphasizing event-to-video
reconstruction, while higher illumination levels favor the frame condition.

4 Benchmark

We propose a benchmark tailored for practical real-world scenarios, specifically focusing on video
enhancement performance under varying illumination conditions, which is largely underexplored in
previous research.

4.1 Dataset Preparation

To construct the evaluation dataset, we
synthesize videos with varying illumi-
nation based on the SDE dataset [23]]
and SDSD dataset [45]], referred to as V-
SDE and V-SDSD, respectively. Specif-
ically, we generate frames with varying
lighting conditions V; from normal-light
frames I, using linear scaling: V;(p) =
ay X I (p), where « is a scale factor that
continuously changes over time, which
is set as a sine function of time. In this
benchmark, we typically apply two sine
wave periods in a single sequence. More-
over, to simulate noise in low-light condi-
tions, we introduce random noise to each
generated image, which is related to the

its lighting level: V;(p) = N (Vi (p), Z—’Z)
Events are then obtained from the v2e

model [16]. The synthesized videos and events are used as input, with normal-light videos serving as
the ground truth for comparisons. An example of our test set is shown in Fig.[3]

(b) Ground truth frames under constant normal light

Figure 3: Examples of our benchmark dataset.

4.2 Evaluation Metric

We evaluate the performance of different methods by comparing the output videos with the ground
truth videos using commonly used PSNR, SSIM, and LIPIS metrics. We observe that existing



Table 1: Comparisons on V-SDE benchmark with varying illumination. 1(|) means higher (lower)
is better. The highest result is highlighted in bold while the second highest result is in underline.

V-SDE-in V-SDE-out

Input Method
PSNRT PSNR*1 SSIMtT LPIPS| PSNRT PSNR*t SSIMT LPIPS)
Event Onl ETNet [47] 14.52 16.13 0.5147  0.6035 14.21 16.25 0.4844  0.6217
y HyperE2VID [9] 13.77 16.13 0.4914  0.6398 13.80 15.94 0.4596  0.6283
SNR-Net [49] 10.18 19.81 0.4092  0.4267 8.46 19.82 0.3830  0.5097
Image Onl Uformer [46] 11.04 19.77 0.5106  0.3672 8.19 18.88 0.4218  0.4460
& Y LLFlow-L-SKF [48] 1134 20.04 0.4700  0.4338 10.50 20.16 0.4403  0.4331
Retinexformer [2] 11.10 19.57 0.4330 0.4133 8.36 18.89 0.3585  0.5126
ELIE [19] 10.28 19.30 0.3835  0.4036 9.29 19.44 0.3908  0.4661
Image+Event eSL-Net [44] 5.81 20.30 03526  0.4232 5.32 19.26 0.3387  0.5203
& Liu et al. [29] 9.76 18.25 0.3519  0.4012 7.31 19.01 0.3437  0.4604
EvLight [23] 10.46 20.17 0.4495  0.3373 9.06 19.80 0.4099  0.3914
EvLowlight [24] 11.29 20.51 04726  0.3698 9.37 20.33 0.4331  0.4527
Video+Event  EvLight++ [[7] 10.57 20.24 0.4578  0.3332 8.91 19.76 0.3995  0.4040

EVDiffuser (Ours) 21.55 27.14 0.8338 0.2249 19.71 26.53 0.8044  0.1999

methods often overfit to low-light inputs, producing overexposed frames with normal-light inputs.
To enable comprehensive comparison beyond brightness adaptation, we adopt the PSNR* metric
from [23]], which computes PSNR after aligning output and ground truth brightness.

5 Experiment

5.1 Experiment Setting

Implementation Details. Our model is developed by fine-tuning pre-trained 12V diffusion models
(i.e., CogVideoX [51]]), which generate RGB videos at a resolution of 480x720 with 49 frames at 8
FPS, using 50 sampling steps. The LoRA rank is set to 128 for the image branch. For training, we
use a learning rate of 1 x 10~* and the AdamW optimizer. The model is trained for 30 epochs with
gradient accumulation, resulting in an effective batch size of 64. The training process takes 2 days on
8 H100 GPUs. During the inference stage, we employ the DDIM [40] sampler with 50 steps.

