
Position: Adversarial ML for LLMs Is Not Making
Any Progress

Anonymous Author(s)
Affiliation
Address
email

Abstract

In the past decade, considerable research effort has been devoted to securing1

machine learning (ML) models that operate in adversarial settings. Yet, progress2

has been slow even for simple “toy” problems (e.g., robustness to small adversarial3

perturbations) and is often hindered by non-rigorous evaluations. Today, adversarial4

ML research has shifted towards studying larger, general-purpose language models.5

In this position paper, we argue that the situation is now even worse: in the era of6

LLMs, the field of adversarial ML studies problems that are (1) less clearly7

defined, (2) harder to solve, and (3) even more challenging to evaluate. As8

a result, we caution that yet another decade of work on adversarial ML may be9

failing to produce meaningful progress.10

1 Introduction11

When adversarial machine learning emerged as a field, it focused on attacking and defending simple12

models with well-defined objectives. For example, misclassifying a spam message as safe (Graham-13

Cumming, 2004) or images in deep learning models (Biggio et al., 2013; Szegedy, 2013; Goodfellow14

et al., 2014). These early problems were well-defined: the attack goals were clear (e.g., cause a15

misclassification), the target models were relatively simple (e.g., linear classifiers, small neural16

networks), the threat models were simple (e.g., perturb pixels by at most 8/255), and the evaluation17

metrics were straightforward (e.g., accuracy on a test set). Yet the field has struggled to develop18

robust solutions or even to fully understand why these vulnerabilities exist (Barreno et al., 2006;19

Shafahi et al., 2019). Even fundamental “toy” problems like robustness to ℓp-bounded perturbations,20

remain largely unsolved to this day, and many defense evaluations still lack rigor (Carlini & Wagner,21

2017; Carlini et al., 2019; Tramer et al., 2020).22

Recently, the focus of the field has since shifted towards studying adversarial problems with large23

language models (LLMs) and other generative models. In this position paper, we argue that24

these new problems are significantly harder to define, solve and evaluate; making progress25

increasingly difficult to track.26

Due to their general-purpose nature, LLMs are not designed to solve any single well-defined “task” to27

be secured. Instead, the field now considers a more holistic notion of “safety”, with adversarial objec-28

tives that are hard to define formally (e.g., making an LLM produce “harmful” responses) (Christiano29

et al., 2017; Ouyang et al., 2022; Bai et al., 2022; Casper et al., 2023). These safety properties are30

also often considered for unbounded threat models, thereby leading to much stronger adversaries31

(e.g., with the ability to adversarially fine-tune a model or to prompt it in arbitrary ways). Due to this32

large attack space—and the difficulty of directly optimizing over it (Carlini et al., 2024)—attacks33

are increasingly ad-hoc and human driven (Li et al., 2024a). This further complicates the task for34

defenders, who cannot automatically search over strong, adaptive attacks.35
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Table 1: Challenges in different research areas when defining and solving adversarial ML problems.
Challenges

Defining Solving Evaluating

Research Area

(§2.1.1)
Defining
Success

(§2.1.2)
Bounding
Attacks

(§2.1.3)
Delimiting

Data

(§2.2.1)
Attack
Search

(§2.2.2)
Principled
Defenses

(§2.3.1)
Measuring

Harm & Utility

(§2.3.2)
Ensuring

Reproduc.

(§3.1) Jailbreaks ✓ ✓ ✓ ✓ ✓ ✓
(§3.2) Un-finetunable Models ✓ ✓ ✓ ✓ ✓
(§3.3) Poisoning + Backdoors ✓ ✓ ✓ ✓ ✓ ✓ ✓
(§3.4) Prompt Injections ✓ ✓ ✓ ✓ ✓ ✓
(§3.5) Membership Inference ✓ ✓ ✓
(§3.6) Unlearning ✓ ✓ ✓ ✓ ✓ ✓

Beyond making the technical problems harder, we argue that generative models have also made36

evaluation and benchmarking of attacks and defenses more challenging. Measuring attack success is37

no longer as straightforward as measuring misclassification rates; it instead requires careful (human)38

evaluation of possible harms present in natural language outputs (Mazeika et al., 2024; Chao et al.,39

2024). In a similar vein, evaluating whether defenses preserve the utility of the original model has40

become more nuanced: instead of measuring test accuracy on a single task, we now have to determine41

whether a model maintains its general-purpose capabilities (Cui et al., 2024; Mai et al., 2025).42

Finally, reproducible benchmarking became harder as many state-of-the-art models are deployed43

via black-box APIs that may receive constant updates and patches as newer attacks are released. As44

these changes are often not reported, reproducing results or making meaningful comparisons between45

different approaches becomes nearly impossible.46

In this position paper, we use several case studies of research areas in adversarial ML to illustrate47

the increasing complexity in both attacks and defenses. We first analyze how traditional research48

problems have evolved to become fundamentally harder to formally define and solve (Section 2).49

