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ABSTRACT

World models – generative models that simulate environment dynamics condi-
tioned on past observations and actions – are gaining prominence in planning,
simulation, and embodied AI. However, evaluating their rollouts remains a funda-
mental challenge, requiring fine-grained, temporally grounded assessment of action
alignment and semantic consistency – capabilities not captured by existing metrics.
Vision-Language Models (VLMs) have shown promise as automatic evaluators of
generative content due to their strong multimodal reasoning abilities. Yet, their use
in fine-grained, temporally sensitive evaluation tasks remains limited and requires
targeted adaptation. We introduce an evaluation protocol targeting two recognition
tasks – action recognition and character recognition – each assessed across binary,
multiple-choice, and open-ended formats. To support this, we present UNIVERSE
(UNIfied Vision-language Evaluator for Rollouts in Simulated Environments), a
VLM-based evaluator or world model rollouts adapted under data and compute
constraints. In our extensive experiments totaling over 5,154 GPU-days, we ex-
plore full, partial, and parameter-efficient adaptation methods across various task
formats, context lengths, sampling methods, and data compositions. The resulting
evaluator achieves parity with task-specific baselines using a single unified check-
point. Human studies across seven diverse environments confirm strong alignment
with human judgments, establishing UNIVERSE as a lightweight, adaptable, and
semantics-aware evaluator for world models.

1 INTRODUCTION

World models – generative models trained to predict future observations conditioned on past observa-
tions and actions (Ha & Schmidhuber, 2018; Hafner et al., 2025; Alonso et al., 2024) – are rapidly
becoming central to interactive AI. They provide a powerful abstraction for learning, reasoning, and
planning in complex interactive environments, and underpin advances in neural game engines (Kan-
ervisto et al., 2025; Guo et al., 2025; Gao et al., 2025; Chen et al., 2025), embodied AI (Du et al.;
Yang et al., 2024), and autonomous driving (Russell et al., 2025; Hu et al., 2023a; Ni et al., 2025).

Yet, evaluating world models remains a bottleneck. Rollouts are semantically rich and temporally
grounded, requiring metrics that assess (i) alignment between generated frames and action sequences
at the timestamp level (Yang et al., 2024), and (ii) consistent entity tracking over time (Kanervisto
et al., 2025). Existing approaches fall short: (i) early distributional metrics focus on images and
are sensitive to low-level variations (Salimans et al., 2016; Heusel et al., 2017; Binkowski et al.,
2018), (ii) motion-aware metrics like FVD (Unterthiner et al., 2018) lack semantic grounding,
and (iii) multimodal metrics ignore timestamp-level action conditioning (Jayasumana et al., 2024).
Emerging text-to-video benchmarks (Liu et al., 2024b; Huang et al., 2024; Liao et al., 2024) focus on
open-ended generation but neglect the fine-grained control central to world model evaluation. Even
cutting-edge LLMs fail in this setting (Appendix G.1, Figure 13). Human evaluation remains the
gold standard (Agarwal et al., 2025; Analysis, 2024), however, it remains costly and hard to scale.

To address this gap, we propose a novel evaluation protocol targeting two important dimensions of
rollout quality: action alignment and character consistency, formalized as recognition tasks – Action
Recognition (AR), Character Recognition (CR) – across formats of varying complexity. The protocol
provides a foundation for semantic evaluation of rollouts, and extends upon existing evaluation
method by providing insight into semantic quality of generated rollouts. We explore whether Vision-
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Figure 1: Performance and efficiency of UNIVERSE (orange bars throughout) compared to task-
specific baselines (multiple colours). Left and Center: Action recognition and Character Recognition
accuracy across binary, multiple-choice, and open-ended settings. Right: Sample efficiency – our
adaptation recipe achieves strong performance with substantially fewer training samples per epoch.

Language Models (VLMs) can serve as effective evaluators in this setting. VLMs have demonstrated
strong generalization across multimodal tasks (Li et al., 2023; Driess et al., 2023; Chen et al., 2023;
Wang et al., 2024; Abdin et al., 2024; Liu et al., 2024a; Deitke et al., 2024; McKinzie et al., 2024),
and show promise as automatic judges of generative models (Lee et al., 2024; Mañas et al., 2024; Lin
et al., 2024; Chen et al., 2024). Yet, off-the-shelf VLMs struggle with the temporal grounding and
domain-specific knowledge (see Sec. 4, Zero-Shot Evaluation). Limited resources and sparse text
supervision introduce another layer of complexity to the setting.

We therefore conduct a systematic study of adaptation strategies under realistic data and compute
constraints. Throughout the study totaling over 5,154 GPU-days, we analyze the impact of supervision
regime, frame sampling strategy, visual context length, and training budget. The result of the study
is UNIVERSE (UNIfied Vision-language Evaluator for Rollouts in Simulated Environments), a
lightweight, adaptable, and semantics-aware evaluator for world models. UNIVERSE achieves parity
with task-specific baselines while using a single unified checkpoint (see Figure 1. To validate
reliability, we conduct a large-scale human study on rollouts spanning diverse environments, model
scales, and rollout fidelities. UNIVERSE’s judgments show strong agreement with human ratings,
demonstrating its effectiveness as a practical, semantics-aware evaluator—particularly valuable in
settings where ground-truth annotations are unavailable or prohibitively expensive. To support
reproducibility, we release our code, evaluation dataset, and human annotation dataset1.

2 RELATED WORK

Challenges in Evaluating World Models. World models are generative systems that learn predictive
representations of environment dynamics (Ha & Schmidhuber, 2018), originally proposed for model-
based RL (Sutton, 1991) and now central to domains such as neural game engines (Kanervisto et al.,
2025; Guo et al., 2025; Gao et al., 2025; Chen et al., 2025), embodied AI (Du et al.; Yang et al.,
2024), and autonomous driving (Russell et al., 2025; Hu et al., 2023a; Ni et al., 2025). Recent models
such as Dreamer v1–3 (Hafner et al., 2020; Hafner et al.; 2023; 2025), MuZero (Schrittwieser et al.,
2020), IRIS (Micheli et al., 2023), UniSim (Yang et al., 2024), and DIAMOND (Alonso et al., 2024)
have improved rollout fidelity and controllability. Yet evaluation largely focuses on downstream
success metrics—e.g., game score or goal completion (Bellemare et al., 2013; Kaiser et al., 2020;
Guss et al., 2021; Baker et al., 2022; Beattie et al., 2016)—which provide only coarse, indirect signals
of rollout quality. Genie (Bruce et al., 2024; Parker-Holder et al., 2024) decouples world model
learning and agent training, but its evaluation still emphasizes visual quality and control, without
probing semantic or causal fidelity. Cosmos (Agarwal et al., 2025) proposes a structured protocol
that combines FID/FVD with structure-from-motion-based 3D consistency checks and human ratings
on instruction following, object permanence, and visual verity. While insightful, this approach is
tied to simulator-specific infrastructure and requires costly manual comparison. Human-in-the-loop
protocols such as the Video Generation Arena (Analysis, 2024) also rely on pairwise comparison to
assess rollout quality. These methods, though informative, are expensive and hard to scale.

Evaluation Metrics and Protocols for Visual Generation. Early evaluations of generative models
relied on full-reference metrics such as PSNR and SSIM (Wang et al., 2004), which capture pixel-level
and perceptual similarity but are sensitive to spatial misalignments and fail to reflect semantic fidelity.

1https://anonymous.4open.science/r/vlms-for-wms-2651/README.md
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To address this, distributional metrics like Inception Score (IS) (Salimans et al., 2016), Fréchet
Inception Distance (FID) (Heusel et al., 2017), and Kernel Inception Distance (KID) (Binkowski
et al., 2018). Other proposals such as PPL (Karras et al., 2019), Parzen likelihoods (Goodfellow et al.,
2014), and HYPE (Zhou et al., 2019) attempt to quantify perceptual smoothness or human realism,
but remain focused on static images. For video generation, FVD (Unterthiner et al., 2018) generalizes
FID using I3D features (Carreira & Zisserman, 2017), introducing a motion-aware distributional
baseline. Yet, FVD also lacks semantic grounding and does not account for causal structure or
goal alignment. To improve semantic grounding, metrics based on text-image alignment have been
proposed. CLIPScore (Hessel et al., 2021) and CLIPSIM (Wu et al., 2021) compute similarity
between generated visuals and textual or visual references using CLIP embeddings (Radford et al.,
2021), while Jayasumana et al. (2024) extend this to distributional comparisons via MMD. However,
all operate at the frame level. Structured evaluation protocols using vision-language reasoning have
also emerged. VQA Accuracy (Mañas et al., 2024) uses LLMs to score answers on static image
questions, and VQAScore (Lin et al., 2024) probes alignment via templated binary queries. Lee
et al. (2024) propose VLM evaluator to evaluate other VLMs responses given user criteria. These
approaches introduce task structure but remain limited to single-frame evaluation. Recent text-to-
video (T2V) benchmarks such as EvalCrafter (Liu et al., 2024b), VBench (Huang et al., 2024), and
DEVIL (Liao et al., 2024) introduce curated prompts and metrics covering text alignment, motion
realism, and perceptual quality. While these protocols push forward evaluation of open-ended video
generation, they lack timestamp-level action grounding.

Vision-Language Model Adaptation. VLMs have emerged as powerful tools for multimodal
understanding, demonstrating strong performance across tasks such as captioning, retrieval, visual
question answering, and instruction following (Li et al., 2023; Driess et al., 2023; Chen et al., 2023;
Wang et al., 2024; Abdin et al., 2024; Liu et al., 2024a; Deitke et al., 2024; McKinzie et al., 2024).
Adaptation approaches can be broadly categorized into prompt-level and weight-level methods. One
prominent prompt-level adaptation techniques is prompt tuning, which injects task information
directly into the input space (Miyai et al., 2023; Zhou et al., 2024; Wu et al., 2024a), and in-context
learning (ICL), where models such as GPT-3 (Brown et al., 2020) and Flamingo (Alayrac et al., 2022)
condition on task demonstrations at inference time without updating parameters. Retrieval-augmented
generation (RAG) (Lewis et al., 2020) combines parametric models with non-parametric memory,
and multimodal variants incorporate external visual or auditory context (Hu et al., 2023b; Chen
et al., 2022a). While lightweight, these approaches are limited in their ability to model temporal
dependencies or align with structured rollouts. Weight-level adaptation enables stronger domain
alignment but incurs higher computational cost. Full finetuning remains effective yet costly, while
partial finetuning (Ye et al., 2023) offers a trade-off by updating only selected layers. Parameter-
efficient finetuning (PEFT) provides a scalable alternative and can be grouped into low-rank and
adapter-based strategies (Han et al., 2024). Low-rank methods, such as LoRA (Hu et al., 2022),
inject rank-constrained updates into frozen layers. Recent extensions improve upon this via weight
decomposition (Liu et al.), quantization-aware adaptation (Dettmers et al., 2023; Xu et al., 2024),
mixture-of-experts routing (Wu et al., 2024b), and long-context support (Chen et al.). Adapter-based
methods insert lightweight modules between frozen layers to enable modular adaptation with minimal
overhead (Luo et al., 2023; Zhao et al., 2024). A parallel line of work investigates multimodal
few-shot learning. Frozen (Tsimpoukelli et al., 2021) was among the first to explore this setting,
followed by works combining prompting and ICL for improved sample efficiency (Jin et al., 2022;
Song et al., 2022), and works introducing a learnable meta-mapper to bridge frozen VLM components
for few-shot meta-learning (Najdenkoska et al., 2023).

Our Focus. While prior efforts have explored related challenges, none directly address the evaluation
of the structured, action-conditioned fidelity and semantics of world model rollouts using adapted
VLM. To this end, we introduce: (i) an evaluation protocol for world model rollouts, targeting
fine-grained, temporally grounded assessment of semantic fidelity; (ii) UNIVERSE, a VLM-based
method to support the protocol. We validate its alignment with human judgments and demonstrate its
scalability and semantic sensitivity across rollout conditions.

3 METHODOLOGY

We consider the problem of evaluating rollouts generated by world models in interactive environments.
A world model W is trained to predict the next observation ot given the past observations o<t and
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actions a<t: W : (o<t, a<t) → ot, where ot ∈ O represents the sensory observation at timestep
t, typically an RGB image. Rollouts consist of temporally grounded sequences that reflect the
causal effects of control inputs. These outputs are semantically rich and visually complex, requiring
timestamp-level assessment of correctness.

To enable automatic evaluation, we propose UNIVERSE, an adapted Vision-Language Model (VLM)
that serves as a structured evaluator for world model rollouts. Formally, it operates as a function:
E : (V,Q)→ Â, where V = (ot1 , . . . , otk) ∈ Ok is a sequence of frames from a rollout, Q ∈ L is a
natural language question, and Â ∈ L is the predicted answer. Evaluation quality is measured by
comparing Â to the reference answer A using semantic similarity metrics.

Evaluation Protocol. We define two structured recognition tasks: (i) Action Recognition (AR):
Assesses whether generated sequences accurately reflect the effects of agent actions at each timestep;
(ii) Character Recognition (CR): Evaluates whether entities maintain consistent identity and appear-
ance across time. Each task is framed as a visual QA problem: the evaluator receives a sequence
of frames and a natural language prompt (binary, multiple-choice, or open-ended), and generates a
textual response. Outputs are scored using Exact Match (EM) and ROUGE-F1 (ROUGE), capturing
both literal and semantic alignment with the reference answer. Metric details are in Appendix E.2.

