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Abstract

Although existing methods for action anticipation have
shown considerably improved performance on the pre-
dictability of future events in videos, the way they exploit in-
formation related to past actions is constrained by time du-
ration and encoding complexity. This paper addresses the
task of action anticipation by taking into consideration the
history of all executed actions throughout long, procedu-
ral activities. A novel approach noted as Visual-Linguistic
Modeling of Action History (VLMAH) is proposed that fuses
the immediate past in the form of visual features as well as
the distant past based on a cost-effective form of linguis-
tic constructs (semantic labels of the nouns, verbs, or ac-
tions). Our approach generates accurate near-future action
predictions during procedural activities by leveraging in-
formation on the long- and short-term past. Extensive ex-
perimental evaluation was conducted on three challenging
video datasets containing procedural activities, namely the
Meccano, the Assembly-101, and the 50Salads. The results
confirm that using long-term action history improves action
anticipation and enhances the SOTA Top-1 accuracy.

1. Introduction
Anticipating future actions during an observed complex

activity is a critical ability that enables humans to recog-

nize intended goals and outcomes to proactively plan and

engage in interactions with other humans and the environ-

ment in a timely, efficient, and safe manner. We accom-

plish this task naturally by perceiving visual information

and learning from a few activities as well as based on self-

experimentation; thus, it encompasses harnessing relevant
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Figure 1. We consider the problem of action anticipation in

untrimmed videos of procedural activities. At a certain moment

in time (decision point), the proposed framework (VLMAH) an-

ticipates the action (i.e., the unobserved action “take screw”) that

is most likely to be performed after some anticipation time Tant

(depicted with orange color). This is performed on the basis of the

history of all past actions up to the decision point (depicted with

purple) which is modeled by integrating visual input regarding the

immediate past and a linguistic description of the distant past.

kinematic and contextual knowledge rooted in perception,

personal experience, and skills. These competencies are re-

garded as fundamental constituents of human intelligence.

Deriving effective solutions for similar competencies is

also beneficial to AI-enabled agents and robots that operate

in industrial and domestic environments in a multitude of

real-world applications [22]. In particular, the anticipation

of near or long-term future actions can efficiently be used

to advance autonomous navigation or driver-assistance sys-

tems, leverage the ability of industrial or home/socially as-

sistive robots towards fluent human-robot collaboration and

interaction, drive optimization of industrial workflows and

enhance human safety through real-time hazard/anomaly

identification to preemptively signal alerts and aids [38].

To enhance AI agents’ capabilities, researchers have

concentrated on video-based human understanding, yield-

ing impressive outcomes in tasks like recognition, detec-

tion, and short- or long-term action prediction during ex-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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tended activities [22]. Among these, action anticipation

stands out, involving forecasting upcoming action labels

based on partial ongoing action observation and recent ac-

tion history [42, 7], as depicted in Figure 1. The ability to

use recent action history is crucial for proposing potential

actions at the decision point Tant before the expected start

time of the next action. This anticipation time captures valu-

able insights and the sequence of actions leading to the an-

ticipated one. We identify the following questions towards

this challenging task, which effective solutions have to deal

with by assessing the best trade-off between the complexity

of spatiotemporal visual feature modeling and the accuracy

performance of action anticipation:

• How much of the action history should be considered

to accurately predict future actions during complex ac-

tivities?

• What is the most efficient way to model the temporal

ordering of action history (past actions)?

• What information modalities could enhance action an-

ticipation accuracy?

We tackle the challenge of anticipating actions within in-

structional activities by merging visual and linguistic data

from ongoing actions. This encompasses recent and distant

history, vital for predicting the future. While visual fea-

tures offer rich information, they are resource-intensive for

storage and computation. In contrast, language-based ac-

tion descriptions are less detailed but more storage and pro-

cessing efficient. Our approach balances these aspects by

integrating high-cost visual features for recent events and

low-cost language features for remote ones.

We explore action anticipation in the context of proce-

dural activities, where variations of the temporal ordering

of actions are usually more constrained. Based on that, it

is not surprising that the majority of existing works [14, 15,

58, 37, 31, 46, 61, 43, 18] aspire to tackle this problem us-

ing video datasets [7, 8, 27, 53, 24, 47, 41, 5] containing

procedural activities. For instance, EpicKitchens [8] is one

of the largest and most popular video datasets, among oth-

ers [27, 53, 24, 50, 62], deals with the task of action an-

ticipation featuring videos of cooking activities. Another

popular domain of instructional activities that regard com-

plex assembly activities [47, 41, 5, 19, 25, 39] in the context

of industrial and non-industrial scenarios.

In particular, we focus on videos of assembly activities

using the Meccano [41] and the Assembly-101 [47] video

datasets. Those two can are considered complementary

with respect to the types of the target activities, as partici-

pants in the former are provided with specific instructions to

accomplish the assembly process of a toy vehicle, whereas

in the latter participants were free to disassemble a fixed

toy vehicle and then to assemble it from its parts, following

a less constrained process.

Our contributions can be summarized as follows:

• We propose the Visual-Linguistic Modeling of Action

History (VLMAH) framework that combines short-

term visual and longer-term lexical information of ob-

served past actions to estimate the label of the near-

future anticipated action.

• We show that the combination of cost-effective pro-

cessing and integration of linguistic information along

with visual information can greatly benefit prediction

accuracy in various types of procedural activities.

• An extensive experimental evaluation was conducted

with state-of-art results on three challenging datasets,

Meccano [41], Assembly-101 [47] and 50-salads [53],

for a large set of different experimental setups,

and anticipation times. VLMAH improves the

noun/verb/action predictions for the Meccano and

Assembly-101 dataset while for the 50Salads dataset,

our method is amongst the top performing.

2. Related Work
Action/Activity Recognition sets the thematic base upon

which more fine-grained video understanding tasks, such as

action detection, early action recognition, and action antic-

ipation/prediction have been defined. In its most challeng-

ing form, it comprises the recognition of actions that in-

volve human-object interactions, and action sets with high

intra- and inter-class variability. With the advent of deep

learning, video action recognition methods have become ex-

tremely efficient and effective in modeling short-range de-

pendencies of actions with CNN-centered models [52, 6].

Moreover, the ability to model long-range dependencies

of complex actions or long, composite activities has also

been considerably improved using memorization layers,

such as RNNs and their variants [60, 28], attention mech-

anisms [57, 2], and temporal frame dependency modeling

at multiple time scales [11, 59].

The significant performance gains that have been wit-

nessed in this field have also been fueled by the emer-

gence of large-scale datasets [7, 36], that contain diverse

action sets, viewing conditions (egocentric [7, 51, 16] or

third-person [1, 26]) and videos in various contexts pro-

viding rich, multi-level annotation data and different in-

formation modalities. Such datasets enabled the design of

multi-modal models that apart from appearance and mo-

tion, also exploit audio, gaze-related data, and most impor-

tantly language [20, 17]. In the concept of multi-modal ac-

tion/activity modeling, the visual-linguistic fusion scheme

is shown to be extremely effective at representing the vari-

ability of complex actions and activities. This mainly relies
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on the action-related knowledge that is extracted using the

lexical description of the action sequence and transitions,

which is presented in the form of a simple text label or

rich transcription/captions per action [20]. This information

can be further processed using text statistics [45]. Recently,

deep learning language models [54, 56], have also been pro-

posed acting as a complimentary information source to the

visual representation, expressed with handcrafted [44, 45]

or deep learned [32, 23, 3, 4] descriptors.

Action Anticipation/Forecasting is defined as the task

of predicting the class(es) of one or more future actions

for which no observations are available at the decision

time [22, 26]. The tasks of prediction and anticipation have

been well-explored for actions of various complexity that

range from simple motion primitives of a single human ac-

tion [34] or a human-object interaction [22, 18, 35] to long,

composite, procedural or unconstrained activities [48, 33].

Anticipating the near-future actions is performed towards a

limited set or even thousands of action categories [7, 47].

Forecasting of the next actions is performed at “anticipa-

tion time” in the video that can be set at variable time hori-

zons ranging from short- to long-term predictions. Many

existing approaches fix this important task parameter to 1
second prior to the start of the action of interest [30, 14],

while others explore the predictability of actions for sev-

eral seconds [40, 12, 31, 1, 21]. The problem was ini-

tially introduced in third-person videos [18, 1], but it has

recently gained significant popularity in first-person (ego-

centric) videos [7, 16], too.

The prominent method of Furnari et al. [13] explored

the problem of action anticipation using “rolling-unrolling”

LSTMs in order to summarize past actions and make pre-

dictions for the verb, noun and action of the next segment

for multiple anticipation times. In [49] a multi-scale tempo-

ral model is proposed so that the past actions are aggregated

for the future actions to be iteratively predicted. This frame-

work performs predictions for the next action with an antic-

ipation time of 1 second and is also capable of performing

dense anticipation considering a large number of anticipated

action classes. Our work complies with both methodologies

so that the verb, noun, and action predictions are made in

the range of [0.25, 2] seconds with a step of 0.25 seconds.

Natural language processing (NLP) initially gained pop-

ularity in the cooking domain since recipes naturally con-

tain a large variety of texts with instructions on food prepa-

ration. These large texts of instructions have attracted the

interest for predictions of the next unobserved steps of the

recipe in natural language in the form of sentences. Sener et
al. [50] created a hierarchical model for learning multi-step

procedures of recipe datasets with text and visual context.

Their zero-shot anticipation framework is able to transfer

knowledge from large-scale text corpora to the visual do-

main for the prediction of coherent and plausible recipe in-

structions. The same authors improved their framework by

integrating a temporal segment proposal method into the

video encoder and additional losses at the recipe encoder

to improve convergence [48]. By comparing to recipe gen-

eration networks they showed that this method can perform

better even for unseen recipes and dishes. Contrary to meth-

ods [50, 48] that exploit text to provide information to the

visual domain, Mahmud et al. [33] proposes a two-step ap-

proach where information on the visual spatiotemporal con-

text of the observed actions and the linguistic labels of the

anticipated actions along with scene context are incorpo-

rated for caption prediction. Text and/or captions of the ob-

served actions are not utilized.

Our framework deviates from the aforementioned ap-

proaches that use NLP, as we do not focus on the prediction

of captions/sentences of the near-future, still unobserved

actions. Instead, we focus on using linguistic information

complementary to the vision module [3, 4] for the encoding

of the short- and long-term history of the observed past.

3. Proposed Approach

The proposed Visual-Linguistic Modeling of Action His-

tory framework noted as VLMAH, is shown in Figure 2. It

features a two-stream three branch deep neural network de-

sign that comprises (a) a vision-based action anticipation

sub-network, (b) an activity-level sub-network for temporal

modeling based on natural language processing (NLP), and,

(c) a vision-based action recognition sub-net. The action an-

ticipation visual sub-net is able to estimate the next action

given the visual representation of the current/ongoing action

segment exploring the short- and long-term action dynam-

ics. The action recognition sub-net exploits the same input

to provide estimates for the current action class. Addition-

ally, the NLP-driven activity-centric sub-net is responsible

for the long-range temporal modeling of the relation of the

current action to the previously observed actions to learn a

stochastic model of the forthcoming action.