We then present case studies that illustrate these new challenges (Section 3). Finally, we discuss50

our perspective on why these changes represent a fundamental challenge to progress in the field and51

alternative views on the evolution of adversarial ML (Section 4).52

2 New Challenges in Defining, Solving, and Evaluating Adversarial ML53

Problems54

Traditional ML models were designed and trained for specific and narrow tasks—often classification.55

For example, computer vision models used to classify images into a fixed set of classes (Krizhevsky56

et al., 2012), and natural language processing models used to perform textual analysis on individual57

sentences (Richardson et al., 2013; Rajpurkar, 2016). Additionally, the training and test data were58

clearly delineated as inputs were discrete and bounded units (individual images or sentences). In59

these settings, adversarial objectives could be clearly specified. For example, misclassifying as many60

inputs as possible (i.e., adversarial examples (Szegedy, 2013; Goodfellow et al., 2014)) or inferring if61

a given data point was used for training (i.e., membership inference (Shokri et al., 2017)).62

However, LLMs have fundamentally changed this landscape. Models no longer perform narrow tasks63

but serve as general-purpose systems that produce free-form and unbounded outputs. As a result,64

defining “security” or “safety” properties of the AI system has become more challenging, with the field65

focusing on general definitions (e.g., a model should not produce outputs that can “harm others”1).66

Adversarial objectives related to training data (e.g., membership inference or unlearning) have also67

become more ill-defined, as the training set(s) of LLMs span virtually the entire Internet (Gao et al.,68

2020), with no clear boundaries between data points or between train and test sets.69

In this section, we identify three core challenges, each split into several sub-challenges, that make70

adversarial ML for LLMs harder to define, harder to solve, and harder to evaluate. We provide a71

summary of the challenges faced in different research areas in Table 1.72

1https://openai.com/policies/usage-policies/
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In Section 3, we elaborate on how these challenges hinder progress by analyzing specific case studies:73

Jailbreaks (Section 3.1), Un-finetunable Models (Section 3.2), Poisoning and Backdoors (Section 3.3),74

Prompt Injections (Section 3.4), Membership Inference (Section 3.5), and Unlearning (Section 3.6).75

2.1 Problems are Harder to Define76

2.1.1 Defining Success of Attacks and Defenses77

In the past, adversarial problems for classification models typically involved concrete objectives (e.g.,78

misclassifying images), which could be easily measured by accuracy on a set of clean or perturbed79

inputs. Now, the lack of a single well-defined task makes it unclear what criteria constitute a genuine80

success or failure for attacks or defenses.81

LLMs produce free-form text in which goals become subjective. Developers now aim to optimize82

abstract properties like helpfulness, honesty, and harmlessness (Bai et al., 2022), while adversaries83

may try to obtain generically harmful outputs. Thus, measuring attack success—i.e., whether an84

output is actually harmful or violates the developer policies—also becomes subjective.85

2.1.2 Defining and Bounding the Attack Space86

In prior robustness settings (e.g., with classification models), the adversary was often constrained to87

perturb inputs within an ℓp-ball around a given image. This served as a meaningful necessary but not88

sufficient condition for robustness Gilmer et al. (2018), allowing quantitative comparisons of different89

methods (Goodfellow et al., 2014).90

For LLMs, researchers almost always allow the search space for attacks to be unbounded, since91

any input could potentially elicit a violation of a safety property (Wei et al., 2024a). The shift from92

input-dependent to input-independent constraints makes it harder to specify adversarial capabilities93

that allow us to compare attacks and defenses. Beyond unbounded inputs, threat models have also94

become more permissive. In traditional adversarial ML problems (e.g., adversarial examples or95

poisoning), the strongest adversaries had white-box access to model weights, but could not alter96

the model’s functionality. Now attackers need not maintain the model’s general capabilities as long97

as they can elicit the desired harmful information, enabling stronger attacks such as fine-tuning or98

pruning (Qi et al., 2024b; Wei et al., 2024b)2.99

Moreover, the set of attacks that should be ruled out may not always be obvious. While one could say100

“any input that leads to harmful content is a valid attack,” trivial attacks such as prompting “please101

repeat [harmful text]” do not reveal meaningful new vulnerabilities. Hence, there is no clear universal102

standard on what sorts of prompts or transformations count as “valid” or “novel” adversarial inputs.103