Dataset Construction. Effective VLM adaptation for rollout evaluation requires a dataset that
(i) captures realistic human behavior in interactive environments, and (ii) aligns with prior work
in simulated settings to support comparability and reproducibility. To satisfy these constraints, we
partnered with Ninja Theory and curated a dataset from both internal and public Bleeding Edge
gameplay recordings, focusing on the Skygarden evnironment (Kanervisto et al., 2025). This dataset
provides high visual and behavioral diversity (Pearce et al., 2025), includes a publicly available
evaluation split, and is closely aligned with prior work in the domain (Kanervisto et al., 2025; Pearce
et al., 2025; Tot et al., 2025; Sharma et al., 2024; Devlin et al., 2021), enabling fair comparison.

Data preparation proceeds in three stages: (i) Preprocessing: Segment gameplay into 14-frame clips
with synchronized video, control logs, and metadata; (ii) Description Generation: Convert structured
annotations (e.g., actions, agent states) into natural language summaries; (iii) Question-Answer Pair
Construction: Generate six QA pairs per clip (binary, multiple-choice, and open-ended) spanning
both AR and CR tasks. The final dataset contains 32.453 training clips and 8.113 validation clips,
yielding 194.718 and 48.678 QA pairs, respectively. See Appendix D for details.

Model Architecture. We adapt a model from the PaliGemma family (Beyer et al., 2024; Steiner
et al., 2024), consisting of a vision encoderMV , a projection headMP , and a language decoder
ML. Based on initial zero-shot evaluations (Appendix G.2), we use a single configuration for all
experiments—PaliGemma 2 3b, which includes a 2B-parameter Gemma 2 decoder pretrained on 2T
tokens. Input frames are resized to 224×224 and tokenized into 256 patches each. Model achitecture
details are in Appendix E.1.

Each model input sequence S = {SI , S
PREF
T , SSUFF

T } consists of: visual tokens SI from k frames,
a textual prefix SPREF

T containing the task-language cue and question, and a suffix SSUFF
T with the

expected answer (used only during training). This format allows the decoder to attend jointly over
visual and textual context. Full prompt details are provided in Appendix E.1.

Training Objective. We optimize a causal language modeling loss on the answer suffix:

L(S) = −
TSUFF∑
t=1

logP (sSUFF
t | S<t′) (1)

where sSUFF
t is the t-th token in the suffix, and t′ = TI + TPREF + t is the token position in the

flattened sequence.

Adaptation Strategies. We explore a broad design space for adapting pretrained VLMs to temporally
grounded rollout evaluation. Our study spans three core dimensions: fine-tuning configurations,
frame sampling policy, and supervision composition.

Fine-Tuning Configurations. We compare five adaptation strategies varying in parameter count and
modularity: (i) Zero-shot prompting: No tuning; model is prompted directly. (ii) Full fine-tuning:
All parameters θ = θV ∪ θP ∪ θL are updated end-to-end. (iii) Dual-component fine-tuning:

4
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Figure 2: Comparison of UNIVERSE and baseline models on Action and Character Recognition. Left:
UNIVERSE outperforms all baselines on AR. Right: On CR, it ranks third, behind models with either
full vision encoder tuning or task-specific training with greater supervision. Trained under a unified
protocol with minimal parameter updates (0.07%) and reduced per-task data, UNIVERSE delivers
strong performance across both tasks, highlighting its efficiency and generalization.

Two of three modules are trained (e.g., θP ∪ θL). (iv) Single-component fine-tuning: Only one
module—vision, projection, or language—is updated. (v) Parameter-efficient fine-tuning: We apply
LoRA (Hu et al., 2022) adapters to attention and MLP layers in vision and language components:
W←W + α

rAB, α = 8, r ∈ {8, 16, 32, 48, 64}.
Frame Sampling Policy. We vary both the number of input frames and their sampling strategy.
Specifically, we sweep over k ∈ [1, 8], and evaluate two selection methods: (i) First-n: selecting the
first k frames from each rollout; (ii) Uniform-n: sampling k frames uniformly across the full clip.

Supervision Composition. To support generalization across QA formats and tasks, we construct a
multi-task dataset covering binary, multiple-choice, and open-ended prompts across both AR and
CR. We perform a three-stage grid search to optimize the data mixture: (i) Varying AR/CR task
ratios (αAR, αCR) while fixing QA type proportions (βBinary, βMC, βOE); (ii) Tuning the proportion of
open-ended supervision (βOE) for best performance; (iii) Adjusting βBinary and βMC.

UNIVERSE: UNIfied Vision-language Evaluator for Rollouts in Simulated Environments.
We distill our empirical findings into UNIVERSE, a lightweight and scalable adaptation method for
temporally grounded evaluation of world model rollouts using VLMs. Designed for constrained
compute and limited supervision, UNIVERSE delivers strong generalization across our evaluation
protocol using a single, partially tuned model. The method combines three main components: I Partial
fine-tuning: We update only the projection head (θP ), training just 0.07% of model parameters.
Despite this minimal footprint, it achieves the second-best performance among all strategies—trailing
only vision encoder tuning, which requires ∼11% of parameters and incurs significantly higher
compute cost. II Efficient frame sampling: Each input sequence includes k = 8 frames sampled
uniformly from a 14-frame rollout. This sparsity-aware strategy maintains long-range temporal
structure while reducing token count and enabling efficient batching. III Mixed supervision: We train
on a hierarchical mixture of tasks and QA formats. The task distribution favors Action Recognition
(αAR = 0.8) due to its stronger causal grounding. Within each task, we emphasize open-ended
questions (βOE = 0.8), while maintaining smaller proportions of binary (βbinary = 0.15) and
multiple-choice (βMC = 0.05) examples.

4 EXPERIMENTS

We evaluate UNIVERSE on ground truth video data, focusing on AR and CR across binary, multiple-
choice, and open-ended formats. Our goals are twofold: (i) to benchmark performance against
zero-shot and fine-tuned baselines, and (ii) to assess the trade-offs between adaptation strategies
under constrained supervision and compute.

Baselines. We compare UNIVERSE against two classes of baselines: (i) Zero-shot VLMs: Seven of-
f-the-shelf models, including VideoLLaMA3 (2B, 7B) (Boqiang Zhang, 2025) and three PaliGemma
models: version 1 (3B) and version 2 (3B and 10B) (Beyer et al., 2024; Steiner et al., 2024), evaluated

5
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Figure 3: Action Recognition performance as a function of training supervision (epochs) and temporal
context (number of frames), evaluated across all formats. Performance improves along both axes,
with highest accuracy achieved when both dimensions are scaled.

without domain adaptation using an 8-frame visual context window.2 (ii) Fine-tuned PaliGemma 2:
Variants adapted via full, partial, and parameter-efficient tuning. This backbone is selected based on a
sweep over PaliGemma variants, using zero-shot performance as a guide (Appendix G.2). The adap-
tation space includes 8 primary baselines: (i) Single-component fine-tuning: tuning only the vision
encoder (FV), the multimodal projector (FP), or the language head (FL); (ii) Two-component fine-tun-
ing: jointly tuning pairs of components—FV+P, FV+L, and FP+L; (iii) Full-model fine-tuning: tuning
all components simultaneously (FV+P+L); (iv) LoRA-based tuning: Parameter-efficient adaptation with
rank r = 8, selected after observing minimal performance variation across r ∈ {8, 16, 32, 48, 64}
(see Appendix G.4 for details). All models are trained using 8-frame clips and a single epoch.

Results. Figure 2 (left, center) summarizes performance across Action Recognition (AR) and
Character Recognition (CR). Zero-shot VLMs perform poorly: VideoLLaMA3 variants stay below
12.7% (AR) and 6.4% (CR), while PaliGemma reaches 29.7% (AR) and 17.2% (CR), confirming
that general-purpose models lack the temporal grounding and domain-specific semantics needed
for rollout evaluation. In contrast, UNIVERSE outperforms all models on AR and ranks third on
CR—despite tuning only the 2.66M-parameter projector (0.07% of the model) under a unified
protocol spanning both tasks, all prompt formats, and reduced supervision. The two stronger CR
baselines fine-tune either the full 400M-parameter vision encoder or use 5× more task-specific
CR data. Its performance under these constraints underscores the efficiency and generality of our
adaptation strategy for temporally grounded evaluation.

5 ANALYSIS

We find a consistent performance gap between AR and CR, highlighting the greater temporal and
causal complexity of action understanding. This motivates our focus on AR as the more challenging
and diagnostic task. Below, we analyze how adaptation choices shape UNIVERSE’s performance on
AR.

Supervision and Temporal Context. We begin by analyzing how supervision (training budget) and
temporal input (number of frames) influence UNIVERSE performance. By independently and jointly
varying the number of training epochs and input frames, we disentangle the contributions of model
capacity and temporal context to task success.

Results. CR converges rapidly, achieving over 97% exact match after only 12.5% of an epoch (~4K
samples; Figure 7, bottom), and shows minimal improvement with further training, indicating low
dependence on supervision or temporal context. In contrast, AR improves only modestly under
extended training when limited to a single frame (Figure 7, top), suggesting that supervision alone
is insufficient in the absence of temporal information. Motivated by this, we jointly scale both
supervision and input length, varying the number of frames and epochs. As shown in Figure 3,
performance on AR improves consistently across all formats, with the best results achieved under
combined scaling.

2We also experimented with CLIPScore-based evaluation (Appendix G.3); results underperformed relative to
selected baselines and were constrained to predefined candidate sets, further underscoring the need for model
adaptation.
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Figure 4: Effect of frame sampling strategy on Action Recognition performance across all formats.
Uniform-n sampling (orange) consistently outperforms first-n (blue), with especially large gains at
low frame counts, and maintains an advantage as temporal context increases.
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Figure 5: Hierarchical ablation of training data composition for UNIVERSE. Left: Varying task-level
ratio α (AR vs. CR) with uniform format distribution (β = 1/3) shows that increasing αAR improves
AR performance, especially for multiple-choice, while open-ended remains flat. Center: Sweeping
format-level ratio βOE with fixed αAR = 0.8 reveals that oversampling open-ended data (βOE = 0.8)
improves AR-OE performance. Right: Fine-tuning binary and MC proportions under βOE = 0.8
shows performance is stable across mixes, with slight gains from βbinary = 0.15, βMC = 0.05.

Temporal Sampling Strategies. Following the observation that AR requires both extended
supervision and temporally rich input, we examine how frame selection impacts performance. We
compare first-n sampling, which selects the first n consecutive frames from each rollout, to uniform-n
sampling, which draws n evenly spaced frames across the entire sequence. We conduct experiments
at varying context lengths, using n ∈ {1, 2, . . . , 8} frames. to evaluate the impact of both sampling
method and input horizon.

Results. As shown in Figure 4, uniform-n consistently outperforms first-n across all evaluation
formats. The effect is most pronounced at low frame counts. With only 2 input frames, uniform
sampling improves exact match accuracy from 84.42% to 90.47% in Binary, from 65.53% to 83.93%
in Multiple-Choice, and from 65.38% to 82.68% in Open-Ended formats. Gains persist even at 8
frames, where uniform sampling maintains an advantage across formats.

Optimizing Data Mix for Unified Multi-Task Evaluation. We analyze how training data com-
position affects multi-task performance in UNIVERSE, with the goal of enabling a single model to
generalize across AR and CR. Specifically, we study how the task-level ratio α and format-level
ratio β influence performance across evaluation settings. We first conduct a hierarchical ablation to
identify an optimized data mixture, then assess its impact by comparing against a default task mix
with uniform sampling.

Data Mix Optimization. To determine an effective training mixture for UNIVERSE, we perform a
hierarchical ablation over task-level and format-level data ratios. We begin by varying the task-level
proportion α (AR vs. CR), holding the format distribution fixed at βbinary = βMC = βOE = 1/3.
As shown in Figure 5 (left), increasing αAR improves AR performance—especially for multiple-
choice—while CR remains stable, with a favorable tradeoff reached at αAR = 0.8. However,
open-ended accuracy shows little change, motivating format-specific rebalancing. Fixing αAR = 0.8,
we sweep the format ratio βOE, and observe in Figure 5 (center) that AR-OE accuracy improves
substantially with increased open-ended coverage, peaking at βOE = 0.8, albeit at the cost of binary
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Figure 6: Comparison of two training regimes: a default data mix (equal task and format proportions)
and the optimized mix derived from hierarchical tuning. The optimized configuration yields substan-
tial gains on AR, while maintaining strong CR performance.

performance. To restore balance, we fix βOE = 0.8 and allocate the remaining budget across binary
and multiple-choice formats. As shown in Figure 5 (right), performance remains robust across
configurations, with a slight preference for βbinary = 0.15 and βMC = 0.05. Based on these findings,
we adopt the following optimized data composition: αAR = 0.8, αCR = 0.2; βbinary = 0.15,
βMC = 0.05, and βOE = 0.8.

Effectiveness of the Optimized Mix. Having identified an optimized training mixture through hierarchi-
cal ablation, we now evaluate its impact in practice. We compare the final UNIVERSE model—trained
with this optimized mix—to a baseline trained with a default task and format distribution. We train
both models on 4 epochs. As shown in Figure 6, the optimized configuration yields substantial gains
on AR, particularly for multiple-choice and open-ended formats, while maintaining competitive
performance on CR. These results underscore the importance of data composition in enabling robust
multi-task learning within a unified evaluator.

