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Abstract

Enabling users to create their own simulations offers a powerful way to study how
environments shape agent behavior and intelligence. We introduce VIRT-LAB, a
system that allows researchers and practitioners to design interactive, customizable
simulations of team dynamics with LLM-based agents situated in 2D spatial envi-
ronments. Unlike prior systems that restrict scenarios to predefined or static tasks,
our approach empowers users to build environments, assign roles, and observe
how agents coordinate, move, and adapt over time. A web-based interface makes
these simulations accessible to both technical and non-technical users, supporting
the design, execution, and analysis of complex multi-agent experiments without
programming. By bridging team cognition behaviors with scalable agent-based
modeling, our system provides a testbed for investigating how diverse environ-
ments influence coordination, collaboration, and emergent team behaviors. We
demonstrate its utility by aligning simulated outcomes with empirical evaluations
and a user study, underscoring the importance of customizable environments for
advancing research on collective intelligence and adaptive agents.

1 Introduction

Understanding how teams perform, coordinate, and adapt in dynamic environments has long been
central to advancing research on collaboration and decision-making [[17, 15} [3]]. With recent advances
in large language models (LLMs), it is now possible to simulate team-like behaviors in increasingly
complex tasks, where multiple agents can interact with one another and their surroundings in shared
environments [27, 21} 26} [7]]. However, current frameworks and systems remain limited: they often
constrain researchers to fixed scenarios, lack support for spatial and temporal dynamics, and demand
substantial technical expertise to configure or scale simulations effectively [11}25].

To address these gaps, we present VIRT-LAB, a system that enables both technical and non-technical
users to build their own simulations of team interactions with LLM-based agents. Through natural lan-
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guage input and simple configuration settings, users can design scenarios in which agents collaborate,
navigate 2D spaces, and adapt over time. The system supports customization of team composition,
environment layouts, and task objectives, while providing a web interface for monitoring, manag-
ing, and analyzing simulation outcomes. By embedding agents in spatial and temporal contexts,
VIRT-LAB extends agent-based modeling with richer dynamics and more accessible workflows.

The system’s architecture combines a user-friendly front end with a simulation engine on the back
end. Users can iteratively specify team members, tasks, and environmental entities via prompts,
refine scenario elements, and observe the simulation unfold on a 2D map. The engine employs an
event-scheduling mechanism to coordinate agents’ actions in parallel, maintain shared states, and
handle changes in the environment. This design abstracts away the technical complexity of coding
and data management, allowing researchers to focus on scenario design and analysis.

Finally, we conducted evaluations to assess the system’s performance and scalability, as well as a
user study to examine how researchers and practitioners engage with the interface when designing
their own simulations. These findings demonstrate the utility of VIRT-LAB both as an experimental
platform and as a practical tool for studying team dynamics in customizable environments.

2 Related Work

Agent-Based Models (ABMs). Agent-based modeling has long been employed to simulate social
systems and team processes [20]]. These models are effective at capturing structured interactions, yet
they typically rely on static, rule-based decision mechanisms to approximate human behavior [29, 4].
This reliance on fixed parameters often oversimplifies cognitive complexity, limiting the capacity to
model adaptive, context-sensitive decision-making [[11,137,[19]]. Recent work explores augmenting
ABMs with machine learning to introduce more flexible behavior, but these approaches still struggle
to capture rich communication or evolving social dynamics. LLMs provide a promising alternative:
they can simulate nuanced conversations, memory, and belief updating, allowing agents to engage in
more human-like interactions [8} 36]]. Our system, VIRT-LAB, builds on ABM foundations while
extending them into dynamic, interactive environments where LLM-driven agents can coordinate
within spatial and temporal settings.

Multi-Agent LLM Frameworks. The rapid development of LLM-based agents has led to several
multi-agent frameworks. Platforms such as OASIS [35], AutoGen [34]], AgentSociety [28]], and
MindAgent [12] enable multi-party interaction and collaborative problem-solving. However, most
of these systems emphasize dialogue and reasoning tasks without incorporating spatial navigation,
temporal constraints, or dynamic environments that mirror real-world team challenges. Others, such
as Generative Agents [26] or AgentCoord [235]], include interfaces and multi-party simulations, but
are tied to specific maps or domains, limiting flexibility. Furthermore, many frameworks require
significant technical expertise to configure, which restricts their adoption among social scientists and
practitioners. In contrast, VIRT-LAB provides a web interface and customizable 2D environments.

Evaluating Multi-Agent Systems and Team Behaviors. A growing body of research explores
how to assess multi-agent systems, from benchmarks in cooperation and coordination to metrics
for emergent social behavior [23| [7 22]]. These efforts highlight the difficulty of evaluating not
only individual agent performance but also collective outcomes such as coordination, efficiency, and
robustness. For team simulations, measures of coordination, adaptation, and role differentiation are
particularly important, yet most existing frameworks provide limited support for such systematic
evaluation. Our system integrates configurable evaluation metrics directly into the simulation pipeline,
enabling users to analyze both process and outcome variables in team dynamics. In addition, we
complement these automated metrics with a user study to better understand how researchers design,
interact with, and interpret multi-agent simulations.