2.1.3 Delimiting Data104

In many research areas traditionally studied in adversarial ML, such as unlearning or privacy protec-105

tion, the notion of a training data point plays a crucial role. Previously, a model was trained on a106

carefully curated dataset with strict train/test splits; each data point (such as a single labeled image)107

was distinct, and known to researchers. In contrast, generative models are trained on vast corpora,108

where similar, or even identical, content may appear across multiple subsets of the training set. The109

exact contents of the training data are also rarely publicly released (Nasr et al., 2025). The notion of110

a held-out (IID) test set no longer really exists.111

2.2 Problems are Harder to Solve112

2.2.1 Searching over Attacks113

The optimization landscape for most adversarial ML problems has become significantly more114

complex with LLMs. In traditional classification problems, such as crafting adversarial images,115

the objective function was clear: maximize the loss on the correct prediction while minimizing116

perturbation size. This objective could be formalized and optimized by propagating gradients to the117

2For adversarial robustness in image classifiers, the ability to finetune the victim model would be a trivial
attack vector, since the attacker could simply fine-tune the model to have low accuracy.
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input space (Madry, 2017). These automated attacks outperformed humans and consistently found118

worst-case attacks (Carlini et al., 2017).119

However, the attack surface for LLMs is much larger and harder to define (see Section 2.1.2). There120

is no longer a single well-defined “task”, and safety properties cannot be expressed with formal loss121

functions—they are qualitative, context-dependent, and often subjective (Bai et al., 2022).122

Even if we define a “toy” attack objective (e.g., making the model output an affirmative response such123

as “Sure, I can help you with that” (Zou et al., 2023)), finding good attacks remains hard (Carlini et al.,124

2024). Discrete text inputs makes gradient-based methods less effective (Carlini et al., 2024; Rando125

et al., 2024), and the vast search space makes exploration impractical. Perhaps most telling, manual126

attacks still outperform automated methods at finding worst-case inputs (Li et al., 2024a). Many127

successful attacks on LLMs exploit qualitative properties that are hard to optimize automatically,128

such as persona modulation (Shah et al., 2023), multi-turn conversations (Anil et al., 2024), and129

social engineering techniques (Zeng et al., 2024). In contrast, current optimization methods typically130

generate gibberish inputs (Zou et al., 2023; Thompson & Sklar, 2024).131

2.2.2 Building Principled Defenses132

In traditional adversarial tasks, researchers could devise certified defenses (Cohen et al., 2019) or well-133

motivated empirical defenses such as adversarial training (Madry, 2017), where key properties of the134

problem (like bounded input perturbations) were explicitly understood. Moreover, the performance135

of these defenses could be evaluated with strong, adaptive white-box attacks (Tramer et al., 2020).136

In contrast, for LLMs the adversarial objectives are typically not formally defined (see Section 2.1.1)137

and the attack space is challenging to bound (see Section 2.1.2). As a result, there is little hope to138

build defenses upon principled foundations. Existing defenses rely on ad-hoc approaches, through139

either: (1) adversarial training against known successful attacks Bai et al. (2022); Wallace et al.140

(2024); (2) “virtual” adversarial training in the model’s latent space Miyato et al. (2018); Casper et al.141

(2024b); Sheshadri et al. (2024); (3) building external classifiers or detectors (Inan et al., 2023); (4)142

or random preprocessing (Robey et al., 2023). Crucially, none of these approaches produce systems143

whose security can be analyzed or quantified in a well-defined formal. It is thus not too surprising144

that the original evaluations of some of these defenses overestimate their robustness (Chi et al., 2024;145

Qi et al., 2024a; Łucki et al., 2024).146

2.3 Problems are Harder to Evaluate147

2.3.1 Measuring Attack Harm and Defense Utility148

Since safety properties for LLMs are hard to formally define, it has become customary to use LLMs149

themselves as a fuzzy “judge” to determine harmfulness (e.g., when evaluating jailbreaks or prompt150

injections (Mazeika et al., 2024)). But this approach suffers from a number of issues. First, judges151

fall short of human judgment.3 For instance, many implementations often default to considering any152

non-refusal response as a successful attack even if the content is harmless (Souly et al., 2024). Second,153

judges themselves may be vulnerable to attacks (Mangaokar et al., 2024; Raina et al., 2024). Third,154

using LLMs-as-judges to evaluate defenses can create artificial correlations that bias evaluations. For155

example, a defense that implements an output filter similar to the judge may achieve near-perfect156

scores without necessarily being effective against prompts where the judge fails (Liu et al., 2024).157

Measuring benign utility of defenses—whether they preserve other capabilities—is also non-trivial.158

Unlike classification tasks where accuracy on a fixed test set is standard, LLMs can be used for an159

open-ended array of tasks. A defense can trivially produce a safe-but-useless model by refusing all160

requests. Thus, any evaluation framework must somehow account for the model’s usefulness to the161

end-user, which is subjective and context-dependent (Cui et al., 2024).162

3Even (non-expert) humans have a hard time judging harmfulness of model responses, e.g., when judging
whether “instructions for building a bomb” truly yield a useful design.
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2.3.2 Reproducing and Comparing Results163