Comparison Methods. We compare our method with recent methods in four different settings:
(I) the experiment with events as input, including ETNet [47] and HyperE2VID [9]]. (II) the
experiment with RGB image as input, including SNR-Net [49]], Uformer [46], LLFlow-L-SKF [48]],
and Retinexformer [2]. (III) the experiment with RGB image and paired events as inputs, including
ELIE [19], eSL-Net [44], Liu er al. [29] and EvLight [23]. (IV) the experiment with video and
events as inputs, including EvLowLight [24] and EvLight++ [[7]. Since some of the comparison
methods do not release their training code, we have reproduced the training pipeline following the
hyperparameters as illustrated in the reports.

5.2 Evaluation Results

Comparison on V-SDE: To evaluate performance on our V-SDE benchmark, we retrain the baseline
methods (excluding event-only methods) on the SDE training dataset. The quantitative results in Tab.[I]
demonstrate the superior performance of our method on the benchmark, significantly outperforming
the comparison methods across all metrics. For the original PSNR, existing methods show a sharp
decline due to their tendency to overfit to the illumination conditions in the training set, resulting
in poor generalization to diverse real-world lighting. To assess image restoration effectiveness
excluding the effect of illumination fitting, we compare PSNR*, where our method again significantly
outperforms SOTA techniques, achieving improvements of 6.63 dB for V-SDE-in and 6.20 dB for
V-SDE-out. For SSIM and LPIPS, our method also achieves superior performance, providing strong
evidence for its effectiveness in low-light image enhancement. Notably, the event-only method shows
relatively higher PSNR among the baselines, as it relies solely on event data to generate videos,
making it more robust to illumination variation. Additionally, we provide an evaluation based on
metrics from VBench [17] in the Appendix (see Tab.[7), to further demonstrate the effectiveness
of our method on temporal consistency. There is also a notable observation that many methods
using both event and image modalities perform worse than single-modality approaches on PSNR.
For event-only methods, since these methods input only event data, they are not sensitive to image
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4) and MVSEC [37] (Column 4).

intensity variations across different scenarios. The intensity of reconstructed frames remains stable
within a certain range, resulting in relatively higher PSNR compared to image-involved methods,
which are severely affected by varying frame intensities. Additionally, we compare PSNR* with
intensity calibration to evaluate the structural fidelity of reconstructed videos, where image-involved
methods achieve better performance than event-only methods. When comparing image-only and
multi-modality methods, we observe that EvLowlight and EvLight++ achieve better performance,
while other methods show comparable performance. This is because these methods typically overfit
to specific low-light conditions and mostly fail to adapt to varying illumination scenarios.

Qualitatively, as shown in Fig. [ for both indoor and outdoor scenes, our method consistently
reconstructs sequences under varying illumination, preserving clear edges and producing high-quality
results that closely resemble the ground truth. In contrast, competing methods either suffer from
overexposure under normal lighting or fail to capture details when RGB data is heavily degraded.



Table 2: Comparisons on our V-SDSD dataset with RGB-only setting. The highest result is
highlighted in bold while the second highest result is highlighted in underline.

V-SDSD-in V-SDSD-out
Method
PSNR*t  SSIM1 LPIPS] PSNR*{ SSIMtT LPIPS])
SNR-Net [49] 18.96 0.6056  0.4155 19.52 0.4543  0.4656
Uformer [46] 18.69 0.6894  0.2997 19.07 0.5153  0.3555
LLFlow-L-SKF [48] 20.46 0.6485 0.5070 20.98 0.4780 0.6404
Retinexformer [2] 19.83 0.6738  0.2525 19.68 0.4622  0.3509

EVDiffuser (Ours) 29.10 0.9163 0.1033 25.23 0.6365  0.1927

We also evaluate our method on the original SDE test set, as shown in the Appendix (see Tab. [§)), to
further demonstrate its generalization capability.