3 The VIRT-LAB Framework

3.1 Simulation setup

A team simulation in VIRT-LAB requires the user to create a scenario that outlines the team composi-
tion, which includes a set of feam members with skills, attributes, and personality traits. The user



Table 1: Comparison between VIRT-LAB and existing state-of-the-art LLM-based multi-agent
simulation frameworks

Framework Web-UI Customized Customized Task- Spatial
simulation  simulation solving Manage-
environment  scenario ment
OASIS [33] X X v X X
Generative Agent [26]] v X v X v
AutoGen [34] X X v v X
MindAgent [12] X X X v v
AgentCoord [23]] Ve v X X X
AgentSociety [28] X X 4 X X
VIRT-LAB (Ours) v v v v v

must also describe the environment, including area names and entities residing in this environment.
Lastly, the user must describe the team goal and the metrics to define their success (Figure [I)).

Scenarios. VIRT-LAB asks the user to describe the scenario to be simulated. The description
should include details about the team, its goals, the environment, and the maximum duration to run
the simulation. Based on a conversation interface, the user provides details of the scenario, and
VIRT-LAB might ask additional questions to infer details and create the scenario’s elements. The
system can also enhance the scenario by providing details and suggesting modifications to the user,
who can accept or reject. As shown in Fig. [Th, a scenario could be “Locate two individuals who
have gone missing,” which sets the “scene” for the simulation. Each scenario could also include
information about the team composition to infer how many LLM-based agents need to be created for
each team member. For example, the user can specify “There are two searchers in this scenario.” The
scenario’s description might also include relevant entities that the team needs to employ or manage.
In this example, VIRT-LAB needs to create missing individuals as entities to be controlled in the
simulation. Lastly, VIRT-LAB will request information about the environment, including potential
area names, spatial partitions, and layouts. The system displays the refined scenario prompt, where
users can iteratively refine the elements and confirm the scenario to be run. The flexible way to build
the scenario allows users to design a wide range of scenarios.

Agents. Based on the team described in the scenario, the user instantiates an LLM-based agent for
each team member, populated with knowledge, characteristics, and attributes. Users can customize
the agents’ demographics, personality traits, psychological values, behavioral characteristics, and
backstory memories. After analyzing the environment and the team objective, VIRT-LAB provides
agents with initial contextual knowledge, including their roles, assigned objectives, the scenario’s goal,
and awareness of other agents participating in the simulation. VIRT-LAB will provide them contextual
information of their physical environment and recent events through a sequence of conversations.
Agent personality profiles and memory structures are encoded into embeddings and stored within a
FAISS vector database [9]. To align agent behavior with predefined personalities, VIRT-LAB uses
Retrieval-Augmented Generation (RAG) to retrieve relevant context—Ilike short-term memories and
traits via vector similarity searches on FAISS-stored embeddings.

Environment. VIRT-LAB represents the environment using 2D structures. The system generates
the environment based on spatial metrics, such as width, length, and number of regions (i.e., rooms or
areas). VIRT-LAB maps the 2D layout to a matrix M, which encodes the traversability within regions.
In this matrix representation, VIRT-LAB places traversable paths between walls, representing connec-
tions between spatial regions. This allows agents to determine specific paths for navigation between
regions while enforcing the physical constraints of the environment. To determine the connectivity
and semantic relationships between rooms, VIRT-LAB employs a graph representation from M. The
system generates a tree graph G in which leaf nodes G = {g1, g2, . . ., gn } correspond to a unique
spatial region and their parent nodes represent a specific partition. Each node contains information
about the specific region (e.g., name, characteristics), which is generated by the system. VIRT-LAB
implements the graph G as an adjacency list of traversable spaces C, representing connected rooms
for the agents to transit.
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Figure 1: Initialization workflow of VIRT-LAB’s web interface: (A) Scenario creation and objective
validation; (B) Environment adjustment; (C) Team member configuration, including customized
personalities, skills, and roles; (D) Setting the map complexity and simulation duration;

Entities. VIRT-LAB identifies and places entities in the environment based on the scenario’s de-
scription. They might be located in a specific area if the scenario description includes the information,
or be randomly located. Within each spatial region from G, VIRT-LAB also locates entities based
on the region’s descriptions. VIRT-LAB categorizes entities into two main types: (a) Interactive
Entities: Agents can interact with these entities to perform tasks during the simulation. VIRT-LAB
asks the agents whether they want to make an action with the entity, and it will persist the changes on
the environment; and (b) Non-Interactive Entities: These are entities that agents cannot manipulate,
which provide contextual cues, and help agents navigate and understand the environment (e.g., walls).