In earlier, more controlled research environments, practitioners had detailed information about a164

model’s architecture, training data, and training pipeline, enabling precise definitions of threats,165

defenses, and success criteria. This transparency made it straightforward to track progress.166

Many influential LLMs are now closed-source and updated silently over time (Chao et al., 2024),167

making it unclear which version of a system is being tested. Moreover, instead of investigating168

a single, well-defined model, one must analyze an entire system that may incorporate multiple169

pre-processing, post-processing, or other defense mechanisms.170

This lack of transparency severely undermines reproducibility. Researchers cannot confirm whether171

observed behaviors persist across different snapshots of the system, nor can they reliably benchmark172

potential solutions. Consequently, adversarial ML problems become harder to define—let alone173

solve and evaluate. While black-box or discrete optimization approaches can help reveal some174

vulnerabilities, they provide only limited insight into the model’s internals, leaving many critical175

security and privacy questions unanswered (Casper et al., 2024a; Carlini et al., 2024).176

3 Case Studies177

3.1 Jailbreaks178

Jailbreaks illustrate many of the new challenges in adversarial research. Jailbreaks are adversarial text179

inputs for language models that bypass safeguards to generate “harmful” content (Wei et al., 2024a).180

“Harmful” content has no formal definition. Defining success for an adversarial image is rela-181

tively easy: the perturbation is “small” under some given measure, and leads to a misclassification.182

With jailbreaks, however, success requires defining what it means for a model to output “harmful”183

or otherwise “undesirable” content. Early attempts used crude proxies based on simple substring184

matching (Zou et al., 2023). This approach has largely been replaced by a more general use of an185

“LLM-as-a-judge”, where the fuzzy task of defining harmfulness is given to another LLM (Zheng186

et al., 2023; Chao et al., 2023; Shah et al., 2023; Mazeika et al., 2024). The circularity of this187

definition leads to a number of issues, as illustrated in Section 2.188

There are no meaningful bounds on adversaries. Although adversaries for image classification189

could also be unbounded, the fact that the safety property is dependent on the input (replacing a190

cat by a dog is not an interesting attack) made the community define an lp norm around the inputs191

as a proxy for preserving visual similarity. However, for jailbreaks, there is not such a meaningful192

bound as the safety property is independent of the input (harmful generations should never occur).193

Researchers have come up with attacks that use semantic augmentations (e.g., role-playing or social194

engineering) (Shah et al., 2023; Zeng et al., 2024), append high-perplexity suffixes (Zou et al.,195

2023; Thompson & Sklar, 2024) or even found that long inputs and random augmentations dilute196

safeguards (Anil et al., 2024; Andriushchenko et al., 2024; Hughes et al., 2024). Not only adversaries197

are now unbounded in the input space, but they can use additional methods such as fine-tuning (Qi198

et al., 2024b) or pruning (Wei et al., 2024b). This diversity of attacks illustrates the difficulty to define199

a narrow task, analogous to ℓp bounded robustness, that can be used to compare and benchmark200

attacks and defenses.201

Optimizing for worst-case attacks is hard. Optimizing attacks against classifiers is straightforward.202

You can set as objective the maximization of the model loss (Szegedy, 2013). The loss gradient can be203

propagated all the way to the input to guide updates. However, LLMs do not provide any of the above:204

the optimization goal is unclear and optimization is not continuous nor over a finite input space. As a205

workaround, previous work has tried to optimize proxy objectives such as maximizing the probability206

of a compliance prefix (e.g. “Sure, I can help you with that”) (Zou et al., 2023; Carlini et al., 2024).207

However, the input space is still discrete and virtually infinite. These challenges make discrete208

optimization extremely inefficient and close to random search (Zou et al., 2023; Andriushchenko209

et al., 2024). Optimization challenges have made us shift from a field where the strongest attacks210

were found via white-box optimization, to one where the best attacks often come from human experts211

and cannot be found via optimization (Li et al., 2024a). This challenges our ability to make progress212

in measuring worst-case performance of systems (Carlini et al., 2024).213
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3.2 Unfinetunable Models214

A recent research direction aims to design models that are not only robust to jailbreaks, but also are215

robust to fine-tuning Tamirisa et al. (2024); Rosati et al. (2024). This threat model is motivated by216

the general observation that if a model does not have the knowledge to perform some dangerous217

capability (such as giving instructions for how to perform a cyberattack or design a bioweapon),218

attacks will never be successful (Li et al., 2024b).219

The attacker is strictly more powerful than for adversarial examples. An adversarial example220

attacker has exactly one ability: to modify the input so the model produces an incorrect output. When221

designing an un-finetunable model, we assume an attacker with strictly more power: not only can222

they change the input arbitrarily, but they can also modify the model itself. Indeed, recent work has223

already shown how the interplay between modifying the input and modifying the parameters can224