To assess the effectiveness of our work in real-world scenarios, we collect a sequence with varying
illumination across indoor and outdoor scenes. While it is impractical to capture high-quality RGB
for these scenes, we provide only qualitative results in the Appendix (see Fig. [§).

Comparison on Event-only Setting: Since the dynamic range of RGB sensors is relatively lower
than that of event sensors (e.g., 60 dB vs. 120 dB), the RGB sensor may fail entirely under extremely
low illumination. To demonstrate the generalization capability of our method in extreme cases and its
modality-agnostic capability, we conducted comparisons on event-to-video reconstruction datasets,
including ECD [33]], MVSEC [57]], and HQF [41]]. We did not retrain the model on additional datasets,
thus evaluating its zero-shot capability. In these scenarios, existing RGB+event methods fail without
RGB input due to their reliance on both modalities. Therefore, we compare our method only with
HyperE2VID [9], a SoTA E2V method, as shown in Fig.[5] Although our method may introduce
additional textures in under-constrained regions lacking sufficient event data, it is able to recover
high-quality details and appearance, producing a more realistic scene compared to HyperE2VID.

Comparison on RGB-only setting: It is worth noting that our modality-agnostic framework also
functions without event input, enhancing its practicality for deployment in systems without event
sensors. To further evaluate the modality-agnostic capability of our framework, we assess its
performance on an RGB-only benchmark (i.e., V-SDSD), reflecting scenarios where no event camera
is available on the system. To compare, we retrain the baseline models using the SDSD training
dataset. As shown in Tab.[2]and Fig.[6] our method outperforms the baselines in terms of PSNR*,
SSIM, and LPIPS, achieving gains of over 8.64 dB for V-SDSD-in and 4.25 dB for V-SDSD-out.

Table 3: Impact of each training dataset. Table 4: Impact of the LoRA adapter.
Event+RGB RGBonly Eventonly | PSNRT SSIMT LPIPS| PEFT Strategies ‘ PSNRT PSNR*{ SSIM{ LPIPS|
’ s ;(‘ 33 0TS 9234 Frozen 2117 2586  0.7936 0.2533
Y Y Y 2135 08338 02249  WLORA 2155 2714 0.8338  0.2249

5.3 Ablation Study

Impact of the Integrated Datasets. To assess the impact of the fusion in our training dataset, we
conduct experiments with multiple dataset combinations. As shown in Tab. 3| training exclusively on
the Event+RGB dataset yields a PSNR of 18.31 dB, whereas incorporating the RGB-only dataset
results in an improvement of 0.2 dB. Including all three types of datasets achieves the best results,
demonstrating that the diffusion model benefits from a diverse and comprehensive dataset to enhance
performance for consistent LLVE.

Impact of the LoRA for Image branch. To verify this, we conduct an ablation study in Tab.
Compared to the baseline with a frozen image branch, incorporating LoRA leads to a 0.38 dB increase
in PSNR, demonstrating the importance of the adapter. This is because the original model is pre-
trained on the image-to-video task, while our model focuses on video-to-video. We also experiment
with fully fine-tuning all parameters; however, this approach encounters memory limitations.



Impact of the Modality-aware Guidance Rescaling. In this section, we con-
duct an ablation study to assess the impact of each individual modality and eval-
uvate the effectiveness of our proposed Modality-aware Guidance Rescaling (MGR).
As shown in Fig.[/| the event-only base-
line is able to recover the scene’s edges
but fails to capture the full visual ap-
pearance, often leading to hallucinated
details. Similarly, the image-only base-
line produces moderate results in normal
conditions, although it may underper-
form in extreme scenarios. Additionally,
the model incorporating both modalities
without MSR exhibits degraded visual
quality, as it overly relies on the degraded
images. In contrast, when MSR is ap- -
plied, the model shows significant im- g
provement. This comparison highlights  ©
the effectiveness of our MGR and empha-
sizes the flexibility of the diffusion-based
framework in managing event-based ap-
plications.