3.2 Simulation execution

The VIRT-LAB simulation engine generates agent and environment events, and enables dynamic
multi-party conversations and adaptive agent behavior (Figure [2).

Agent-Engine Interface. VIRT-LAB sends messages to each agent detailing their current location,
the environment’s current state, and results from their previous actions. With this information, agents
can reason about their surroundings and decide on their next steps. VIRT-LAB then prompts each
agent to make an action, communicate with another agent, or remain idle. If the agent chooses to act
or communicate, VIRT-LAB schedules an event based on the agent’s decision. Each event includes
a duration in steps, the action (e.g., move, pick), contextual data, and the agents involved with the
event.

Events. VIRT-LAB models the LLM agents’ actions as discrete events that occur during the
simulation. VIRT-LAB supports two types of events: action events and communication events.
Action events affect the state of the environment, such as moving an agent to a new location or
manipulating an entity. They can take a variable amount of time to complete, depending on the
type of action and agent attributes. Communication events involve information exchanges between
two or more agents. VIRT-LAB enables multi-turn interactions and requests the initiator agent to
specify which agents should participate in the conversation. Once the conversation starts, VIRT-LAB



determines which agent should speak by predicting the most likely next speaker based on the ongoing
conversation [34]. It also terminates the conversation once the information exchange becomes
redundant. Agents have the choice to listen to the message or ignore it and continue with their current
events.

Event Scheduling Manager. To manage the multiple events’ resolutions and durations, VIRT-LAB
employs an event scheduling manager that executes agents’ events in the correct order. Events occur
in parallel by advancing agents through incremental timesteps of their planned events, which enables
agents to work on separate goals simultaneously. Before each execution, each event is validated by
VIRT-LAB according to its knowledge of the main task and environment. This validation is done by
asking an LLM to judge whether the agents’ proposed action is reasonable and possible, given the
current environment’s state. Invalid events lead VIRT-LAB to re-prompt the agent, and valid events
are sent to the event scheduling component.

At each time step ¢, VIRT-LAB retrieves the next scheduled event from a queue, executes the agent’s
actions, and updates the environment based on the agent’s resolution. It records state changes, notifies
other agents of the outcome, and allows them to update their knowledge and decide on future actions.

Navigation. To aid the agents’ movement and exploration in the environment, VIRT-LAB provides
directions to a specific room from their location. This design facilitates their spatial navigation.
Agents can decide whether they follow the instructions or not.

3.3 Simulation Evaluation

The simulation ends when either VIRT-LAB detects that the main goal has been accomplished or the
predefined simulation time expires. The user can obtain the scenario’s final metrics and survey the
agents to learn more from their experiences (Fig. [2).

Success Function. VIRT-LAB employs a success function that is generated by an LLM based on the
scenario description. This enables simulation-specific evaluation criteria that accurately reflect each
mission’s objectives. The LLM generates a validation function that is executed at each simulation
timestep to determine whether the mission has been successfully completed.

Post-hoc Survey. VIRT-LAB provides a modified Likert-based survey to the agents to capture
their perspective on team performance and decision-making during the simulation. The survey also
assesses the agents’ ability to conceptualize the knowledge and viewpoints of other team members,
offering insights into how the team is functioning. VIRT-LAB post-hoc interview process builds
upon state-of-the-art methods to measure theory of mind (ToM) capabilities, which is the ability to
infer, understand, and predict other agents’ mental states relative to oneself. ToM is a broadly defined
construct originating in developmental and cognitive psychology [32] that is now increasingly used to
assess LLMs’ abilities to perform logical and social reasoning [[18]. VIRT-LAB integrates techniques
to advance the measurement of various ToM facets that are relevant to the simulated teaming contexts.

Metrics. VIRT-LAB saves the final state of the environment in a structured JSON format, allowing
for further analysis of agent performance, agent-environment interactions, and team dynamics.
This log includes the time-stamped sequence of agent events, agents’ intentions and rationale,
and environment states. This log can be used for quantitative and qualitative analysis of agents’
performance within the simulation.

3.4 Front-end Interface

VIRT-LAB provides an interactive web-based Ul to facilitate user interaction, streamline scenario
creation, and simplify result interpretation (Fig. [I]and [J). This interface enables users to easily
define, configure, and refine simulation scenarios through an iterative process. Users can adjust
parameters such as environment size, agent attributes (e.g., personality traits, roles, and skills), and
map complexity, and preview their impact before execution. In the initial setup, the user provides the
scenario description, the physical settings of the environment (i.e., width and height), and defines
the map’s complexity (i.e., number of regions). VIRT-LAB then interactively guides the user to
provide further details and validate the proposed configuration. Once the scenario is defined, the user
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Figure 2: Execution workflow of VIRT-LAB’s web interface: (A) Dashboard that streams the
simulation narrative log, event timeline, and 2D map of agent movements; (B) An interview panel for
probing agent reasoning; and (C) Summary of performance metrics and overall simulation result.

generates the agents, configuring their characteristics such as personality traits and roles. The system
provides options to customize agents before starting the simulation, allowing experimentation with
different team compositions. After the environment and the agents are configured, the system runs
the simulation in real time on a 2D map, visualizing agent movements, decisions, and interactions as
they unfold.