allow attackers to break many recently proposed defenses Qi et al. (2024a).225

The increased attack space makes it more difficult to evaluate. In the classical adversarial226

example literature, the evaluator must ensure exactly one thing is true: the input-space gradient227

is smooth and following it leads to adversarial examples. In contrast, evaluating an unfinetunable228

model requires that the much higher parameter-space gradients are smooth, something often 1000×229

higher dimensional. Moreover, the number of hyperparmeters in the evaluation increases significantly,230

introducing even more room for error (Hönig et al., 2024; Qi et al., 2024a).231

3.3 Poisoning and Backdoors232

In poisoning attacks, adversaries modify a model’s training data to affect its behavior on specific233

examples (Huang et al., 2011) or inject backdoors (Gu et al., 2019). The messy datasets and costly234

training runs for LLMs make the definition, optimization and evaluation of attacks more challenging.235

Attack goals are hard to enumerate and conflict with intended functionality. In classification236

models, adversaries injected training examples with specific triggers that correlated with an output237

label (Gu et al., 2019). However, in generative models, adversaries trigger fuzzy and complex238

behaviors like producing harmful content or spreading misinformation (Wan et al., 2023; Rando239

& Tramèr, 2024a; Zhang et al., 2024b). Not only are these behaviors harder to predict and specify240

formally, but they also fundamentally conflict with the model’s intended functionality since the241

triggered behavior is often universally undesirable and explicitly trained against (Zhang et al., 2024b).242

Attacks can come from multiple training stages and are hard to optimize over. Traditional243

machine learning models had a single training stage on the entire dataset. However, LLMs are first244

pre-trained and then fine-tuned on (curated) data to turn them into helpful and harmless chatbots (Bai245

et al., 2022). These different training stages have different properties, may enable different attacks,246

and can overwrite poisoning in previous stages (Anwar et al., 2024; Zhang et al., 2024b). Also, in247

LLMs there is no longer a good notion of what constitutes an effective poison nor we can optimize248

over them (Goldblum et al., 2022).249

Experiments with leading models are computationally infeasible. Rigorous evaluation of back-250

door attacks traditionally requires training models from scratch to understand both the effects of251

poisoned data and to establish clean baselines. However, this becomes infeasible for LLMs, where a252

single training run can cost millions of dollars (Anwar et al., 2024; Zhang et al., 2024b).253

3.4 Prompt Injections254

In a prompt injection attack (Goodside, 2022; Willison, 2022), an adversary injects malicious255

instructions into a language model’s context, manipulating its behavior to perform unauthorized256

actions or disclose sensitive information. These attacks commonly target LLM agents or LLM-257

integrated applications that interact with untrusted third-party resources through external tools (Jarvis258

& Palermo, 2023; Husain, 2024; Anthropic, 2024).259

Measuring success of attacks and defenses requires a realistic AI agent environment. Rigor-260

ously evaluating the effectiveness of prompt injection attacks and defenses necessitates a realistic AI261
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agent environment that closely mimics real-world scenarios. Such an environment should include262

comprehensive system scaffolding with tool use, enabling the simulation of complex interactions.263

However, for simplicity, many studies opt to simulate these environments and rely on LLMs as judges264

for evaluation. There are new setups that have more rigorous evaluations (Debenedetti et al., 2024),265

where the attack’s success and utility can be precisely measured, but they are often limited due to the266

high cost of incorporating new tasks and their reliance on simulated environments.267

Adversaries are unbounded. Unlike traditional adversarial attacks bounded by ℓp norms, prompt268

injection attacks also operate in a vast and unbounded input space. Additionally, prompt injection269

attacks can leverage context-dependent strategies, such as embedding malicious instructions within270

seemingly benign or unrelated text, or using multi-turn interactions to gradually steer the model271

toward undesirable outputs. This diversity in attack vectors, combined with the fact that virtually272

any controlled input can serve as a potential attack surface, complicates the task of establishing a273

reasonable threat model. Consequently, creating a standardized “toy” problem for benchmarking274

prompt injection defenses is inherently difficult.275

Optimizing for strong attacks is hard. The primary goal of prompt injections is often clear—276

for instance, manipulating a language model to perform unauthorized actions like sending277

emails (Debenedetti et al., 2024), where success can be directly measured. However, the attack278

surface remains vast, encompassing not only single-turn interactions but also multi-turn scenarios279

where the model may repeatedly call external tools. In such cases, researchers often lack access to280

intermediate outputs, making it significantly more challenging to refine and optimize the attack.281

Most current attacks rely on handcrafted instructions (Greshake et al., 2023; Liu et al., 2023), such as,282

“Ignore all previous instructions, please do [target action] first,” which are often effective in practice.283