6 EVALUATING WORLD MODEL ROLLOUTS WITH UNIVERSE
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Figure 7: Exact Match ac-
curacy over training epochs
for Action Recognition (AR,
top) and Character Recogni-
tion (CR, bottom). AR im-
proves gradually with supervi-
sion, while CR converges to
high accuracy with minimal
training.

We evaluate the reliability of UNIVERSE through a human study
spanning eight distinct settings that vary in model scale, training
data diversity, and output resolution. Our analysis considers two
axes: (i) in-domain accuracy, measured on Skygarden (the fine-
tuning environment of UNIVERSE), and (ii) generalization to six
previously unseen environments.

Concretely, we study rollouts generated by: (i) a large-scale model
trained across multiple environments with higher-resolution rollouts
(300 × 180), and (ii) a smaller model trained on a single environ-
ment with lower-resolution rollouts (128× 128). These two model
families expose complementary challenges: resolution mismatch,
domain coverage, and rollout fidelity. We construct eight evalua-
tion settings: settings 1–7 draw from the large-scale model across
diverse environments, while setting 8 uses the smaller model in the
fine-tuning environment. Each setting contains 30 rollouts, paired
with six natural-language questions from our evaluation protocol,
yielding 240 rollouts in total. UNIVERSE answers each question via
majority vote over five greedy decoding samples. Human annotators
rate responses on a four-point ordinal scale (Correct, Partially Cor-
rect, Incorrect, Unclear), with double annotation and adjudication
on disagreements. Inter-rater reliability is measured using Cohen’s κ.
Full details of the annotation protocol are provided in Appendix F.

Results. Figure 9 reports graded accuracy across all settings. Roll-
outs from the smaller, single-environment model yield lower eval-
uation accuracy, likely due to resolution mismatch, while the larger,
multi-environment model provides higher-quality inputs. On the
fine-tuning environment (Skygarden), UNIVERSE achieves 75.0* These results demonstrate that
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Setting 1 Setting 2 Setting 3 Setting 4

Setting 5 Setting 6 Setting 7 Setting 8

Figure 8: Example frames from the eight evaluation settings, spanning different model scales, rollout
fidelities, and environments.
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Figure 9: Graded accuracy of UNIVERSE across the eight evaluation settings. Performance improves
with higher-fidelity rollouts and remains stable across unseen environments (2–7). Cohen’s κ indicates
substantial inter-rater agreement.

UNIVERSE generalizes across model scales, rollout fidelities, and environments, while remaining
closely aligned with human judgments.

7 CONCLUSION

In this paper, we investigate the use of Vision-Language Models (VLMs) as automated evaluators for
world model rollouts, addressing the fundamental challenge of fine-grained, temporally grounded
evaluation. We introduce a structured evaluation protocol centered on action and character recognition
tasks across binary, multiple-choice, and open-ended formats. To support this, we propose UNIVERSE,
a unified method for adapting VLMs to this setting through mixed supervision, efficient frame
sampling, and lightweight fine-tuning. Our large-scale study demonstrates that UNIVERSE matches
the performance of task-specific baselines using a single checkpoint and aligns closely with human
judgments, establishing it as a scalable, semantics-aware evaluator for evaluating world models,
particularly when explicit ground truth is unavailable or costly to obtain.

Limitations While UNIVERSE performs well in simulation, its generalization beyond simulated
environments remains an open challenge. The evaluation protocol targets two fidelity axes, which,
while comprehensive, omit higher-order reasoning over goals, causality, and multi-agent dynamics.
Our experiments focus on short to medium context lengths; scaling to long-horizon rollouts remains
an open challenge, especially under limited supervision. Although compute-efficient, training could
be further improved with adaptive curricula or progressive tuning. Finally, like all pretrained VLMs,
UNIVERSE may reflect dataset biases and underperform on rare or ambiguous behaviors.
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A BROADER IMPACT

As world models become integral to simulation, planning, and decision-making in interactive en-
vironments, evaluation remains a key bottleneck for both research progress and safe deployment.
We address this challenge by introducing a unified, sample-efficient framework for evaluating world
model rollouts using adapted VLMs, designed for fine-grained, temporally grounded, and semanti-
cally coherent assessment.

This capability has direct implications for high-impact domains such as neural game engines (Kan-
ervisto et al., 2025; Guo et al., 2025; Gao et al., 2025; Chen et al., 2025), embodied AI (Du et al.; Yang
et al., 2024), and autonomous driving (Russell et al., 2025; Hu et al., 2023a; Ni et al., 2025), where
world models simulate environment dynamics and support downstream control and generalization. In
such contexts, precise and interpretable evaluation is critical not only for benchmarking, but also for
diagnosing failure modes and ensuring alignment with intended behaviors.

By reducing dependence on human annotation and task-specific fine-tuning, UNIVERSE offers a
scalable alternative that lowers the computational and environmental costs of rollout evaluation.
However, reliance on automated evaluators introduces risks: adapted VLMs may inherit biases
from pretraining, struggle under distributional shift, or yield unreliable judgments in edge cases.
These risks are amplified in safety-critical settings, where miscalibrated evaluations can propagate
downstream errors.

We therefore advocate for cautious deployment, accompanied by human oversight, rigorous validation,
and transparent reporting. While UNIVERSE advances the automation of world model evaluation,
it must be situated within evaluation pipelines that foreground robustness, interpretability, and
accountability.

B REPRODUCIBILITY STATEMENT

To support reproducibility and facilitate future research, we provide detailed instructions for repro-
ducing all main experiments. Detailed descriptions of model architectures, training procedures, and
dataset construction are provided in Section 4 and Appendix E. A high-level overview of the overall
implementation framework is included in Appendix C. All experiments have been repeated for three
runs. Plots and tables with quantitative results show the standard deviation across these runs.

Use of Existing Assets. We experiment with a range of open-weight VLMs, including three
PaliGemma variants (version 1 (3B) (Beyer et al., 2024) and version 2 (3B and 10B) (Steiner
et al., 2024)), VideoLLaMA3 (2B, 7B) (Boqiang Zhang, 2025), and CLIP (Radford et al., 2021)
with the following vision encoder configurations: ViT-B/32, ViT-B/16, ViT-L/14, and ViT-L/14
with 336 × 336 resolution. UNIVERSE is built on top of PaliGemma v2 (3B), using publicly re-
leased checkpoints for initialization. Further architectural and implementation details are provided
in Appendix E.1. For our software stack, we use Matplotlib (Hunter, 2007) for plotting, NumPy
(Harris et al., 2020) for data handling, openCV (Bradski, 2000), FFmpeg (Tomar, 2006) and PIL
(Umesh, 2012) for video and image processing, and NLTK (Bird & Loper, 2004) for text processing.
Parameter-efficient fine-tuning is implemented using the PEFT library (Mangrulkar et al., 2022). We
log our experiments using Weights and Biases (Biewald, 2020).

Use of Large Language Models. Portions of the manuscript were polished with the assistance of large
language models (LLMs). The use of LLMs was limited to only improving readability and style; all
ideas, and experimental designs were developed by the authors.

Compute Resources. All experiments were conducted using NVIDIA A100 GPUs (40GB memory)
on an internal compute cluster. Each model was trained and/or evaluated using 8 GPUs. The
compute breakdown is as follows: zero-shot evaluation experiments consumed approximately 136
GPU-days; baseline fine-tuning experiments required around 864 GPU-days; analysis experiments
contributed the bulk of usage, totaling 2,554 GPU-days. Human evaluation experiments—including
rollout generation and response annotation using UNIVERSE—incurred an additional 1.125 GPU-days.
Additional compute was required for preliminary experiments, and failed runs not included in the
final paper. These development activities accounted for an estimated 1,599 GPU-days. In total, all
experiments amounted to approximately 5,153 GPU-days, equivalent to 14.12 GPU-years.
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C UNIVERSE: IMPLEMENTATION OVERVIEW

This section outlines the implementation of UNIVERSE in Python, presented as high-level pseudocode.
The system is structured around two main stages: (i) Adaptation: fine-tuning a VLM on task-specific
question-answer (QA) supervision derived from ground truth; (ii) Evaluation: using the adapted
model to assess new rollouts via structured, prompt-based recognition tasks.

Adaptation Pipeline.

The adaptation stage can be implemented as two modules: AdaptationDatasetBuilder and
VLMAdapter.

AdaptationDatasetBuilder. This class constructs an adaptation dataset from raw ground
truth data, initialized via load_ground_truth_data (see Section 3 and Appendix D). The
core method, build, takes four arguments: alpha_task, which specifies the task mixture ratio;
beta_format, which controls the distribution over QA prompt formats; context_length,
which determines the number of frames per QA instance; and sampling_strategy, which
defines how frames are sampled from rollouts. The builder first applies stratified_sample
to select a subset of annotated samples that match the specified configuration. For each sample,
it invokes _sample_visual_context to extract the relevant frames, and constructs a triplet
consisting of frames, question, and answer.

VLMAdapter. This class applies an adaptation strategy to a base VLM, passed via the
base_vlm argument. Given an adaptation dataset adaptation_data, a tuning strategy specified
by the strategy parameter, and a fixed number of training steps num_steps, the adapter trains
the model by iteratively sampling a batch, computing the loss via compute_loss, and applying
updates with update_model.

class AdaptationDatasetBuilder:
def __init__(self, raw_data_path):

self.samples = load_ground_truth_data(raw_data_path)

def build(self, alpha_task, beta_format, context_length,
sampling_strategy):↪→

formatted = stratified_sample(
samples=self.samples,
task_proportions=alpha_task,
format_proportions=beta_format

)
dataset = []
for sample in formatted:

visual_ctx = self._sample_visual_context(
sample["frames"], context_length, sampling_strategy

)
dataset.append({

"frames": visual_ctx,
"question": sample["question"],
"answer": sample["answer"]

})
return dataset

class VLMAdapter:
def __init__(self, base_vlm):

self.base_vlm = base_vlm

def adapt(self, adaptation_data, strategy, num_steps):
configure_adaptation(self.base_vlm, strategy)
for step in range(num_steps):

batch = sample_from(adaptation_data)
loss = compute_loss(self.base_vlm, batch)
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update_model(self.base_vlm, loss)
return self.base_vlm

Evaluation Pipeline.

The evaluation stage can be implemented via two additional modules: RolloutsGenerator and
Universe.

RolloutsGenerator. This component autoregressively samples rollout trajectories from
a world model (textttworld_model). Given an initial observation o_initial and an action
sequence a_seq, the rollout method generates a sequence of predicted observations by
maintaining lists of past observations (o_lt) and actions (a_lt). At each timestep, it calls
predict_next_observation to obtain the next predicted frame, appends it to the rollout
sequence o_seq, and continues until timestamps is reached. This process produces a full
trajectory simulating environment dynamics.

Universe. This module serves as the inference engine of our framework. It wraps an adapted
VLM passed via adapted_vlm. Given a generated rollout and an evaluation specification, the
method evaluate_rollout constructs a prompt using generate_question, parameterized
by a recognition target and complexity level. It then calls evaluate, which queries the
VLM with the resulting rollout and question, returning the model’s answer.

class RolloutsGenerator:
def __init__(self):

self.world_model = WorldModel(...)

def predict_next_observation(self, o_lt, a_lt):
return self.world_model(o_lt, a_lt)

def rollout(self, o_initial, a_seq, timestamps):
o_seq = [o_initial]
o_lt, a_lt = [o_initial], []
for t in range(timestamps):

a_lt.append(a_seq[t])
o_t = self.predict_next_observation(o_lt, a_lt)
o_seq.append(o_t)
o_lt.append(o_t)

return o_seq

class Universe:
def __init__(self, adapted_vlm):

self.vlm = adapted_vlm

def evaluate(self, rollout, question):
return self.vlm(rollout, question)

def evaluate_rollout(self, rollout, target, complexity):
question = generate_question(rollout, target, complexity)
return self.evaluate(rollout, question)
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D DATASET

This section details the construction and release of the dataset used to adapt VLMs for fine-grained
evaluation of world model rollouts. We curate a realistic, human-centered dataset derived from actual
gameplay in a complex multi-agent environment. Designed to provide temporally grounded and
semantically structured supervision, the dataset aligns with the downstream evaluation setting and
supports adaptation to both action and character recognition tasks across all QA formats. We describe
the data construction pipeline, QA generation process, and release format below.

D.1 CONSTRUCTION PROCESS

The ground truth dataset for adapting the evaluator (see Section 3) was developed in collaboration
with Ninja Theory using human gameplay recordings from Bleeding Edge, a 4v4 multiplayer combat
game. Data use was governed by a formal agreement with the studio, and collection adhered to
the game’s End User License Agreement (EULA). All protocols were approved by our Institutional
Review Board (IRB), and personally identifiable information (PII) was removed prior to analysis.

Each gameplay session is represented as a tuple s = (v, c,m), where v is a high-resolution MP4
video (60 FPS), c is the synchronized controller action log, and m contains structured metadata (e.g.,
player roles, agent identities, action categories, and map context). The full set of gameplay sessions
is denoted by S = {(vi, ci,mi)}|S|

i=1.