3.5 Implementation

We implemented the VIRT-LAB backend using Python and OpenAl GPT-40-mini. We employed the
Comp-HuSim framework to create the agents [10]. We generated the 2D environment using a binary
partitioning algorithm. The environment and the entities were serialized and saved using the Pickle
moduleﬂ This allowed us to store complex objects, such as the state of the environment, as binary
data. We modeled the event scheduling system as a priority queue, which was implemented in Python
as a heap. For the Web UL, we developed a user interface using React to enable visualization and
interaction. The environment is rendered using PhasetEI, a game development library that supports 2D
map representation and real-time updates.

4 Scalability Evaluation

To evaluate the scalability of VIRT-LAB, we conducted systematic stress tests under varying sim-
ulation conditions. Specifically, we examined the system performance when (i) increasing the
environmental complexity and (ii) varying the number of agents per team. All experiments were
carried out on a Linux server (Ubuntu 22.04) equipped with 125 GB RAM and an Intel(R) Core(TM)
17-7820X CPU. Below, we describe in detail the experimental variations used to assess scalability.

“https://docs.python.org/3/library/pickle.html
*https://phaser.io/
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Environmental Complexity. We designed three environments of increasing difficulty by scaling
the grid size to 30 x 30 (Low complexity), 40 x 40 (Medium complexity), and 50 x 50 (High
complexity), and by randomizing the placement of 35 victims. As the environment size increased,
agents were required to traverse longer distances and navigate more complex paths to locate and
rescue victims, thereby increasing the computational demands on the system.

Team Size. We evaluated the system scalability with respect to team size by increasing the number
of active agents per simulation, ranging from two to five agents per team. Each additional agent
introduced more inter-agent interactions and decision-making processes, further contributing to
system load and complexity. Each test configuration was executed three times to account for
variability introduced by agent decision-making.

Measurements. Across all stress test variations, we evaluated the system using the following
quantitative metrics. These measures were selected to capture the effectiveness, efficiency, and
computational demands of the simulation system under different experimental conditions:

* Number of Rescued Victims: the total number of victims successfully rescued by the team
during each simulation. A victim was considered rescued if it was located by an agent and
transported to the designated hospital area within the simulation time limit.

* Number of Action Events: The total number of actions executed during the simulation,
reflecting the dynamics of agent-agent and agent-environment interactions.

* Number of Communication Events: The total number of communication exchanges
between agents during the simulation, including both dyadic and multi-agent conversations.

¢ Simulation duration: Total time step required to complete each simulation, measured
from the start of agent deployment to the completion of the mission or the expiration of the
simulation time step. To ensure consistency, the duration of the simulation was averaged
across all runs for each configuration.

Results. Table[2]shows that VIRT-LAB scales with both team size and task complexity. On easy
maps, all teams rescued all victims, but larger teams completed missions in fewer steps (from an
average of 1,902.67 steps with two agents to 729.67 with five agents). As the map complexity
increased, the mission duration grew and the success rates decreased for smaller teams (e.g., two
agents on the hard map rescued on average 21 victims), whereas larger teams maintained a high
number of rescued victims. These results demonstrate that VIRT-LAB can sustain effective simulation
as both the complexity of the environment and the size of the team increase, highlighting its scalability
under demanding conditions.

Table 2: Scalability results across map complexity levels and agent counts. Values are reported as
mean = standard deviation.

Environment Victims Simulation Duration Action Communication
Agents Rescued (Steps) Events Events
Easy Map Complexity
2 Agents 35 1,902.67 + 84.98 1,431.0 £ 109.7 73.33 £9.03
3 Agents 35 1,309.67 + 94.32 1,426.3 +91.2 69.67 +22.4
4 Agents 35 904.33 + 40.66 1,262.3 + 115.8 63.67 £ 9.1
5 Agents 35 729.67 £+ 44.79 1,313.3 + 80.9 61 +£17.45
Medium Map Complexity
2 Agents 33.33 > 2,000 1,290.0 £ 12.3 29.67 £ 0.94
3 Agents 35 1,584.33 £ 51.91 1,842.3 £ 12.5 35.33 £ 18.19
4 Agents 35 1,184.67 £+ 20.74 2,543.7 £ 53.5 32.33 £2.87
5 Agents 35 995.33 +20.89 2,665.3 + 109.0 42 £12.03
Hard Map Complexity
2 Agents 20.67 > 2,000 1,380.7 £ 48.8 24.67 £ 10.14
3 Agents 31 > 2,000 1,614.3 £ 35.7 26.33 £ 5.31
4 Agents 34 > 2,000 1,583.3 £51.8 27.67 +£4.78
5 Agents 35 1,686.33 £+ 39.97 ,694.0 £ 7.3 31.33 £ 6.94




