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ABSTRACT

Recent advancements in Multimodal Large Language Models (MLLMs) have
been utilizing Visual Prompt Generators (VPGs) to convert visual features into
tokens that LLMs can recognize. This is achieved by training the VPGs on
millions of image-caption pairs, where the VPG-generated tokens of images are
fed into a frozen LLM to generate the corresponding captions. However, this
image-captioning based training objective inherently biases the VPG to concen-
trate solely on the primary visual contents sufficient for caption generation, of-
ten neglecting other visual details. This shortcoming results in MLLMs’ under-
performance in comprehending demonstrative instructions consisting of multi-
ple, interleaved, and multimodal instructions that demonstrate the required con-
text to complete a task. To address this issue, we introduce a generic and
lightweight Visual Prompt Generator Complete module (VPG-C), which can in-
fer and complete the missing details essential for comprehending demonstra-
tive instructions. Further, we propose a synthetic discriminative training strat-
egy to fine-tune VPG-C, eliminating the need for supervised demonstrative in-
structions. As for evaluation, we build DEMON, a comprehensive benchmark for
demonstrative instruction understanding. Synthetically trained with the proposed
strategy, VPG-C achieves significantly stronger zero-shot performance across all
tasks of DEMON. Further evaluation on the MME and OwlEval benchmarks also
demonstrate the superiority of VPG—C. The code and models are available at
https://github.com/DCDmllm/Cheetah.

1 INTRODUCTION

Recent advances in Multimodal Large Language Models (MLLMs) (Li et al.,2023c;[Liu et al., 2023,
Zhu et al.l 2023a)) have exhibited promising capabilities in processing single-image instructions,
such as producing detailed image descriptions and answering questions about the image. However,
they fall short in demonstrative instructions consisting of multiple, interleaved, and multimodal
instructions that demonstrate the required context to complete a task. For instance, the instruction
in Figure [I] contains interleaved visual and textual context, requiring the model to determine the
authenticity of the milk in the second image based on the official image provided in the first.

An MLLM should at least have the following two capabilities to comprehend demonstrative instruc-
tions effectively:

1) Not just the primary subject: Beyond focusing on the primary visual content, it should be able
to meticulously discern the details within the demonstrations. These details, complementing the
primary content, play a crucial role in semantically connecting the instructions. A case in point is
Figure|l} wherein accurate discernment relies on recognizing the logo detail on a milk carton.

2) Reasoning-aware details: How to decide what details are complementary to the reasoning? We
expect that an MLLM may “think twice”, that is, given a preliminary reasoning using the primary
contents, it would know what additional contents are needed as complementary details. For example,
in Figure [I] after preliminary reasoning, the model should re-attend details such as the logo and
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Figure 1: An example of InstructBLIP (Dai et al.l2023) and our MLLM enhanced by VPG-C.

brand name on the milk carton, thereby discerning its authenticity. However, to follow zero-shot
demonstrative instructions, this “reasoning-aware” capability should be acquired without the need
for supervised demonstrative instructions.

Unfortunately, we find that the reason why existing MLLMs are not effective in demonstrative
instructions is due to the lack of the above capabilities. More specifically, the crux lies in the
Visual Prompt Generator (VPG) in MLLMs. VPG, such as Q-former and Re-
sampler (Alayrac et al [2022), translates visual features into tokens recognizable by LLMs, and
the translation is trained on millions of image-caption pairs by feeding the VPG-generated tokens
of images into a frozen LLM which generates the corresponding captions. However, this image
captioning training strategy inevitably introduces the inductive bias that VPG only focuses on the
primary visual contents which are just enough for the captioning task, but tends to omit other visual
details. For example in Figure[T] the averaged attention map of InstructBLIP 2023) (Fig-
ure[T) shows a dominant focus on the primary contents, neglecting the logo detail, which is however
the key to answering the question.

To this end, we propose a lightweight Visual
Prompt Generator Complete module (VPG-C),
which can infer and complete the missing de- gm _
tails essential for comprehending demonstra- § —
tive instructions (Section 2.I). As shown Fig- Sl
ure 2] 1) VPG—C first derives the instruction-
specific guidance by intercepting the interme-
diate LLM’s output of the primary contents
extracted by a conventional VPG, and then Figure 2: An overview of VPG-C.

2) guides the VPG to recover the missing visual residual details. Finally, 3) these residual details are
then seamlessly reintegrated into the intermediate LLM’s layer via a skip connection. Together with
the original intermediate output, VPG—-C is expected to provide an improved comprehension of the
demonstration instructions. Yet, VPG—C is not ready to follow zero-shot demonstrative instructions
because the “Guide” step requires fine-tuning to specialize in missing detail recovery. Therefore,
we propose a synthetic discriminative training strategy to fine-tune VPG-C, without the need for the
expensive data collection of “detail-caption” pairs (Section [2.2).

Residual Visual Deta

To evaluate VPG-C and diagnose existing MLLMs, we build DEMON, a comprehensive benchmark
for demonstrative instruction understanding, covering 31 diverse tasks across 7 categories, as shown
in Figure[d](Section[3)). Systematic evaluation on DEMON confirms the limitation of existing MLLMs
in demonstrative instructions. Without additional demonstrative instruction data, the lightweight
VPG-C module can be effectively tuned by the synthetic training strategy in several hours with a
single A100 GPU. While computation- and data- efficient, VPG-C significantly outperforms ex-
isting MLLMs on the DEMON benchmark. Zero-shot evaluation on other multimodal instruction
benchmarks (Fu et al.} 2023}, [Ye et al.} [2023)) also indicates considerable improvement by VPG-C.

2  METHOD

2.1 VISUAL PROMPT GENERATOR COMPLETE

As illustrated in Figure 2] VPG—C is built upon the frozen LLM (Vicuna-7B (Chiang et al 2023))
and vision encoder (EVA-CLIP (Fang et al.,2023))). We adopt the widely used Q-Former from BLIP-




Published as a conference paper at ICLR 2024

2 (Li et al.} 2023c) as our visual prompt generator. VPG—C first uses the intermediate output of the
LLM to infer instruction-specific guidance. This then assists the VPG in attending to the missing
visual details from the images. By merging these residual details back via a skip connection, VPG-C
achieves a thorough grasp of the demonstrative instruction.

Given a demonstrative instruction, we first adopt the Q-former to generate general visual prompts
for each image in the instruction. Q-former takes a fixed number of K query vectors to in-
teract with image features by several cross-attention layers, and the output query representa-
tions are used as visual prompts, which are inserted into the position of their corresponding im-
ages in the instruction. We denote the input instruction for the language decoder as H° =

{h),hg, . vy, Vi, b v v, hY ), where Y represents the i-th text token
and VJQ = {v?l, e VJO- ' } represents the K visual prompts for the j-th interleaved image. Taking the

instruction as input to the L-layer language decoder, we then extract the hidden representation of
the last input token hIL\/ ? at the %-th layer, which can fully perceive the whole multimodal context

during the first % layers and contains comprehensive instruction-aware semantics. Next, we infer
the instruction-specific guidance g from hi/ ? via a linear projection layer: g = Linear(hg/ 2).

After obtaining the instruction-specific guidance from the language decoder, we compose it with a
new set of learnable queries: g + O, where Q € REXd gnd g is added to each query of Q. Then,
we reuse the same Q-former with the above conditionally generated queries to attend to residual
visual details, thus obtaining the visual prompts V; = {¥;1,...,V,x } for each image j, which
contains the complementary details missed by the original visual prompts. Finally, the transformed

V; is reintegrated with the corresponding original intermediate representations of Vf/ ®, via skip
connection: f)jL/ = VjL 24 Linear(V;), which is taken as the input to the (£ + 1)-th layer.

Efficient training. Our VPG-C module is parameter-efficient as the Q-former is frozen and only a
set of query embeddings and two linear projection layers need to be fine-tuned, which only account
for 0.09% (~6.3M) of the entire model. To stabilize the training process (Zhang & Agrawala,|2023),
we initialize the linear projection layers with zeros. Thus, at the early training stage, the input to the

SL/2 _ VL/Q

(% + 1)-th layer can be converted to: V; i ~, which will not cause any influence on LLMs.