The dataset construction pipeline proceeds in three stages:

(i) Preprocessing. We begin by filtering out corrupted applying or inactive sessions and
synchronizes the video, controller logs, and metadata streams using internal game times-
tamps: Svalid = Preprocessing(S). Each valid session is segmented into non-
overlapping clips of fixed length L = 14 frames, each paired with controller input and
shared metadata; formally, for a session s = (v, c,m) ∈ Svalid, the segmentation pro-
duces Segment(v, c,m,L) = {(f (1:L), c(1:L),m)}, where f (1:L) denotes the sequence of
frames, c(1:L) the aligned controller inputs, and m the associated metadata. The complete set
of extracted clips across all valid sessions is defined as V =

⋃
s∈Svalid

Segment(s, L), where
each element v ∈ V is a triplet (f (1:L), c(1:L),m) consisting of video frames, corresponding
controller inputs, and metadata.

(ii) Description Generation. Next, for each sequence of frames f (1:L) ∈ V , we use the associated
control log c(1:L) to extract action information and the metadata m to obtain character-
related attributes. These are combined to generate a structured natural language description
via d = Describe(c(1:L),m). This yields a set of paired video–text examples: Z ={
(f (1:L), d) | f (1:L) ∈ V

}
.

(iii) Question-Answer Pair Construction. Finally, we generate six QA pairs per clip, spanning
two predefined tasks (AR and CR), each instantiated in three question formats: binary,
multiple-choice, and open-ended. To enable this, we define task-specific answer spaces us-
ing GetAnswerSpace(Z), which returns YAR for action categories and YCR for character
identities, based on all video–text pairs in Z . For each clip, we extract the task-specific
ground-truth answer from the corresponding description as y = ExtractLabel(d, t),
where t ∈ {AR,CR}. Each QA format is constructed as follows: (i) Binary: Two binary
question-answer pairs are generated per instance using FormatBinaryPrompt. The
positive question Qpos is constructed using the correct label y ∈ Y(t) and paired with the
positive answer Apos. The negative question Qneg is constructed using an incorrect label
ỹ ∼ SampleDistractor(Y(t) \{y}) and paired with the negative answer Aneg. (ii) Mul-
tiple-Choice: A question Q is generated using the full set of candidate options, formatted
via FormatOptions(Yt). The question is constructed with FormatMCPrompt(t, O)
and paired with the correct answer y ∈ Yt. (iii) Open-Ended: A free-form question Q is
generated using FormatOEPrompt(t), prompting the model to produce the correct label
y ∈ Yt without access to predefined answer choices.

The final dataset is represented as D = {(f (1:L)
i , QAi)}|D|

i=1, where each f (1:L) is a video clip and
QA = {(Qj , Aj)}6j=1 is the associated set of question–answer pairs, covering all combinations of
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three question formats (binary, multiple-choice, open-ended) and two tasks (Action Recognition and
Character Recognition). A detailed data pipeline is provided in Algorithm 1.

Algorithm 1 Dataset Construction Process
Procedure DatasetCreation(S, L):
Svalid ← Preprocessing(S)
V ← ∅
for (v, c,m) ∈ Svalid do
Vs ← Segment(v, c,m,L)
V ← V ∪ Vs

Z ← ∅
for (f (1:L), c(1:L),m) ∈ V do

d← Describe(m, c(1:L))
Z ← Z ∪ {(f (1:L), d)}

D ← ∅
YAR,YCR ← GetAnswerSpace(Z)
for (f (1:L), d) ∈ V do
QA ← GenerateQAPairs(d,YAR,YCR)
for (Q,A) ∈ QA do
D ← D ∪ {(f (1:L), Q,A)}

return D
Procedure GenerateQAPairs(d,YAR,YCR):
QA ← ∅
for t ∈ {AR,CR} do

y ← ExtractLabel(d, t)
QApos

bin , QAneg
bin ← CreateBinaryQA(t, y)

QA ← QA∪ {QApos
bin , QAneg

bin }
QAmc ← CreateMCQA(t, y,Yt)
QA ← QA∪QAmc
QAoe ← CreateOpenEndedQA(t, y)
QA ← QA∪QAoe

return Q
Procedure CreateBinaryQA(t, y):

ỹ ← SampleDistractor(Yt \ {y})
Qpos ← FormatBinaryPrompt(t, y)
Qneg ← FormatBinaryPrompt(t, ỹ)
return {(Qpos, Apos), (Qỹ, A

neg)}
Procedure CreateMCQA(t, y,Yt):

O ← FormatOptions(Yt)
Q← FormatMCPrompt(t, O)
return Q, y

Procedure CreateOpenEndedQA(t, y):
Q← FormatOEPrompt(t)
return Q, y

E EXPERIMENTAL DETAILS

In this section, we provide a detailed description of the dataset preparation process, model architecture,
prompt templates, training procedure. Additionally, we provide an overview of all results presented in
the main paper in numerical table form, an report additional experimental results leveraging alternate
fine-tuning solutions.
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Table 1: Detailed architecture of the PaliGemma model, comprising a SigLIP-So400m vision tower,
a multimodal projection head, and a Gemma-based language decoder. All transformer layers follow
standard design and include residual connections around attention and MLP blocks.

Component Configuration
Vision Tower: SigLIP-So400m

Patch Embedding Conv2d(in=3, out=1152, kernel=14, stride=14)
Position Embedding Embedding(num_embeddings=256, emb_dim=1152)
Encoder 27 × Transformer Encoder Layers

Self-Attention —
Query / Key / Value projection Linear(1152→ 1152, bias=True)

Layer Normalization LayerNorm((1152,), eps=1e-6)
MLP Block —

Activation Function GELU-Tanh
Feedforward layer (up) Linear(1152→ 4304, bias=True)
Feedforward layer (down) Linear(4304→ 1152, bias=True)

Layer Normalization LayerNorm((1152,), eps=1e-6)
Post-Encoder Layer Norm LayerNorm((1152,), eps=1e-6)

Multimodal Projection Head

Linear Projection Linear(1152→ 2304, bias=True)

Language Model: Gemma

Token Embedding Embedding(vocab=257216, dim=2304)
Decoder Stack 26 × Transformer Decoder Layers

Self-Attention —
Query projection Linear(2304→ 2048, bias=False)
Key projection Linear(2304→ 1024, bias=False)
Value projection Linear(2304→ 1024, bias=False)
Output projection Linear(2048→ 2304, bias=False)

MLP Block —
Gating projection Linear(2304→ 9216, bias=True)
Down projection Linear(2304→ 9216, bias=True)
Up projection Linear(9216→ 2304, bias=True)
Activation Function GELU-Tanh

Normalization Layers —
Input Norm RMSNorm(2304, eps=1e-6)
Post-Attn Norm RMSNorm(2304, eps=1e-6)
Pre-FFN Norm RMSNorm(2304, eps=1e-6)
Post-FFN Norm RMSNorm(2304, eps=1e-6)

Rotary Embeddings GemmaRotaryEmbedding
LM Head Linear(2304→ 257216, bias=False)

E.1 MODEL

This section provides extended details on the architecture, pretraining configuration, and input
formatting of the vision-language models used in our experiments. Our primary backbone is
PaliGemma (Beyer et al., 2024; Steiner et al., 2024).

E.1.1 OVERVIEW

PaliGemma is a VLM that processes both images and text as input and autoregressively generates
natural language output. It follows the training paradigm of PaLI-3 (Chen et al., 2023), combining a
ViT-based vision encoder (Dosovitskiy et al., 2021) with a decoder-only Transformer language model.
The model is publicly available (Wolf et al., 2019). The architecture is fully modular, comprising
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Table 2: Component-wise parameter overview of the PaliGemma model.

Component Model / Variant Details # Params

Vision Encoder SigLIP-So400m Input resolutions: 224px2, 448px2, 896px2 400M

Multimodal Projection — Connects vision and language components 2.66M

Language Model
PG 1 Gemma 1 2B, pre-trained on 6T tokens 3B
PG 2 Gemma 2 2B, pre-trained on 2T tokens 3B
PG 3 Gemma 2 9B, pre-trained on 8T tokens 9.7B

three parameterized components: (i) Vision encoder (MV ): based on SigLIP (Zhai et al., 2023),
specifically the “shape optimized” So400m (Alabdulmohsin et al., 2023). (ii) Multimodal projection
head (MP ): a single linear layer for projecting visual features into the language decoder’s embedding
space. (iii) Language decoder (ML): a Transformer-based autoregressive model from the Gemma
family (Mesnard et al., 2024; Rivière et al., 2024). Below, we discuss the architecture in more details,
the general layer-level overview is also provided in Table 1.

Vision Encoder: SigLIP-So400m. The visual backbone MV is a ViT-style encoder pretrained
using a Sigmoid contrastive loss (SigLIP). It processes input images by dividing them into non-
overlapping 14 × 14 patches. Each patch is linearly projected into a 1152-dimensional embedding
via a convolutional stem. To encode spatial structure, learned positional embeddings are added before
the representation is passed through a stack of 27 SigLIP encoder layers. Each encoder layer contains
multi-head self-attention with projection layers for queries, keys, and values, followed by an MLP
block with GELU-Tanh activations. All transformer blocks use LayerNorm and residual connections.
The vision tower supports multiple input resolutions (224, 448, 896), though our experiments fix
resolution at 224px2 for consistency and efficiency.

Multimodal Projection Head. The projection headMP is a lightweight linear mapping from the
vision encoder’s output dimension (1152) to the language decoder’s input dimension (2304). It con-
tains approximately 2.66M parameters and is initialized with zero-mean weights. This head enables
alignment between visual and linguistic modalities and is important for bridging the representation
gap between the vision and language components.

Language Decoder: Gemma. The language moduleML is a decoder-only Transformer with 26 lay-
ers and 2304-dimensional hidden states. Token embeddings are learned over a vocabulary of 257,216
tokens, encoded using the SentencePiece tokenizer (Kudo & Richardson, 2018). Each Transformer
block contains a self-attention mechanism with separate linear projections for queries, keys, and
values. The MLP block follows a gated architecture, where the input is processed through parallel
down projection and gating projection layers, modulated by a GELU-Tanh activation (Hendrycks &
Gimpel, 2016), combined via elementwise multiplication, and then passed through an up projection
to return to the model’s hidden dimension. RMSNorm is applied before and after both attention
and MLP sublayers to stabilize training. Rotary positional embeddings are added to enable relative
position encoding. Output tokens are produced via a tied language modeling head that projects back
to the vocabulary space.

E.1.2 CONFIGURATIONS

Table 2 summarizes the architecture components and parameter counts of the PaliGemma configura-
tions available for experimentation. While we focus on the PaliGemma 2 3b variant in our study, we
include all publicly released configurations for completeness and to clarify how our selected model
compares to other available options. All three variants share the same vision encoder and multimodal
integration strategy, differing only in the language decoder. The first configuration, PaliGemma 1 3b,
pairs the visual encoder with Gemma 1 (2B), pretrained on 6 trillion tokens, resulting in a total model
size of approximately 3 billion parameters. The second configuration, PaliGemma 2 3b, replaces
the decoder with Gemma 2 (2B), pretrained on 2 trillion tokens, and maintains a comparable total
parameter count. The third and largest variant, PaliGemma 2 10b, uses Gemma 2 (9B) as the decoder,
pretrained on 8 trillion tokens, yielding a total model size of approximately 9.7 billion parameters.
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E.1.3 PROMPT FORMAT

To generate textual responses, we adopt a unified prompt format for the decoder. Each input sequence
consists of image tokens SI , a textual prefix SPREF

T containing the question, and a suffix SSUFF
T

containing the expected answer. The model autoregressively generates the answer tokens, and
training loss is applied only to the suffix.

Let n denote the number of input frames and p the number of visual tokens (patch embeddings) per
frame. In our setting, each frame is encoded as p = 256 visual tokens. The overall input schema is as
follows:

S = <image>(1)
1 , . . . ,<image>(1)

p , . . . , <image>(n)
1 , . . . ,<image>(n)

p︸ ︷︷ ︸
SI : Visual tokens from n frames, each represented as p patches

<BOS>, answer en, <QUESTION>, <SEP>︸ ︷︷ ︸
SPREF
T : Prefix (cue + question)

<ANSWER>, <EOS>, <PAD>, . . . ,<PAD>︸ ︷︷ ︸
SSUFF
T : Suffix (answer)

Here, SI contains visual tokens produced by the vision encoderMV , and projected intoML space
usingMP . The prefix SPREF

T starts with a special <BOS> token and includes a task-language cue
(e.g., “answer en”), the question, and a separator <SEP>. The suffix SSUFF

T contains the target
answer, terminated with <EOS> and padded with <PAD> tokens for batching.

E.1.4 PRETRAINING DATA AND FILTERING

PaliGemma is pretrained on a mixture of large-scale vision-language datasets, including WebLI
(Chen et al., 2022b), CC3M-35L (Sharma et al., 2018), VQ2A-CC3M-35L (Changpinyo et al.,
2022), OpenImages (Piergiovanni et al., 2022), and WIT (Srinivasan et al., 2021). Data quality and
safety are maintained through pornographic content filtering, text safety and toxicity filtering, and
privacy-preserving measures.

E.2 EVALUATION METRICS

In this section, we provide additional details on metrics used for quantitative evaluation. We employ
two complementary metrics: Exact Match (EM) and ROUGE-F1 (ROUGE), which together capture
both syntactic precision and semantic alignment.