4.1 Usability Study

We conducted a laboratory usability study with 12 participants to evaluate the usability, interpretability,
and perceived realism of the VIRT-LAB system. The usability study protocol was designed not to
evaluate system performance, but to encourage user reflection on the ease of system use and the
potential of LLM-powered team simulations in research settings. This sample size is supported by
previous usability research [24]]. University of Notre Dame’s Institutional Review Board overview
and approved this study (IRB Protocol Number #25-07-9459), and all participants signed an online
consent form on Qualtrics prior to participation. Each session lasted 60 minutes, and participants
were compensated with a $20 gift card for their time. The study addressed three primary research
questions:

* RQ1: Can users use the VIRT-LAB system effectively and intuitively to create and configure
team simulations as intended?

* RQ2: What benefits and limitations do users perceive when simulating human team dynam-
ics using VIRT-LAB?

* RQ3: How do users’ levels of simulation expertise influence their experiences when using
VIRT-LAB?

Participants. We recruited participants from the simulation and team science communities through
direct invitations, academic mailing lists, and social media posts. Our final sample consisted of
participants from STEM-related fields, including researchers, graduate students, undergraduate
students, and professionals with varying levels of simulation expertise. Based on self-reported
experience with agent-based modeling and LLM agents, three participants were classified as experts,
four participants as intermediate, and five participants as novices with little or no prior experience
in these areas. To ensure accurate classification, two members of the research team reviewed the
interview responses of the participants describing their previous experience with simulation systems.

Procedure. Each session took place either in person at a university research lab or virtually via
Zoom. We conducted structured usability studies with nine participants, who first received a brief
introduction and completed a background questionnaire on their experience with team simulations and
Al systems. Sessions followed a semi-structured format: participants created short team simulation
scenarios (e.g., "A team of first responders battles the roaring wild. With the smoke thick in the
air, they coordinate efforts to evacuate three residents") and then ran them using VIRT-LAB. If a
scenario proved too complex for the allotted time, participants were encouraged to create a simpler
alternative. During system use, participants were asked to think aloud, and afterwards they completed
a post-study questionnaire and interview.

Measurements. We included several scales in the final survey to assess VIRT-LAB’s realism and
ease of use. The participants evaluated the usability of the system using the SUS scale [6] (Cronbach’s
a =0.75). Trust in the system was assessed using a 5-point Likert scale adapted from [14] (o = 0.83).
Explanation satisfaction was measured using items adapted from [[14]] that evaluated whether the
explanations provided by the system were clear and supported the participants’ understanding of
the simulation results (o = 0.86). The realism of the system and environment was evaluated with
items adapted from [33] that evaluated the participants’ perceptions of the realism of the simulated
environment (o = 0.71). Perceived adoption was measured with items adapted from [31]] to evaluate
participants’ willingness to use the system in future research or professional contexts (v = 0.85).
Additionally, we created a 5-point Likert scale with two items to evaluate the realism of simulated
agent and team behaviors. The items included items such as “The agents’ behaviors were believable
and consistent with their defined roles” (o« = 0.90). The questionnaire responses for each scale were
averaged into a single score per participant’s expertise level. Finally, open-ended questions were
included to examine the perceived benefits and limitations of the participants using VIRT-LAB.

Results. Fig. [3|summarizes the results of the post-study questionnaire. In general, participants rated
highly the usability of the VIRT-LAB system (M = 3.8), although differences were observed between
the levels of experience. The novices reported a mean usability rating of M = 3.8 (SD = 0.48),
while the intermediate users reported the highest usability rating of M = 4.0 (SD = 0.33). Expert
users rated usability lower, with an average score of M = 3.4 (SD = 0.75). The level of trust in the



system varied. Among all participants, the average trust score was M = 3.2. The novices expressed
a higher trust rating in the system (M = 3.9, SD = 0.10), while intermediates reported lower trust
ratings (M = 2.8, SD = 0.31), and the experts gave the lowest trust scores (M = 2.6, SD = 0.17).