The last architecture stage combines the two representa-

tions (visual action anticipation sub-net & language model-

ing sub-net) to anticipate one of the following events, (a) the

next action (fine-grained label), (b) the active object of the

next segment (noun), or (c) the next motion motif (verb).

3.1. Visual Action Anticipation Module

Given an input sequence xt of the action yt of an activity

video sample Xi = {x1, ..., xN} −→ Y , the visual action-

anticipation sub-net aims at learning the representation of

the on-going action at a segment-wise level, that will enable

the prediction of the forthcoming action yt+1. To achieve

this, the proposed module follows a multi-branch design

that operates on an ensemble of different vision-driven rep-

resentations of the entire scene or of the key to the action
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Figure 2. The proposed VLMAH architecture. The Visual Action Anticipation and the Linguistic Action History modules are presented.

For the Meccano dataset, the encoders of the action module, generate Object, Hands, Gaze representations, whereas, for the Assembly-101
dataset, there is a single encoder network, TSM [29] while representations are split into 3 sub-sequences, as mentioned in Section 4.2.

The detail level regarding the textual label descriptions is adaptable to the anticipation task at hand (action, motion motif (verb), or object

(noun)). The final format also includes two special labels (START, END) that indicate the start and end of the action history sequence.

scene elements, such as the actor’s body part regions or the

appearance states of the active object.

On a technical basis, each branch of the proposed

multi-branch design comprises a two-layer Bidirectional

LSTM (BiLSTM) temporal encoder, followed by a Fully-

Connected (FC) layer, that further encodes the representa-

tion into a [1 × 256] feature vector. Finally, the represen-

tations of all branches are fused via concatenation and for-

warded to an FC layer that generates the final representa-

tion, which encodes the action segment into a [1×1024] fea-

ture vector. To form the inputs of this sub-net, we follow a

sparse uniform sampling policy on the input sequence. Re-

garding the case of visual scene representation in the two

datasets of interest, every single action of the action se-

quence that represents the activity has been encoded using a

segment-wise temporal encoder network1. Therefore, it cor-

responds to the feature-based representation of a segment

formed based on the adjacent frames. This formulation of

the subnet’s input enables the modeling of both short- and

long-term appearance variations of the scene elements.

3.2. Linguistic Action History Module

We argue that the knowledge of the preceding action oc-

currences, noted as action history, is important for learning

to estimate at a certain time in the video, the label of the

next-anticipated action (action forecasting/anticipation) or

of the active object in that action, as it provides efficient,

discriminative features to opt among potential candidate tar-

gets. We address this issue using a compact textual descrip-

1For example, in Assembly-101 each action instance has been encoded

using the effective Temporal Shift Module (TSM) [29]

tion of the preceding actions, in the compact form of action

labels, compared to captions that feature extensive textual

descriptions of actions. The sentence-based textual descrip-

tion of the preceding actions is processed using the NLP

sub-network that comprises a Word Embedding layer fol-

lowed by the same layer set as the branches of the action-

centric visual module. This representation forms a [1×256]
feature vector, which is concatenated with the representa-

tion of the action-centric module. The combined represen-

tation is then forwarded to a set of two FC layers to provide

estimations on the next action/object class.

Delving into this representation of the action history, we

restructure each label (length, semantic complexity, part-

of-speech element position (verb, noun, adverb)), in a spe-

cific lexical format depending on the task at hand (action,

motion verb, or noun anticipation), to facilitate the learn-

ing process. Specifically, in the case of the verb (coarse

motion motif) or noun (next-segment active-object) antici-

pation, we may have to deal with actions of a similar mo-

tion and object basis but of a different type of object upon

which the action is performed. For example, consider the

actions, screw a screw with hands and screw a screw with
screwdriver. When asked to predict the key object(s)2 of

the next anticipated action, the action history module should

maintain the key objects of the preceding action segments,

and therefore the knowledge that the tool-medium is of no

importance in this coarser anticipation problem. A similar

convention is also considered for the task of predicting only

the coarse motion motif label for the next action.

2As key objects we refer to objects that affect the outcome of the activ-

ity, e.g. in a toy assembly activity on the parts that can alter the result.
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Under this premise, for the tasks of verb/noun next-

segment prediction we restructure the available lexical in-

formation/labels of actions by discarding parts of the labels

that refer to the usage of extra tools (annotated as nouns) to

implement the corresponding action, i.e. the action labels

are restructured to follow the format action verb + noun. In

fact, this meta-processing of action labels that allow for a

decoupled prediction of the next action verb or next action

object(noun), is a common practice followed by the recent

datasets targeting isolated motion motif or next-segment ob-

ject prediction (e.g. Assembly-101 [47]). If such an ac-

tion label format is available for the dataset in question, this

label restructuring is skipped. The gain from such lexical

decomposition is that the prediction task becomes simpler

since the number of classes decreases, due to the fact that

labels sharing the same action verb or action object (noun)

are being merged, which allows for more samples to be as-

sociated with the specific motion motif or object state. Fi-

nally, in the case of the next action prediction (entire action

context), we do not restructure the initial labels since the en-

tire context of the preceding action labels is required to dis-

ambiguate between actions that share the same motion and

object characteristics but differ on the execution medium.

3.3. Visual Action Recognition Module

The two aforementioned modules can be regarded as in-

dependent action anticipation models. In addition, a vi-

sual action recognition model is incorporated independently

which during the inference stage operates on the same input

sequence, denoted as xt, as the action yt. The purpose of

this model is to provide estimates specifically for the current

action yt and fill the language-based action history.

Since the purpose of this model is to fill the action his-

tory, it remains independent from the action anticipation

modules without any influence or connection, it can be

trained separately and applied during the inference stage

of the framework. In this work, instead of developing

and training an action recognition module from scratch, we

leverage the capabilities of state-of-the-art (SOTA) action

recognition models that have been documented in the ex-

isting literature for each dataset. This approach is moti-

vated by our objective to construct a visual-linguistic ac-

tion anticipation framework, which can benefit from the ad-

vancements achieved by action recognition models specific

to each dataset, thereby enhancing its overall performance.

4. Experimental Setup
We evaluate the proposed framework on three popular

datasets of procedural activities. The main characteristics

of the datasets are described in this section, such as the tar-

get activities, camera viewpoints, annotation data as well as

multi-modal data and features provided (Section 4.1), fol-

lowed by the evaluation protocols.

The experimental evaluation for the proposed frame-

work follows a two-way narrative. Firstly, the population

of the action history module involves simulating the pre-

diction scores of a realistic action recognition model on a

given dataset. This step aims to showcase the model’s per-

formance in relation to the latest advancements for each

dataset. Subsequently, the complete potential of the model

is presented by populating the action history module with

past predictions obtained from an ideal visual action recog-

nition model for each respective dataset. We should note

that the realistic visual action recognizer performance fol-

lows the current SOTA action recognition scores reported

for each examined dataset. Finally, we conduct experiments

regarding different portions of the linguistic action history

to assess the effect of the different action history sizes on

the anticipation capabilities of the proposed framework.

4.1. Datasets

Meccano [41] is a multi-modal egocentric dataset created

to study the interactions of humans and objects in indus-

trial settings during instructional activities. Twenty differ-

ent participants were requested to build a toy model of a

motorbike. There exist 20 object classes, which include 16
classes that categorize 49 different toy components, 2 tool

classes namely the screwdriver and the wrench, the instruc-

tions booklet, and a special class, noted as a partial model,

for the under-construction toy object. Also, the dataset con-

tains 12 verb classes and 61 action classes. In total, 20
videos are provided, 11 of which are used for training while

the rest 9 videos are used for validation and testing.

The Meccano dataset provides gaze, object-centric fea-

tures, and hands-centric features. The former type of fea-

tures are computed based on the occurrences of the objects

in each frame following the work of [12, 13]. Gaze features

have been obtained by weighting the object-centric features

with the distance between the center of objects bounding

boxes and the gaze position in the image. The hand annota-

tions of the dataset that contain the bounding boxes of both

hands were used as hands-related features.

Assembly-101 [47] is a large-scale video dataset for the

analysis and understanding of procedural activities regard-

ing assembling and disassembling 101 ”take-apart” toy ve-

hicles captured from multiple viewpoints. In total 362
unique data sequences were captured synchronously by 4
egocentric and 8 static cameras and annotated with more

than 100K coarse and 1M fine-grained action segments, tar-

geting the challenging tasks of action recognition, action

anticipation, temporal action segmentation, and mistake de-

tection. Participants were instructed to disassemble and

then assemble a toy vehicle without any instructions, which

enhances the variability of the temporal ordering of actions

performed by the participants during the procedural activi-

ties. A set of 90 object classes is considered that includes 5
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tools together with the ”hand”. Also, 24 verbs are included

along with the object classes form 1380 fine-grained action

classes. A 60% of the available videos is used for training,

while the rest 15% and 25% are utilized for validation and

testing, respectively. Of the 101 toys, 25 of them are shared

between all splits which sets the dataset even more chal-

lenging. For the RGB input, 2048-D frame-wise features

are calculated using TSM [29] with an 8-frame input.

50Salads [53] is a multi-modal third-person instructional

dataset of cooking-related activities. Twenty-five different

participants prepared a set two mixed salads. The dataset

provides RGB videos, depth maps, accelerometer data, and

high- to low-level activity annotations. The dataset consists

of 17 action classes. We report top-1 accuracy averaged

over the 5 pre-defined splits following the work of [42].

4.2. Training, Testing & Input Configurations

As noted in Section 3, the structure of the action-

centered temporal modeling sub-net follows a three-branch

design, that acquires three vision-centered input sequences.

For the Mecanno dataset [41], input refers to the avail-

able feature representations for a) Gaze, b) Objects, and

c) Hands. For the Assembly-101 [47], the available TSM

[29] features for the RGB videos are utilized, which refer

to frame-wise [1 × 2048] feature vectors. We restructure

this representation to fit in the action-centric visual antici-

pation sub-net, as follows: a) split feature vectors into a set

of two [1 × 1024] feature vectors to drive input to the first

two branches and b) uniform sub-sampling is applied on the

feature vector of the current frame of size [1 × 2048] into

a [1 × 1024] and then calculate discrepancies between the

sub-sampled feature representation of the previous frame

to form the input feature vector for the third branch. For

50Salads [53] we utilized pre-extracted I3D features from

[10, 42], which correspond to frame-wise [1×2048] feature

vectors, which were restructured in the form described for

the ones of the Assembly dataset.

