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Abstract

Internet of things (IoT) devices are becoming increasingly prevalent. These devices
can improve quality of life, but often present significant security risks to end
users. In this work we present a novel persistent homology based method for the
fingerprinting of IoT traffic. Traditional passive device fingerprinting methods
directly inspect the packet attributes or contents within the captured traffic. But
techniques to fingerprint devices based on inter-packet arrival time (IAT) are an
important area of research, as this feature is available even in encrypted traffic.
We demonstrate that Topological Data Analysis (TDA) using persistent homology
over IAT packet windows is a viable approach to obtain discriminative features
for device fingerprinting. The clique complex construction and weighting function
we present are efficient to compute and robust to shifts of the packet window. The
1-dimensional homology is calculated over the resulting filtered clique complex.
We obtain competitive accuracy of 95.34% on the UNSW IoT dataset [1] by using a
convolutional neural network to classify over the corresponding persistence images
[2].
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1 Introduction

There are an estimated 20 billion IoT devices in active use, up from 8 billion just in 2017 [3, 4],
yet many vulnerabilities have been discovered in IoT devices which put users security and privacy
at risk. Device fingerprinting is the problem of uniquely identifying devices on a network [5].
Methods to fingerprint devices are valuable both for discovering new attacks as well as improving
countermeasures. Passive device fingerprinting is when a listener attempts to identify the devices
without initiating or responding to communications. A particularly important variant of passive
fingerprinting involves identifying encrypted traffic, in which the packet contents cannot be analyzed
and only meta-information is available. Inter-packet Arrival Time (IAT) is known to be a valuable
information source for traffic classification [5–7], but feature extraction from IAT remains challenging.

We present a generalized persistent homology based approach to network traffic classification for
IoT device fingerprinting. Our approach operates over fixed size packet windows of network traffic.
The clique complex constructed over the IAT of the packets in this window has a fixed structure,
allowing for fast computation of the filtration. We assume a fixed window size of k, but extension to
arbitrary and variable window sizes is straight-forward. Our results using the UNSW IoT data set [1]
are competitive with state-of-the-art methods that use only a single feature classifier [8, 9].

Related Work The problem of network traffic classification has wide applicability and is the subject
of active study. In this work, we are concerned with classifying traffic solely based on packet timing
information. This information has been shown to be a useful feature for several traffic classification
tasks and fingerprinting particularly involving encrypted traffic [5–7]. This approach as been applied
to fingerprint devices across a wide variety of protocols including 802.11 frames [10], and recently
extended to fingerprint IoT devices over the ZigBee and Z-wave protocols [11].

There are several recent works on encrypted passive IoT traffic classification. Ortiz et al. apply
recurrent neural networks to the encrypted payload data of TCP flows [3]. A TCP flow is a sequence
of TCP packets between two devices, analogous to a well defined conversation between the devices.
Sivanathan et al. applies a bag-of-words approach over high level attributes of packets within flows
[9]. Pinheiro et al. utilizes a time binned packet length statistics with strong results [8]. IAT based
approaches may be considered a complimentary feature space, because IAT is fundamentally not a
single packet attribute but rather a difference in timing between a pair of packets that can be naturally
encoded as an edge weight of a graph.

Historically, TDA has seldom been applied to network traffic, although recently this subject is starting
to gain greater attention. A notable work is that of Bruillard et al. which focuses on anomaly detection
[12]. Also, Gabdrakhmanova used Betti numbers and Euler’s characteristics to predict network traffic
volume [13]. Perhaps the most similar work to ours is Postol et al. which uses a sliding window
embedding over IoT traffic time-series data. The persistent homology of the resulting Vietoris-Rips
complex is used for traffic classification over relatively long time spans. Our approach differs in two
significant ways. First, our construction works well over small packet windows. Second, we obviate
the need for the expensive calculation of the Vietoris-Rips complex by utilizing an efficient fixed
clique complex construction.

2 Methods

In this section we define the clique complex construction and weighting function which enable
the application of persistent homology to network traffic data. Let the packets of a given flow be
(p0, p1, ..., pn). The arrival time of a packet is given by T (pq). The IAT is defined as ∆T (pq) =
T (pq)− T (pq−1). We classify over windows of the flow, given by ωk(i) = (pi, pi+1, ..., pi+k−1).

Clique Complex Construction For such a window, we construct a clique complex as follows,
using graph notation for simplicity. The vertex set is given by V (ωk(i)) = {j∀j ∈ {i, i + 1, ..., i +
k− 1}} ∪ {Vk(i)}, where Vk(i) = k + i is the flow vertex. The vertices representing packets will be
connected to the flow vertex in ascending order of IAT. The edge set is E(ωk(i)) = {(j, j + 1)∀j ∈
{i, i+ 1, ..., i+k−2}}∪{(j, Vk(i))∀j ∈ {i, i+ 1, ..., i+k−1}}. The first term contains the edges
between vertices of sequential packets, and the second term contains the edges connected to the flow
vertex, Vk(i).
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Figure 1: An example filtered clique complex of the window ω10(0) after the first 4 non-zero edges
have been added. Packet vertices are in red and the flow vertex is in orange. Dark black edges are
non-zero edges that have been added. Gray edges are weight 0 and added at the initial step. The
shaded regions represent the 2-simplices.