Exact Match Accuracy (EM ) measures whether the generated answer is identical to the expected
answer, providing a high-precision signal for correctness. Formally, it is defined as:

EM = 1(Â = A) (2)

where Â is the model’s prediction and A is the corresponding ground-truth answer. This metric is
especially informative for binary and multiple-choice formats where the output space is well-defined.

ROUGE F1 (ROUGE) captures token-level semantic overlap between generated and reference
responses by computing the harmonic mean of precision and recall. This allows us to account for
partially correct or paraphrased answers. For binary questions, we compute the metric on the bigram
level, while for multiple-choice and open-ended formats, we use trigram-level evaluation.

Formally, let G and R denote the sets of n-grams in the generated and reference answers, respectively.
Precision and recall are defined as:

P =
|G ∩R|
|G| , R =

|G ∩R|
|R| (3)

where |G ∩R| counts overlapping n-grams. The ROUGE score is then computed as:

ROUGE = 2× P ×R

P +R
(4)
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Table 3: Summary of hyperparameters used in our experiments.

Hyperparameter Value
Input resolution 224× 224
Image frames per input 1–8
Number of epochs 1–10
Batch size (per device) 1
Gradient accumulation steps 4
Optimizer AdamW Loshchilov & Hutter (2019)
Learning rate 5× 10−5, cosine annealing
Learning rate warmup 10%
Weight decay 1× 10−6

Gradient clipping Global norm, threshold 1.0
VLM backbone PaliGemma 2 (3B) Beyer et al. (2024)

Together, these metrics provide a robust view of model performance: EM reflects exact correctness,
while ROUGE provides a softer measure of semantic fidelity, particularly useful for evaluating
open-ended generations.

E.3 RESULTS

Hyperparameters. Table 3 summarizes the core training hyperparameters used across all adaptation
experiments. We train all models on 8 NVIDIA A100 GPUs with a batch size of 1 per device and
accumulate gradients over 4 steps, yielding an effective batch size of 32. Each epoch corresponds
to a full pass over the adaptation dataset, and no early stopping is applied. Models were trained for
1–10 epochs depending on task and setting. Optimization is performed using AdamW (Loshchilov
& Hutter, 2019) with parameters β1 = 0.9, β2 = 0.999, a base learning rate of 5 × 10−5, and
weight decay of 1× 10−6. We use cosine learning rate annealing (Loshchilov & Hutter, 2022) with a
linear warmup over the first 10% of training steps. To stabilize training, we apply gradient clipping
with a global norm threshold of 1.0. All models use PaliGemma 2 (3B) (Beyer et al., 2024) as the
vision-language backbone unless otherwise noted. We vary the number of input frames between 1
and 8 depending on task, and all images are resized to a fixed resolution of 224 × 224. Training
is conducted in bfloat16 precision using data parallelism. Model selection is based on final
validation accuracy.

Tabular Results Summary. The following tables summarize primary experimental findings across
our study. Each entry corresponds to a core evaluation or analysis in the paper, organized by
experimental section and aligned with the corresponding table description.

• Zero-Shot Evaluation (Section 4): Table 4 reports ROUGE-F1 zero-shot performance of
pretrained PaliGemma and VideoLLaMA3 models on Action and Character Recognition
tasks. Models are evaluated in a zero-shot setting with 1 or 8 input frames, across binary,
multiple-choice, and open-ended formats.

• Fine-Tuned Baselines (Section 4): Table 5 reports ROUGE-F1 and Exact Match performance
of PaliGemma 2 variants fine-tuned using full, partial, and parameter-efficient strategies. All
models are trained on a single frame for one epoch, and evaluated across binary, multiple-
choice, and open-ended formats.

• Analysis: Supervision and Temporal Context (Section 5): Table 6 examines early-stage
learning dynamics on Character Recognition (CR), with evaluation at sub-epoch intervals.
Table 7 reports AR performance as a function of training budget, scaling the number of
epochs with a single input frame. Table 8 extends this analysis to jointly vary training
epochs and the number of input frames, disentangling the effects of temporal context and
supervision on AR.

• Analysis: Temporal Sampling Strategies (Section 5): Table 9 compares first-n and uniform-n
frame sampling strategies for Action Recognition, evaluating model performance across
varying temporal context lengths (n ∈ {1, . . . , 8}).
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Table 4: Zero-shot ROUGE-F1-based evaluation of PaliGemma (PG) and VideoLLaMA3 (VL3)
models on Action and Character Recognition tasks using 1 and 8 input frames. “MC” denotes
multiple-choice and “OE” open-ended formats.

Action Recognition Character Recognition
Fr Model Binary MC OE Binary MC OE

1

PG 1 3B 50.43 ± 0.13 8.12 ± 0.02 10.83 ± 0.01 50.73 ± 0.38 0.46 ± 0.06 0.00 ± 0.00
PG 2 3B 44.69 ± 0.03 9.30 ± 0.17 12.64 ± 0.01 48.58 ± 0.07 0.28 ± 0.06 0.01 ± 0.00
PG 2 10B 50.04 ± 0.03 26.98 ± 0.00 12.35 ± 0.21 50.08 ± 0.07 8.33 ± 0.50 0.00 ± 0.00

VL3-2B 3.24 ± 0.00 18.52 ± 0.06 6.27 ± 0.05 8.76 ± 0.04 3.44 ± 0.08 0.50 ± 0.01
VL3-7B 45.02 ± 0.28 15.53 ± 0.05 6.54 ± 0.04 39.09 ± 0.73 6.21 ± 0.05 0.51 ± 0.02

8

PG 1 3B 51.67 ± 0.02 10.68 ± 0.00 10.32 ± 0.00 51.39 ± 0.07 0.25 ± 0.00 0.00 ± 0.00
PG 2 3B 47.61 ± 0.19 6.73 ± 0.04 14.52 ± 0.00 48.37 ± 0.18 0.03 ± 0.00 0.01 ± 0.00
PG 2 10B 50.02 ± 0.06 26.93 ± 0.01 12.12 ± 0.00 50.09 ± 0.06 0.22 ± 0.00 0.00 ± 0.00

VL3-2B 13.92 ± 0.13 3.47 ± 0.02 0.32 ± 0.01 13.92 ± 0.13 3.46 ± 0.04 0.32 ± 0.01
VL3-7B 15.05 ± 0.21 16.67 ± 0.35 6.35 ± 0.06 12.76 ± 0.52 5.88 ± 0.01 0.54 ± 0.01

Table 5: Performance of fine-tuned PaliGemma 2 variants on Action and Character Recognition tasks.
We compare full, partial, and parameter-efficient tuning strategies. “MC” denotes multiple-choice
and “OE” open-ended formats.

Binary Multiple-choice Open-ended
Model EM ROUGE EM ROUGE EM ROUGE

Action Recognition
FL 50.00 ± 0.00 50.00 ± 0.00 13.13 ± 0.00 27.57 ± 0.00 13.13 ± 0.00 27.57 ± 0.00
FP 83.97 ± 0.02 83.97 ± 0.02 61.43 ± 0.58 68.05 ± 0.70 61.68 ± 0.35 68.46 ± 0.19
FV 83.70 ± 0.97 83.70 ± 0.97 63.40 ± 0.45 69.87 ± 0.44 66.03 ± 0.10 71.92 ± 0.08
FP+L 74.47 ± 1.64 74.47 ± 1.64 13.13 ± 0.00 27.57 ± 0.00 55.74 ± 0.70 64.83 ± 0.29
FV+L 75.80 ± 0.16 75.80 ± 0.16 13.13 ± 0.00 27.57 ± 0.00 13.13 ± 0.00 27.57 ± 0.00
FV+P 73.46 ± 0.85 73.46 ± 0.85 61.21 ± 0.23 67.57 ± 0.21 64.70 ± 0.02 70.93 ± 0.01
Fall 74.35 ± 1.37 74.35 ± 1.37 13.13 ± 0.00 27.57 ± 0.00 13.13 ± 0.00 27.57 ± 0.00
FLoRA 44.66 ± 0.21 44.66 ± 0.21 0.02 ± 0.01 9.21 ± 0.01 0.00 ± 0.00 12.49 ± 0.00

Character Recognition
FL 50.00 ± 0.00 50.00 ± 0.00 98.92 ± 0.00 98.92 ± 0.00 98.98 ± 0.00 98.99 ± 0.01
FP 99.09 ± 0.11 99.09 ± 0.11 99.22 ± 0.33 99.22 ± 0.33 99.15 ± 0.07 99.15 ± 0.07
FV 99.31 ± 0.01 99.31 ± 0.01 99.14 ± 0.42 99.14 ± 0.42 99.61 ± 0.12 99.61 ± 0.12
FP+L 50.00 ± 0.00 50.00 ± 0.00 98.28 ± 0.00 98.30 ± 0.02 98.39 ± 0.00 98.39 ± 0.00
FV+L 50.00 ± 0.00 50.00 ± 0.00 96.88 ± 0.00 96.88 ± 0.00 98.45 ± 0.00 98.45 ± 0.00
FV+P 60.32 ± 0.02 60.32 ± 0.02 99.22 ± 0.00 99.22 ± 0.00 99.79 ± 0.00 99.79 ± 0.00
Fall 50.00 ± 0.00 50.00 ± 0.00 97.67 ± 0.06 97.67 ± 0.06 96.55 ± 0.01 96.55 ± 0.01
FLoRA 48.76 ± 0.00 48.76 ± 0.00 0.00 ± 0.00 0.32 ± 0.00 0.00 ± 0.00 0.01 ± 0.01

• Analysis: Optimizing Data Mix for Unified Multi-Task Evaluation (Section 5): This analysis
spans three tables. Table 10 explores task-level trade-offs when jointly training on Action
and Character Recognition by varying αAR vs. αCR, with format distribution held uniform.
Table 11 fixes αAR = 0.8 and searches over format-level ratios (β), revealing the impact
of increased open-ended (OE) supervision. Table 12 further investigates this high-OE
regime, balancing the remaining budget between binary and multiple-choice for optimal
performance.

F HUMAN ANNOTATION STUDY

This section provides full details of our human annotation study, including rollout generation,
annotation procedures, inter-annotator agreement, and evaluation metrics. The goal is to validate the
adapted VLM’s fine-grained predictions on generated video rollouts.
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Table 6: Supervision and Temporal Context: Training budget analysis for Character Recognition.
Models are fine-tuned for sub-epoch durations and evaluated across binary, multiple-choice (MC),
and open-ended (OE) formats.

Binary Multiple-choice Open-ended
Ep EM ROUGE EM ROUGE EM ROUGE
0.005 50.84 ± 1.70 50.84 ± 1.70 14.27 ± 0.00 14.27 ± 0.00 13.16 ± 0.00 13.27 ± 0.00
0.01 54.92 ± 0.84 54.92 ± 0.84 17.85 ± 0.00 17.85 ± 0.00 16.78 ± 0.14 16.88 ± 0.01
0.02 57.91 ± 3.19 57.91 ± 3.19 28.64 ± 0.00 28.64 ± 0.00 26.29 ± 2.96 28.38 ± 0.01
0.03 57.45 ± 0.58 57.45 ± 0.58 64.19 ± 0.00 64.19 ± 0.00 40.76 ± 0.01 40.98 ± 0.00
0.06 65.88 ± 3.71 65.88 ± 3.71 93.96 ± 0.00 93.96 ± 0.00 88.89 ± 0.00 88.95 ± 0.01
0.10 87.47 ± 4.11 87.47 ± 4.11 96.54 ± 0.00 96.54 ± 0.00 97.01 ± 0.38 97.02 ± 0.40
0.125 91.63 ± 7.71 91.63 ± 7.71 97.08 ± 0.00 97.08 ± 0.00 97.28 ± 0.00 97.30 ± 0.00
0.20 97.96 ± 0.45 97.96 ± 0.45 97.89 ± 0.28 97.89 ± 0.28 98.12 ± 0.00 98.14 ± 0.02
0.25 97.75 ± 0.74 97.75 ± 0.74 98.08 ± 0.00 98.08 ± 0.00 98.12 ± 0.00 98.15 ± 0.00
0.33 98.42 ± 0.20 98.42 ± 0.20 98.19 ± 0.00 98.19 ± 0.00 98.30 ± 0.00 98.35 ± 0.00
0.50 98.74 ± 0.06 98.74 ± 0.06 98.45 ± 0.00 98.45 ± 0.00 98.51 ± 0.00 98.54 ± 0.00
0.67 99.11 ± 0.10 99.11 ± 0.10 98.99 ± 0.08 98.99 ± 0.08 99.09 ± 0.00 99.09 ± 0.00
0.75 99.03 ± 0.04 99.03 ± 0.04 99.15 ± 0.00 99.15 ± 0.00 99.21 ± 0.00 99.22 ± 0.01

1 99.09 ± 0.11 99.09 ± 0.11 99.22 ± 0.33 99.22 ± 0.33 99.15 ± 0.07 99.15 ± 0.07

Table 7: Supervision and Temporal Context: Training budget analysis for Action Recognition, with
models fine-tuned for up to 10 epochs. Evaluated using across binary, multiple-choice (MC), and
open-ended (OE) formats.