Regarding the training configurations, the batch size was

set to 4 for all datasets. The loss minimization is performed

using the Adam optimizer, with a learning rate of 0.001.

The input sequence length was set to 8 frames, while a ran-

dom clip cropping sampling scheme was utilized. During

the inference phase, we simulated the performance of the re-

alistic visual action recognizer, by exploiting the SOTA per-

formance of SlowFast [11] for Meccano, with 49.66% top1

accuracy, of TSM [29] for Assembly101 with 39.2% top1

accuracy, and, of Therbligs [9] for 50Salads with 76.5%.

5. Experimental Results
5.1. Action Anticipation

Predicting future actions is challenging, while modeling

and performance greatly depend on the designated time

horizon of the predictions. More specifically, predictions

can be made at different decision points in time (timesteps)

prior to the start of the next segment. In order to establish

an extensive performance assessment of the proposed

framework, we adopt the evaluation protocol reported in

Furnari et al. [13] where predictions are made at 8 different

anticipation timesteps before the start of the near-future

anticipated action. Noted as τant, the set of anticipation

time refers to discrete values in the range of [2s, 0.25s]
for a timestep of 0.25s. At the same time, the upper limit

of this interval, that is 0.25s is closest to the start of the

anticipated action.

Meccano: For the prediction of each action, the input to

our framework regards information originating from the se-

lected anticipation time point and runs backward, toward

the start of the video (see Figure 1). As described in the pre-

vious sections, we exploit visual information related to the

recent past (visual-action module) for modeling the short-

term action history and the long-term past with the linguis-

tic action history module. We report Top-1/Top-5 accuracy

of the predicted action of the next segment, according to

the [41]. In this work, the authors proposed the RULSTM

framework [13] to anticipate the next action. We employ the

publicly available code3 of RULSTM for Meccano to repli-

cate the experiments and also provide accurate results for

the prediction of the noun and the verb of the next action-

segment. We utilized a combination of information based

on haze, object-centric and hand-centric features that are

provided by [41], as those are the most discriminative fea-

tures according to their experimental evaluation.

We evaluate the proposed VLMAH framework for ac-

tion forecasting using different anticipation timesteps (see

Table 1), and under the use of a realistic and an ideal (ora-

cle) action predictor (denoted as VLMAH and VLMAHGT

respectively) for past actions that populate the action history

subnet. Under the use of a realistic visual action recognizer

for past actions, our framework is compared to [41] which

is the baseline and currently the SOTA method for the Mec-

cano dataset. Our method outperforms the SOTA in Top-

1 accuracy for the noun, verb, and action scenarios for al-

most every anticipation time, by a considerable margin. We

present to have a slight decrease in performance in the Top-

5 accuracy for the verb and action scenarios. This happens

due to the impact of the action recognizer in the linguistic

action history from which we draw information for making

predictions. Our accuracy margin increases significantly

from 4.1% up to 9.05% if we consider an ideal (oracle-like)

visual action recognizer that feeds the linguistic action his-

tory module with the true past action classes. Any enhance-

ment in action recognition accuracy is expected to similarly

boost action anticipation, too.

3https://github.com/fpv-iplab/MECCANO
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Top-1 / Top-5 Accuracy% @ different τant

Timesteps
Method 2s 1.75s 1.5s 1.25s 1s 0.75s 0.5s 0.25s
Meccano [41] 30.89/65.14 30.50/65.11 30.99/66.17 30.85/65.92 30.53/66.49 31.10/67.06 31.10/67.84 31.24/70.00

VLMAH

Noun
33.12/77.85 32.12/77.78 31.48/78.49 32.33/80.41 31.25/76.30 32.17/82.39 34.07/78.58 38.34/79.19

VMAHGT 15.91/72.58 27.63/69.46 25.37/65.83 28.93/73.29 26.21/70.31 25.08/71.73 28.83/69.81 29.50/70.88
VLMAHGT 37.57/79.40 41.33/82.88 35.09/80.75 35.65/79.33 39.35/82.31 40.55/84.94 39.55/81.24 40.63/80.54

Meccano [41] 36.06/ 93.19 35.11/93.01 34.96/92.98 35.92/93.19 35.32/93.38 35.39/ 93.62 34.75/ 93.76 35.00/ 93.83
VLMAH

Verb
36.35/93.00 35.42/92.33 35.61/91.31 35.96/92.88 36.73/91.08 36.30/90.62 37.19/91.14 39.06/90.93

VMAHGT 25.71/87.85 29.75/87.64 25.71/88.06 29.11/89.48 27.48/87.99 25.92/85.51 25.78/86.57 31.25/84.30
VLMAHGT 40.76/91.40 41.26/93.39 40.83/92.61 43.39/92.96 39.91/91.69 40.98/93.18 43.67/92.68 43.55/91.65

Meccano [41] 23.37/54.65 23.48/55.99 23.30/56.56 23.97/57.73 24.08/58.23 24.50/59.96 25.60/61.31 28.87/63.40
VLMAH

Action
24.75/54.23 24.35/55.16 24.22/53.09 22.79/53.98 28.90/58.13 25.29/53.16 26.47/56.71 29.12/ 58.01

VMAHGT 27.20/49.08 28.91/51.63 26.99/48.57 28.98/52.20 28.62/50.49 26.99/49.94 27.77/49.86 28.03/51.70
VLMAHGT 34.73/67.75 36.86/69.53 35.01/67.18 34.30/69.24 35.15/68.25 33.59/67.89 34.65/66.90 33.09/65.98

Table 1. Action anticipation accuracy for different timesteps (prior to the beginning of the next segment) for the Meccano dataset.
VLMAHGT and VMAHGT represent the two variants of the proposed method when ground truth annotations are used as the linguis-

tic action history. VLMAH makes use of the Linguistic Action History module while the action history is generated from the visual action

recognition module. The comparison is between the [41] and the VLMAH methods.

Top-1/Top-5 Accuracy% @ τant = 1s
Method Noun Verb Action
TempAgg [47] 17.19 / 55.65 24.20 / 75.38 08.62 / 27.73

TempAgg [47]* 18.99 / 57.29 28.52 / 77.16 09.00 / 29.79

VLMAH 27.70 / 54.37 42.17 / 82.52 14.18 / 30.95
VMAHGT 22.68 / 55.32 40.59 / 85.11 13.14 33.98
VLMAHGT 55.27 / 83.89 61.12 / 93.03 34.26 58.89

Table 2. Top-1/Top-5 accuracy results of [47] and the VLMAH

variants on the Assembly-101 dataset for anticipation time

τant = 1s, with or without the use of the linguistic action his-

tory module. TempAgg∗ denotes the single-task learning variant.

Assembly101: In [47] that have also introduced the

Assembly-101 dataset, action anticipation is performed at

the fixed timestep τant = 1s. To assess action anticipation

performance in [47], the TempAgg [49] method is used4.

Both the VLMAH and the TempAgg methods are trained

to generate predictions at anticipation time τant = 1s that

are evaluated using the Top-1 and Top-5 accuracy measures.

Since the test split of the dataset is not yet available, we

train and test both methods on the training and validation

splits, respectively, using the egocentric viewpoint and data

captured by the e4 camera which yields the best results

according to the experiments reported in [47]. Both the

proposed VLMAH and the TempAgg methods have been

trained/tested on data captured by this specific viewpoint.

Table 2 presents the accuracy results at τant = 1s.

We provide two results for our framework. We compare

our work with the state-of-art on Assembly-101 dataset,

the TempAgg [49] framework. Our work is a single-task

learning framework so for a fair comparison we test Tem-

pAgg [49] under two learning settings, a multi-task and a

single-task. The single-task setting is denoted with ∗ in Ta-

ble 2. The proposed approach outperforms state-of-the-art

performance for the verb, noun, and action predictions by

4Code online athttps://github.com/assembly-101

Top-1 Acc% @ τant = 1s

Method Action
DMR [55] 06.20

RNN [1] 30.10

CNN [1] 29.80

TempAgg [49] 40.70

AVT [14] 48.00
VLMAH 43.58

VLMAHGT 55.49

Table 3. Top-1 accuracy results on the 50Salads dataset for the

anticipation time τant = 1s.

a large margin for this large and challenging dataset, even

in the case that the linguistic action history module is not

used. In particular, by using a realistic visual action rec-

ognizer to populate the action history module, an increase

in accuracy of 13.65% for the verb prediction, 8.71% for

the noun prediction, and 5.18% for the action prediction

for τant = 1s was reported. Similarly to Meccano, the use

of an oracle-like visual action recognizer to verify/correct

past estimates in the history module further increases the

action anticipation performance of the proposed method.

Even if we use only the visual information (VMAH), we

outperform the TempAgg∗ framework in general for a

minimum of 4% up to 12%.

50-Salads: In Table 3 we present the accuracy scores at

τant = 1s, and compare our proposed framework with re-

cent works that tackle action anticipation in this dataset.

We can observe that under the use of realistic action, rec-

ognizer to validate/correct the past action estimates stored

in the action history module, our method is only surpassed

by AVT [14] (≈ 4%), with our proposed action anticipation

method however, having a vastly lower number of trainable

parameters (AVT: 378M, Ours: 10M), and ease in adapt-
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ing/incorporating the current action recognition advance-

ments in each dataset.

5.2. How much history is enough?

In this study, we conducted ablation analyses to evalu-

ate the performance of our proposed framework under var-

ious scenarios that pertain to the linguistic action history

module’s role and the required amount of linguistic action

history to enhance the predictability power of the frame-

work. Despite the fact that action history can obtain long-

term information faster and with less cost compared to the

visual features one question to be answered is “how much
history is enough?”. To answer this we evaluate our frame-

work on the Assembly-101 dataset with different lengths

of linguistic action history. From the previous sections, we

have acquired the results of the evaluation of our framework

with the full linguistic history of the observed actions5. In

this experiment, we assess our framework by reducing the

linguistic history to different percentages. The history per-

centages are in the range from 0% to 100%. Zero percent

indicates the use of the VMAHGT framework while all the

other percentages imply the use of the VLMAHGT frame-

work with different percentages of action history. In this

experiment, we use the VLMAHGT instead of VLMAH in

order to assess the effect of the available size of action his-

tory in case no errors from the Visual Action Recognition

module are present in the action history. As seen in Table 4,

the results differ between the action and the verb/noun pre-

dictions considering different amounts of observed history.

Initially, all experiments were performed using 100% of

the textual action history, which referred to a memorization

capacity of 854 actions (slowest assembler). Our experi-

ments show that, for the task of fine-grained action antici-

pation (full label), considering the entire linguistic history

was the best strategy since it allowed us to disambiguate

between cases of candidate actions that exhibited high sim-

ilarity in their preceding action history.