Analysis on inserting VPG—C in the intermediate layer (%): 1) Guidance generation. Previous
studies have shown that features provided by the intermediate layer may suffice to preliminarily
understand the given input samples (Xin et al |2020) and can serve as guidance hints to improve
training (Romero et al.,|2014)). Thus, generating guidance in the intermediate layer allows the model
to form a preliminary understanding of the given instruction. Generating guidance too early could
be problematic, as the model might not have gathered sufficient contextual information to generate
effective guidance. Conversely, generating guidance too late could result in the model’s attention
being narrowly focused on what it perceives as the final answer, hindering its ability to guide the
Q-former to extract relevant details from the images. Therefore, placing the guidance generation
step in the intermediate layer strikes a balance. 2) Detail reintegration. Intermediate-layer rein-
tegration of residual visual details preserves prior knowledge and allows subsequent layers to in-
tegrate new information effectively. Reintegrating residual details too early in the pipeline might
overwrite important context, while reintegrating it too late could limit the impact on the model’s
reasoning. Therefore, the intermediate layer offers a strategic position for residual details reinte-
gration, enabling the model to reason effectively and arrive at the correct answers by leveraging the
complemented visual residual details. We further provide quantitative analysis in Section

2.2  SYNTHETIC DISCRIMINATIVE TRAINING STRATEGY

The proposed training strategy diagnoses the areas initially ignored by Q-former according to its
cross-attention maps between the queries and the image features, and generates a synthetic image
by performing several types of editing on the ignored areas. Then, an inter-image discriminative
task is formulated as describing the subtle difference between the original and the synthetic images.
Considering the edits are performed in the mostly ignored areas, VPG—C is challenged to recover
the missing details to describe the difference. An overview is illustrated in Figure 3]

Editing target identification. The Q-former takes the queries to interact with frozen image fea-
tures through several cross-attention layers and uses the output query representations as the visual
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Figure 3: Pipeline demonstration of synthetic discriminative training strategy for VPG-C.

prompts. Therefore, the cross-attention maps between queries and image features reflect the interest
of queries. We average the cross-attention maps across all layers and all queries to obtain the global
cross-attention map A, where the value A;; indicates the significance degree of the corresponding
image feature by the original task-agnostic Q-former queries. After that, we employ the advanced
vision foundation model (Kirillov et al.l |2023) to obtain all the objects with segmentation masks
in the image. Then, the significance degree of each object ®(o;) is computed based on the cross-
attention map 4 with RolAlign (He et al.,[2017), where we average the values of .4 within the mask
m, by interpolation. ®(o;) reflects what degree the visual features of object o; is extracted by the
Q-former. Thus, we select the most ignored objects based on the ®(0;) value.

Editing description generation. We define four types of editing: modifying objects, swapping
objects, deleting objects, and adding objects. Given the selected object, we instruct ChatGPT (Ope-
nAll 2023a) to generate a suitable editing description that is in harmony with the context, where
ChatGPT is prompted with the corresponding image caption and detailed object information (i.e.,
labels, positions). For adding objects, we only select BACKGROUND objects to add objects.

Synthetic image generation. After obtaining the editing description, we generate the synthetic
image using a text-to-image latent diffusion model (i.e., Blended Diffusion (Avrahami et al.|2022)).
Blended Diffusion performs local editing on the image according to the target object mask and the
editing description, thus rendering the synthetic image. To ensure quality, we filter the edited images
using CLIP similarity (Radford et al.,|2021b).

Inter-image discriminative training. Given the original image and the synthetic image pair, along
with the task instruction (“Describe the difference between the images”), the inter-image discrimi-
native training task is defined as generating sentences to describe the subtle difference between the
images. We convert the editing description to acquire the ground-truth sentences.

3 DEMON BENCHMARK

Data format. All task instances are transformed into a unified instruction-response form for zero-
shot evaluation. Formally, each instance in DEMON consists of the following components:

* Task_Instruction: provides a complete natural language definition of a given task, includ-
ing the input/output format and the task objective.

* Task_Instance: is a concrete instance of a given task that consists of demonstrative image-
text sequential context (e.g., visually-rich textbooks, specific questions about the context).

* Response: represents the target output in natural language for a given task instruction and task
instance. For classification tasks, we convert the class labels as options into the instruction and
ask the model to output the option index in natural language as the response.

Without any specific emphasis, we use the term “instruction” to refer to the combination
of Task_Instruction and Task_Instance. For each task, we manually design 10
Task_Instruction templates in natural language to increase the diversity.

Task collection and categorization. To comprehensively benchmark the demonstrative instruc-
tion following ability, we extensively gather a wide variety of multimodal datasets from different
fields and scenarios. As illustrated in Figure @ DEMON has three important properties: 1) Demon-
strative vision-language context, all the instructions contain sequences of inter-related images and
texts, such as storyboards with scripts, and textbooks with diagrams. 2) Diverse forms of complex
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Figure 4: Demonstrations and task taxonomy of the proposed DEMON benchmark.

instructions, the instructions range from designing panels for comics, to discovering differences
between surveillance images, and to conversational embodied tasks. 3) Vast range of instruction-
following scenarios, the benchmark covers multiple practical scenarios, including cartoons, indus-
trial visuals, driving recordings, recipes, etc.

Evaluation protocols. Thanks to the unified task format of DEMON, all tasks can be evaluated in a
zero-shot manner. For the open-ended generation tasks, we adopt ROUGE-L for evaluation. For the
tasks that require the models to output option indexes, we take Accuracy as the evaluation metric.
While well-formated options are provided, we empirically observe that many MLLMs struggle to
strictly follow instructions to output the option indexes but generate free-form text. Thus, when
models do not exactly output the required options, we match their outputs to one of the given options
based on the TF-IDF distance, which we find is more robust than model-based methods
2023a}[Reimers & Gurevych|,[2019). Since we explore a large number of tasks, we take a maximum
of 500 instances per task for evaluation efficiency and exclude several datasets that are difficult to
obtain and are subject to strict copyright restrictions (referred to as DEMON—-Core). Meanwhile,
we report the full version of the benchmark to facilitate future research on large-scale multimodal
instruction tuning (referred to as DEMON-Ful1l). Unless specifically stated, we use DEMON to refer
to DEMON-Core in the following.

Table 1: Detailed statistics of DEMON benchmark.

Tasks Scenarios Images Instructions Avg. Images / Instruction Avg. Words / Instruction
DEMON-Core 29 19 62.81K 18.18K 3.46 92.69
DEMON-Full 31 20 1.77M  477.72K 3.70 97.58

Benchmark analysis. Table [T] details the statistics. DEMON benchmark covers 31 tasks of 7 cat-
egories across 20 scenarios. In total, DEMON-Full includes 477.72K instruction-response pairs,
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Table 2: Average results of zero-shot evaluation on each task category of DEMON Benchmark.

Multimodal Visual Visual Relation ~Multimodal Knowledge Text-Rich ~ Multi-Image
Dialogue  Storytelling Inference Cloze Grounded QA Images QA Reasoning
BLIP-2 (Li et al.[2023c) 26.12 21.31 10.67 17.94 39.23 3353 39.65
InstructBLIP (Dai et al.|[2023) 33.58 24.41 11.49 21.20 47.40 44.40 48.55
LLaMA-Adapter V2 (Gao et al.}|2023) 14.22 17.57 13.51 18.00 44.80 32.00 44.03
LLaVA (Liu et al.|[2023) 7.79 10.70 8.27 15.85 36.20 28.33 41.53
MiniGPT-4 (Zhu et al.|[2023a) 13.69 17.07 7.95 16.60 30.27 26.40 43.50
mPLUG-OwI (Ye et al./[2023) 12.67 19.33 5.40 16.25 33.27 3247 42.50
OpenFlamingo (Awadalla et al.|[2023) 16.88 24.22 13.85 21.65 32.00 30.60 41.63
Otter (Li et al.||2023a) 15.37 15.57 11.39 16.00 41.67 27.73 43.85
VPG-C 37.50 25.20 25.90 22.15 48.60 44.93 50.28

serving as a large-scale benchmark for demonstrative instruction following. On average, each in-
struction contains 3.70 images and 97.58 words. Please refer to Appendix [B]for more details.

4 EXPERIMENTS

4.1 ZERO-SHOT EVALUATION ON DEMON BENCHMARK

Comparison with advanced MLLMs. In this section, we conduct comprehensive evaluation of our
VPG-C and the recent advanced MLLMs on the proposed DEMON benchmark. For all methods, we
choose versions with parameter sizes less than 10B. Please refer to Appendix [D] [F| for details. The
average results of each task category are summarized in Table 2] which indicates the following.