Binary Multiple-Choice Open-Ended
Ep EM ROUGE EM ROUGE EM ROUGE
1 83.97 ± 0.02 83.97 ± 0.02 61.43 ± 0.58 68.05 ± 0.70 61.68 ± 0.35 68.46 ± 0.19

2 84.92 ± 0.23 84.92 ± 0.23 64.90 ± 0.15 71.17 ± 0.01 64.05 ± 0.01 70.36 ± 0.01
4 85.37 ± 0.30 85.37 ± 0.30 64.58 ± 0.69 70.89 ± 0.55 64.79 ± 0.31 70.88 ± 0.27
8 85.18 ± 0.20 85.18 ± 0.20 63.53 ± 0.35 69.95 ± 0.37 63.43 ± 0.28 69.91 ± 0.18
10 85.11 ± 0.41 85.11 ± 0.41 62.88 ± 1.35 69.34 ± 1.20 66.82 ± 3.75 72.34 ± 3.04

Figure 10: Reference slides shown to annotators during the human annotation study, illustrating
the two recognition targets: actions (left) and characters (center and right). The slides include
20 exemplar videos (7 actions, 13 characters) to support consistent evaluation of VLM-generated
responses.

F.1 STUDY DESIGN

Task Overview. Human annotators were presented with short video clips generated by a world model,
each paired with a natural language question and an answer generated by the VLM. They were asked
to judge whether the model’s answer accurately described what was shown in the video. Each QA
pair was rated using one of four categories: Correct (score = 1), Partially Correct (0.5), Incorrect (0),
or Unclear / Cannot Tell (excluded from accuracy computation).

Annotation Setup and Interface. Annotations were collected using a custom PowerPoint-based
interface (see Figure 11). Each slide presented a short video, a question, and a generated answer.
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Table 8: Supervision and Temporal Context: Training budget and temporal context analysis for Action
Recognition. Models are fine-tuned for up to 10 epochs and evaluated with up to 8 input frames.

Binary Multiple-choice Open-ended
Ep Fr EM ROUGE EM ROUGE EM ROUGE

1

1 83.97 ± 0.02 83.97 ± 0.02 61.43 ± 0.58 68.05 ± 0.70 61.68 ± 0.35 68.46 ± 0.19
2 84.42 ± 0.06 84.42 ± 0.06 65.53 ± 0.27 72.03 ± 0.06 65.38 ± 0.06 71.74 ± 0.23
4 90.97 ± 0.10 90.97 ± 0.10 83.11 ± 0.08 87.13 ± 0.04 82.26 ± 0.14 87.02 ± 0.06
8 93.85 ± 0.28 93.85 ± 0.28 88.89 ± 0.14 93.40 ± 0.76 87.80 ± 0.20 92.23 ± 0.16

2

1 85.10 ± 0.02 85.10 ± 0.02 64.93 ± 0.06 71.09 ± 0.11 64.05 ± 0.01 70.36 ± 0.01
2 86.53 ± 0.45 86.40 ± 0.26 69.20 ± 0.88 75.02 ± 0.67 68.83 ± 0.47 72.45 ± 2.76
4 92.26 ± 0.34 92.26 ± 0.34 84.19 ± 0.10 88.46 ± 0.11 83.34 ± 0.15 87.84 ± 0.06
8 95.05 ± 0.15 95.05 ± 0.15 89.27 ± 0.14 93.30 ± 0.22 89.42 ± 0.22 93.25 ± 0.15

4

1 85.37 ± 0.30 85.37 ± 0.30 64.58 ± 0.69 70.89 ± 0.55 64.79 ± 0.31 70.88 ± 0.27
2 86.89 ± 0.06 86.89 ± 0.06 69.89 ± 0.83 75.49 ± 0.69 70.04 ± 0.08 75.74 ± 0.06
4 92.58 ± 0.18 92.58 ± 0.18 85.13 ± 0.19 89.28 ± 0.17 84.61 ± 0.07 88.81 ± 0.04
8 95.29 ± 0.07 95.29 ± 0.07 90.64 ± 0.00 94.09 ± 0.04 90.18 ± 0.16 93.81 ± 0.11

8

1 85.04 ± 0.00 85.04 ± 0.00 63.53 ± 0.35 69.95 ± 0.37 63.62 ± 0.00 70.03 ± 0.00
2 87.27 ± 0.40 87.27 ± 0.40 69.84 ± 0.66 75.44 ± 0.45 70.11 ± 0.65 75.75 ± 0.52
4 92.97 ± 0.49 92.97 ± 0.49 85.32 ± 0.08 89.27 ± 0.08 84.93 ± 0.21 89.05 ± 0.11
8 95.48 ± 0.21 95.48 ± 0.21 90.71 ± 0.14 94.15 ± 0.13 91.02 ± 0.28 93.96 ± 0.71

10

1 85.40 ± 0.00 85.40 ± 0.00 62.88 ± 1.35 69.34 ± 1.20 66.82 ± 3.75 72.34 ± 3.04
2 87.17 ± 0.22 87.17 ± 0.22 70.18 ± 0.00 75.64 ± 0.00 69.59 ± 0.20 75.37 ± 0.07
4 92.96 ± 0.37 92.96 ± 0.37 85.02 ± 0.58 89.05 ± 0.49 84.71 ± 0.08 88.94 ± 0.06
8 96.03 ± 0.05 96.03 ± 0.05 90.75 ± 0.04 94.22 ± 0.05 91.00 ± 0.11 94.33 ± 0.09

Table 9: Comparison of frame sampling strategies for Action Recognition. We evaluate first-n vs.
uniform-n sampling across varying temporal context lengths (n ∈ {1, . . . , 8}).

Binary Multiple-choice Open-ended
Fr EM ROUGE EM ROUGE EM ROUGE

Fi
rs

t-
N

1 83.97 ± 0.02 83.97 ± 0.02 61.43 ± 0.58 68.05 ± 0.70 61.68 ± 0.35 68.46 ± 0.19
2 84.42 ± 0.06 84.42 ± 0.06 65.53 ± 0.27 72.03 ± 0.06 65.38 ± 0.06 71.74 ± 0.23
3 87.93 ± 0.28 87.93 ± 0.28 75.73 ± 0.18 81.07 ± 0.06 74.68 ± 0.16 80.21 ± 0.08
4 90.97 ± 0.10 90.97 ± 0.10 83.11 ± 0.08 87.13 ± 0.04 82.26 ± 0.14 87.02 ± 0.06
5 92.00 ± 0.30 92.00 ± 0.30 85.46 ± 0.34 89.84 ± 0.18 85.10 ± 0.16 89.47 ± 0.10
6 92.95 ± 0.30 92.95 ± 0.30 86.86 ± 0.08 91.13 ± 0.06 86.59 ± 0.39 90.82 ± 0.30
7 93.31 ± 0.03 93.31 ± 0.03 87.95 ± 0.08 92.06 ± 0.06 87.58 ± 0.17 91.82 ± 0.08
8 93.85 ± 0.28 93.85 ± 0.28 88.89 ± 0.14 93.40 ± 0.76 87.80 ± 0.20 92.23 ± 0.16

U
ni

fo
rm

-N

1 83.97 ± 0.02 83.97 ± 0.02 61.43 ± 0.58 68.05 ± 0.70 61.68 ± 0.35 68.46 ± 0.19
2 90.47 ± 0.62 90.47 ± 0.62 83.93 ± 0.04 88.36 ± 0.08 82.68 ± 0.19 87.33 ± 0.01
3 93.59 ± 0.07 93.59 ± 0.07 88.90 ± 0.11 92.85 ± 0.10 88.49 ± 0.24 92.57 ± 0.04
4 93.57 ± 0.39 93.57 ± 0.39 89.94 ± 0.04 93.65 ± 0.01 89.56 ± 0.42 93.49 ± 0.28
5 94.25 ± 0.04 94.25 ± 0.04 89.99 ± 0.18 93.70 ± 0.13 89.72 ± 0.10 93.63 ± 0.23
6 94.01 ± 0.57 94.01 ± 0.57 90.03 ± 0.04 93.73 ± 0.06 90.09 ± 0.18 93.88 ± 0.16
7 93.96 ± 0.16 93.96 ± 0.16 90.34 ± 0.23 94.00 ± 0.10 89.94 ± 0.11 93.73 ± 0.10
8 94.62 ± 0.48 94.62 ± 0.48 90.72 ± 0.12 94.30 ± 0.10 90.30 ± 0.04 94.01 ± 0.02

Annotators selected a rating from a predefined rubric. The full annotation guidelines – including
action and character definitions and rating instructions – were embedded in the annotation deck
for reference. For completeness, we also provide them in Table 13 and Figure 10. The annotation
study was carried out by a subset of the authors with prior experience in the environment. Judging
correctness required non-trivial familiarity with the visual dynamics and task ontology, making expert
annotation necessary. All annotators were compensated above local minimum wage rates. Each
QA pair was independently rated by two primary annotators. In cases of disagreement or if either
annotator marked the example as Unclear, a third, more experienced adjudicator reviewed the pair
and assigned a final rating.
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Table 10: Optimizing Data Mix for Unified Multi-Task Evaluation: Performance tradeoffs under
varying task-level allocation ratios for Action (αAR) vs. Character Recognition (αCR), with a fixed
format distribution (β = 1/3 per format). Evaluated across binary, multiple-choice (MC), and open-
ended (OE) formats.

Binary Multiple-choice Open-ended
αAR αCR EM ROUGE EM ROUGE EM ROUGE

Action Recognition
0.20 0.80 84.13 ± 1.66 84.13 ± 1.66 26.10 ± 0.43 39.04 ± 0.10 27.03 ± 0.21 39.60 ± 0.13
0.40 0.60 88.11 ± 1.44 88.11 ± 1.44 28.13 ± 1.15 40.93 ± 0.57 29.17 ± 0.40 41.66 ± 0.51
0.50 0.50 88.59 ± 1.41 88.59 ± 1.41 29.10 ± 0.65 41.20 ± 0.16 29.66 ± 0.54 41.17 ± 0.22
0.60 0.40 90.80 ± 0.04 90.80 ± 0.04 30.44 ± 0.03 42.54 ± 0.01 30.55 ± 0.49 42.32 ± 0.60
0.80 0.20 91.23 ± 0.91 91.23 ± 0.91 84.06 ± 1.26 89.42 ± 1.00 30.88 ± 0.63 42.85 ± 0.42

Character Recognition
0.20 0.80 98.57 ± 0.47 98.57 ± 0.47 98.95 ± 0.16 98.95 ± 0.16 98.94 ± 0.22 98.97 ± 0.21
0.40 0.60 98.51 ± 0.53 98.51 ± 0.53 98.77 ± 0.16 98.77 ± 0.16 98.98 ± 0.06 98.98 ± 0.06
0.50 0.50 96.33 ± 1.81 96.33 ± 1.81 98.03 ± 0.06 98.03 ± 0.06 98.23 ± 0.06 98.23 ± 0.06
0.60 0.40 93.22 ± 3.38 93.22 ± 3.38 96.91 ± 1.81 96.94 ± 1.77 97.93 ± 0.02 97.93 ± 0.02
0.80 0.20 80.53 ± 0.49 80.53 ± 0.49 89.08 ± 0.49 89.08 ± 0.49 89.02 ± 0.25 89.18 ± 0.39

Table 11: Optimizing Data Mix for Unified Multi-Task Evaluation: Performance on Action and
Character Recognition under varying format-level sampling ratios (β) for Binary, Multiple-choice
(MC), and Open-ended (OE) questions. We fix αAR = 0.8 and train all models on the first 8 frames.

Binary Multiple-Choice Open-Ended
Ep βbinary βMC βOE EM ROUGE EM ROUGE EM ROUGE

Action Recognition

1

0.4 0.2 0.4 92.32 ± 0.37 92.32 ± 0.37 84.32 ± 0.89 89.54 ± 0.64 31.61 ± 0.23 43.51 ± 0.09
0.2 0.4 0.4 90.80 ± 0.71 90.80 ± 0.71 86.60 ± 0.38 91.27 ± 0.42 32.06 ± 0.18 43.58 ± 0.54
0.0 0.4 0.6 49.98 ± 0.04 49.98 ± 0.04 86.65 ± 0.99 91.26 ± 0.87 85.51 ± 1.78 90.13 ± 1.53
0.0 0.2 0.8 50.11 ± 0.06 50.11 ± 0.06 86.58 ± 0.47 91.42 ± 0.21 87.45 ± 0.09 91.78 ± 0.09

2

0.4 0.2 0.4 93.14 ± 0.48 93.14 ± 0.48 86.77 ± 0.00 91.28 ± 0.00 32.96 ± 0.00 44.00 ± 0.00
0.2 0.4 0.4 92.89 ± 0.16 92.89 ± 0.16 87.83 ± 0.00 92.13 ± 0.00 33.37 ± 0.00 44.13 ± 0.00
0.0 0.4 0.6 41.22 ± 0.00 41.30 ± 0.01 89.17 ± 0.07 93.12 ± 0.02 88.55 ± 0.00 93.65 ± 0.00
0.0 0.2 0.8 49.98 ± 0.03 49.99 ± 0.02 88.68 ± 0.00 92.71 ± 0.00 88.59 ± 0.00 92.56 ± 0.00