In contrast, for the prediction of the coarse-grained verb

and noun classes our experiments indicate that consider-

ing a more recent history is the best strategy. We observe

that considering a larger percentage of the action history

on these cases introduces noise that results in a consider-

able decrease in prediction accuracy, potentially due to sim-

ilarities in the sequence of verb/noun transitions between

different assembly scenarios. This is a valid assumption

since, as stated in Section 3.2, in these tasks the initial ac-

tion labels were restructured into a two-part-of-speech label

(verb+noun). This way, we discarded the fine-grained con-

text of the label that refers to the mediums (tools) utilized

to perform the action. For example, in the case of the ac-

tion label pair “screw cabin with screwdriver” and “screw

5A full history refers to the number of actions the slowest assembler

from the training set performed to complete the assembling task.

Top-1/Top-5 Accuracy% @ τant = 1s

History Noun Verb Action
0% 22.68 / 55.32 40.59 / 85.11 13.14 / 33.98

1% 56.98 / 83.35 62.33 / 92.78 28.49 / 53.69

12.5% 56.86 / 84.08 62.83 / 93.40 28.20 / 51.38

25% 53.86 / 83.03 62.92 / 93.06 28.96 / 53.15

50% 56.92 / 84.54 63.99 / 93.16 27.13 / 51.02

75% 56.19 / 84.53 63.20 / 93.21 29.83 / 53.75

100% 52.16 / 83.81 61.12 / 93.03 34.51 / 58.44

Table 4. The Top1 and Top5 accuracy scores achieved by the pro-

posed framework using variable lengths of the linguistic action

history on the Assembly-101 dataset. Zero percent (0%) is equiv-

alent to the use of VMAHGT variant, while other action history

percentage values refer to the use of the VLMAHGT .

cabin with hands”, which are two different action classes,

the restructuring operation merged the two classes into the

action “screw cabin”. We note that in Assembly-101 similar

format is provided as annotation data.

6. Conclusions and Future Work
This paper assessed the impact of a language-driven

history-logging method on action anticipation. This mech-

anism complements visual action representation by memo-

rizing prior actions. We explored its performance and re-

silience across diverse past action misclassification rates

and the length of encoded action history in anticipation

tasks (action, motion motif, object). Our experiments reveal

the strategy’s benefits, notably enhancing scores on tough

video datasets showing procedural activities. Moreover, the

proposed method proves robust even with limited memory

and high misclassification rates. Future research will in-

vestigate the effects of incorporating the history of preced-

ing actions on long-range action anticipation and examine

the impact of the temporal positions of miss-classifications

(e.g., short-term and long-term past) on action anticipation

accuracy.
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Anticipating Object State Changes in Long Procedural Videos
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Figure 1. We introduce the new problem of anticipating object state changes in videos of procedural activities, noted OSCA. The decision
point in the timeline is placed at the onset of the next anticipated, yet unobserved action. The objective is to predict accurately, at this point,
the object state change class that will occur, if any, during the subsequent, yet unobserved action. This involves understanding the dynamics
of past and current interactions and how they will affect the object’s state. An object state change (e.g. deform) refers to a physical and
possibly functional change in an object’s attributes/properties. It is realized based on the transition from a pre-state (initial) to a post-state
(final) occurring at the Point of No Return (PNR) time during an object state-modifying action (e.g. cut fish fillet using a knife).

Abstract

In this work, we introduce (a) the new problem of anticipat-
ing object state changes in images and videos during proce-
dural activities, (b) new curated annotation data for object
state change classification based on the Ego4D dataset, and
(c) the first method for addressing this challenging prob-
lem. Solutions to this new task have important implications
in vision-based scene understanding, automated monitoring
systems, and action planning. The proposed novel frame-
work predicts object state changes that will occur in the
near future due to yet unseen human actions by integrat-
ing learned visual features that represent recent visual in-
formation with natural language (NLP) features that repre-

sent past object state changes and actions. Leveraging the
extensive and challenging Ego4D dataset which provides
a large-scale collection of first-person perspective videos
across numerous interaction scenarios, we introduce an ex-
tension noted Ego4D-OSCA that provides new curated an-
notation data for the object state change anticipation task
(OSCA). An extensive experimental evaluation is presented
demonstrating the proposed method’s efficacy in predict-
ing object state changes in dynamic scenarios. The perfor-
mance of the proposed approach also underscores the po-
tential of integrating video and language cues to enhance
the predictive performance of video understanding systems
and lays the groundwork for future research on the new task
of object state change anticipation. The source code and the
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Object State Change: Deform

Object State Change: Remove

PRE PNR POST
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timeline

Figure 2. Examples of modifying actions from the “deform”
and “remove” object state change classes represented by a triplet
of frames (pre-state, PNR, post-state). Each state change is
associated with various actions occurring in diverse environ-
ments/scenarios, emphasizing the complexity and challenges in-
troduced in the OSCA problem.

new annotated data will be made publicly available1.

1. Introduction
When observing human-object interactions, we can effort-
lessly reason about and anticipate changes in object states
[3, 6, 35]. Imagine, for example, that while preparing the
table for a dinner, somebody brings a bottle of wine. Even
before opening it, we can infer that in the near future, the
bottle will be “opened”, and glasses will be “filled”. Rec-
ognizing and anticipating object states and their changes is
crucial for any entity that interacts with objects because the
state of an object significantly affects its physical and func-
tional properties and plays a decisive role in activity under-
standing, reasoning, and task planning.

While it is almost effortless for humans, the capabil-
ity of predicting object state changes still lies beyond the
competencies of current AI-powered systems [62, 66]. Un-
derstanding object states and their changes in the context
of interactions relates to several challenging tasks, such as
visual object perception, next-active object prediction, ac-
tion recognition and anticipation, and object state estima-
tion, that have been well-explored by the research commu-

1https://projects.ics.forth.gr/cvrl/osca/
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Figure 3. The intricate relation between verb/object/action and ob-
ject state change. From left to right: one verb may signify different
state changes; different verbs might signify the same state change;
an action might lead to a variety of object state changes.

nity. Surprisingly, the problem of anticipating object state
changes remains undefined and unexplored. However, rec-
ognizing and anticipating object state changes would be an
important ability of AI-powered agents toward understand-
ing human activities and task planning [57, 65].

The problem of Object State Classification (OSC) is de-
fined as the multi-class recognition of an object’s state in a
still image [16, 23], or the initial and the final object states
in a video that demonstrates one or more state-modifying
actions [19]. The binary object state change classification
variant is also related to detecting state change occurrences
in a short video clip [7, 19]. Researchers have only recently
started to focus on methods for the representation and un-
derstanding of object state changes in videos in the context
of state-modifying actions [41, 44, 47], which can also be
seen as transformations [54]. Existing benchmarks largely
ignore object state changes and focus on traditional types
of annotations related to object type, location, or shape, at-
tributes, affordances, and human actions.

In this work, we take one step beyond the Object State
Classification and the Action Anticipation tasks by intro-
ducing the new task of Object State Change Anticipation in
videos. OSCA focuses on the multi-class prediction of the
state change occurring on an object during the next, yet un-
seen at inference time, action during a long procedural ac-
tivity. Specifically, as shown in Fig. 1, at a certain decision
point in time that is at the start of the next, yet unobserved
action, we aim to predict the object state change class that
will occur. The object state change will occur at the “Point
of No Return” timestamp during the next action [19].

The OSCA task differs significantly from action antici-
pation, as it focuses on predicting imminent changes in the
object’s state, if any, without requiring the prediction of
the verb and possibly the noun categories associated with
the anticipated state-modifying action. Although the OSCA
task involves fewer target state change categories than ac-
tion categories, it remains challenging. A single action may
apply to various objects and contexts, resulting in a range
of possible state changes, as shown in Fig. 2 and 3. In addi-
tion, while it might seem that, given a prediction for the next
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action, determining the next object state change would be
straightforward, estimating such predictions in instructional
videos is a challenging task, as current benchmarks sug-
gest. Based on the Ego4D leaderboard for short-term action
anticipation benchmark2 (Top5 mAP: Overall approaches
score 7%, verb and noun combined scores close to 17%,
and noun-only score around 37% as of 11/2024), it is clear
that a lot of research effort is still needed to devise efficient
solutions to action anticipation in procedural activities and
consequently their contribution to the estimation of the next
state of the action-participating objects.

To tackle this new task, we introduce a new formulation
leveraging on the cumulative history of the textual descrip-
tion of recognized preceding actions and object states, up
to the decision point where this prediction is performed.
The integration of the former information with visual in-
formation concerning the recent past is a key idea to model
this historical context effectively. Our approach may also
predict that no object state change will occur in the forth-
coming action which implies the anticipation of a no-state-
modifying action. We evaluate the proposed approach to-
ward the newly proposed OSCA problem to establish base-
line results for automated change state anticipation in long
instructional videos and to also investigate the potential im-
pact and effectiveness of the extracted information in other
related vision-based anticipation tasks. We assess the per-
formance of our proposed method for the OSCA problem
and show initial results based on a proposed extension of
the popular Ego4D video dataset. We hence build on the
large-scale and challenging Ego4D dataset [19] which pro-
vides egocentric videos by augmenting the available anno-
tation data with labels for the object state changes based on
the initial and the final object states for any state-modifying
actions in a subset of videos related to the Hand & Object
Interactions benchmark3. This results in the Ego4D-OSCA,
a variant of the Ego4D dataset that will become available to
the community. Thus, the main contributions are:

• The introduction of the new problem of anticipating an
object state change (OSCA) that will occur in the next,
yet unseen, action in instructional videos.

• The introduction of the Ego4D-OSCA dataset, a new
benchmark for evaluating solutions to the OSCA problem
based on a subset of the Ego4D video dataset.

• The proposal of the first approach to tackle OSCA which
integrates visual and language features to model the
history of performed actions, object states, and their
changes. We also present initial baseline results.

2https : / / eval . ai / web / challenges / challenge - page / 1623 /
leaderboard/3910/Overall

3https://ego4d-data.org/docs/benchmarks/hands-and-objects/

2. Related Work
Object states capture dynamic aspects of object appearance
and/or functionality and are subject to visually perceivable
changes, as a result of state-modifying actions. They are
also known as object fluents related to changeable object
attributes [2, 26, 27]. Since there is no prior work on the
problem of Object State Change Anticipation that we in-
troduce, we review the literature on the closely related top-
ics of action and next-active object anticipation, object state
classification in images as well as the interplay between ob-
ject state estimation and action recognition in videos.