* VPG-C consistently outperforms existing models by a large margin across all categories, which
demonstrates the stronger generalizability to follow such complicated demonstrative instructions.

* While previous works mainly fine-tune on massive multimodal instruction data, VPG-C still
achieves the highest performance using synthetic training data with much lower computation cost.
This validates the effectiveness of the proposed VPG—C module and its synthetic training strategy.

* Compared with previous works that fine-tune the large-scale language decoder or visual en-
coder (i.e., LLaVA, mPLUG-Owl), our model only tunes the lightweight VPG—C module with
6.3M parameters and achieves significant performance gain.

* VPG-C exhibits significant superiority in several challenging tasks. For instance, VPG-C sur-
passes SOTA methods by 3.92% on multimodal dialogue, which requires models to effectively
associate the interleaved images mentioned in different turns of the dialogue.

Innovative findings. The extensive evaluation on DEMON benchmark reveals several key findings.

* Poor performance on demonstrative instructions. While several models (e.g., OpenFlamingo,
Otter, mPLUG-owl) have been trained on interleaved vision-language data, such as mmc4 (Zhu
et al.| [2023b)), they still struggle to perform well on the demonstraive instructions. We suppose
that while mmc4 contains sequences of interleaved images as context, the web-crawled images
are often weakly related. In contrast, the images and text in demonstrative instructions are highly
related, requiring models to deeply associate them to comprehend the task intents.

* Limited instruction following ability. Despite existing vision-language models leveraging state-
of-the-art LLMs, which have demonstrated impressive ability in following language instructions,
this competence seems to falter when dealing with complex multimodal instructions. For instance,
when tasked with selecting the correct answer from a choice list given the context of images and
texts, we observed some models inclining more towards describing the contents of the images
instead of addressing the posed questions. This is perceived as a deficiency in the image-text
alignment training process, to which we attribute the discrepancy.

* Failing to process image-choice questions. When dealing with multimodal cloze tasks, all mod-
els are limited to processing instructions that involve images as options. We hope future work to
utilize the new benchmark to make progress on this type of demonstrative instructions.

4.2 ZERO-SHOT EVALUATION ON MME BENCHMARK

We evaluate our VPG—C on the concurrently proposed MME benchmark (Fu et al., 2023) to further
illustrate its strong generalizability to follow a diverse range of single-image instructions. MME
benchmark measures both perception and cognition abilities on a total of 14 subtasks. We report
the averaged results of perception tasks and cognition tasks in Table [3] respectively. While we
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Table 3: Zero-shot evaluation of perception and cognition abilities on MME benchmark.

BLIP-2  InstructBLIP LA-V2 LLaVA MiniGPT-4 mPLUG-Owl Otter VPG-C
Perception | 1293.84 1212.82 972.67  502.82 866.57 967.34 1292.26 | 1299.24
Cognition 290.00 291.79 24893  214.64 292.14 276.07 306.43 321.07

do not use massive multimodal instruction data to fine-tune VPG-C, VPG—C still achieves superior
performance, compared with the supervised instruction-tuned models. This indicates our method
effectively overcomes the inherent limitation of VPGs and the completed residual details are also
essential for single-image instructions. Please refer to Appendix [E] for detailed results.

4.3 HUMAN EVALUATION ON GENERAL-PURPOSE LANGUAGE GENERATION

We further conduct human evaluation on the OwlEval 10
benchmark (Ye et al., [2023)), which contains 82 open-
ended questions including advertisement and poem cre- 324
ation, diagram and flowchart comprehension, and teach-
ing, etc. Specifically, we recruit 8 well-educated people
to rank the randomly shuffled responses from VPG-C, 169
MiniGPT-4, mPLUG-OwIl, OpenFlamingo, and Instruct-
BLIP. The scores range from 1 to 5 (5 means best) and are
allowed to be equal for comparable instances. As shown
in Figure@ VPG-C also demonstrates better open-ended | openFiamingo InstruclBLIP  MiniGPT-4 mPLUG-OW  VPG-G
language generation ability in various practical cases.

3.62

Figure 5: Human evaluation.

4.4 IN-DEPTH ANALYSIS

Effectiveness of individual components. We investigate the effectiveness of each component in
Table f] We start with the backbone model that uses the Q-former to generate visual prompts.
1) Instead of applying VPG~C to capture missing details, we first attempt a simple heuristic-based
method that directly extracts the less attended visual features according to the cross-attention maps
of Q-former and reintegrates them to the intermediate layer of the LLM as ours. We fine-tune a linear
layer before reintegrating with 0.5 million image-caption pairs. The results of Row 2 show that such
a sample heuristic can bring some improvement. This validates the importance of re-extracting
missing visual features from images for comprehending demonstrative instructions. 2) Then, we
replace it with VPG~-C and train it only using the image-caption pairs without synthetic training. The
results of Row 3 demonstrate that VPG—C can more accurately complete the required missing details
by leveraging the intermediate inference results of the LLM. 3) However, solely using common
image-caption data can not fully unleash the power of VPG-C. Comparing Row 3 and Row 4, we
observe a significant improvement for all tasks, indicating that the proposed synthetic discriminative
training strategy can methodically empower VPG—-C to extract missing visual details.

VPG-C can better guide VPGs. Since InstructBLIP can perform conditional visual feature ex-
traction, we implement a variant version that concatenates its initially generated answer with the
instruction as condition to re-extract features. The initial generated answer serves as an additional
heuristic from the LLM for guiding feature extraction. Then, the newly extracted visual prompts
are used to re-generate answers. For a fair comparison, we provide a zero-shot version (Row 5) and
a fine-tuned version (Row 6) using synthetic training as ours. As shown in Table 4] directly using
synthetic data and inferred answers as heuristic conditions fails to yield a notable improvement. In
contrast, VPG—C can better guide the VPG to complete the missing visual details by intercepting the
intermediate representations of the LLM. Further, VPG—C is more computation-efficient as it only
requires one full forward pass of the LLM, while the InstructBLIP variants require twice.

VPG-C works well on various language backbones. Table 4] also validates that our approach can
well cooperate with language backbones of different families (LLaMA2) and sizes (Vicuna-13B).

VPG-C can be implemented with very simple VPG. As a generic method, VPG-C can be im-
plemented with different VPGs. Beyond the widely used Q-former that is composed of multiple
Transformer blocks, we further probe the effectiveness of VPG—-C with a simpler VPG, i.e., Linear
Projection, as used in LLaVA (please refer to Appendix [C| for implementation details). Table []
Row 7 shows promising results. VPG-C can also significantly bolster the performance of a simple
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Table 4: Ablation results on DEMON Benchmark.

Multimodal Visual Visual Relation  Multimodal Knowledge Text-Rich  Multi-Image
Dialogue  Storytelling Inference Cloze Grounded QA Images QA Reasoning
1 Backbone 25.65 21.72 9.33 17.06 37.21 3242 41.30
2 +Heuristic Details 28.13 22.76 12.69 18.81 38.75 34.14 43.26
3 +VPG-C 31.76 23.62 19.12 20.09 42.53 39.68 46.71
4 +Synthetic Training 37.50 25.20 25.90 22.15 48.60 44.93 50.28
InstructBLIP 33.58 24.41 11.48 21.20 47.40 44.40 48.55
5 +Answer Condition 32.10 23.76 11.02 21.86 47.94 42.08 49.01
6 +Synthetic Training 31.76 24.32 12.78 19.87 46.58 42.36 49.82
LLaVA 7.79 10.70 8.27 15.85 36.20 28.33 41.53
7 Linear VPG 16.43 19.48 14.75 18.54 41.32 36.87 46.02
8 VPG-C-LLaMA2-7B 42.70 2476 25.50 22.95 51.00 44.93 48.68
9 VPG-C-Vicuna-13B 38.14 26.59 27.15 27.15 52.93 49.33 53.65

linear VPG, verifying the transferability of VPG—C. It is promising to adapt our generic VPG—C and
corresponding low-resource synthetic training strategy to different VPGs in the future.