4

0.4 0.2 0.4 94.33 ± 0.34 94.33 ± 0.34 92.67 ± 0.07 93.27 ± 0.71 33.94 ± 0.01 43.96 ± 0.00
0.2 0.4 0.4 94.19 ± 0.13 94.19 ± 0.13 93.04 ± 0.01 93.57 ± 0.74 33.78 ± 0.00 44.73 ± 0.00
0.0 0.4 0.6 50.19 ± 0.27 50.19 ± 0.27 89.78 ± 0.11 93.52 ± 0.03 88.95 ± 0.05 92.75 ± 0.06
0.0 0.2 0.8 49.98 ± 0.02 49.98 ± 0.02 89.25 ± 0.00 93.13 ± 0.00 89.41 ± 0.00 93.16 ± 0.00

Character Recognition

1

0.4 0.2 0.4 86.42 ± 0.25 86.42 ± 0.25 94.77 ± 0.14 94.77 ± 0.14 94.76 ± 0.08 94.63 ± 0.21
0.2 0.4 0.4 77.57 ± 0.01 77.57 ± 0.01 94.93 ± 0.03 94.93 ± 0.03 94.51 ± 0.57 94.15 ± 0.00
0.0 0.4 0.6 50.37 ± 0.52 50.37 ± 0.52 96.56 ± 0.28 96.56 ± 0.28 96.81 ± 0.39 96.82 ± 0.37
0.0 0.2 0.8 50.51 ± 0.03 50.51 ± 0.03 96.88 ± 0.27 96.88 ± 0.27 97.39 ± 0.18 97.39 ± 0.18

2

0.4 0.2 0.4 89.95 ± 0.46 89.95 ± 0.46 87.35 ± 0.00 87.36 ± 0.00 88.64 ± 0.00 88.64 ± 0.00
0.2 0.4 0.4 91.28 ± 0.20 91.28 ± 0.20 93.90 ± 0.00 93.93 ± 0.04 93.06 ± 0.00 93.09 ± 0.00
0.0 0.4 0.6 47.37 ± 0.02 47.48 ± 0.04 97.69 ± 0.00 97.70 ± 0.00 98.07 ± 0.00 98.07 ± 0.00
0.0 0.2 0.8 50.07 ± 0.04 50.07 ± 0.04 97.75 ± 0.00 97.79 ± 0.00 98.07 ± 0.00 98.07 ± 0.00

4

0.4 0.2 0.4 97.71 ± 0.05 97.71 ± 0.05 97.70 ± 0.00 97.70 ± 0.00 97.88 ± 0.01 97.91 ± 0.03
0.2 0.4 0.4 96.55 ± 0.06 96.55 ± 0.06 98.51 ± 0.00 98.51 ± 0.00 98.46 ± 0.00 98.46 ± 0.00
0.0 0.4 0.6 51.25 ± 1.56 51.25 ± 1.56 98.21 ± 0.13 98.21 ± 0.13 98.48 ± 0.06 98.49 ± 0.06
0.0 0.2 0.8 50.93 ± 0.10 50.93 ± 0.10 98.79 ± 0.00 98.79 ± 0.00 99.08 ± 0.00 99.09 ± 0.00

Selected World Models. For our study, we aim to evaluate rollouts generated across different model
scales, training diversities, and output resolutions, while keeping the underlying architecture general
enough to apply broadly. To this end, we select two autoregressive world models (Kanervisto et al.,
2025). The autoregressive formulation offers a flexible and widely adopted framework, and is the
basis for many state-of-the-art private world models.
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Table 12: Optimizing Data Mix for Unified Multi-Task Evaluation: Performance on Action and
Character Recognition under high open-ended (OE) supervision, with βOE = 0.8 and remaining
budget split between Binary and Multiple-choice (MC).

Binary Multiple-Choice Open-Ended
Ep βBN βMC βOE EM ROUGE EM ROUGE EM ROUGE

Action Recognition

1
0.15 0.05 0.80 88.85 ± 0.04 88.85 ± 0.04 81.93 ± 0.00 89.08 ± 0.00 86.72 ± 0.00 91.33 ± 0.00
0.10 0.10 0.80 87.38 ± 0.59 87.38 ± 0.59 85.58 ± 0.00 90.50 ± 0.00 86.88 ± 0.00 91.25 ± 0.00
0.05 0.15 0.80 85.67 ± 0.19 85.67 ± 0.19 86.38 ± 0.09 91.21 ± 0.06 86.84 ± 0.02 91.34 ± 0.03

2
0.15 0.05 0.80 92.45 ± 0.11 92.45 ± 0.11 87.52 ± 0.00 91.90 ± 0.00 87.97 ± 0.63 92.19 ± 0.41
0.10 0.10 0.80 92.11 ± 0.18 92.11 ± 0.18 88.42 ± 0.00 92.54 ± 0.00 88.50 ± 0.00 92.54 ± 0.00
0.05 0.15 0.80 91.98 ± 0.24 91.98 ± 0.24 88.72 ± 0.00 92.78 ± 0.00 88.56 ± 0.00 92.66 ± 0.00

4
0.15 0.05 0.80 92.98 ± 0.21 92.98 ± 0.21 88.93 ± 0.00 93.02 ± 0.00 89.64 ± 0.00 93.34 ± 0.00
0.10 0.10 0.80 92.81 ± 0.11 92.81 ± 0.11 91.40 ± 2.81 93.88 ± 0.70 89.43 ± 0.00 93.20 ± 0.00
0.05 0.15 0.80 91.52 ± 0.37 91.52 ± 0.37 89.80 ± 0.00 93.54 ± 0.01 89.81 ± 0.01 93.49 ± 0.06

Character Recognition

1
0.15 0.05 0.80 59.75 ± 0.04 59.75 ± 0.04 95.45 ± 0.00 95.45 ± 0.00 97.16 ± 0.00 97.16 ± 0.00
0.10 0.10 0.80 56.31 ± 0.53 56.31 ± 0.53 94.55 ± 0.00 94.55 ± 0.00 95.96 ± 0.00 95.96 ± 0.00
0.05 0.15 0.80 50.86 ± 0.08 50.86 ± 0.08 96.87 ± 0.02 96.87 ± 0.02 97.12 ± 0.01 97.12 ± 0.01

2
0.15 0.05 0.80 80.18 ± 0.09 80.18 ± 0.09 95.41 ± 0.00 95.41 ± 0.00 96.91 ± 0.00 96.91 ± 0.00
0.10 0.10 0.80 70.20 ± 0.21 70.20 ± 0.21 98.02 ± 0.00 98.02 ± 0.00 98.15 ± 0.00 98.15 ± 0.00
0.05 0.15 0.80 69.67 ± 0.36 69.67 ± 0.36 97.37 ± 0.00 97.37 ± 0.00 97.79 ± 0.00 97.79 ± 0.00

4
0.15 0.05 0.80 94.16 ± 0.12 94.16 ± 0.12 97.06 ± 0.00 97.07 ± 0.00 97.91 ± 0.00 97.91 ± 0.00
0.10 0.10 0.80 86.67 ± 0.13 86.67 ± 0.13 98.50 ± 0.00 98.50 ± 0.00 98.77 ± 0.00 98.77 ± 0.00
0.05 0.15 0.80 71.79 ± 0.01 71.79 ± 0.01 98.22 ± 0.00 98.22 ± 0.00 98.57 ± 0.00 98.57 ± 0.00

The selected models generate sequences of visual frames and controller actions without textual
supervision, using a decoder-only transformer (Radford et al., 2019; Vaswani et al., 2017) trained
autoregressively on discrete tokens. Visual frames are encoded with a VQGAN (Esser et al., 2021),
while joystick actions are tokenized using a learned discretization scheme based on action bucketiza-
tion (Kanervisto et al., 2020).

Given the video clip and six corresponding question–
answer (QA) pairs, evaluate each answer.
For each QA pair, assign a label based on how accurately the 
answer reflects the visual content of the video:

Correct (1) // Partially Correct (0.5) // Incorrect (0) //
Unclear. 

Refer to the annotation rubric and examples provided in the 
guidelines.

Question Response Score
1. Is the character mounting hoverboard?
2. What is the character doing? Choose from: evading backwards, 
evading forwards, evading left, evading right, jumping down, jumping on 
the level, jumping up, mounting hoverboard.

3. What is the character doing?

4. Is the shown character Gizmo?

5. What character is shown? Choose from: Nidhoggr, Makutu, Prism, 
Ninja, Kulev, Azrael, Miko, Keyboardguy, Gizmo, Bruiser, Buttercup, 
Wrekko, Cass.

6. What character is shown?

Yes
Mounting 

hoverboard
Mounting 

hoverboard

Yes

Gizmo

Gizmo

1

1

1

1

1

1

Figure 11: Annotation interface exam-
ple. Each instance includes a video
clip, task instructions, and a table with:
Question (generated via evaluation proto-
col), Response (VLM output), and Score
(human-assigned label).

Each world model is implemented as a decoder-only trans-
former (Radford et al., 2019; Vaswani et al., 2017), trained
to predict discrete tokens representing visual observations
and actions. Visual frames are first compressed with a
VQGAN (Esser et al., 2021), while joystick actions are
tokenized using a learned discretization scheme based on
action bucketization (Kanervisto et al., 2020). The objec-
tive is next-token prediction conditioned on prior visual
and action tokens. We focus on the following model vari-
ants that differ in capacity, training diversity, and output
resolution: (i) a large-scale model: 140M parameters,
trained for 100K steps on gameplay from a single envi-
ronment (Skygarden) at 128 × 128 resolution, and (ii) a
smaller model: 1.6B parameters, trained for 200K steps
on gameplay from seven diverse environments (including
Skygarden) at 300× 180.

Rollouts Generation. Rollout generation follows a consis-
tent protocol for both world models: at inference time, the
model is conditioned on 1 second of ground-truth game-
play (visual and action tokens), after which it generates
10 seconds of future gameplay conditioned only on a se-
quence of held-out controller actions. The generated rollout is then split into 14-frame chunks.
This setup enables a comprehensive analysis of the UNIVERSE’s evaluation capabilities across two
axes: (i) in-domain performance: evaluating on Skygarden, the environment used for fine-tuning;
(ii) generalization: assessing performance on six unseen environments. It also allows comparison
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Table 13: Annotation instructions provided to human raters as part of the study. The interface
outlines task context, scoring criteria, general guidelines, and reference definitions for supported
action categories.

1. Task Overview
You will be presented with:
• A short video clip;
• A natural language question about the video;
• An answer generated by a vision-language model.
Your task is to evaluate whether the model’s answer accurately describes the events depicted in the
video.
2. How to Rate Each Answer
Assign one of the following categories:
• Correct (1.0): Fully matches the event in the video;
• Partially Correct (0.5): Captures the general idea but contains a minor error;
• Incorrect (0.0): Wrong, hallucinated, or mismatched with the visual evidence;
• Unclear / Cannot Tell: Not enough evidence to confidently decide.
3. General Guidelines
• Watch the full video before rating;
• Base your decision solely on visible content;
• Use provided action and character references;
• If multiple plausible interpretations exist and the answer matches one, mark as Correct;
• If unsure even after review, mark Unclear / Cannot Tell;
• Optionally leave comments for ambiguous or interesting cases.
5. Action Label Definitions
• Evading Backwards: Moves backwards to avoid threat or reposition.
• Evading Forwards: Moves forwards.
• Evading Left / Right: Lateral movement left or right.
• Jumping Down: Jumps from a higher to a lower platform or level.
• Jumping on the Level: Jumps without elevation change.
• Jumping Up: Jumps upward to reach a higher platform.
• Mounting Hoverboard: Begins riding or is seen riding a hoverboard.

across generation quality and model capacity. We generate 82 rollouts for each model-environment
setting, resulting in 656 rollouts in total.

Rollout Filtering. To ensure quality and clarity, we filtered out rollouts that: (i) had no visible agents,
(ii) featured stationary agents, (iii) were taken from early uninformative environment segments, or (iv)
had significant visual obstruction. We also excluded sequences containing more than four characters
to reduce annotation ambiguity.

UNIVERSE Response Generation. To obtain responses from UNIVERSE, we provide it with a video
segment (resized to match the evaluator’s input resolution) along with its corresponding question.
We then sample five responses using greedy decoding and select the most frequent response as
the final answer. In cases where all five responses are unique (i.e., no majority), one response is
selected at random. The resulting dataset comprises rollouts from 8 settings: rollouts generated
by a smaller model on Skygarden, and rollouts generated by a larger model across seven distinct
environments. For each model–environment pair, we sample 30 rollouts. Each rollout is annotated
with 6 question–answer (QA) pairs, along with a corresponding response from the adapted evaluator.
Each of the resulting 1,440 QA instances was rated by 3 annotators, yielding 4,320 total human
judgments.

F.2 EVALUATION METRICS

We report two accuracy-based metrics using the adjudicated labels:
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Table 14: Inter-annotator agreement and valid QA coverage across environments. We report Cohen’s
κ between the two primary annotators for each world model–map pair. The total number of valid
examples excludes QA pairs marked as Unclear by at least one annotator.

Setting Valid QA Pairs Cohen’s κ
1 29 0.91
2 28 0.67
3 28 0.74
4 29 0.87
5 30 0.67
6 29 0.61
7 30 0.59

8 24 0.79

Table 15: Graded/strict accuracy of UNIVERSE on Action and Character Recognition tasks, evaluated
by human annotators across different environments and question formats. We report results for Binary,
Multiple-Choice (MC), and Open-Ended (OE) prompts, disaggregated by task and world model. All
metrics are based on final adjudicated ratings.