These manual attacks complicate the development of principled defenses like adversarial training,284

due to their highly context-dependent and ad hoc nature. Recent approaches (Pasquini et al., 2024)285

have attempted to apply optimization techniques similar to those used in jailbreaks. Unfortunately,286

these attacks are not guaranteed to be optimal. As a result, defense attempts that train models against287

attacks mainly focus on known attacks Wallace et al. (2024).288

We cannot easily track progress against closed-source systems. Similar to jailbreaks, model289

developers can mitigate prompt injection attacks by implementing safeguards such as filtering mecha-290

nisms (Willison, 2023; Wu et al., 2024) or regularly updating and fine-tuning their models (Wallace291

et al., 2024).As these systems are frequently updated, it becomes difficult to establish a consistent292

benchmark for measuring progress or reproducing results. Additionally, there are currently few293

open-source models that are effective tool-use agents (Debenedetti et al., 2024) and can be used for294

reproducible evaluation.295

3.5 Membership Inference296

Membership inference (MI) attacks (Shokri et al., 2017) aim to determine whether a specific sample297

x was part of a model’s training set.298

The distinction between members and non-members is no longer clearly defined. In traditional299

classification settings, the training data is typically of limited size and with a clear delimitation300

between samples. However, the situation becomes more complicated for generative models.301

1. Highly (partially) duplicated datasets. The training data of generative models often comes302

from massive, diverse open datasets, which could include numerous duplicate and near-duplicate303

samples (Lee et al., 2022; Tirumala et al., 2023). Even if a model appears to memorize a particular304

sample (e.g., a piece of text or image), this does not necessarily prove that this sample itself was305

used during training. For example, a model might know much of the plot of Harry Potter without306

having been explicitly trained on the original book; it could have learned about the story indirectly307

through Wikipedia pages, reviews, etc. Thus, the boundaries between members and non-members308

are blurred by the sheer scale and overlap of these datasets.309

2. No IID train and test splits available. Methods for evaluating MI designate the training data as310

members and separate IID held-out data as non-members. However, for most generative models, the311

training datasets are typically not disclosed. Some recent studies attempt to collect non-members312
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post hoc for evaluation purposes (Shi et al., 2023; Meeus et al., 2023), but these efforts often313

violate the IID assumption and lead to misleading conclusions (Duan et al., 2024; Das et al., 2024).314

We cannot build counterfactual scenarios for evaluation. In traditional classification tasks315

(e.g., CIFAR-10), where the data generation process is known and models are relatively small,316

counterfactual scenarios can be built by retraining the same model while excluding a sample x, and317

then comparing statistical behaviors on x (Carlini et al., 2022). In the context of generative models,318

this approach is ill-defined and computationally impractical, thus it’s infeasible to properly evaluate319

the success of a MI attack (Zhang et al., 2024a).320

3.6 Machine Unlearning321

Machine unlearning was originally formulated as a well-defined task: completely removing the322

influence of a specific datapoint x from a model (Bourtoule et al., 2021). The goal was to produce a323

model that, after unlearning x, would be indistinguishable from one that was never trained on that324

point. In traditional classification settings with bounded inputs and outputs, and (often) deduplicated325

datasets with clear train-test splits, this objective could be precisely defined and evaluated. In fact,326

there exist exact solutions to unlearning (Bourtoule et al., 2021).327

Unlearning of “concepts” rather than individual data points is hard to define. However,328

generative models have fundamentally changed the nature of unlearning (Cooper et al., 2024). Instead329

of removing the influence of specific data points, the goal is to remove knowledge about entire330

concepts or topics that may be contained in one or more data points (e.g., all dangerous knowledge331

about bioweapons (Li et al., 2024b) or copyrighted content from Harry Potter books (Eldan &332

Russinovich, 2023)). This has made it impossible to define unlearning in terms of a specific data333

point’s influence, making both solutions and evaluations much more challenging.334

Unlearning goals conflict with other knowledge. Developers may need to remove very specific335

knowledge (e.g., bioweapons) while maintaining the model’s expertise in related fields (e.g., biology336

and virology) (Li et al., 2024b). This tension between harmful and benign knowledge makes it337

inherently hard to define the goal of unlearning and to robustly evaluate safety and utility.338

Threat models are overly strong. Unlearning emerged as a white-box protection that would339

prevent any adversary from accessing undesired capabilities (Li et al., 2024b). This ambitious goal340

also enables stronger threat models where adversaries cannot only query the model, but also finetune341

it (Hu et al., 2024) and perform any white-box interventions (Łucki et al., 2024). Protecting against342

such a large attack surface is much harder (Qi et al., 2024a) as discussed in Section 3.2.343

Measuring unlearning success is hard. Measuring unlearning success has become significantly344

more challenging: training baseline models without specific datapoints is costly (Eldan & Russinovich,345

2023) and membership inference has important limitations (see Section 3.5). Recent studies have346

also demonstrated that even when a model cannot generate specific information, this does not reliably347

prove the underlying knowledge has been erased from its weights (Patil et al., 2023; Lynch et al.,348