Analysis on the inserted layer of VPG-C. We investi-
gate the impact of inserting VPG-C into different layers
of LLMs. We report the averaged accuracy for multiple-
choice tasks and averaged ROUGE-L for open-ended
generation tasks in Figure [ff We observe that the per-
formance is low when we insert VPG-C too early (i.e.,
4, 8) as the model might not have gathered sufficient con-
textual information to generate effective guidance. Mean-
while, inserting VPG-C too late (i.e., 24, 28) degenerates
the performance. We speculate this is due to the gener-
ated guidance being too concentrated and there not being
enough layers to integrate the residual details.

Synthetic training is data-efficient. Since our proposed synthetic
training strategy can construct challenging discriminative tasks in
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Figure 6: Performance on DEMON with
different insertion layers.

Table 5: Efficiency analysis of
synthetic training.

a targeted manner, enhancing VPG—-C’s ability to complete missing Accuracy  ROUGE-L
details, it avoids the need for a large amount of supervised demon- 16K 38.93 25.67
strative instruction data. We further investigate the impact of differ- Zég igfé ggg?
ent numbers of synthetic training data. As illustrated in Table[3] the 64K 4149 29.53
performance keeps increasing when the number of data is increased ggg 3(1)'?5 ggﬁ

from 16K to 64K. Beyond this, escalating the data count from 64K

to 80K yields only marginal enhancement. Further amplification of data eventually triggers a per-
formance dip as excessive data leads to model overfitting to the synthetic training task.

Image order sensitivity. The order of inter- o

leaved images in demonstrative instructions is &

pivotal for the compositional semantics of the &
o

instruction. Intuitively, altering the order of
images within a demonstrative instruction can B
significantly shift its semantics. Consequently, % -

15
-10

.. . ol
variations in model performance can reveal the € < | .
model’s sensitivity to the instruction semantics. \@08’

. )
An ideal model should keenly capture changes ¥ : ' ; ; ‘ : ; -0
. . . . . Multi ~ Visual Visual  Multi Knowledge Text Multi
in instruction semantics. Therefore, we visu- Modal Story Relation Modal Grounded Rich Image

. « e Dialogue Telling Inference Cloze QA  ImagesReasoning

alize the performance variations of models by QA
randomly shuffling the order of interleaved im- Figure 7: Analysis on image order sensitivity.

ages within the demonstrative instructions. Ac-

cording to Figure [/| we surprisingly find that SOTA models are less sensitive to the image order.
In contrast, VPG-C can keenly capture the semantic changes caused by the shuffled image order.
Particularly, our performance varies dramatically in multimodal dialogue, as the order of images
within these tasks is closely intertwined with the dialogue content.

Qualitative examples. As illustrated in Figure [§) VPG—C demonstrates strong abilities to perform
reasoning over complicated demonstrative instructions. For instance, in (a), VPG—-C can keenly
identify the connections between the images and thereby infer the reason that causes this unusual
phenomenon. In (b, ¢), VPG-C exhibits the ability to comprehend absurd objects through mul-
timodal conversations with humans. In (d, e), VPG-C can reasonably infer the relations among
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- M §
= ~ What's this in picture? | Q.
" Wt ranaow oo 7] S, oz [t it | )
Y —_— = This is an image of a fish. The fish is black and
This Is an image of a camera lens. Itis a type of camera a_D) | silvery, with a small mouth and eyes. It is lying on its
o_ [[ensiitisesanedicicaniialyaesadiideosiNls () | side, with ts tail and fins visible. The fish is about
Please explain the interesting point | (§ typically used in combination with a camera body to form a 5.51 inches long and 12.20 inches wide.
based on the three pictures. | &y camera system. The lens is designed to focus light onto a
film o digital sensor, which captures the image.
The third image reveals some peculiar tanned circles f,'—ﬁ IS)
on a men's feet, perfectly aligned with the holes in Is it still the fish you thought it was now? =y
the sandals shown in the second image. It might be
associated with his long-time outdoor activities since Es Are you sure this is an image of | ©§ No, | don't think it's a fish now, there are many
the first image indicates that the sun is intense. - a camera lens? (== n colored pens and a fish-like case in this picture,
ﬁ Therefore, the amusing sunburn occurs when the i . = - D | these pens should be packed in a pencil case, so this
o e 1 _C) ['m sorry. The image shows a large silver cup with a handle :
‘mhzl\s:':z::re ::;ﬁ?}ét‘:m“::gﬁ\? rsal.mllg‘:lE 3::: to 6 featuring a lens-like design. The cup is made of stainless should be a black and white fish-looking pencil case.
away from e e L e e steel and there is also a spoon resting inside the cup. o What else can this D?n‘mI case b V]
under the holes gets tanned. However, the sunlight Can this lens take photos? | 2, isadifpibesidesoldnglpens?ll dile
‘s':.n Zachzs he skin between the holes, resultng in Q ‘ No, it just designed (o look like a camera lens, ‘ @D it can also be used to hold stickers, erasers, or other
ellanned ciroles: (D [butits not a real camera lens. () | stationery, but ts fish-shaped appearance is too deceptive!

(b) (c)

\

IEY Google

= i What s the connecton | (9
pictures over time, and what does this set of IS} between these two piotures?| gy
pictures hope to show us through these changes?| €=

The first image is a gray T-shirt with Muggle text

This set of pictures mainly shows the change of a 8 printed on it, while the second image is Google's logo.
wall.In the beginning, the wall is a metal wall with What d these four piturss want o | (9 (G2 | The connection between these two images is that
only one line of writing, which has a silver shine convey 1 us? b4 their font and color scheme are very similar.
and is very clean. In the third picture, some rust _
o[ |marks appear on the wall. A man stops by and S
6 Eese et e ek ey The set of images is a creative advertisement for ook nteresting? &
some cars and a rusted wall with the outline of a animal adoption, which encourages people to take ; 9
B e e Bacatss e Word Tigae Uses he same ort
ihe autine of an unnusied ke, It demenairalesthe (& |a cage bar orthe animals bonind t. As peopl take et g pic 20 el
table qualy of the knifo by showing that L wil not o notes, animals are moro el to b adopted Do e e e
Lol (d) and freed from their cages. (e) wearing this dress look like a muggle. f

Figure 8: Qualitative examples generated by our VPG-C~-Vicuna—7B model.

the images and understand the metaphorical implications they want to convey. In Appendix |G} we
provide more practical examples as well as comparisons with other MLLMs, where we find that
baseline models fail to correctly associate multiple images and comprehend demonstrative context.

5 RELATED WORK

MLLMs aim to serve as a general-purpose assistant to perform various vision-
language tasks by free-text generation. Flamingo (Alayrac et al.,[2022) and BLIP-2
bridge LLMs with powerful pre-trained visual encoders and demonstrate strong zero-shot ability
by aligning visual features with LLMs. Follow-up works of LLaVA 2023), MiniGPT-
4 20234), InstructBLIP [2023)), Hallucidoctor 2024), mPLUG-
Owl 12023) propose to fine-tune MLLMs with multimodal instruction tuning data. To
effectively benchmark the recent progress in MLLMs, concurrent works of LVLM-eHub
2023)) and MME Benchmark are proposed, while they mainly focus on instructions
that only involve a single image with limited instruction diversity. In this paper, we propose the
first demonstrative instruction-following benchmark, covering various tasks of diverse scenarios.
Further, we propose a lightweight and generic VPG—C module to address the inherent limitation
of current VPGs. Our VPG-C is efficiently tuned by our synthetic discriminative training strategy,
which demonstrates powerful potentials of text-to-image diffusion models (He et al.}[2022} [Lin et al.}

2023}, [Prabhu et all, 2023}, [Bansal & Grover, 2023}, [Yu et all, 2023b) to facilitate vision-language
understanding (Radford et al.l 2021bj} Jia et al., 2021} |Li et al.,[2022b)).

6 CONCLUSION

In this paper, we propose VPG-C, a generic and parameter-efficient approach that infers and com-
pletes the missing visual details for MLLMs to comprehend demonstrative instructions with inter-
leaved multimodal context. Meanwhile, we present a synthetic discriminative training strategy to
fine-tune VPG—C, eliminating the need for supervised demonstrative instruction data. To foster the
research on demonstrative instruction understanding, we build DEMON, a comprehensive benchmark
for multimodal large language models, consisting of 31 tasks with complicated vision-language
demonstrative context, covering a wide range of scenarios. Through synthetic training, VPG-C
showcases notable zero-shot performance on the DEMON benchmark. Its superior performance on
other established benchmarks like MME and OwlEval further underscores its effectiveness.
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A  OVERVIEW

In this appendix, we present:

Detailed information of the proposed DEMON benchmark (Section [B].