2.1. Object State Classification/Recognition

Object State Classification in Images: Object states are
typically considered as a special subset of “visual at-
tributes”, i.e. visual concepts that are related to the phys-
ical and functional properties of objects [23]. Object states
and their changes are perceivable by humans and should
be perceivable by AI-enabled agents [10]. The majority
of the attribute classification approaches follow a similar
approach to that of object classification by training a con-
volutional neural network with discriminative classifiers on
annotated image datasets [43]. Few works focus explicitly
on state classification [16], while most of them rely on the
same assumptions used for the attribute classification task.
A prominent direction to tackle this task refers to zero-shot
learning. It gained considerable attention in recent years
due to its practical significance in real-world applications,
mitigating the problem of collecting and learning training
data for a very large number of object classes [58]. One
such prevalent approach involves the utilization of seman-
tic embeddings to represent objects and their attributes in
a low-dimensional space [55]. The work in [18] leverages
Knowledge Graphs (KGs) and semantic knowledge in the
context of zero-shot object classification. In a similar vein,
the work in [17] combines KGs and Large Language Mod-
els (LLMs) to address object-agnostic state classification.
A recent work by [41] focuses on object state recognition
based on the compositional generation of novel object-state
images, while the method in [47] introduced a novel con-
ditioned diffusion model that focuses on generating tempo-
rally consistent and physically plausible images of actions
and object state transformations based on an input image
and a text prompt describing the targeted transformation.

Object State Change Estimation & Action Recognition
in Videos: Object state changes have been considered a
meaningful information source in video-based human ac-
tion understanding and recognition (HAR). In HAR, ob-
ject state changes are often considered complementary at-
tributes to the visual representation of actions. These
changes are typically derived within the visual domain
through the utilization of explicit models for object detec-
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tion and state estimation [11, 28, 44], or indirect modeling
of object states based on general scene changes resulting
from action execution [1, 4, 5]. Several methods exploit
object states implicitly to estimate the type of action per-
formed. The work in [1] was among the first to propose a
method to automatically discover object states and the as-
sociated manipulation actions from videos by leveraging a
discriminative clustering framework that jointly models the
temporal order of object states and manipulation actions.
The work in [27] explored the recognition of object flu-
ents (changeable object attributes) and tasks (goal-oriented
human activities) in egocentric videos using a hierarchical
model that represents tasks as concurrent and sequential
object fluents. Moreover, [29] focuses on understanding
human actions within videos by analyzing complex inter-
actions across multiple interrelated objects by recognizing
their different state changes. In [44, 46] a multi-task self-
supervised framework is proposed that allows the temporal
localization of object state changes and state-modifying ac-
tions in uncurated web videos.

Furthermore, [60] introduced the novel VidOSC ap-
proach for understanding object state changes by segment-
ing object parts related to those changes in videos from
an open-world perspective. A recently proposed frame-
work [39] can recognize object-centric actions by relying
only on the initial and final object states. The model can
also generalize across unseen objects and different video
datasets. The method proposed in [40] aims at disentangling
visual embeddings that distinctly represent object states
alongside identities, enabling effective recognition and gen-
eration of novel object-state compositions through a com-
positional learning framework. Finally, the InternVideo [7]
video foundation model was adapted to tackle the tasks of
object state change classification and action anticipation in
the context of the Ego4D Challenges.

2.2. Action & Next-Active Object Anticipation

Action anticipation involves predicting the label of an ac-
tion that is expected to occur in the future but has not yet
been started/observed [21, 56, 64]. This challenge has been
studied in both egocentric [8, 19] and exocentric [22, 42]
videos, with the latter becoming increasingly popular in re-
cent years. Short-term action anticipation [20, 34, 38] fo-
cuses on predicting actions or events in the immediate fu-
ture, whereas long-term action anticipation [33, 63] extends
to predicting actions or events over a longer period, ranging
from several seconds to minutes.

In the context of human-object interactions in videos, ac-
tive objects [36] and next-active objects [14] refer to specific
items that are involved in ongoing or anticipated actions.
The active object is the item that a person is currently inter-
acting with within the video. In contrast, the next-active ob-
ject is the item predicted to be used in the near future, based

Post depositPre deposit

Object state change: Deposit

Pre remove Post remove

Object state change: Remove

Action A: 

Put fruits 

in the fridge

Action B: Pick 
choco chips 
from the nylon

timeline

Figure 4. Two of the nine object state change super-annotated
classes in the Ego4D-OSCA dataset, ‘deposit’ and ‘remove’. Pre-
/post-state labels for these actions are shown as distinct video
segments. ‘Deposit’ and ‘remove’ are inverse changes, where
pre-deposit matches post-remove, and pre-remove matches post-
deposit, indicated by frames and shapes of the same color.

on the current interaction [9, 25, 30]. Although not yet in
use, it is likely to become involved in subsequent actions.
These concepts are crucial in video analysis for understand-
ing and predicting human behavior, as they help anticipate
the sequence of actions and interactions within a scene. The
concept of next-active object anticipation has also been the
subject of the short-term anticipation challenge in [19] and
is described as the next object that will be touched by the
user (either with their hands or with a tool) to initiate an in-
teraction. Several methods have been proposed in this chal-
lenge for the solution of this problem [34, 37, 49, 50].

Anticipating the state change of an object involves pre-
dicting how the object’s condition or form will alter as it
becomes involved in an activity, whether it is currently ac-
tive or will become active in the near future. This process
goes beyond merely identifying which object will be used
next(next-active); it focuses on understanding how the ob-
ject’s state will evolve during or after its involvement in the
interaction. This anticipatory process requires analyzing the
current interaction and understanding the transformations
that occur as objects are used. By predicting these state
changes, we gain insights into how objects will behave as
they become active or next-active, enhancing the ability to
interpret the sequence of events and interactions in a video.

3. Ego4D-OSCA Dataset

We introduce Ego4D-OSCA as a new partition of the large-
scale Ego4D dataset that aims to serve as a benchmark for
the assessment of methods for object state change antici-
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Figure 5. Annotation pipeline: Occlusions are checked in the pre- & post-frames. A threshold value for the BBOX area of N square
pixels (N=100) for each object annotation. Ego4D-SCOD benchmark data are used to automatically annotate the change states per clip.

pation. The volume and diversity of the Ego4D dataset
make Ego4D-OSCA a very challenging dataset for OSCA,
as shown in Fig. 2. Ego4D-OSCA is tailored from the long-
term activity (LTA) prediction benchmark, which aims to
forecast the sequence of activities that will unfold in future
video frames. Due to an ongoing challenge, the official test
set for this benchmark has not yet been released, prompting
us to re-purpose the validation split as a stand-in test set.

Dataset annotation: To enrich the LTA benchmark, we in-
tegrate object state annotations extracted from the dataset
as follows. The original Ego4D dataset does not include
annotations for the specific state labels of individual video
frames. Instead, annotations about state changes are pro-
vided, which relate to entire video segments. Additionally,
the dataset includes annotations for bounding boxes and ob-
ject classes across seven critical frames within each video
segment. These frames are temporally centered around the
occurrence of the state change that occurs within each video
segment. Based on this information, we super-annotate cer-
tain critical frames of each video segment with state-related
labels as follows. For each video segment, we annotate the
initial and final frames as pre X and post X , respectively,
where X denotes the label of the state change. Furthermore,
in line with the semantic implications of these changes, we
establish three pairs of state changes. Each pair is con-
structed under the premise that the first action is the inverse
of the second concerning the resulting state change. For
instance, if X and Y represent inverse state changes, then
the labels pre X and post Y are considered samples of
identical states. A similar correspondence applies between
pre Y and post X . For example, the states pre remove
and post deposit are considered identical, since remove
and deposit constitute a pair of inverse state changes. Fig-
ure 4 delineates the specifics for these two super-annotated
state change classes. The same condition is true for the
state change classes of activate-deactivate and construct-
deconstruct. The full set of pre- and post- object state pairs
that constitute the target set of object state changes appear
in the supplementary material. It is important to note that
there exists a subset of video segments containing actions
that do not induce state changes and, therefore, these seg-
ments are not considered for annotation.

By incorporating these detailed annotations, Ego4D-

OSCA offers researchers a comprehensive platform to ex-
plore and refine methods for anticipating object behavior
and activity sequences in egocentric video contexts. The
Ego4D dataset offers eight distinct state change labels: ac-
tivate, deactivate, deposit, remove, construct, deconstruct,
deform, and other. However, we contend that there are ac-
tions that do not alter the state of an object. To address
this, we propose adding a state change category called “No
Object-State-Change (No OSC)”. This new class will help
capture instances where actions occur without affecting the
state of an object, thereby providing a more comprehensive
framework for understanding and categorizing interactions.

Details on the annotation process: The annotation process
for the state transitions is applied to the pre Y and post X
frames in each video segment. Overall, the annotation pro-
cess consists of the next 4 steps (a schematic representation
of the annotation pipeline is shown in Fig. 5). First, the
PNR moment of the video segment being examined for an-
notation is compared to the PNR moment of the segment
that has been previously annotated. If the PNR of the pre-
viously annotated segment is located after the PNR of the
segment under examination, then the segment under exam-
ination is rejected. The reasoning behind this decision has
to do with the learning of the segment features related to
state transitions. This alignment of the two PNRs signifies
that there is an overlap between the state transition actions
of the two segments and therefore the feature learning be-
comes more challenging. Subsequently, it is examined if
the object undergoing state change is occluded. If this is the
case, the frame is rejected. Then, the bounding box area of
the object is evaluated, and if it is below 100 square pix-
els—a threshold empirically chosen and commonly used in
annotation tools like Voxel-51—the frame is discarded. Fi-
nally, the frame that has passed all the previous checks is
annotated with the appropriate state label that pertains to
the state transition action.

Dataset Statistics: The proposed Ego4D-OSCA dataset is
compiled using a subset of the popular, large-scale Ego4D
v2 dataset [19] that contains egocentric videos for a large
variety of human daily living or work activities. In Table 1
we compare the proposed Ego4D-OSCA dataset with ex-
isting image and video datasets that also provide annota-
tions related to object states. Ego4D-OSCA contains 61.858
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Datasets Modalities OSC related task Actions per video Samples Obj. State Classes Actions Objects
Fire et al. [13] Videos Detection Single 490 17 - 13
ChangeIt [45] Videos Temporal Localization Single 34.428 - 44 -
HowToChange [59] Video & Text Temporal Localization Single 498.475 20 - 134
VSCOS [61] Video Segmentation Single 1.905 4 271 124
VOST [51] Video Segmentation Single 713 - - 155
Ego4D [19] Video & Text Detection & Classification Single 92.864 8 - 478
Ego4D-OSCA (Ours) Video & Text Anticipation Multiple 1610 9 1500 477

Table 1. Comparison with other image and video datasets that contain annotations related to object state changes. Modalities refer to the
available data source for the object state change-related tasks.

training and 31.846 testing clips. The target tasks performed
using each of the datasets are also noted. More dataset
statistics can be found in the supplementary material.