Input RGB & Event

Event-only

Event+RGB
w/o MGR

6 Conclusion

Event+RGB
w MGR

We present a novel framework for
consistent LLVE that seamlessly inte-
grates both RGB and event data through
a modality-agnostic diffusion pipeline. Figure 7: Impact of modality inputs and our Modality-
Our approach guarantees high-quality re- adaptive Guidance Rescaling (MGR).

construction with robust temporal consis-

tency, even in dynamic and challenging

environments. Experimental results demonstrate the superiority of our framework, offering a solid
foundation for future advancements in addressing real-world variability.

Limitations and Future Work: Due to the inherent limitations of the diffusion model, our inference
process requires multiple sampling steps, which can be time-consuming. This affects the efficiency of
our framework in applications with strict performance requirements. In future work, we aim to explore
more efficient diffusion models for this framework, including one-step sampling and quantization
techniques, to reduce computational costs. Additionally, while our framework is specifically tailored
for the LLVE task — one of the promising applications of event cameras — it can potentially be
adapted for other tasks (e.g., interpolation, denoising) by leveraging the strengths of our approach.

Broader Impact: The proposed EVDiffuser framework has significant potential for real-world impact.
By enabling consistent, high-quality video enhancement under challenging conditions—including
low light, dynamic illumination, and partial sensor failure—it can benefit applications in surveil-
lance, autonomous driving, and wearable devices. Its modality-agnostic design enhances resilience
and flexibility, promoting broader deployment even when only a single sensor is available. This
adaptability fosters accessibility in resource-constrained settings and paves the way for more reliable
vision systems across diverse environments, ultimately contributing to safety, security, and situational
awareness in both public and private sectors.
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Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. The claims are supported by our experimental results.
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* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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* The authors should reflect on the factors that influence the performance of the approach.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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Justification: We did not include theoretical results in this paper.
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
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All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides complete details to replicate its key experimental findings
in sec. Our code is available in the supplementary material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide open access to data and code in the supplemental material
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper comprehensively details training and testing parameters, including
data splits, hyperparameters, optimizer selection in sec. [5.1]

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported because it would be too computationally expensive
for this task. Moreover, the differences between the quantitative results of various methods
are substantial and far exceed the possible range of error.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The paper details the computational resources in Sec.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research fully complies with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper critically examines the potential positive and negative societal
implications of the research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: Our research poses no such risks.

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We explicitly mention and respect the creators and original owners.
Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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14.

15.

16.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: The paper introduces no new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not research human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not research human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

20



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The LLM serves solely as a writing, editing, or formatting tool without
affecting the core methodology.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A User Study

We conducted a user study with 16 participants evaluating the performance of different methods.
We employ preference ranking to assess user satisfaction across different methods. The evaluation
focuses on four key aspects: lighting continuity, video quality, detail preservation, and similarity to
the ground truth (GT similarity). As shown in Tab.[5] across all subjects and in every aspect, our
method stood out with a consistently superior preference score, highlighting that it is perceived by
humans as significantly superior to current baseline methods.

Table 5: User Study Preference Ranking

Method Lighting Continuity |  Video Quality |  Detail Preservation | GT Similarity |
ET-Net [47] 4.375 4.938 5.000 4.875
Retinexformer [2] 3.813 3.563 3.063 3.688
Evlight++ [7] 3.063 2.438 2.688 2.813
EvLowlight [24] 2.688 3.063 3.125 2.563
EVDiffuser (Ours) 1.000 1.000 1.125 1.063

B Runtime Profile and Parameter Count

Tab. [6] summarizes the efficiency profile of our method. While our unified design entails a higher pa-
rameter count and computational cost compared to modality-specific models, it delivers significantly
improved generalization across a wide range of challenging scenarios. We prioritize generaliza-
tion and performance over efficiency, and our method focuses on offline use as a post-processing
technique, rather than for real-time applications.