* Implementation details of our VPG-C (Section [C).

* Implementation details of existing MLLMs on the DEMON benchmark (Section D).
* Detailed zero-shot performance on MME benchmark (Section [E).

* Detailed zero-shot performance on DEMON benchmark (Section [F).

* Qualitative comparison with existing MLLM:s (Section[G]).

B BENCHMARK DETAILS

Task Scenario Dataset Metirc
Multimodal Dialogue

Conversational Embodied Dialogue Embodied ALFRED (Shridhar et al./[2020) ROUGE-L
Multimodal Dialogue Conversation MMCoQA (Li et al.[[2022¢) ROUGE-L
Visual Storytelling i

Animated Story Completion Cartoon AESOP (Ravi et al.|[2021) ROUGE-L
Animated Story Completion Cartoon PororoSV (L1 et al.[[2019) ROUGE-L
Animated Story Completion Cartoon FlintstonesSV (Gupta et al.|[2018) ROUGE-L
Sequential Photo Storytelling Album VIST (Huang et al.[[2016) ROUGE-L
Sequential Photo Storytelling Cartoon DiDeMoSV (Maharana et al.||2022) ROUGE-L
Visual Relation Inference

Visual Change Captioning Surveillance Spot-the-Diff (Jhamtani & Berg-Kirkpatrick/2018) ROUGE-L
Visual Change Captioning Synthetic CLEVR-Change (Hosseinzadeh & Wang/|2021) ROUGE-L
Visual Relationship Expressing General 1Edit (Tan et al.|[2019) ROUGE-L
Subtle Difference Expressing Fine-Grained Birds-to-Words (Forbes et al.|[2019) ROUGE-L
Multimodal Cloze ]

Comic Dialogue Identification Cartoon COMICS-Dialogue (Iyyer et al.|[2017) Accuracy
Comic Panel Identification Cartoon COMICS-Panel (lyyer et al.[[2017) Accuracy
Recipe Completion Recipe RecipeQA-TextCloze (Yagcioglu et al.||2018) Accuracy
Visual Step Cloze Recipe RecipeQA-VisualCloze (Yagcioglu et al.|[2018)  Accuracy
Knowledge Grounded QA i

Webpage QA Webpage WebQA (Chang et al.||2022) Accuracy
Textbook QA Textbook TQA (Kembhavi et al.|[2017) Accuracy
Complex Multimodal QA Wikipedia MMQA (Talmor et al.|2021) Accuracy
Complex Multimodal QA* Wikipedia MANYMODALQA (Hannan et al.||2020) Accuracy
Text-Rich Images QA

Slide QA Slide SlideVQA (Tanaka et al.|[2023) Accuracy
OCR QA Book Cover OCR-VQA (Mishra et al.|[2019) Accuracy
Document QA Document Image DocVQA (Mathew et al.|[2021) Accuracy
Multi-Image Reasoning

Image-Set QA* Indoor Egocentric Gibson (Bansal et al.|[2020] Xia et al.|[2018) Accuracy
Image-Set QA Driving Recording nuScenes (Bansal et al.[|2020]|Caesar et al.[|2020)  Accuracy
Industrial Inspection Industrial VISION (Bai et al.[|2023) Accuracy
Fashion QA Fashion Fashion200K (Han et al.|[2017) Accuracy
Property Coherence General MIT-States-PropertyCoherence (Isola et al.||2015)  Accuracy
State Transformation Coherence General MIT-States-StateCoherence (Isola et al.|[2015) Accuracy
Visual Step Matching Recipe RecipeQA-ImageCoherence (Yagcioglu et al.|[2018) Accuracy
Multi-Image Visual Entailment General NLVR?2 (Suhr et al.|[2018) Accuracy
Ambiguity Analysis Mobile Photo VizWiz (Bhattacharya et al.[[2019) Accuracy

Table 6: Summary of the demonstrative instruction-following tasks in DEMON benchmark. * indi-
cates the tasks that are not included in DEMON-Core.

C IMPLEMENTATION DETAILS

Model. We choose ViT-G/14 from EVA-CLIP (Fang et al., |2023) as our visual encoder and pre-
trained Q-former from BLIP-2 without instruction tuning as the task-agnostic visual prompt gen-
erator. For the large language model, we implement three versions: LLaMA2-7B (Touvron et al.,
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Figure 9: Detailed framework of our MLLM enhanced with VPG-C.

, Vicuna-7B (Chiang et al},[2023)), Vicuna-13B, with 32, 32, 48 Transformer layers, respec-
tively. We derive instruction-specific conditions from the 16th / 24th layer and re-inject the condi-
tional visual knowledge into the 17th / 25th layer. Furthermore, we provide detailed framework of
our MLLM enhanced with VPG-C in Figure

Choice of Q-former. Recently, InstructBLIP proposes to take the instruction as
additional input to the Q-former and fine-tune the Q-former to extract visual features according to in-
structions using 16M multimodal instruction tuning data. While achieving outstanding performance
on in-domain tasks, a recent study indicates that fine-tuning on massive in-domain
data severely undermines its generalizability on open-world scenarios. Instead of directly relying
on the Q-former to achieve task-specific feature extraction by massive instruction tuning, we aim to
utilize the sophisticated reasoning ability of LLMs to guide the Q-former to conditionally attend to
residual visual details. Thus, we use the Q-former without instruction data tuning from BLIP-2
2023c), which extracts the task-agnostic primary visual contents at the first time.

Training. We implement VPG—C in LAVIS library [20224d). We keep the visual backbone,
visual prompt generator, and the language model frozen, and tune the VPG-C module using the
proposed training strategy. Since BLIP-2 models do not include pre-trained Q-former that matches
Vicuna and LLaMA?2, we reuse the Q-former that matches FlanT5-XXL and fine-tune the last linear
projection layer with 5 million image-text pairs to align it with Vicuna/LLaMA2. All the tunable
parameters of our VPG-C module are a set of query embeddings and two linear projection layers,
which only accounts for 0.09% (~6.3M) of the entire model. As for synthetic training, we select
about 30k images from CC3M (Sharma et al., 2018)) that contain significantly ignored objects and
perform different types of editing on them. Totally, we generate approximately 64k synthetic images
with suitable modifications. To stablize the training and avoid overfitting, we use 500k image-
caption pairs from CC3M to jointly train the VPG-C module. We tune the VPG—-C module for 18k
steps using a batch size of 24 for synthetic training and 64 for image captioning, which takes about
7 hours to complete with a single A100 GPU. Additionally, we adopt the AdamW optimizer with
B = (0.9,0.999), and set the learning rate and weight decay to 0.00002 and 0.05, respectively. We
warm up the training with 2k warm-up steps, followed by a learning rate decay mechanism with the
cosine schedule.

Implementation of VPG—C with the linear VPG. As a generic method, VPG-C can be implemented
with different VPGs. Beyond widely used Q-former that is composed of multiple Transformer
blocks, we further probe the effectiveness of VPG-C with a simpler VPG, i.e., Linear Projection,
as used in LLaVA 2023). LLaVA trains a simple linear layer as the VPG to connect
image features into the word embedding space. To implement VPG-C with the linear VPG, we
first linearly project the generated guidance g and then take it as a filter to perform element-wise
Hadamard product with the visual features X'/ from the image encoder:

V=Wig1") o (M) (1)

where W, and W are linear projection matrixes, 17 is the transpose of an all-ones vector, and ©
represents Hadamard product. The output V represents the newly-extracted missing visual details
according to the inferred guidance. And V is reintegrated into the LLM in the same manner.
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D MODEL DETAILS IN DEMON BENCHMARK

Recent advancements in LLMs (OpenAl, 2023alb) have heralded significant achievements across
various domains. Inspired by this success, many MLLMs (Li et al., [2023c} [Liu et al., 2023} Zhu
et al., 2023a; |Alayrac et al. 2022} |Ye et al., 2023} |Gao et al., 2023} |Li et al., |2023a) have been
proposed to foster generalist vision-language reasoning (Xu et al.l 2015} |Li et al.| [2023b} [2020; [Yu
et al.,[2023a; |Li et al.| 2022d; |Zhang et al., 20225 |Li et al., [2022c}; |2023d; [Zhang et al., 2019; |Antol
et al., 2015). In our experiments, we conducted comparisons with some of the most recent and
representative MLLMs in the following.