Weighting Function The weighting function over the edges is constructed in terms of packet IAT.
All vertices are added at step 0. The edges connecting the sequential packet vertices form the basic
structure of the filtration and are also added at step 0. Formally, the weighting function over the edges
is given by

Wk,i(a, b) =

{
0 (a, b) ∈ {(j, j + 1)∀j ∈ {i, i + 1, ..., i + k − 2}} ∪ (i, Vk(i))

∆T (pa) (a, b) ∈ (j, Vk(i))∀j ∈ {i + 1, i + k − 1}

This is to say that the packet vertices are connected to the flow vertex with an edge weighted by IAT.
As there is no packet before pi, we define ∆T (pi) = 0, meaning the weight of the edge from the first
packet vertex, i, to Vk(i) is always 0. Figure 1 shows an example step in such a filtration.

Filtration Construction We are concerned with the 1-dimensional persistent homology of the
constructed complex, so it is only required to add up-to and including 2-simplices/3-cliques to the
filtration. In order to form the filtration of the clique complex, we first form the complex of all vertices
and 0 weight edges at step 0. Then, it is only necessary to add the weighted edges in ascending order.
By checking at each step, after each edge is added, if the adjacent packet vertices have also have an
edge going to Vk, it is possible to tell when 2-simplices join the filtration. If such an edge exists, then
the new edge forms a new 2-simplex. This means that given a a list of sorted edges, it is only an O(n)
operation to construct the filtration.

Persistence Calculations For these calculations we utilize the tools in Scikit-TDA (CechMate and
Persim) [15]. The 1-dimensional persistence of the filtered clique complex is found using CechMate.
The resulting diagrams are transformed to persistence images using Persim. We generate persistence
images of size 128 by 128, which was experimentally chosen to minimize computer memory usage
while retaining important features. The underlying persistence surface is generated from the source
diagram using a Gaussian with standard deviation of 1.0 and a linear weighting function. The
persistence images are re-scaled 0− 255 in order to reduce memory requirements (unsigned byte vs.
orignal float) and as a normalization measure before passing the images to a downstream model.

Ortiz et al. stores a 0 padded array of 1500 bytes containing the payload of each packet in the time
window [3]. For the window of size 25 that the authors use, the resulting descriptor is 37, 500 bytes.
Over the same length window, our approach produces a single 1282 = 16, 384 byte persistence
image, less than half the size. Furthermore, the size of the window does not affect the size of the
persistence image, and the two values can vary independently. If memory is a critical factor, the size
of the persistence images can be reduced.

3 Experiments and Results

As we have presented, previous work has demonstrated that timing information is a powerful
discriminative feature for network traffic. We aim to prove, by the accuracy of the classification
results, that our construction captures this timing information in a robust way. Figure 2 shows that
resulting persistence images do not change significantly given shifts in the underlying traffic.

Data The UNSW IoT data set [1] is used in this work. The publicly available data consists of 20
days of labeled data for 23 IoT devices. As with related work on this data set, we are concerned with
accurately classifying the TCP flows of IoT devices.

3



Figure 2: The persistence images of the windows corresponding to ω25(i), 0 ≤ i < 10. Note that
as the start of the window moves forward one packet at a time, the persistence image only changes
slightly (left to right, top to bottom).

Figure 3: The confusion matrix of the VGG19 results normalized along the columns to adjust for the
class imbalance in the data set.

Experiments Following the work of Ortiz et al., we choose k = 25 as the window size [3]. For
each TCP flow, windows are taken sequentially with no overlap. We extract 630, 842 such TCP flow
windows from the dataset.

Table 1: Results

Model Accuracy Recall Precision

PH-VGG19 95.34% 95.27 % 95.46%

Using a randomized class balanced 70/30 train/test split over the persistence images for all 23 devices,
a VGG19 [16] model is trained to classify the persistence images. We use the standard VGG19
architecture with two modifications. First, the input layer is reshaped to accept images of size 128 by
128. Second, the output layer is changed to output a softmax 23-dimensional vector, as we utilize
a one-hot-encoding for device labels. We do not attempt transfer learning from weights trained on
existing image datasets, given the unique nature of persistence images. A batch size of 64 is used for
training. A larger batch size should be utilized if hardware permits to increase the speed of training,
especially given the large size of the dataset.
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Results and Comparison Our results over the test set are shown in Table 1. These results are
competitive with other results which only utilize a single traffic feature. Sivanathan et al. obtains
92.13% accuracy classifying hourly flows using a bag-of-words approach over port numbers [9].
Pinheiro et al. obtains an accuracy of 96% classifying 1 second windows using packet length statistics
[8]. As such, our approach is comparable with state of the art results on this dataset. These results
validate that persistent homology is a viable approach for this task.

4 Conclusion

We have demonstrated a persistent homology based IAT feature extraction technique that is useful for
passive fingerprinting of encrypted IoT device traffic. This approach achieves highly competitive
accuracy on the UNSW dataset with state of the art single feature classifiers. The presented clique
complex construction and weighting function have been shown to be useful for tasks relating to the
classification of network traffic. We plan to expand this work to several additional public datasets.
We hope that TDA will become a more widely employed technique for a variety of related network
traffic analysis problems in the near future.
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