Moreover, our proposed framework is inherently extensible and compatible with emerging accel-
eration techniques for diffusion-based generative models. Below, we highlight several promising
directions:

* Quantized Attention: Recent advancements [54] in quantized attention mechanisms have
demonstrated a 1.8x speedup for CogVideoX without degradation in video quality. These
techniques are fully compatible with our CogVideoX-based architecture.

* Flow Matching: The recent flow matching algorithm [20] in video generation reinterprets
the denoising process as a multi-stage pyramidal flow, achieving real-time video generation
at 24 FPS for 768p resolution. This approach can be seamlessly adapted to our diffusion
model with a modality-agnostic training pipeline.

* Auto-regressive Modeling: Recent studies [3, 27]] have explored auto-regressive strategies
for video generation, formulating the task as next-token prediction and achieving real-time
sampling at 24 FPS. Extending these techniques to event camera presents a promising
direction for fully leveraging the high temporal resolution inherent to event data.

* One-step Diffusion: Recent efforts [8 152, [38]] have shown progress in reducing the num-
ber of denoising steps for generation tasks (achieving a 12 FPS), although they remain
limited in handling complex video-generation scenarios. In our preliminary exploration,
we implemented a naive few-step diffusion pipeline within our framework, reducing the
sampling process to 20 DDIM steps. However, this reduction introduces a trade-off between
computational efficiency and video quality, which we recognize as a valuable direction for
future work.

In summary, while our unified framework incurs additional computational cost, it opens up a meaning-
ful research topic and provides a flexible and generalizable solution across modalities and illumination
conditions. Furthermore, the aforementioned acceleration techniques are immediately applicable to
our proposed EvDiffuser framework and constitute a central focus of our future work. We hope our
response helps to clarify the core contributions of our work and resolves the concern.
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Table 6: Efficiency profile and parameter count of different methods.

Method Params (M) Memory (GB) Inference Time (s/frame)
LLFlow-L-SKF [48] 409.50 39.91 0.30
Retinexformer [2]] 15.57 1.61 0.12
ELIE [19] 440.32 33.36 0.32
eSL-Net [44] 560.94 0.56 0.18
EvLight++ [7] 22591 26.21 0.21
EVDiffuser (Ours) 7932.80 30.89 5.63

C Additional Implementation Details

For the comparison method, we reproduced ELIE [19], Liu ef al. [29] and Evlight++ [[7] according to
the implementation details in the original papers, while the others are retrained with the released code.
We replace the event synthesis module in [29] by inputting events captured with the event camera or
generated from the event simulator [16].

D Qualitative Results on the Self-capture Sequence

To further demonstrate the effectiveness of our method in real-world scenarios, we record a sequence
under varying illumination conditions, covering both outdoor and indoor environments. As shown in
Fig. 8] our method consistently preserves clear structure and appearance across frames, including
outdoor scenes with normal lighting and indoor scenes where the RGB input nearly fails. In contrast,
the comparison methods perform well only under specific illumination conditions and fail in most
frames, underscoring the limitations of existing approaches.

Timestamp

Input Event

Input Image

EvLight++

EVDiffuser (Ours)

Figure 8: Qualitative results on self-captured sequence under varying illumination, when moving
from outdoor to indoor scenes.

E Quantitative Comparison on Temporal Consistency

We conduct a comprehensive evaluation of video enhancement quality by assessing the temporal
consistency metric introduced in VBench [[17]]. As shown in Tab.[/| our method achieves significant
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improvements in capturing temporal coherence, demonstrating the effectiveness of our modality-
agnostic EVDiffuser for consistent LLVE.