4. Object State Change Anticipation - Baseline
The proposed framework, depicted in Fig. 6, draws inspira-
tion from the efficacy of combining visual and lexical infor-
mation for semantic action/activity encoding. To achieve
this, it adopts a three-stream architecture. Within this de-
sign, a visual encoding module is tasked with capturing the
visual attributes of ongoing actions, while two lexical-based
encoders are employed to extract the semantic nuances from
a procedural-oriented representation of past actions and ob-
ject states. The framework fuses these distinct representa-
tions towards the unified objective of anticipating the next
object state. This task entails the estimation of the forth-
coming state in which the object of interest will reside dur-
ing the subsequent action. The framework tries to holis-
tically capture the underlying dynamics and contextual in-
tricacies governing object-state transformations across se-
quential actions by integrating visual and lexical cues.

The design of our framework draws from the recent
VLMAH model [31] that was specifically tailored for the
task of action anticipation. We augment this architecture by
introducing specialized object state history encoding mod-
ules. Additionally, we redesign the action history module to
facilitate disjoint encoding, capturing both the motion mo-
tifs in actions (verbs) and the transitions of objects-in-use
(nouns) between actions. This refined architecture enables a
more nuanced representation of the sequential dynamics be-
tween actions and object states, empowering the framework
to achieve enhanced performance in the task of next-state
anticipation within dynamic environments.

As illustrated in Fig. 6, the proposed framework consists
of two primary components: (a) the current action and ob-
ject state estimation module, and (b) the object state antic-
ipation module, depicted within the thin-dotted rectangle.
Our contribution resides in (a) the conceptualization of this
framework and (b) the development of the object state antic-
ipation module. Concerning the latter, it encompasses some
constituent components.
Visual Encoder: For this module, we employ a lightweight
visual encoder consisting of a single-branch bidirectional

long short-term memory (BiLSTM) component followed by
a multi-layer perceptron (MLP). We selected this simplified
design for the visual encoder based on the objective of tem-
porally encoding the enduring relationships among encoded
short-term segments extracted from the input video. Our
model relies on an external pretrained human action recog-
nition model, such as SlowFast [12] or TSN [53] to provide
encodings of short-term spatio-temporal dependencies be-
tween the frames inside a single segment.
Action & State History Encoders: As illustrated in Fig. 6,
both encoders exploit the model design of the lexical en-
coder of the VLMAH model [31], which follows a NLP
neural network design consisting of BiLSTM and MLP
components. The decision to employ a simple NN for en-
coding the history, instead of utilizing LLMs was motivated
by several factors. Firstly, the computational efficiency
of LLMs such as GPT- or LLaMA, often entails signifi-
cant resource requirements for training and inference [52],
whereas a simpler neural network architecture mitigates
computational overhead. Secondly, LLMs are pre-trained
on general text corpora and may not capture the domain-
specific nuances inherent in the textual data related to action
histories and object states. Additionally, the simplicity of
the chosen architecture facilitates interpretability, data effi-
ciency, and customization, affording greater control over the
model’s behavior and adaptation to the task’s requirements.
Learning Objective: The objective for training the model
was exclusively focused on evaluating the anticipated state
estimate. This deliberate choice stemmed from the aim to
prioritize the accurate prediction of object states, which was
the study’s primary objective. This objective was formu-
lated using the cross-categorical entropy loss, which is well-
suited for multi-class classification tasks, such as predicting
object states across different categories:

L = − 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c), (1)

where N is the number of samples in the dataset, C is num-
ber of object state categories, yi,c is the ground truth next
state label for the object-in-use in the current action sample
i and ŷi,c is the predicted next state probability.

During training, the proposed framework leverages ora-
cle action and state detectors to provide the action and state
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Figure 6. Overview of the proposed baseline framework for the object state change anticipation task. The proposed framework anticipates
object state changes by integrating real-time visual data and a historical record of past actions and object state changes.

history, respectively, for each clip in the dataset (see Fig. 6).
These detectors estimate the current action and object state
observed in the clip, serving as ground truth annotations for
training purposes. However, it is important to note that for
inference toward real-world applications, there is a require-
ment for current action and object state recognition models
to provide input to the framework. Consequently, our model
is solely tasked with the learning objective of next-object
anticipation, focusing exclusively on predicting the future
state of the object. By decoupling the training and infer-
ence phases in this manner, the model can effectively learn
the dynamics of object-state transitions without the added
complexity of simultaneously predicting the current action.

5. Implementation, Experiments and Results

Implementation Details: The proposed state anticipation
model (dotted rectangle in Fig. 6) is trained on a single
NVIDIA TITAN GPU using the Adam optimizer, a batch
size of 32, a learning rate of 1e − 4, without any temporal
augmentations (clip or frame cropping). Short-term associ-
ations between neighboring segments of an input video are
represented using the pre-extracted SlowFast frame level
features from Ego4D. Regarding the selection of the pre-
and the post-state keyframes that are introduced in the ob-
ject recognition model, we exploit the PNR annotations of

Ego4D, which correspond to the first frame in each clip
when the state change/transition is visible. We should note
that in real-world inference, the action and state lexical his-
tories in the proposed anticipation model will be populated
by existing action recognition and object state estimation
models trained on the respective data of the task.
Evaluation metrics: The evaluation of all examined mod-
els was conducted using top-1/5 mean accuracy, and F-
score, following standard practices in the relevant literature.

5.1. OSCA Results
In Table 2, we compare variants of an object state anticipa-
tion model to highlight the impact of incorporating lexical
histories of past actions and object states on the anticipation
performance. The vision-only model (VID-A) only relies
on the visual representation of the current action. We ob-
serve modest performance levels.
OSCA under ideal action and state recognition: When
ground-truth lexical histories of past actions are introduced
through an oracle recognition model (VNLP (O-Action)),
a slight performance improvement indicates the potential
benefit of contextual action information. Notably, incor-
porating lexical histories of past object states from an or-
acle recognition model (VNLP (O-State)) leads to signif-
icant performance gains, that highlight the importance of
considering object state dynamics in anticipation tasks. Fur-
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Model Top@1/5 mAcc F1-score
VID-A 23.93 / 89.10% 11.74%
VNLP (O-Action) 25.59 / 83.06% 24.62%
VNLP (O-State) 40.07 / 90.83% 33.57%
VNLP (O-Action, O-State) 39.20 / 89.76% 37.12%
VNLP (Action [12]) 23.04 / 81.31% 22.09%
VNLP (State [16]) 32.72 / 92.16% 21.78%
VNLP (Action [12], State [16]) 29.42 / 94.65% 26.29%

Table 2. OSCA performance for various model configurations (O-
: Oracle recognizer, VID-A: vision-only state anticipation model).

ther improvements are observed when both lexical histories
are integrated into the model (VNLP (O-Action, O-State)),
demonstrating the synergistic effect of leveraging contex-
tual information from actions and object states. Overall, the
low anticipation scores highlight the inherently challenging
nature of the task and the intricacy of the dataset scenarios
that pose significant challenges for anticipation models.
OSCA under actual action and state recognition: We
conducted experiments where the oracles (action recog-
nizer, object’s current state estimator), were substituted with
existing baseline models. In this setting, the output of these
models is utilized to populate the action and state histories
that OSCA utilizes. We employed the following models: (a)
the well-established SlowFast [12] model for action recog-
nition; (b) the object-agnostic state classification method
proposed by [16] as the current state classifier, with minor
modifications, as described below.
Action recognizer: Regarding the action classification mod-
ule, we fine-tuned the SlowFast model [12] on a subset of
the original Ego4D dataset. Specifically, we obtained the
train/validation/test splits using the training set provided for
the (LTA) long-term anticipation task of Ego4D based on
the 60/20/20 split scheme. The adaptation of the LTA data
to the action recognition task resulted in 5754 action classes
and a total of ≈ 65K video clips (with a mean of ≈ 10.7
sample clips per action class). SlowFast achieved 12.86%
Top-1 and 33.69% Top-5 accuracy for the task of current
action recognition. This low performance can be attributed
to the extensive number of action classes and limited sam-
ples per class, as well as in Ego4D’s inherent motion and
appearance similarities across different actions, e.g. take
cup - take bottle, tie string - tie rope.
Object state recognizer: Additionally, for the object-
agnostic state history, we adapt the model of [16]. This
model relies on the outputs of two distinct state classifiers.
Each classifier receives the first (pre) or the last (post) frame
of each video segment as input to predict the object state
label for the respective frame. The prediction of the state-
change label for the video segment considers both outputs
and is derived based on the following rules. If the object
state predictions are pre X and post X , respectively, the

inferred state change for the video segment is denoted as
X . Conversely, if the classifiers predict pre X and post Y ,
where X and Y are distinct and represent inverse state
changes, it is concluded that no state change has occurred.
Finally, if neither of the above conditions is met, the pre-
diction of the state change defaults to the output of the sec-
ond classifier; that is, if the prediction is post Y , the state
change for the video segment is identified as Y. For exam-
ple, if the predictions of the two classifiers are pre activate
and post activate the prediction of state change would be
activate. Likewise, if the predictions are pre activate and
post deactivate the prediction of the state change would
be that of no change. This object-agnostic state recognizer
showcased 25.4% mean state recognition accuracy.

In our experiments, replacing oracles with realistic rec-
ognizers to populate the action and state history buffers that
are considered by the baseline OSCA model, we observed
a significant accuracy drop (last block of lines in Table 2).
This accuracy difference underscores the critical role of pre-
cise recognition of the current action and object state for
effective anticipation of near-future object states within dy-
namic environments. Given the class imbalance in the pro-
posed Ego4D-OSCA data set, the F1 score is a more ap-
propriate performance measure. This metric considers both
precision and recall while remaining insensitive to the true
negatives of majority classes, unlike accuracy, which can
be biased toward the majority class. Based on this ratio-
nale, the reported F1-scores in Table 2 indicate that a model
combining both action and state history (past context) may
be more effective for the object state anticipation task.

Noise (Action, State) Top@1/5 mAcc
(0%, 0%) (Oracle) 35.60 / 88.14%
(25%, 25%) 30.46 / 84.42%
(50%, 50%) 26.00 / 81.75%
(75%, 75%) 22.48 / 78.09%

Table 3. The robustness of the object state change anticipation
model is tested to the recognizer performance variability.

5.2. Object State & Action Recognition Impact
To further demonstrate the impact of the current action and
object state recognizer accuracies on the object state change
anticipation task, we conducted experiments that hypoth-
esized recognizers of different accuracy. In this experi-
mental setup, we uniformly introduce noise, representing
erroneous estimations, to both the action and state histo-
ries, since in the inference stage of the proposed framework,
these histories would need to be populated by the outputs of
the respective recognizers.