LLaVA (Liu et al.| 2023) establishes a connection between the visual encoder ViT-L/14
from CLIP (Radford et al., |2021a) and the language decoder LLaMA (Touvron et al.,
2023al), utilizing a lightweight, fully-connected (FC) layer. Initially, the system trains this
FC layer using 595K image-text pairs, while keeping both the visual encoder and LLM
static. Following this, LLaVA fine-tunes both the FC layer and LLM using a dataset com-
prising 158K instructional vision-language pairs. The tested version is “LLaVA-7B-v0”.

LLaMA-Adapter V2 (Gao et al., [2023) stands as a model of parameter efficiency within
the realm of visual instruction. Despite maintaining the visual encoder (ViT-L/14) and the
LLM in a static state, LA-V2 distributes the instruction-following capacity of the entire
LLaMA system via bias-tuning. This method allows for the refinement of scale, bias,
norm, and prompt parameters on diverse data sets. These include 200M image captioning
data, 158K visual instruction-following data, and an additional 52K language instruction-
following data, the latter of which was assembled by GPT-4 (OpenAll 2023b). The tested
version is “LLaVA-7B”.

MiniGPT-4 (Zhu et al.| 2023a) bridges the gap between the visual encoder and text en-
coder using a fully-connected (FC) layer. Initially, this model trains the FC layer on a
dataset comprised of SM image-text pairs before fine-tuning it on 3.5K instructional vision-
language data. Notwithstanding its simplicity, MiniGPT-4 requires the loading of a pre-
trained vision encoder from BLIP2, as well as a Vicuna LLM (Chiang et al.| [2023). The
tested version is “minigpt4-aligned-with-vicuna7b”.

BLIP2 (L1 et al., [2023c) employs a dual-stage strategy to seamlessly bridge the modal-
ity gap, utilizing a lean Q-Former pre-trained on 129 million image-text pairs. The initial
stage kick-starts the learning process of vision-language representation, leveraging a frozen
image encoder, the ViT-g/14 from EVA-CLIP (Fang et al.l [2023). Subsequently, the sec-
ond stage harnesses a frozen LLM, the FlanT5 (Chung et al., [2022), to initiate the vision-
to-language generative learning. This innovative strategy effectively facilitates zero-shot
instructed image-to-text generation. The tested version is “blip2-pretrain-flant5x1”.

mPLUG-OwI (Ye et al., 2023)) introduces a visual abstractor, fundamentally close the Per-
ceiver Resampler in Flamingo (Alayrac et al.,[2022), as a bridge between the pre-trained vi-
sual encoder ViT-L/14 and the LLM (LLaMA (Touvron et al.,2023a))). This model adopts
a two-stage fine-tuning procedure. In the initial phase, both the visual encoder and the
visual abstractor undergo comprehensive fine-tuning using a dataset of 204M image-text
pairs. Subsequently, in the second phase, mPLUG-Ow] applies the 158K LLaVA-Instruct
dataset to fine-tune the pre-trained LLM in a parameter-efficient manner through the use of
LoRA (Hu et al.;[2021). The tested version is “mplug-owl-llama-7b".

Otter (L1 et al., [2023a) is a multimodal model that applies in-context instruction tuning
based on OpenFlamingo (Alayrac et al., 2022). This model integrates a LLaMA-7B (Tou-
vron et al. 2023a)) language encoder and a CLIP ViT-L/14. While the visual and text
encoders remain static, Otter refines an additional 1.3 billion parameters. These parame-
ters are derived from adaptation modules and are trained using 158K instruction-following
data. The tested version is “OTTER-Image-LLaMA7B-LA-InContext”.

InstructBLIP (Dai et al.| |2023) originates from a pre-trained BLIP-2 model, which con-
sists of a ViT-g/14 image encoder, a Vicuna, and a Q-Former to act as the bridge between
these two components. During the process of vision-language instruction tuning, only the
Q-Former undergoes fine-tuning, with the training process leveraging data from 13 distinct
visual question-answering datasets. The tested version is “blip2-vicuna-instruct-7b”.
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* OpenFlamingo (Alayrac et al.,2022; | Awadalla et al.|[2023) represents one of the pioneer-
ing efforts to incorporate Language Model Learning (LLMs) into the domain of vision-
language pretraining. To optimize its conditioning on visual features, Flamingo strategi-
cally integrates a number of gated cross-attention dense blocks amidst the layers of the
pre-trained language encoder. OpenFlamingo offers an open-source rendition of this ad-
vanced model. The tested version is “llama-7b”.

The DEMON benchmark predominantly features interleaved vision-language instructions, distin-
guishing it from the traditional single-image datasets. While our innovative method, VPG-C, along
with OpenFlamingo and MiniGPT-4, inherently accommodates interleaved image-text sequences,
other models like BLIP-2, InstructBlip, LLaVA, mPLUG-Owl, Otter, and LLaMA-Adapter V2 do
not. For these, we employed a strategy where we concatenate the embeddings of all images. This
approach can be analogized to treating images as frames within a video. To maintain the positional
context of each image in an interleaved image-text instruction, we explicitly indicate the location of
each image within the context.

E DETAILED ZERO-SHOT PERFORMANCE ON MME BENCHMARK

In this section, we report the detailed performance on the 14 subtasks of MME benchmark in Table[7]

Table 7: Detailed zero-shot performance on MME benchmark.

BLIP-2  InstructBLIP LA-V2 LLaVA MiniGPT-4 mPLUG-Owl Otter VPG-C
Existence 160.00 185.00 120.00  50.00 115.00 120.00 195.00 180.00
Count 135.00 143.33 50.00 50.00 123.33 88.33 50.00 96.67
Position 73.33 66.67 48.33 50.00 81.67 50.00 86.67 80.00
Color 148.33 153.33 75.00 55.00 110.00 55.00 113.33 116.67
Poster 141.84 123.81 99.66 50.00 55.78 136.05 138.78 147.28
Celebrity 105.59 101.18 86.18 48.82 65.29 100.29 172.65 164.12
Scene 145.25 153.00 148.50  50.00 95.75 135.50 158.75 156.00
Landmark 138.00 79.75 150.25  50.00 69.00 159.25 137.25 145.00
Artwork 136.50 134.25 69.75 49.00 55.75 96.25 129.00 113.50
OCR 110.00 72.50 125.00  50.00 95.00 65.00 72.50 100.00
Perception 1293.84 1212.82 972.67 502.82 866.57 967.34 1292.26 | 1299.24
Commonsense 110.00 129.29 81.43 57.14 72.14 78.57 106.43 98.57
Numerical 40.00 40.00 62.50 50.00 55.00 60.00 72.50 77.50
Text Translation 65.00 65.00 50.00 57.50 55.00 80.00 57.50 57.50
Code Reasoning | 75.00 57.50 55.00 50.00 110.00 57.50 70.00 87.50
Cognition 290.00 291.79 24893  214.64 292.14 276.07 30643 | 321.07

F DETAILED ZERO-SHOT PERFORMANCE ON DEMON BENCHMARK

Table 8: Zero-shot evaluation on multimodal dialogue.

Conversational Embodied Dialogue ~ Multimodal Dialogue
BLIP-2 16.75 35.49
InstructBLIP 18.07 49.09
LLaMA-Adapter V2 19.04 9.40
LLaVA 10.19 5.39
MiniGPT-4 16.82 10.57
mPLUG-Owl 11.07 14.27
OpenFlamingo 24.27 9.49
Otter 16.06 14.68
VPG-C-LLaMA2-7B 48.31 37.04
VPG-C-Vicuna-7B 41.02 33.99
VPG-C-Vicuna-13B 42.25 34.02
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Table 9: Zero-shot evaluation on visual storytelling.