Table 7: Comparisons on the temporal metric from VBench [17]. A higher score indicates
relatively better performance for a particular dimension.

Subject Background Motion

Methods Consistency Consistency Smoothness
ELIE [19] 0.6597 0.8716 0.9841
eSL-Net [44] 0.6382 0.8992 0.9842
Liu et al. [29] 0.6468 0.8784 0.9815
EvLowlight [24] 0.6183 0.9040 0.9824
EvLight++ [23] 0.6610 0.8793 0.9881
EVDiffuser (Ours) 0.7007 0.8823 0.9942

F Additional Qualitative Results on V-SDE Dataset

Fig. [0 shows a comprehensive qualitative comparison between our method and baseline methods,
featuring the proposed V-SDE Dataset. Our method significantly preserves both image consistency
and quality, producing results that closely match the ground truth acquired under constant lighting
conditions.

G Comparison on the Original SDE and SDSD Datasets

We also test our modality-agnostic model on the original SDE and SDSD datasets, where stable
low light condition is maintained across the sequences. As shown in Tab. [§] although our model
is not specifically designed for stable low light condition, our method still achieves performance
comparable to the SOTA under this setting, demonstrating the generality of our approach. Notably, the
comparison methods are specifically designed for this stable low-light condition, limited to handling
only the illumination conditions consistent with their training sets.

Table 8: Comparisons on the original SDE dataset [23]. The highest result is highlighted in bold
while the second highest result is highlighted in underline.

M SDE-in SDE-out
ethod

PSNRT PSNR*t SSIM{T PSNRT PSNR*{ SSIM?T
SNR-Net [49] 20.05 21.89 0.6302 22.18 22.93 0.6611
Uformer [46] 21.09 22.75 0.7524  22.32 23.57 0.7469
LLFlow-L-SKF [48] 20.92 22.22 0.6610  21.68 23.41 0.6467
Retinexformer [2] 21.30 23.78 0.6920 2292 23.71 0.6834
ELIE [19] 19.98 21.44 0.6168  20.69 23.12 0.6533
eSL-Net [44] 21.25 23.19 0.7277 22.42 24.39 0.7187
Liu et al. [29] 21.79 23.88 0.7051 22.35 23.89 0.6895
EvLight [23] 22.44 24.81 0.7697  23.21 25.60 0.7505
EvLowlight [24] 20.57 22.14 0.6217 22.04 23.72 0.6485
EvLight++ [[7] 22.67 25.83 0.7791 23.34 26.01 0.7676

EVDiffuer (ours) 20.03 22.34 0.6537  22.76 24.32 0.7298

H Impact of Variation Frequencies

We also conduct an analysis study to analyze the impact of varying illumination change frequencies
in video sequences. Here, we define frequency as the number of sine wave periods occurring within a
single sequence. As shown in Tab.[J] as the change frequency increases, the performance metrics
PSNR and PSNR* decrease accordingly, while other metrics fluctuate within a narrow range. This
demonstrates the robustness of our method to changes in illumination frequency, as our training
process incorporates more extreme and randomized augmentations.
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Figure 9: Additional qualitative comparison on V-SDE Dataset.
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Table 9: Analysis study on the changing frequency of illumination. Frequency is defined as the
number of sine wave periods occurring within a single sequence.

. V-SDE-in
Frequencies
PSNR{ PSNR*{  SSIM?T LPIPS|
1 22.89 27.47 0.8158  0.2148
2 21.55 27.14 0.8338  0.2249
3 20.76 26.89 0.8278  0.2279

I TImpact of the Random degradation

We also perform an ablation study to assess the impact of random augmentation in illumination. As
shown in Fig.[I0] in the absence of random augmentation, the illumination varies in parallel with the
input RGB, which highlights the effectiveness of the random degradation strategy.

Input RGB & Event

w/o R.A

wR.A

Figure 10: Impact of the random augmentation (RA) in illumination.
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