2024; Łucki et al., 2024; Shumailov et al., 2024). In practice, the search for adaptive evaluations is349

impractical and requires very careful tuning of the methodology for each scenario (Łucki et al., 2024;350

Qi et al., 2024a). Finally, Shi et al. (2024) showed that measuring unintended effects of unlearning is351

challenging, as it can significantly affect other capabilities or even amplify privacy leakage.352

4 Discussion353

4.1 Alternative Views354

We are solving the right problem in the first place. We see increased complexity in adversarial355

ML because we are finally attempting to solve real security challenges rather than toy academic356

problems. We knew that ℓp-bounded perturbations were a simplified proxy (Gilmer et al., 2018), but357

they were studied because they were challenging enough to drive progress and served as a necessary358

condition for real-world robustness. We could similarly define toy problems for LLMs (e.g., jailbreaks359

limited to fixed-length prefixes or bounded sentence modifications), but the field has largely avoided360
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such artificial constraints in favor of studying real-world unbounded adversaries. This shift might not361

indicate that problems have become fundamentally harder, but rather that the research community362

has decided to directly tackle the full complexity of real-world security.363

Solving jailbreaks might be easier because we only need to prevent a behavior regardless of con-364

text. Some researchers argue that certain problems have become simpler with LLMs. For instance,365

unlike adversarial examples where a model should maintain correct predictions in appropriate contexts366

(e.g., classify guacamole images as guacamole, but never cats as guacamole), jailbreak prevention has367

a simpler goal: the model should never produce certain harmful outputs (e.g., instructions for building368

explosives) regardless of context. However, since there are many ways to express this knowledge369

(e.g., harmful requests can be decomposed into benign subquestions (Glukhov et al., 2024)), defining370

and evaluating whether a model will never produce harmful outputs remains a challenging problem.371

Recent work, on representation engineering (Arditi et al., 2024; Zou et al., 2024; Tamirisa et al.,372

2024) has aimed to identify specific directions in the model’s representation space that can anticipate373

undesired behavior and prevent it universally. Yet, we know that adversarial images could also be374

detected by similar methods (Carlini & Wagner, 2017), but these defenses ultimately proved vulnera-375

ble to newer attacks. Similarly, there are already works that show that representation engineering376

methods cannot robustly void undesired behaviors (Li et al., 2024a; Qi et al., 2024a).377

Scaffolding to reduce the probability of failure might be sufficient. Given the difficulty of378

achieving robust safety guarantees, researchers and companies increasingly rely on complex defense379

systems (Sharma et al., 2025) and security through obscurity (Rando & Tramèr, 2024b) to minimize380

risks. While this approach has demonstrated clear benefits in protecting users from harmful content,381

it prevents rigorous, reproducible and adaptive evaluations as systems become more complex and382

opaque (Casper et al., 2024a). This trend is particularly concerning given historical lessons: preventing383

researchers from thoroughly analyzing systems can lead to severe real-world security breaches (Swire,384

2004; Mulligan & Perzanowski, 2007; Payne & Parks, 2020). The apparent safety gains from385

obscurity and complexity may come at the cost of genuine security understanding.386

We are already making progress on these problems. A prevalent view in the field suggests that387

we are advancing security capabilities, pointing to newer models being demonstrably harder to attack388

than their predecessors (Achiam et al., 2023; Zaremba et al., 2025). While this observation might389

hold generally true, we caution that our inability to robustly evaluate defenses may be hindering390

our ability to track progress (see Section 2.3). Moreover, we must distinguish between progress in391

preventing average-case vulnerabilities and achieving worst-case security robustness. Although we392

might be making progress in the former, we have barely improved the latter and most models can still393

produce harmful generations under attacks. As the stakes increase with more capable models, the394

risks of rare yet successful attacks become significant (Anthropic, 2023).395

4.2 Suggestions for improvement396

We propose that there are (at least) two valid reasons for performing research on adversarial machine397

learning: (a) studying real-world security vulnerabilities and (b) advancing scientific understanding398

of adversarial ML. Papers should be explicit for what reason they are being written, and should be399

evaluated in this light. For real-world security, demonstrating attacks on fuzzy, ill-defined problems400

can be valuable when the potential harm is clear and immediate. For instance, it is valuable to401

show that language models can be manipulated to produce harmful content, even if we cannot402

precisely quantify “harmfulness”. And when the objective is to advancing scientific understanding,403

we believe it is more productive to identify and focus on formal, well-defined sub-problems that can404

be rigorously studied, similar to how ℓp-bounded perturbations provided a concrete framework for405

studying adversarial examples.406

We acknowledge that even these well-defined sub-problems might still be challenging, just as407

achieving reliable ℓp robustness remains an open problem despite a decade of research. However,408

what we can definitely say is that if we cannot make progress on carefully scoped, formal problems, we409

have little hope of addressing the broader, fuzzier challenges of language model security. Moreover,410

working on well-defined problems enables rigorous scientific investigation: we can properly measure411

progress, compare different approaches, and build upon previous results. Attempting to solve the412

entire space of attacks without rigor is neither scientific nor likely to be productive.413
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F. Evasion attacks against machine learning at test time. In Machine Learning and Knowledge441