Table 3 presents the results obtained under three varying
levels of label noise (rows 2-4), contrasted to the outcomes
achieved when employing ground truth labels (where the
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noise level is 0%). The noise levels correspond to the rate
of erroneous estimates generated by the recognizers, i.e.,
25% corresponds to a recognizer with 75% mAcc. As it
can be verified based on the obtained results, the perfor-
mance of the state anticipation task is influenced by the rec-
ognizer’s accuracy, demonstrating an approximate 4 − 5%
reduction in OSCA accuracy for every 25% decrease in ob-
ject state and action recognition accuracy. Notably, despite
substantial declines in state and action recognition perfor-
mance, the anticipation model exhibits only a marginal de-
crease in performance. This finding can be attributed to
the compensatory capability of the visual component of the
model, which effectively accommodates dynamic and pre-
viously unseen sequences of action and state histories.

6. Conclusions

This paper introduced the new problem of object state
change anticipation during procedural activities. We pro-
posed a novel framework that integrates lexical histories of
past actions and object states with recent visual information
to enhance anticipation accuracy in vision-based models.
By fusing long-term semantic and recent visual informa-
tion, our framework demonstrates notable improvements in
anticipation accuracy, underscoring the importance of con-
textual understanding in dynamic environments. To validate
our approach, we augmented the Ego4D dataset forming a
specialized subset noted Ego4D-OSCA. Future work will
explore the applicability of LLMs as a replacement for the
NLP processing component of the proposed framework, for
leveraging their enhanced semantic understanding and in-
context learning abilities. We also plan to explore zero-shot
settings to enable anticipation of state changes involving
novel, previously unseen, objects or actions.
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Anticipating Object State Changes in Long Procedural Videos

Supplementary Material

This supplementary material aims to provide a detailed
analysis of the proposed Ego4D-OSCA dataset. In Sec-
tion 7, we compare the proposed video dataset with existing
image and video datasets proposed to support vision-based
tasks related to object state change understanding. Sec-
tion 8 provides an analysis of the complexity of the pro-
posed dataset in the context of the newly introduced object
state anticipation task. In that direction, we highlight its
challenging nature that arises from the characteristics and
underlying associations among the actions, the activities,
the objects, and the annotated object states. Finally, in Sec-
tion 9 additional sample images retrieved from the proposed
dataset are shown to emphasize the complexity and context
variability of object state change and action classes.

7. Comparison of datasets related to object
state changes

The proposed Ego4D-OSCA dataset is compiled using a
subset of the popular, large-scale Ego4D v2 dataset [19]
comprising egocentric videos for a large variety of human
daily living or work activities.

In Table 4 we compare the proposed Ego4D-OSCA
dataset with existing image and video datasets that also pro-
vide annotations related to object states. The target tasks
performed using each of the datasets are also noted. In the
following, we analyze the most similar ones and argue on
the necessity to compile a new dataset as a benchmark for
the introduced task of Object State Anticipation in videos.
Ego4D [19]: The Ego4D dataset is among the largest to
date, encompassing an extensive collection of videos cap-
tured in a wide variety of environments. A subset of this
dataset has been utilized for object state detection and clas-
sification, as shown in the second-to-last row of Table 4.
This subset consists of 92,864 short videos, each featuring
a single state-modifying action.

The Ego4D dataset is related to three key challenges con-
cerning visual object state change understanding. Firstly,
the Ego4D SCOD (State Change Object Detection) chal-
lenge1 focus on the bounding box-based detection of the
object that undergoes a state change in an action segment
(short video clip). The State Change Classification task
is defined as the multi-class classification of object state
changes in a video clip where a state-modifying action oc-
curs, for example, identifying that the state of a cup has
changed from filled to empty. Second, the binary state
change classification variant is realized as an Ego4D chal-

1Ego4D State Change Object Detection Challenge

Figure 7. Statistics for the Ego4D-OSCA dataset per object state
change class.

lenge2, with the aim to detect whether a state change was
performed or not in an action segment (video clip). More-
over, the Ego4D State Change Localization challenge3 in-
volves pinpointing the exact frames in the video where the
state change occurs. Accurate localization is crucial for un-
derstanding the precise timing and context of the state tran-
sitions within the egocentric video perspective. These chal-
lenges are designed to advance the understanding and devel-
opment of AI models in recognizing and interpreting state
changes in dynamic and realistic scenarios captured from
a first-person viewpoint. Finally, a series of workshops in
major conferences have been organized based on the Ego4D
dataset and related tasks/benchmarks, such as 2nd Interna-
tional Ego4D Workshop @ ECCV 2022 , 1st Ego4D Work-
shop @ CVPR 2022 and the Joint 3rd Ego4D and 11th
EPIC Workshop on Egocentric Vision @ CVPR2023.
Comparison: The Ego4D-OSCA dataset comprises long
videos of sequential state-modifying actions that corre-
spond to any of the nine classes of object state changes: de-
posit, remove, construct, deconstruct, activate, deactivate,
deform, other, and no-state-change. A distribution of the
samples across the 9 object state labels is presented in Ta-
ble 5 and Fig. 4. In contrast, the current subsets of Ego4D
used for detecting and classifying object states (Ego4D
SCOD & OSCC benchmark) comprise short videos, each
depicting a single action. This renders the subsets unsuit-
able for addressing the problem of anticipating object state
changes in procedural videos that comprise consecutive ac-
tions under the same scenario (activity).

2Ego4D Object State Change Classification Challenge
3Ego4D Object State Change Temporal Localization Challenge

1

https://eval.ai/web/challenges/challenge-page/1632/overview
https://ego4d-data.org/workshops/eccv22/
https://ego4d-data.org/workshops/eccv22/
https://ego4d-data.org/workshops/cvpr22/
https://ego4d-data.org/workshops/cvpr22/
https://cvpr.thecvf.com/virtual/2023/workshop/18537
https://cvpr.thecvf.com/virtual/2023/workshop/18537
https://eval.ai/web/challenges/challenge-page/1627/overview
https://eval.ai/web/challenges/challenge-page/1622/overview


Datasets Modalities Task Year Actions per video Samples Obj. State Classes Actions Objects
Isola et al. [24] Images OS Classification 2015 N/A 63.440 9 - 18
OSDD [15] Images OS Classification & Detection 2021 N/A 19.000 9 - 18
Alayrac et al. [1] Videos OS Classification & Act. Localization 2017 Single 630 7 7 5
Fire et al. [13] Videos SC Object Detection 2017 Single 490 17 - 13
Task-Fluent [28] Videos OS Classification 2017 Single 809 21 14 25
ChangeIt [45] Videos OSC Temporal Localization 2022 Single 34.428 - 44 -
HowToChange [59] Video & Text OSC Temporal Localization 2023 Single 498.475 20 - 134
VSCOS [61] Video SC Object Segmentation 2023 Single 1.905 4 271 124
VOST [51] Video SC Object Segmentation 2023 Single 713 - - 155
MOST [48] Video OS Classification 2024 Multiple 61 60 - 6
Ego4D [19] Video SC Object Detection & Classification 2022 Single 92.864 8 - 478
Ego4D-OSCA Video OSC Anticipation 2024 Multiple 1498 9 5754 475

Table 4. Comparison with other image and video datasets that contain annotations related to object state changes. Note that in Ego4D-
OSCA, a sample refers to a video of an entire activity, which might consist of multiple actions.

No OSC activate deactivate construct deconstruct deposit remove deform other
Train 2066 4017 1492 4186 1773 14984 15338 4400 15667
Test 1284 1888 617 2289 966 7613 7608 2149 8715

Table 5. Statistics for the Ego4D-OSCA dataset per object state change class. In total, the dataset has 61858 train and 31846 test clips.

ChangeIt [45]: The ChangeIt dataset comprises unedited
videos sourced from YouTube and automatically generated
labelling of actions. The designated tasks for analysis on
this dataset involve the identification and temporal localiza-
tion of the initial state, end state, and state-modifying action
in a video. A set of 44 state-changing actions is provided,
each demonstrated in approximately 15 videos on average.
In total, there are 34, 428 videos with an average duration
of 4.6 minutes.
Comparison: The newly introduced Ego4D-OSCA dataset
comprises sequential videos featuring actions, some of
which may involve state changes, while others may not.
In contrast, the ChangeIt dataset consists of single-action
clips, therefore one object state change is performed per
clip. Ego4D-OSCA offers a wide range of scenarios with-
out imposing any limitations and encompasses video du-
rations spanning from minutes to hours. Conversely, the
ChangeIt dataset confines scenarios to irreversible actions,
aiming to eliminate instances where two actions return an
object from an initial state to the same initial state via an in-
termediate state. Additionally, it excludes videos exceeding
15 minutes in length.

MOST [48]: The newest dataset related to object states
in videos addresses the problem of temporal segmentation
of multi-label object states. It includes manually collected
instructional videos from YouTube, covering six object cat-
egories: apple, egg, flour, shirt, tire, and wire, each with
around 10 annotated object states. These states represent
common appearances or conditions an object may take.
Annotators marked the time intervals when specific object
states were visible, resulting in a dataset of 61 fully anno-

tated videos with a total duration of 159.6 minutes. Un-
like other datasets, such as ChangeIt, which focuses only
on state transitions, MOST captures diverse object states,
even if those are not tied to specific actions, offering a com-
prehensive benchmark for object state recognition.

Comparison: The MOST dataset is designed to assist
the recognition of multiple object states for a single ob-
ject category per video. In contrast, our proposed Ego4D-
OSCA dataset focuses on anticipating the state change class
of multiple objects within each video. This means that while
MOST aims to recognize objects’ current state, Ego4D-
OSCA emphasizes predicting what an object’s state change
will be as a result/effect of the next (near future), yet unob-
served, action. Additionally, Ego4D-OSCA covers a larger
dataset with 1,498 videos and 478 object classes, compared
to MOST’s 61 videos and 6 object categories. We see po-
tential in bridging this gap in future work by adding anno-
tations for state change classes to the MOST dataset, which
could open up new avenues for research in multi-label ob-
ject state change anticipation. Additionally, contrary to the
proposed Ego4D-OSCA dataset, the MOST dataset does
not provide annotations regarding the actions and activi-
ties across the video. Such information, which our pro-
posed methodology utilizes, can be crucial for understand-
ing the progression of actions and their effects on objects
enabling models to predict future states and state changes
more accurately. Without this contextual information, it be-
comes significantly more challenging to infer the relation-
ships between actions, object interactions, and subsequent
state changes, limiting the ability to anticipate how an ob-
ject might evolve within the dynamic environment of a pro-
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cedural activity.
HowToChange [59]: This dataset is generated using
a subset of The Food & Entertaining category of the
HowTo100M dataset [32], a large-scale dataset of narrated
videos. The reasons for selecting that particular subset are:
(1) it constitutes one-third of the entire HowTo100M video
collection, (2) cooking tasks within this category provide
a rich variety of objects, tools, and state changes, making
it an excellent testing ground for open-world Object-State-
Change (OSC) understanding, and (3) in cooking activities,
a single state transition can often be linked to a diverse
array of objects, creating opportunities for compositional
learning. The dataset provides annotation data related to
three OS classes (initial, transitioning, and end state) re-
lated to OSC localization. A total of 498, 475 videos and
11, 390, 287 ASR transcriptions processed with LLAMA2
reveal the most frequently observed state transitions and the
associated objects. This information is utilized to establish
an OSC vocabulary, identifying 134 objects, 20 state transi-
tions, and 409 unique OSCs.
Comparison: The HowToChange dataset contains clips
that involve a single state-changing action that is not com-
patible with the requirement for subsequent actions in a sin-
gle video as in Ego4D-OSCA. On the other hand, it con-
tains novel objects in the test set which sets the dataset a
challenging benchmark for OSC analysis.