Satisfaction with the system’s explanations was also mixed. The overall rating was M = 3.7, with
novices reporting the highest satisfaction with an average M = 4.0 (SD = 0.53), intermediates
giving average ratings (M = 3.5,5D = 0.30), and experts assigning the lowest scores (M =
3.3, 5D = 0.65). The participants’ perceptions of system and environment realism were similarly
rated (M = 3.6) across all levels of experience. The novices reported an average realism rating
of M = 3.7 (SD = 0.16). Expert users (M = 3.4,SD = 0.14) and intermediate users (M =
3.4,5D = 0.12) reported lower scores. The perceptions of system and environment realism were
assessed as moderate across the various groups, with an overall mean rating of M = 3.6. Novices
rated realism higher (M = 3.7,SD = 0.16), while intermediates (M = 3.4,5D = 0.12) and
experts (M = 3.4, SD = 0.14) gave similar, lower ratings.

Participants’ willingness to adopt the VIRT-LAB system in future use followed a similar pattern. On
average, perceived adoption was rated at M = 3.5. Novices expressed the highest adoption intentions
(M = 4.0,5D = 0.37), while intermediates provided average ratings (M = 3.2,SD = 0.17), and
experts reported the lowest adoption scores (M = 3.0, 5D = 0.45). Finally, perceptions of agent
and team behavior realism were also mixed. The overall average rating was M = 3.3. Novices rated
realism high (M = 3.6), intermediates at M = 3.25, and experts at M = 3.0, with little variation
within each group.

User Expertise Level Comparisonh Across Metrics

[ Novice
N Expert
B Intermediate
[] Average

4.0 4.0 4.0

3.6

Average Score

Usability Trust Explanation System/Environment Perceived Agent/Team Behavior
Al system Satisfaction Realism Adoption Realism

Evaluation Metrics

Figure 3: Participants’ survey responses. Error bars denote standard errors. Average score per metric
is displayed in the middle.

Interviews The researchers transcribed recordings of participants’ task interactions and interviews,
then collaboratively developed an initial codebook. They independently coded the remaining data,
resolving differences through discussion until reaching consensus. Codes were grouped into themes,
focusing on usability, realism, and simulation control—using Braun and Clarke’s thematic analysis
approach [J3]]. We report the following key findings:

KF1: VIRT-LAB’s workflow felt intuitive, though expectations varied with prior experience. Most
participants found the simulation workflow process aligned with how they naturally think about
creating a simulation. As P(01) explained, "I do like this workflow . .. I just need to follow each step”.
Many participants reported that VIRT-LAB lowered the barrier to trying many scenario variants and
observing different team behaviors in action. (P06) "No coding is great— it [the system] lets me set
up variants fast and focus on the team behavior, type it and wait 10 minutes, whatever it took to,
like, fully do it. I mean, I couldn’t have coded that in 10 minutes ... that is a huge pro. Even when
I knew NetLogo pretty well, I don’t think I could have done that in 10 minutes"”. The visualization
helped users iterate and compare alternatives. (P11) "Seeing it play out on the map—almost like a
video game—made it easier to explore different [simulation]." Nevertheless, participants pointed
the limitations that impacted realism and control. (P03) "The [agent] interview answers felt a bit



‘GPT-like’ and didn’t always match what they did". Similarly, (PO1) explained, "I was expecting like
something real human [would] say ..., but [it] will help a lot, I like the idea a lot to talk to them."

KF2: Lack of VIRT-LAB’s transparency reduced users’ trust in the simulations. Across expertise
levels, participants questioned what data was sent to the LLM, what was returned, and how these
exchanges shaped the simulation outcomes, concerns that directly influenced their trust in the
system. Novices and intermediates explicitly linked clarity to trust. (P03) noted, “if this part can be
transparent, I think my trust... [goes] up”, while also reporting confusion when they could not tell
what the system was doing. These users looked for signs “what’s happening now” (P03) signals,
expressing unease when backend processes felt delayed. As (P07) remarked, “I don’t know what
the [system] is doing. It’s kind of like an in-house system, but I think it’s pretty common”. Experts
approached trust more analytically, focusing on how data were collected and processed by the LLM
and whether simulated agent behavior aligned with assigned traits. As (P04) reported, “I would
trust the agents more if they tied their responses to actual events rather than generic personality
templates.”

5 Limitations and Future Work

While VIRT-LAB offers a flexible platform for simulating and studying human team dynamics
through LLM-based agents, our study has limitations that need to be addressed in the future. First,
VIRT-LAB inherits constraints of the underlying LLMs. As with all LLM-based systems, our
agents may reproduce societal biases embedded in model training data [2], which may affect the
behavioral fidelity. Our current results use general-purpose LLMs without extensive fine-tuning for
domain-specific applications or agent-specific roles. Future work may explore the integration of
domain-adapted LLMs and assess how model selection impacts emergent team behaviors. Second,
scaling to larger teams and groups (e.g., 10, 50, 100) remains expensive, as frequent LLM calls
increase token usage and processing time. Improvements, such as using local LLMs [13} 30} [1]
or optimization techniques [16]], are important. Third, testing this system with other LLM models
is important to assess the differences produced by the specific models. Future evaluations should
employ different models and assess where differences can occur, especially in conversations among
agents. Fourth, direct feedback on VIRT-LAB’s interactive interface from a diverse range of end users,
such as social scientists and agent-based modeling experts, remains limited. Future usability studies
should involve a large and more diverse group of participants representing various domains. Finally,
future work should include ablation study to examine the contribution of each system component to
agent performances and behavioral realism.