Discovery in Databases: European Conference, ECML PKDD 2013, Prague, Czech Republic,442

September 23-27, 2013, Proceedings, Part III 13, pp. 387–402. Springer, 2013.443

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A., Jia, H., Travers, A., Zhang, B., Lie, D.,444

and Papernot, N. Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP), pp.445

141–159. IEEE, 2021.446

Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks. In 2017 ieee447

symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.448

Carlini, N., Katz, G., Barrett, C., and Dill, D. L. Provably minimally-distorted adversarial examples.449

arXiv preprint arXiv:1709.10207, 2017.450

Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, J., Tsipras, D., Goodfellow, I., Madry, A.,451

and Kurakin, A. On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705, 2019.452

Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., and Tramer, F. Membership inference attacks453

from first principles. In 2022 IEEE Symposium on Security and Privacy (SP), pp. 1897–1914.454

IEEE, 2022.455

Carlini, N., Nasr, M., Choquette-Choo, C. A., Jagielski, M., Gao, I., Koh, P. W. W., Ippolito, D.,456

Tramer, F., and Schmidt, L. Are aligned neural networks adversarially aligned? Advances in457

Neural Information Processing Systems, 36, 2024.458

10

https://www.anthropic.com/news/anthropics-responsible-scaling-policy
https://www.anthropic.com/news/anthropics-responsible-scaling-policy
https://www.anthropic.com/news/anthropics-responsible-scaling-policy
https://docs.anthropic.com/en/docs/tool-use


Casper, S., Davies, X., Shi, C., Gilbert, T. K., Scheurer, J., Rando, J., Freedman, R., Korbak, T.,459

Lindner, D., Freire, P., et al. Open problems and fundamental limitations of reinforcement learning460

from human feedback. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.461

Survey Certification, Featured Certification.462

Casper, S., Ezell, C., Siegmann, C., Kolt, N., Curtis, T. L., Bucknall, B., Haupt, A., Wei, K., Scheurer,463

J., Hobbhahn, M., et al. Black-box access is insufficient for rigorous ai audits. In The 2024 ACM464

Conference on Fairness, Accountability, and Transparency, pp. 2254–2272, 2024a.465

Casper, S., Schulze, L., Patel, O., and Hadfield-Menell, D. Defending against unforeseen failure466

modes with latent adversarial training. arXiv preprint arXiv:2403.05030, 2024b.467

Chao, P., Robey, A., Dobriban, E., Hassani, H., Pappas, G. J., and Wong, E. Jailbreaking black box468

large language models in twenty queries. arXiv preprint arXiv:2310.08419, 2023.469

Chao, P., Debenedetti, E., Robey, A., Andriushchenko, M., Croce, F., Sehwag, V., Dobriban, E.,470

Flammarion, N., Pappas, G. J., Tramèr, F., et al. Jailbreakbench: An open robustness benchmark471

for jailbreaking large language models. In The Thirty-eight Conference on Neural Information472

Processing Systems Datasets and Benchmarks Track, 2024.473

Chi, J., Karn, U., Zhan, H., Smith, E., Rando, J., Zhang, Y., Plawiak, K., Coudert, Z. D., Upasani,474

K., and Pasupuleti, M. Llama guard 3 vision: Safeguarding human-ai image understanding475

conversations. arXiv preprint arXiv:2411.10414, 2024.476

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. Deep reinforcement477

learning from human preferences. Advances in neural information processing systems, 30, 2017.478

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial robustness via randomized smoothing.479

In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the 36th International Conference480

on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 1310–1320.481

PMLR, 09–15 Jun 2019.482

Cooper, A. F., Choquette-Choo, C. A., Bogen, M., Jagielski, M., Filippova, K., Liu, K. Z., Choulde-483

chova, A., Hayes, J., Huang, Y., Mireshghallah, N., et al. Machine unlearning doesn’t do what you484

think: Lessons for generative ai policy, research, and practice. arXiv preprint arXiv:2412.06966,485

2024.486

Cui, J., Chiang, W.-L., Stoica, I., and Hsieh, C.-J. Or-bench: An over-refusal benchmark for large487

language models. arXiv preprint arXiv:2405.20947, 2024.488

Das, D., Zhang, J., and Tramèr, F. Blind baselines beat membership inference attacks for foundation489

models. arXiv preprint arXiv:2406.16201, 2024.490
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