Animated Story

Animated Story

Animated Story

Sequential Photo

Sequential Photo

Completion-AESOP  Completion-PororoSV ~ Completion-FlintstonesSV  Storytelling-VIST  Storytelling-DiDeMoSV

BLIP-2 21.64 26.24 29.61 13.16 242
InstructBLIP 18.80 28.20 33.32 16.92 24.80
LLaMA-Adapter V2 18.01 20.15 24.22 10.89 14.57
LLaVA 13.56 11.44 12.77 8.00 7.71

MiniGPT-4 12.23 16.00 26.48 14.82 15.81
mPLUG-Owl 18.28 20.49 32.12 10.82 14.94
OpenFlamingo 23.32 3235 37.79 15.14 12.50
Otter 13.94 17.52 2221 9.96 14.23
VPG-C-LLaMA2-7B 19.98 28.67 38.14 16.95 20.05
VPG-C-Vicuna-7B 19.93 28.36 39.19 17.34 21.27
VPG-C-Vicuna-13B 20.53 29.81 41.32 19.04 22.26

Table 10: Zero-shot evaluation on visual relation inference.

Visual Change Captioning ~ Visual Change Captioning  Visual Relationship ~ Subtle Difference

-Spot-the-Diff -CLEVR-Change Expressing Expressing
BLIP-2 17.48 321 12.37 9.62
InstructBLIP 19.71 4.61 10.70 10.92
LLaMA-Adapter V2 16.72 15.52 7.88 13.92
LLaVA 8.50 8.76 6.72 9.11
MiniGPT-4 7.50 7.49 7.84 8.97
mPLUG-Owl 6.06 1.46 6.22 7.86
OpenFlamingo 13.01 11.90 12.57 17.90
Otter 12.69 11.63 8.85 12.38
VPG-C-LLaMA2-7B 21.02 42.05 14.10 24.81
VPG-C-Vicuna-7B 20.01 41.60 16.35 25.64
VPG-C-Vicuna-13B 21.56 40.67 20.27 26.08

Table 11: Zero-shot evaluation on multimodal cloze.

Comic Dialogue Identification

Comic Panel Identification

T

Recipe Completion

Visual Step Cloze!

BLIP-2 39.70 0.00 30.46 1.60
InstructBLIP 40.60 0.00 27.40 16.80
LLaMA-Adapter V2 24.40 0.40 38.20 9.00
LLaVA 30.60 0.00 32.80 0.00
MiniGPT-4 33.00 1.00 31.60 0.80
mPLUG-Owl 36.60 0.00 27.60 0.80
OpenFlamingo 38.40 1.20 29.00 18.00
Otter 29.00 0.00 35.00 0.00
VPG-C-LLaMA2-7B 36.80 1.80 51.80 1.40
VPG-C-Vicuna-7B 39.20 3.60 30.40 15.40
VPG-C-Vicuna-13B 42.20 8.20 39.80 18.40

! For tasks with images as options, only responses that begin with the correct answer will be evaluated as correct.

Table 12: Zero-shot evaluation on knowledge grounded QA.

Webpage QA Textbook QA Complex Multimodal QA

BLIP-2 47.60 29.73 40.36
InstructBLIP 45.20 30.20 66.80
LLaMA-Adapter V2 44.60 46.00 43.80
LLaVA 39.40 39.60 29.60
MiniGPT-4 27.40 28.60 34.80
mPLUG-Owl 34.20 30.00 35.60
OpenFlamingo 37.80 32.40 25.80
Otter 45.00 39.00 41.00
VPG-C-LLaMA2-7B 49.40 42.40 61.20
VPG-C-Vicuna-7B 50.00 33.40 62.40
VPG-C-Vicuna-13B 50.60 43.40 64.80
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Table 13: Zero-shot evaluation on text-rich images QA.

Slide QA°' OCR QA  Document QA
BLIP-2 43.80 10.40 46.40
InstructBLIP 42.00 44.20 47.00
LLaMA-Adapter V2 43.00 3.40 49.60
LLaVA 38.80 2.60 43.60
MiniGPT-4 35.20 7.20 36.80
mPLUG-Owl 35.60 22.60 39.20
OpenFlamingo 35.60 3.80 52.40
Otter 38.40 2.20 42.60
VPG-C-LLaMA2-7B 45.80 39.60 49.40
VPG-C-Vicuna-7B 46.80 39.40 48.60
VPG-C-Vicuna-13B 48.80 46.60 52.60

Table 14: Zero-shot evaluation on multi-image reasoning.

Image-Set Industrial Fashion  Property  State Transformation Visual Step Multi-Image Ambiguity

QA Inspection QA Coherence Coherence Matching ! Visual Entailment  Analysis
BLIP-2 34.60 42.80 43.20 59.00 38.20 0.20 53.40 45.80
instructblip7b 65.00 50.60 44.40 59.20 59.40 11.60 55.20 43.00
LLaMA-Adapter V2 41.60 55.00 45.60 48.80 63.00 0.00 54.80 43.40
LLaVA 29.60 53.00 45.20 50.40 59.20 0.80 50.80 43.20
MiniGPT-4 30.40 59.80 49.20 52.00 57.80 0.20 50.60 48.00
mPLUG-Owl 29.20 54.20 45.80 50.00 60.60 0.00 55.00 45.20
OpenFlamingo 25.80 52.20 44.20 59.60 51.40 2.20 53.60 44.00
Otter 44.80 69.80 47.00 51.40 46.40 0.00 49.00 42.40
VPG-C-LLaMA2-7B 62.60 61.40 46.00 56.60 57.80 0.00 53.80 51.20
VPG-C-Vicuna-7B 67.20 48.80 50.00 60.80 60.00 0.20 57.80 57.40
VPG-C-Vicuna-13B 73.40 54.00 51.00 63.20 63.40 2.60 60.20 61.40

! For tasks with images as options, only responses that begin with the correct answer will be evaluated as correct.

G QUALITATIVE COMPARISON

In this section, we compare our model with existing MLLMs on some complicated demonstrative
instructions.
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Please explain the interesting point
based on the three pictures.

The third image reveals some peculiar tanned circles
on a men's feet, perfectly aligned with the holes in
the sandals shown in the second image. It might be
associated with his long-time outdoor activities since
the first image indicates that the sun is intense.
Therefore, the amusing sunburn occurs when the
men’s feet are exposed to prolonged sunlight. Due to
the sandals partially blocking the UV rays, the skin
away from the holes remains untanned while the skin
under the holes gets tanned. However, the sunlight
still reaches the skin between the holes, resulting in
the tanned circles.

Please explain the interesting point
based on the three pictures.

Q
[‘e‘] ‘The sun is shining on the person's feet.

<
5
.
“0
N

InstructBLIP | )

Please explain the interesting point
based on the three pictures.

1.The picture of the blue sky and the clouds. 2.The
picture of the blue sky and the clouds. 3.The picture
of the blue sky and the clouds. 4.The picture of the
blue sky and the clouds. 5.The picture of the blue sky
and the clouds. 6.The picture of the blue sky and the
clouds. 7.The picture of the blue sky and the clouds.
8.The picture of the blue sky and the clouds. 9.The
picture of the blue sky and the clouds. 10.The picture
of the blue sky and

P

Please explain the interesting point
based on the three pictures.

Please explain the interesting point based on the
three pictures.

OpenFlamingo

J

\
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MiniGPT-4
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Figure 10: Qualitative comparison between our VPG—C and existing MLLMs.
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What do these four pictures want to
convey to us?

D@

The set of images is a creative advertisement for
Q animal adoption, which encourages people to take
@ a note with contact information that also serves as
= a cage bar for the animals behind it. As people take

the notes, animals are more likely to be adopted
and freed from their cages.

)
=)

What do these four pictures want to
convey to us?

D@

Don't eat dog meat.

InstructBLIP | )

>
N
\
What do these four pictures want to @ What do these four pictures want to @
convey to us? fny convey to us? Py
What is the message? What is the purpose of The .
y . s poster is of a dog that has been attacked by a
these pictures? What is the message? What is the P L
purpose of these pictures? What is the message? 5B precatonlc s i) E G e E] Wil 5 GED
What is the purpose of these pictures? What is the = losed 2 Rl ears Benialou The_ pesteclRlaced
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What is the message G2 (e
\ OpenFlamingo| MiniGPT-4|
- —/ —

Figure 11: Qualitative comparison between our VPG—-C and existing MLLMs.

What changes have occurred to this wall in the
pictures over time, and what does this set of
pictures hope to show us through these changes?