6 Conclusion

This paper introduced VIRT-LAB, a user-friendly, customizable, and scalable simulation system for
modeling teams in complex environments. It supports multi-agent interactions, spatial reasoning,
surveys, and automated evaluation. With its front-end interface, researchers can design and analyze
team simulations without coding expertise. By lowering technical barriers, VIRT-LAB provides
new opportunities for studying team dynamics through tailored scenarios, multi-party dialogue, and
spatial simulations.

Acknowledgments and Disclosure of Funding

This work was partially supported by the Defense Advanced Research Projects Agency (DARPA)
under Agreements HR00112490408, HR00112490410, and HR00112430361; Alfred Sloan Foun-
dation Award G-2024-22427; National Science Foundation under Grant Number 2317987; and the
Microsoft Accelerating Foundation Models Research (AFMR) grant program. We also thank Matthew
Belcher for his contributions to the software development that supported the implementation of our
experimental system.

References

[1] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J] Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical report. arXiv

10



2

—

(3]

[4

—

[5

—

[6

—

[7

—

(8

—_—

[9

—

[10]

(1]

[12]

(13]

(14]

[15]

(16]

(171

(18]

(19]

preprint arXiv:2412.08905, 2024.

Suhaib Abdurahman, Mohammad Atari, Farzan Karimi-Malekabadi, Mona J Xue, Jackson Trager, Peter S
Park, Preni Golazizian, Ali Omrani, and Morteza Dehghani. Perils and opportunities in using large
language models in psychological research. PNAS nexus, 3(7):pgae245, 2024.

Mohammed Almutairi, Charles Chiang, Yuxin Bai, and Diego Gomez-Zara. taifa: Enhancing team
effectiveness and cohesion with ai-generated automated feedback. In Proceedings of the 4th Annual
Symposium on Human-Computer Interaction for Work, pages 1-25, 2025.

Li An, Volker Grimm, Abigail Sullivan, BL Turner Ii, Nicolas Malleson, Alison Heppenstall, Christian
Vincenot, Derek Robinson, Xinyue Ye, Jianguo Liu, et al. Challenges, tasks, and opportunities in modeling
agent-based complex systems. Ecological Modelling, 457:109685, 2021.

Virginia Braun and Victoria Clarke. Using thematic analysis in psychology. Qualitative research in
psychology, 3(2):77-101, 2006.

John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in industry, 189(194):4-7,
1996.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin,
Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4):6, 2023.

Yun-Shiuan Chuang, Agam Goyal, Nikunj Harlalka, Siddharth Suresh, Robert Hawkins, Sijia Yang,
Dhavan Shah, Junjie Hu, and Timothy T Rogers. Simulating opinion dynamics with networks of llm-based
agents. arXiv preprint arXiv:2311.09618, 2023.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv preprint
arXiv:2401.08281, 2024.

Chengyu Fan, Zaynab Tariq, Nafis Saadiq Bhuiyan, Michael G Yankoski, and Trenton W Ford. Comp-
husim: Persistent digital personality simulation platform. In Adjunct Proceedings of the 32nd ACM
Conference on User Modeling, Adaptation and Personalization, pages 98—101, 2024.

Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu, and Yong Li.
Large language models empowered agent-based modeling and simulation: A survey and perspectives.
Humanities and Social Sciences Communications, 11(1):1-24, 2024.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Yusuke Noda, Zane Durante, Zilong Zheng, Demetri Terzopoulos,
Li Fei-Fei, Jianfeng Gao, and Hoi Vo. MindAgent: Emergent gaming interaction. In Kevin Duh, Helena
Gomez, and Steven Bethard, editors, Findings of the Association for Computational Linguistics: NAACL
2024, pages 3154-3183, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.findings-naacl.200. URL https://aclanthology.org/2024.findings-naacl,
200/.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Robert R Hoffman, Shane T Mueller, Gary Klein, and Jordan Litman. Metrics for explainable ai: Challenges
and prospects. arXiv preprint arXiv:1812.04608, 2018.

Seung Wan Hong, Davide Schaumann, and Yehuda E Kalay. Human behavior simulation in architectural
design projects: An observational study in an academic course. Computers, Environment and Urban
Systems, 60:1-11, 2016.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. /CLR, 1(2):3, 2022.

Stephen E Humphrey and Federico Aime. Team microdynamics: Toward an organizing approach to
teamwork. Academy of Management Annals, 8(1):443-503, 2014.