VSCOS [61]: This dataset comprises 1, 905 video clips of
an average duration of 7.4 seconds, capturing various in-
teractions with objects and state changes. These videos
encompass 30 action categories and 124 object categories,
resulting in 271 valid combinations in total. The state
changes in the dataset can be categorized into four promi-
nent groups: Rigid Object Composition and Decomposi-
tion (e.g., combine, cut, split, disintegrate, unpackage),
Non-rigid Object Transformation (e.g., pour (liquid), crack
(egg)), Object Appearance Change (e.g., cook, clean), and
Object Articulation (e.g., open, close, twist).
Comparison: Each video in the VSCOS dataset contains
a single state-changing action. The test set of this dataset
is challenging because it encompasses the following cases:
novel objects - seen state changes, seen objects - novel state
changes, and novel objects - novel state changes.

VOST [51]: VOST is introduced as a benchmark for video
object segmentation, emphasizing intricate object transfor-
mations. In contrast to current datasets, VOST introduces
scenarios where objects undergo processes such as break-
ing, tearing, and molding, leading to substantial alterations
in their overall appearance. Comprising over 700 high-
resolution videos captured in diverse environments, each
video in the dataset has an average duration of 21 seconds
and is meticulously labelled with instance masks of objects
across frames.
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Figure 8. Transition frequencies for all pairs of subsequent object
state changes in the Ego4D-OSCA dataset videos.

Comparison: The VOST dataset comprises videos de-
picting objects undergoing state-changing transformations.
While a change in an object’s state is demonstrated in each
clip of the dataset, the state types are not explicitly labelled.
According to the authors, the transformations are indicated
by 51 specific verbs such as cut, peel, apply, break, open,
scoop, fold, mold, etc. This dataset excludes videos without
any transformation. In contrast, Ego4D-OSCA consists of
sequential videos that exhibit a series of object state changes
alongside videos lacking such changes. Ego4D-OSCA en-
compasses 117 verbs and 475 objects.

8. Ego4D-OSCA dataset statistics
We focus on the dynamic nature of object interactions in
the dataset by extracting statistics for the combinations of
object states in conjunction with action verbs and object
classes. We investigate how different action verbs are as-
sociated with a variety of object states, highlighting the di-
versity and context-dependence of an action’s effects. Ad-
ditionally, we examine the variability of object states based
on the actions performed, emphasizing the challenges im-
posed for the tasks of action and activity recognition and
anticipation, and object state classification and anticipation.
This analysis underscores the richness of the dataset and the
sophisticated modelling required to accurately interpret and
predict object states in various human activity contexts.

8.1. Action verbs vs object states
Each histogram illustrated in Fig. 11 demonstrates the dis-
tribution of the occurrences of action verbs in action seg-
ments of the proposed dataset associated with an object state
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change class, with challenging long-tail distributions. The
high variability of action verbs and the state change class as-
sociations are observed for the ‘activate’, ‘deactivate’, ‘con-
struct’, ‘deconstruct’, ‘deposit’, and ‘remove’.

Respectively, in Fig. 12, each histogram shows the (fre-
quency) occurrences distribution of the instances of object
classes in action segments associated with an object state
change class of the proposed dataset.

In Fig. 13, the histogram provides the number of dis-
tinct object state change classes associated with various ac-
tion verb classes. It can be verified that the majority of ac-
tion classes are associated with at least three distinct ob-
ject state classes. For example, actions involving the verb
“open” (leftmost label on the x-axis) can lead to any of
the state change classes depending on the object, e.g. the
“activate” state change occurs when opening a microwave
and “deposit” when opening a box. The observed diversity
highlights the complexity and context-dependence of state-
modifying actions in the dataset capturing a wide range of
interactions and their state changes on interacting objects,
which makes it valuable for training and testing sophisti-
cated predictive models. This, in turn, indicates the need
for elaborate learning models that can cope with the wide
range of specific visual and semantic contexts in combina-
tion with different object classes involved in each action.

8.2. Objects vs object states
The histogram in Fig. 14, illustrates that certain objects in
Ego4D-OSCA can appear in up to eight different states, de-
pending on the action performed, which reveals the action-
dependent variability of object states within the dataset.
This observation underscores the complexity and dynamic
nature of object interactions as well as the challenges to be
tackled by solutions for classifying and predicting object
state changes. The variability in these interactions presents
significant challenges also for action recognition, where
models need to accurately identify state changes and their
transitions induced by subsequent actions, necessitating ro-
bust temporal models and comprehensive training data.

8.3. Variability in state changes & activity duration
The histogram in Fig. 15 illustrates the distribution of state
transitions observed within the first 100 videos from the
dataset. Each bar represents the frequency of specific state
transitions between actions within a video, providing in-
sights into the temporal dynamics and complexity of activi-
ties performed in the dataset.

The histogram highlights a significant variation in the
number of state transitions observed within each video sam-
ple, indicating varying levels of complexity and duration in
the actions performed. For instance, video 14 (video sam-
ple: 1e5bd816-e1dd-43d3-8709-42c83114dc7c) stands out
with 880 object state transitions and a duration of approxi-

mately 3 hours. This underscores the intricate nature of the
actions captured in the original Ego4D dataset [19], where
the extent of state transitions, as presented in the proposed
variant (Ego4D-OSCA), reflects not only the complexity of
the activities but also their temporal duration. Such vari-
ability emphasizes the need for comprehensive modelling
approaches capable of accommodating diverse activity du-
rations and complexities within the dataset. Moreover, this
variability necessitates the consideration of a large action
and state history by methods that utilize this information to
predict future actions or object states, ensuring robustness
and accuracy in forecasting.

Building on the significant diversity in the number of
state transitions observed within each video, the transition
matrix in Fig. 8 provides further insight into the probabilis-
tic nature of these transitions. For instance, the data indi-
cate that when an object is in the ‘activate’ state during ac-
tion n, it frequently transitions to the ‘deposit’ or ‘remove’
states in action n + 1. This suggests that actions involving
the activation of objects, typically electrical appliances, are
usually followed by actions that involve placing items into
or removing items from these objects. Such logical transi-
tions underscore the presence of temporal action ordering
and causality in activities, where one action sets the stage
for subsequent actions. This pattern highlights the impor-
tance of understanding state persistence and transitions, in
developing predictive models. Accurately capturing these
probabilistic dependencies is essential for models to effec-
tively anticipate future states and actions. These insights
reinforce the necessity for models to consider extensive ac-
tion and state histories to accommodate the intricate and
dynamic nature of the actions and activities in the Ego4D
dataset, and inherently also in the proposed Ego4D-OSCA.

9. On the super-annotation of object state
change classes

As stated in the main paper, the original Ego4D dataset does
not provide specific state labels for individual video frames;
instead, it offers annotations on state changes tied to entire
video segments. These annotations include object bounding
boxes and classes for seven key frames, centered around the
moment of state change in each segment. Building on this,
we augment critical frames with state-related labels. Specif-
ically, for each segment, we label the initial frame as pre X
and the final frame as post X , where X represents the state
change. To capture the semantics of these state transitions,
we define three pairs of inverse state changes. Each pair
reflects that one action reverses the outcome of the other.
For instance, if X and Y are inverse changes, then pre X
and post Y are considered equivalent, as are pre Y and
post X . A practical example of this is the pair pre remove
and post deposit, since ”remove” and ”deposit” are inverse
actions. Table 6 outlines these super-annotated state labels
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Figure 9. Sample frames of the Ego4D-OSCA dataset depict the initial state, the PNR frame, and the final state for the eight object state
change classes (the class ‘No object state change’ is not included). The variability of visual environments/contexts, actions, and objects
associated with the object state changes classes is highlighted.

OSC activate deactivate deposit remove construct deconstruct deform other
Pre pre pre pre pre pre pre pre pre

activate deactivate deposit remove construct deconstruct deform other
Post post post post post post post post post

activate deactivate deposit remove construct deconstruct deform other

Table 6. The super-annotated state change labels and the corresponding pre-/post-state labels of a video segment, where the state modifying
action occurs. The pairs activate-deactivate, deposit-remove, and construct-deconstruct constitute pairs of inverse state change actions.
Frame state labels that correspond to the same state are depicted with the same colour.

and their inverse association.

To emphasize the complexity and context variability of
state change classes, Figure 9 shows sample images from
the Ego-OSCA dataset depicting the object state change vi-
sual progression. In those few samples, one may notice the
inverse association between different state change stages, as
well as the large variability of visual environments and con-

texts, actions, and objects involved in different classes of
object state changes. Finally, as also stated in lines 84− 86
and shown in Fig. 3 of the main paper, it is worth mention-
ing that motion motifs (as defined by verb primitives) do not
necessarily have a one-to-one correspondence with states.
As an example, in Fig. 10 we observe that the verb “close”
can result to more than one object state change class. This
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Action A: Closes water tap
Object State Change: Deactivate

Action B: Closes gasoline tap
Object State Change: No OSC

Action C: Closes the bolts
Object State Change: Other

Figure 10. Sample frames from 3 instances of the “close” action,
each involving different contexts and objects from the Ego4D-
OSCA dataset, each resulting in various types of state changes.

highlights the fact that the object-related context is as im-
portant as the motion motif when defining an action as well
as when estimating the anticipated object state change due
to the execution of the action. Therefore to address the
OSCA task an ideal method should build upon the past and
current estimates of object detection and state estimation,
as well as action recognition methods in order to robustly
estimate the anticipated state of an object in procedural ac-
tivities.
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Figure 11. The frequency distribution of the top 50 actions (occurrences of action classes in the dataset action segments) concerning
an object state change class is illustrated in each histogram for the classes ‘activate’, ‘deactivate’, ‘construct’, ‘deconstruct’, ‘deposit’,
‘remove’.
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Figure 12. The frequency distribution of the top 50 objects (occurrences of object classes based on the dataset action segments) concerning
an object state change class is illustrated in each histogram for the classes ‘activate’, ‘deactivate’, ‘construct’, ‘deconstruct’, ‘deposit’,
‘remove’.
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Figure 13. Histogram of object states associated with action verb classes.
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Figure 14. Histogram of object states associated with object classes. For better visualization purposes, we only depict the variability in the
states of the first 100 objects.
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Figure 15. Histogram of the frequency of state transitions in the first 100 videos.
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