This set of pictures mainly shows the change of a
wall. In the beginning, the wall is a metal wall with
only one line of writing, which has a silver shine
and is very clean. In the third picture, some rust
marks appear on the wall. A man stops by and
stares at the wall. In the third image, there are
some cars and a rusted wall with the outline of a
knife. The last picture is already a rusted wall and
the outline of an unrusted knife. It demonstrates the
stable quality of the knife by showing that it will not
rust after a long time.

VPG-C

What changes have occurred to this wall in the @
pictures over time, and what does this set of
pictures hope to show us through these changes?

InstructBLIP

What changes have occurred to this wall in the
pictures over time, and what does this set of
pictures hope to show us through these changes?

The wall is a blank canvas, and the artist is
the one who paints it. The artist is the one
who paints the wall, and the wall is the one
who paints the artist. The wall is the one who
paints the artist, and the artist is the one who
paints the wall. The wall is the one who
paints the artist, and the artist is the one who
paints the wall. The wall is the one who
paints the artist, and the artist is the one who
paints the wall. The wall is the one who
paints the artist, and the artist is the one who

What changes have occurred to this wall in the @
pictures over time, and what does this set of
pictures hope to show us through these changes?

MiniGPT-4

OpenFIamingo)

/)

Figure 12: Qualitative comparison between our VPG—-C and existing MLLMs.
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M gle Mo gle
=¥ Google ==V Google
/ What is the connection @ / What is the connection
_ between these two pictures? | &2 _ between these two pictures? | &=,
Q The first image is a gray T-shirt with Muggle text
printed on it, while the second image is Google's logo.| Q.
°’JP | The connection between these two images is that o)
their font and color scheme are very similar.
What makes this set of pictures @ What makes this set of pictures @
look interesting? [ look interesting? Py
Because the word 'muggle’ uses the same font and This can be seen as a clever play on words
Q color scheme as Google's logo, and their (=) or a subtle reference to the popular Harry
== pronunciation is very similar. Its humor lies in using a @ Potter franchise, where the term \"Muggle\"
o homophonic stem and making the person wearing = is used to describe non-magical people in
\ this dress look like a muggle. VPG-C | ) \ the wizarding world. InstructBLIP|
. > 4
7~ 7~ ™
( ™ / \
\ ¥
| \ | \'
=V Google =V Google
/ What is the connection @ g What is the connection
i between these two pictures? | €&y { between these tw tures? | €
a Google, Muggle, Harry Potter, J.K. Rowling, a The image shows the word \"google\" written in red,
Wizarding World, Wizard, Witch, Wizarding, blue, and green letters on a white background. It is
°c°)P | Wizarding World of Harry Potter, Universal Orlando °c’JJ) |an example of how the color scheme can be
Resort, Universal Studios Florida, Universal Orlando, changed in different ways.
What makes this set of pictures @ What makes this set of pictures @
look interesting? P look interesting? [an)
The first image is a gray T-shirt with Muggle
Q text printed on it, while the second image is Q
@ Google's logo. The connection between these oo
= two images is that their font and color : =
\ scheme are very similar. OpenFIamlngo / \ MiniGPT-4 )
= > T >4

Figure 13: Qualitative comparison between our VPG—-C and existing MLLMs.
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F1em12.20in g Icm/12.20in " | Whatis this in picture? 2,
This is an image of a fish. The fish is black and Q
silvery, with a small mouth and eyes. It is lying on its =
side, with its tail and fins visible. The fish is about 2
5.51 inches long and 12.20 inches wide.
Is it still the fish you thoughtit | @ Is it still the fish you thoughtit |
was now? [ was now? [
No, | don't think it's a fish now, there are many
Q colored pens and a fish-like case in this picture, Q ——
°-°)]) [these pens should be packed in a pencil case, so this °?)P | Yes, itis still the same fish.
should be a black and white fish-looking pencil case.
What else can this pencil case be @ What else can this pencil case be @
used for besides holding pens? |2 used for besides holding pens? |2y
Q It can also be used to hold stickers, erasers, or other Q Here are some possible uses:\n\n1. Desk
o)) | stationery, but its fish-shaped appearance is too %)) | @ccessory: The pencil case can serve as a
(=) deceptive! ) decorative desk accessory, adding a touch of
\ VPG-C \ whimsy and personality to your workspace. InstructBLIP )
= N\ —/
7~ ~ ™\
( — A /
g gl %
El 2 T )
o o B N N
o o Ly
5
J1em/12.20in Whatis this in picture? g' [ — What is this in picture? g‘
=) "This is an image of a fish. It is lying on its side with
1.13cm2.13cm 3. 13cm4.13cm 5. 13cm 6. 13 its tail flipped up and its mouth open. The image is
cm7.13cm8.13cm 9. 13 cm 10. 13 cm 11. black and white and has a scale on the side of the
fish.
Is it still the fish you thought it @ Is it still the fish you thought it @
was now? P was now? [y
This is an image of a fish. The fish is black and ” X ,
Q silvery, with a small mouth and eyes. It is lying on its Q ll;lo, |ts|not§ fISh‘. Itsfa Ia(glqe, ?Iaclk cadtﬁsh that Eas
°c*)P [side, with its tail and fins visible. The fish is about 7)) | 226N placed on fop of a pile of colored pens an
5.51 inches long and 12.20 inches wide. = pencils.
What else can this pencil case be @ What else can this pencil case be @
used for besides holding pens? |2y used for besides holding pens? |2y
(@) It can be used to hold other things, like a Q The fish is black and silvery, with a small
%)) |Pencil, aruler, a pencil sharpener, a rubber, mouth and eyes. Itis lying on its side, with
=" | pencil eraser, a pencil sharpener, a pencil °c*JJ) | its tail and fins visible. The fish is about
\ sharpener, a pencil sharpener, OpenFlamingoj \ 5.51 inches long and 12.20 inches wide. MiniGPT-4 )
N~ - —/

Figure 14: Qualitative comparison between our VPG—-C and existing MLLMs.
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What is it and how to
use it ?

This is an image of a camera lens. It is a type of
camera lens that is designed to capture images and
videos. It is typically used in combination with a
camera body to form a camera system. The lens is
designed to focus light onto a film or digital sensor,
which captures the image.

Are you sure this is an image of
a camera lens?

0
=

I'm sorry. The image shows a large silver cup with a
handle, featuring a lens-like design. The cup is made
of stainless steel and there is also a spoon resting
inside the cup.

10

\ Can this lens take photos?

D

What is it and how to
use it ?

S}

-

s

Are you sure this is an image of
a camera lens?

Q
S

P
I
Q
> ‘Yes, | am sure this is an

image of a camera lens ‘

\ Can this lens take photos? \

S,

e

C &
Q ‘No, it's just designed to look like a camera lens, but ‘ E@ﬁ ‘Y i S ‘
°c°J]) lit's not a real camera lens. °° s, a camera lens can take photos.
\[= VPG-C | ) \|"= InstructBLIP |
N > N /
N\ ~ N\
AW/
Whatis it and howto | Whatis itand how to | @
useit? o use it ? P>
The EOS 1000D is a 10.1 megapixel entry-level This is an image of a camera lens. It is a type of
DSLR camera announced by Canon on 26 June Q camera lens that is designed to capture images and
2008. It is the successor to the EOS 450D and the =7\h | videos. Itis typically used in combination with a
predecessor to the EOS 1100D. The EOS 1000D is 2 camera body to form a camera system. The lens is
the first DSLR camera to use the new EF-S 18- designed to focus light onto a film or digital sensor,
55mm f/3.5-5.6 IS lens. which captures the image.
Are you sure this is an image of @ Are you sure this is an image of @
a camera lens? Py a camera lens? P %
Q " 3 Q I'm sorry. The image shows a large silver cup with a
(nvnl :::?k?nm?;esgke I?r:?\féfeslj?:%/r:;‘ ":l: :‘_‘; wir:]at t):) ou °°)]) |handle, featuring a lens-like design. The cup is made
'I’Y 9 t V. hat tryi yt rying of stainless steel and there is also a spoon resting
say. I'm not sure what you are trying to say. R fEE,
Can this lens take photos? \ @ Can this lens take photos? \ G:
Q Ve - - Q —— - -
@ es, itcan. Itisa camera lens. It is ‘ @ No, |tSJU§It designed to look like a camera L
\ ) designed to capture images and videos. OpenFIamlngoj \ cl lens, but it's not a real camera lens. MiniGPT-4
N . -

Figure 15: Qualitative comparison between our VPG—C and existing MLLMs.
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