Michal Kosinski. Evaluating large language models in theory of mind tasks. Proceedings of the National
Academy of Sciences, 121(45):¢2405460121, 2024. doi: 10.1073/pnas.2405460121.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building machines
that learn and think like people. Behavioral and brain sciences, 40:¢253, 2017.

11


https://aclanthology.org/2024.findings-naacl.200/
https://aclanthology.org/2024.findings-naacl.200/

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

Samuel Lapp, Kathryn Jablokow, and Christopher McComb. Kaboom: an agent-based model for simulating
cognitive style in team problem solving. Design Science, 5:¢13, 2019.

Yuan Li, Yixuan Zhang, and Lichao Sun. Metaagents: Simulating interactions of human behaviors for
IIm-based task-oriented coordination via collaborative generative agents. arXiv preprint arXiv:2310.06500,
2023.

Jiaju Lin, Haoran Zhao, Aochi Zhang, Yiting Wu, Huqgiuyue Ping, and Qin Chen. Agentsims: An
open-source sandbox for large language model evaluation. arXiv preprint arXiv:2308.04026, 2023.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint arXiv:2308.03688, 2023.

Jakob Nielsen and Thomas K Landauer. A mathematical model of the finding of usability problems. In
Proceedings of the INTERACT’93 and CHI’93 conference on Human factors in computing systems, pages
206-213, 1993.

Bo Pan, Jiaying Lu, Ke Wang, Li Zheng, Zhen Wen, Yingchaojie Feng, Minfeng Zhu, and Wei Chen.
Agentcoord: Visually exploring coordination strategy for llm-based multi-agent collaboration. arXiv
preprint arXiv:2404.11943, 2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th annual
acm symposium on user interface software and technology, pages 1-22, 2023.

Joon Sung Park, Carolyn Q Zou, Aaron Shaw, Benjamin Mako Hill, Carrie Cai, Meredith Ringel Morris,
Robb Willer, Percy Liang, and Michael S Bernstein. Generative agent simulations of 1,000 people. arXiv
preprint arXiv:2411.10109, 2024.

Jinghua Piao, Yuwei Yan, Jun Zhang, Nian Li, Junbo Yan, Xiaochong Lan, Zhihong Lu, Zhiheng Zheng,
Jing Yi Wang, Di Zhou, et al. Agentsociety: Large-scale simulation of llm-driven generative agents
advances understanding of human behaviors and society. arXiv preprint arXiv:2502.08691, 2025.

William Rand and Christian Stummer. Agent-based modeling of new product market diffusion: an overview
of strengths and criticisms. Annals of Operations Research, 305(1):425-447, 2021.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on
gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Viswanath Venkatesh and Hillol Bala. Technology acceptance model 3 and a research agenda on interven-
tions. Decision sciences, 39(2):273-315, 2008.

Henry M. Wellman. Theory of mind: The state of the art. European Journal of Developmental Psychology,
15(6):728-755, 2018. doi: 10.1080/17405629.2018.1435413.

Bob G Witmer and Michael J Singer. Measuring presence in virtual environments: A presence questionnaire.
Presence, 7(3):225-240, 1998.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation
framework. arXiv preprint arXiv:2308.08155, 2023.

Ziyi Yang, Zaibin Zhang, Zirui Zheng, Yuxian Jiang, Ziyue Gan, Zhiyu Wang, Zijian Ling, Jinsong Chen,
Martz Ma, Bowen Dong, et al. Oasis: Open agents social interaction simulations on one million agents.
arXiv preprint arXiv:2411.11581, 2024.

Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu, Bryan Hooi, and Shumin Deng. Exploring collaboration
mechanisms for 1lm agents: A social psychology view. arXiv preprint arXiv:2310.02124, 2023.

Wei Zhang, Andrea Valencia, and Ni-Bin Chang. Synergistic integration between machine learning and
agent-based modeling: A multidisciplinary review. IEEE Transactions on Neural Networks and Learning
Systems, 34(5):2170-2190, 2021.

12



NeurlIPS Paper Checklist

1.

10.

11.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper introduces an architecture and interactive system. We provide details to
explain clearly and fully how it operates.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide a repository with the simulation files and data analysis scripts for repro-
ducibility purposes. https://anonymous.4open.science/r/SEA-2025-Submission-D5E1/

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

13


https://anonymous.4open.science/r/SEA-2025-Submission-D5E1/
https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

15.

16.

Answer: [NA]
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA|
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [Yes]
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [Yes]
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

14



	Introduction
	Related Work
	The VirT-Lab Framework
	Simulation setup
	Simulation execution
	Simulation Evaluation
	Front-end Interface
	Implementation

	Scalability Evaluation
	Usability Study

	Limitations and Future Work
	Conclusion