Action Recognition Character Recognition
Setting Binary MC OE Binary MC OE

1 98.3 / 96.7 51.7 / 46.7 75.0 / 73.3 93.3 / 93.3 83.3 / 83.3 93.3 / 93.3
2 96.7 / 96.7 60.0 / 60.0 65.0 / 60.0 99.9 / 99.9 90.0 / 90.0 93.3 / 93.3
3 96.7 / 96.7 63.3 / 63.3 80.0 / 80.0 99.9 / 99.9 86.7 / 86.7 93.3 / 93.3
4 93.3 / 93.3 43.3 / 43.3 73.3 / 73.3 96.7 / 96.7 96.7 / 96.7 99.9 / 99.9
5 80.0 / 76.7 76.7 / 73.3 93.3 / 93.3 96.7 / 96.7 99.9 / 99.9 99.8 / 99.8
6 71.7 / 70.0 56.7 / 56.7 75.0 / 70.0 96.7 / 96.7 93.3 / 93.3 96.7 / 96.7
7 68.3 / 66.7 50.0 / 46.7 80.0 / 76.7 93.3 / 93.3 90.0 / 90.0 96.7 / 96.7

8 92.9 / 89.3 35.7 / 32.1 41.1 / 39.3 85.7 / 85.7 10.7 / 10.7 60.7 / 60.7

Strict Accuracy.: The proportion of QA pairs labeled as Correct:

AccStrict =
NCorrect

NAnswerable
, (5)

Graded Accuracy.: Partial credit given to Partially Correct responses:

AccGraded =
NCorrect + 0.5×NPartial

NAnswerable
. (6)

Only examples not marked Unclear by adjudication are included in NAnswerable.

Inter-Annotator Agreement. To quantify rating consistency, we compute Cohen’s κ between the two
primary annotators. The adjudicator’s label is used only when disagreement occurs and is excluded
from agreement computation. Results are shown in Table 14.

Sample Size Justification. We annotate 30 rollouts per model–environment pair. Assuming a standard
deviation of σ ≈ 0.2 and a 95% confidence level, the confidence interval (CI) width is given by
CI Width = z 1−C

2
· σ√

n
. This yields an estimated CI of ∼7.1% for individual model–environment

pairs (n = 30), and ∼2.5% when aggregating across all eight pairs (n = 240), offering sufficient
precision for comparative evaluation.

F.3 RESULTS

Table 15 reports graded and strict accuracy across environments, recognition targets (Action and
Character Recognition), and question formats (Binary, Multiple-Choice, Open-Ended). We observe a
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clear gap in performance between rollouts generated by the two world models. UNIVERSE struggles
with outputs from WHAM 140M, achieving substantially lower accuracy compared to WHAM 1.6B.
This is likely due to a mismatch in image resolution: WHAM 140M generates frames at 128× 128
resolution, which must be upsampled to the UNIVERSE’s expected input of 224×224. Despite resizing,
the resulting frames often lack sharpness, making actions and characters harder to recognize. In
contrast, UNIVERSE performs well on rollouts from WHAM 1.6B, even across diverse environments.
On the in-domain setting (Environment A), the model achieves strong results—averaging 75.02%
graded accuracy for AR and 90.00% for CR. When evaluating on the six unseen environments
(Environments B–G), performance for AR drops slightly (from 75.02% to 73.52%), while CR
remains stable or improves, suggesting strong generalization in character grounding and visual
consistency tracking.

Qualitative Examples. Figure 12 illustrates the diversity of generated rollouts across environments.
WHAM 1.6B captures greater visual variation and scene composition compared to WHAM 140M.

G SUPPLEMENTARY EXPERIMENTAL RESULTS

This section presents additional experimental results that support the main findings but are omitted
from the main paper for clarity and space. These include: (i) a zero-shot analysis of PaliGemma
variants to motivate backbone selection, (ii) CLIPScore-based baselines to contextualize performance
without adaptation, and (iii) a study of low-rank adaptation (LoRA) across different rank values.
While these results are not central to the unified evaluation framework proposed in the main text, they
provide valuable insight into model selection, adaptation efficiency, and the limitations of standard
evaluation proxies in our setting.

G.1 GPT-5 PERFORMANCE

To demonstrate the complexity of the tasks that comprise our protocol, we conducted an evaluation of
GPT-5 on randomly selected examples. We deliberately chose the simplest evaluation regime (binary
action recognition) to test whether the model can succeed without adaptation.

Figure 13 demonstrates that out of six random samples, GPT-5 produced incorrect answers in five
cases. This consistent failure highlights the difficulty of the task.

G.2 ZERO-SHOT PERFORMANCE OF PALIGEMMA MODELS

In this section, we benchmark three pretrained configurations—PaliGemma 1 3b, PaliGemma 2 3b,
and PaliGemma 2 10b—under our proposed protocol and motivate our choice of PaliGemma 2 3b as
the default backbone for subsequent experiments. Each model receives a natural language prompt
along with either 1 or 8 image frames as input and produces a textual response. This experiment
probes both model capacity and the role of temporal visual context in zero-shot settings.

Results. Figure 14 reports ROUGE scores across task types, question formats, and visual context
lengths. While zero-shot performance reveals some capacity for structured reasoning—particularly
in the multiple-choice setting—it remains limited overall. Binary accuracy hovers near chance, and
open-ended responses frequently lack specificity. Performance is strongest on action recognition
(AR), likely reflecting pretrained models’ familiarity with generic visual dynamics. In contrast,
character recognition (CR) lags behind, underscoring a lack of grounding in domain-specific entities.
Increasing the number of input frames modestly improves AR, but yields diminishing returns for CR.
Among the evaluated configurations, PaliGemma 2 10b performs best in absolute terms. However, the
margin over PaliGemma 2 3b is narrow, and PaliGemma 2 3b offers a substantially smaller footprint
while using a newer Gemma 2 decoder architecture. We therefore adopt PaliGemma 2 3b as the
default model for all subsequent adaptation experiments, balancing performance, compute efficiency,
and architectural recency.

G.3 CLIPSCORE COMPARISONS

To further evaluate zero-shot recognition capabilities without adaptation, we apply CLIPScore to our
rollout evaluation protocol. Specifically, we assess four pretrained CLIP variants – ViT-B/32, ViT-
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Setting 8

Setting 1

Setting 2

Setting 3

Setting 4

Setting 5

Setting 6

Setting 7

Figure 12: Representative frames from rollouts across the eight evaluation settings, spanning different
environments, scales, and resolutions.

B/16, ViT-L/14, and ViT-L/14-336 – across both Action Recognition (AR) and Character Recognition
(CR) tasks using 1-frame and 8-frame visual inputs. For each evaluation instance, we extract either 1
or 8 frames from the video segment and compute the cosine similarity between each image and a
predefined set of textual labels (i.e., action verbs for AR, character names for CR). For single-frame

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Prompt: “Is the character evading right?Answer yes or no”  GPT-5: “no”  Ground Truth: “yes”

Prompt: “Is the character evading left?Answer yes or no”  GPT-5: “yes”  Ground Truth: “yes”

Prompt: “Is the character evading forwards?Answer yes or no”  GPT-5: “no”  Ground Truth: “yes”

Prompt: “Is the character jumping up?Answer yes or no”  GPT-5: “no”  Ground Truth: “yes”

Prompt: “Is the character mounting hoverboard?Answer yes or no”  GPT-5: “yes”  Ground Truth: “no”

Prompt: “Is the character evading right?Answer yes or no”  GPT-5: “yes”  Ground Truth: “no”

Figure 13: Performance of GPT-5 on six randomly sampled binary action recognition questions. Each
panel shows the trial prompt, the model’s response, and the ground-truth label. Despite the apparent
simplicity of the setup, GPT-5 fails on 5/6 trials, underscoring the difficulty of the task and the need
for task-specific adaptation.
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Figure 14: Zero-shot evaluation results for PaliGemma variants across tasks, prompt formats, and
visual context sizes. Overall performance remains limited, indicating the need for task-specific
adaptation.

settings, we select the label with the highest similarity score as the predicted class. In the multi-frame
setting, we compute predictions for each frame independently and use a majority vote to produce
the final prediction. We also report two reference baselines for context: a random classifier, which
achieves 12.5% on AR and 7.7% on CR, and a majority-class predictor, which yields 35.5% and
17.6% respectively. These are included only for calibration.
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Table 16: Zero-shot accuracy-based evaluation of CLIP models and baseline methods on Action and
Character Recognition tasks using 1 and 8 input frames.

Fr Model Action Recognition Character Recognition

1

CLIP ViT-B/32 24.04 ± 0.00 13.32 ± 0.00
CLIP ViT-B/16 52.67 ± 0.00 16.47 ± 0.00
CLIP ViT-L/14 24.60 ± 0.00 9.95 ± 0.00
CLIP ViT-L/14-336 12.17 ± 0.00 8.85 ± 0.05

8

CLIP ViT-B/32 36.22 ± 0.00 14.41 ± 0.00
CLIP ViT-B/16 57.36 ± 0.00 17.24 ± 0.00
CLIP ViT-L/14 17.57 ± 0.00 10.10 ± 0.00
CLIP ViT-L/14-336 23.12 ± 0.00 8.64 ± 0.00

Table 17: Performance on Action and Character Recognition tasks after LoRA-based adaptation with
varying ranks (r ∈ {8, 16, 32, 48, 64}). Adapters are applied to attention and MLP layers in both
vision and language components.

Binary Multiple-choice Open-ended
Rank EM ROUGE EM ROUGE EM ROUGE

Action Recognition
8 44.66 ± 0.21 44.66 ± 0.21 0.02 ± 0.00 9.21 ± 0.00 0.00 ± 0.00 12.49 ± 0.00
16 44.47 ± 0.43 44.47 ± 0.43 0.02 ± 0.00 9.21 ± 0.00 0.00 ± 0.00 12.49 ± 0.00
32 44.59 ± 0.03 44.59 ± 0.03 0.02 ± 0.00 9.21 ± 0.00 0.00 ± 0.00 12.49 ± 0.00
48 46.71 ± 3.20 46.71 ± 3.20 0.02 ± 0.00 9.21 ± 0.00 0.00 ± 0.00 12.49 ± 0.00
64 48.67 ± 0.13 48.67 ± 0.13 0.02 ± 0.00 9.21 ± 0.00 0.00 ± 0.00 12.49 ± 0.00

Character Recognition
8 48.76 ± 0.00 48.76 ± 0.00 0.00 ± 0.00 0.32 ± 0.00 0.00 ± 0.00 0.01 ± 0.01
16 48.62 ± 0.23 48.62 ± 0.23 0.00 ± 0.00 0.14 ± 0.00 0.00 ± 0.00 0.05 ± 0.00
32 48.98 ± 0.08 48.98 ± 0.08 0.00 ± 0.00 0.14 ± 0.00 0.00 ± 0.00 0.05 ± 0.00
48 48.91 ± 0.09 48.91 ± 0.09 0.00 ± 0.00 0.14 ± 0.00 0.00 ± 0.00 0.05 ± 0.00
64 48.72 ± 0.06 48.72 ± 0.06 0.00 ± 0.00 0.14 ± 0.00 0.00 ± 0.00 0.05 ± 0.00

Results. Table 16 demonstrates the results. While CLIP ViT-B/16 performs relatively well on AR in
both input settings, performance remains inconsistent across model scales and tasks. In particular, CR
accuracy remains low, reflecting CLIP’s limited grounding in domain-specific visual semantics and
fine-grained identity resolution. Larger CLIP models such as ViT-L/14 do not consistently outperform
smaller variants, and 8-frame inputs provide only marginal gains over single-frame inputs.

Overall, these results suggest that while CLIPScore offers a lightweight and scalable evaluation proxy,
it lacks the temporal grounding and semantic specificity required for structured rollout evaluation.
Performance falls short relative to our selected baselines, and the method is inherently constrained
to predefined candidate sets—limiting its applicability to open-ended or compositional tasks. As
such, we exclude CLIP-based scores from our primary comparisons and instead focus on adapted,
generative VLM-based evaluators.

G.4 LOW-RANK ADAPTATION COMPARISONS

This section presents an extended analysis of low-rank adaptation (LoRA) as a parameter-efficient
strategy for adapting vision-language models to our protocol. We systematically vary the rank
parameter r and measure its impact on Action and Character Recognition performance across all
prompt formats. All experiments in this section are conducted using PaliGemma 2 (3B) as the
backbone model, consistent with the main fine-tuning results. These experiments assess whether
increasing rank provides meaningful gains, and inform our decision to report only the rank-8 setting
in the main paper.
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Results. Table 17 presents the performance of LoRA-based adaptation across a range of rank
values (r ∈ {8, 16, 32, 48, 64}) for both Action Recognition (AR) and Character Recognition (CR)
tasks, across all prompt formats. We report exact match (EM) and ROUGE-F1 averaged over three
runs. Increasing the rank beyond r = 8 yields no consistent improvements across tasks or formats.
Performance on binary prompts remains close to random, while performance on multiple-choice and
open-ended formats stays near zero across all ranks. These results suggest that LoRA, even with
increased capacity, is insufficient for capturing the fine-grained temporal and semantic dependencies
required by our evaluation protocol. Given the lack of benefit from increasing rank—and the added
parameter cost—it is inefficient to scale LoRA rank beyond r = 8. Accordingly, all results reported
in the main paper use r = 8, while extended comparisons with higher ranks are presented here for
completeness.
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