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Abstract

Task-specific fine-tuning of pre-trained lan-
guage models like Transformers has shown
their effectiveness in various NLP tasks. To
achieve better storage efficiency and model
performance, Multi-task Learning (MTL) has
been studied to share model parameters
and utilize knowledge transfer between tasks.
However, in real applications where enormous
numbers of tasks (e.g., large sets of labels
to be classified) need to be conducted on a
large corpus, the inference efficiency is still
hindered by the number of tasks. For a doc-
ument with [V sets of labels to be predicted,
recent MTL methods with adaptive modules or
prompts need to encode the input data [V times
to extract the hidden representation needed for
the tasks. Notice that the hidden represen-
tation is not sharable between tasks, as task-
specific features are extracted at very bottom
layers in the Transformer. In this paper, we
seek to maintain the computational efficiency
of only requiring one forward pass for a doc-
ument to get a generalized feature for all N
tasks, without sacrificing overall model perfor-
mance. We design a prompt-sharing module
to let the model take all tasks into considera-
tions and output N heads simultaneously. We
also design a dynamic task scheduling mod-
ule to sample tasks according to their training
progress. In our evaluation, we show that our
method is able to outperform previous MTL
state-of-the-arts and single task fine-tuning by
0.4 — 1.5% on GLUE benchmark dataset. We
also perform comprehensive module analysis
to demonstrate the effectiveness and robust-
ness of our method.

1 Introduction

Multi-task Learning (MTL) is inspired by the abil-
ity of humans to transfer knowledge between tasks.
As the prevailing pre-trained langauge models like
Transformers (Devlin et al., 2019; Liu et al., 2019b;
Clark et al., 2020) are becoming gradually large-
sized (Raffel et al., 2020; Brown et al., 2020), it

would be storage consuming for researchers to
maintain separate fine-tuned models for each down-
stream task. Thus, the advantage of MTL that
shares a large proportion of model parameters be-
tween tasks is of great importance. In addition,
recent MTL studies develop advanced techniques
to achieve good model performance by effectively
leveraging knowledge transfer between tasks. Con-
ditional adaptive modules (Pilault et al., 2021) are
inserted between layers to extract task-specific fea-
tures. Prompt-based methods (Lester et al., 2021;
Li and Liang, 2021) also output task-specific repre-
sentations by prepending task-specific prompts to
the embedded input.

However, when it comes to real-world applica-
tions such as document classification for a large
corpus, there can be enormous sets of labels/tasks
to be predicted for each document, and efficient
inference is extremely important. For a document
with N sets of labels to be predicted, recently de-
veloped MTL models need to do /N forward passes
to get the hidden representation for each task. This
is because either the adaptive modules or prompts
will extract the task-specific features at bottom lay-
ers of Transformers and the intermediate features
can no longer be shared among tasks. On the other
hand, the traditional MT-DNN (Liu et al., 2019a)
meets the "one forward pass" requirement by shar-
ing the whole Transformer backbone attached by
task-specific linear layers, but the hard-sharing
mechanism leads to possible negative transfer, mak-
ing the model performance lower than adaptive and
prompt-based methods.

In this paper, we aim to develop a multi-task
learning algorithm that can maintain the inference
efficiency to output a generalized representation
for all tasks in one forward pass, without sacrific-
ing overall model performance. To achieve this
goal, we design a prompt-sharing module that con-
catenates all task-specific prompts prepended to
the embedded input, which ensures that the model



takes all tasks into consideration and outputs N
heads simultaneously. However, since such a so-
lution can impair model performance because of
negative transfer between tasks, we propose to stop
the gradients of other prompts and only backprop-
agate the gradients for prompts corresponding to
the given task being trained. We further add shared
prompts to allow for large tasks to expand their
prompt capacity. Moreover, training on a set of
tasks can be challenging with various task sizes
and difficulty. To avoid overfitting to a subset of
tasks, we propose to perform dynamic task schedul-
ing. Following (Sharma and Ravindran, 2017), we
cast the problem as a multi-armed bandit problem.
We design an algorithm based on the Upper Con-
fidence Bound (UCB) solution to probe the model
performance periodically to balance over the cur-
rent metrics and the exploring potential of tasks.
Our model is named MTOP, for Multi-Task learn-
ing for inference with One forward Pass.

To demonstrate the effectiveness of our pro-
posed method, we conduct multi-task experiments
on GLUE benchmark (Wang et al., 2018) and
show that our method can outperform previous
MTL state-of-the-art and single task fine-tuning
by 0.4 — 1.5%. We also conduct comprehensive
module analysis to demonstrate the effectiveness
and robustness of our method.

2 Related Work

Multi-task Learning (MTL), which was inspired by
the ability of humans to transfer knowledge from
previously mastered activities to new ones, has
been applied to a wide range of tasks beyond the
field of NLP (Caruana, 1997; Ruder, 2017; Don-
ahue et al., 2014). Recent studies in NLP also
make successful efforts to train multitasking mod-
els to outperform independently fine-tuned ones
on the benchmark datasets. MT-DNN (Liu et al.,
2019a) uses a shared backbone architecture (e.g.,
BERT) and task-specific classification heads to op-
timize corresponding task loss, while BAM (Clark
et al., 2019) learns a multi-task model by distilling
knowledge from single-task teacher models. With
the growing size of language models, light-weight
tuning methods are proposed to reduce the num-
ber of parameters needed for training a multitask
model. Prompt-based methods and adaptor-based
methods (Pilault et al., 2021) have shown to achieve
higher performance than single task models.

2.1 Prompt-based Methods

Prompts are typically task descriptions or examples
prepended to the input of language models. For ex-
ample, GPT-3 (Brown et al., 2020) takes manually
designed prompts as guidance to generate answers
for specific tasks. Prompt engineering (Jiang et al.,
2020; Schick and Schiitze, 2021; Shin et al., 2020)
has been studied to search for high-quality tem-
plates manually or automatically. However, the
non-differentiable nature of discrete tokens can
lead to non-optimal results, which motivated the
introduction of soft prompts, where continuous vec-
tors replace discrete tokens. Prompt tuning (Lester
et al., 2021) prepends k tunable soft prompts to in-
put tokens per downstream task. Prefix-tuning (Li
and Liang, 2021) prepends continuous task-specific
vectors to each layer in the encoder.

2.2 Adapter-based Methods

Adapters are small trainable modules parameter-
ized by task-specific embeddings. These modules
are inserted into, or used to replace, key modules to
make the transformer model adaptive to new tasks,
so that it can project the original rich information
to a task-related space. (Houlsby et al., 2019) adds
a feed-forward bottleneck and fine-tunes the layer-
norm of each Transformer layer. CA-MTL (Pilault
et al., 2021) remodulates the self-attention layer,
normalization layer, embedding projection layer,
and bottleneck layer by conditional weight trans-
formation specified by task-specific vectors. By
integrating local task modules to the global task ag-
nostic module, (Stickland and Murray, 2019), (Ma-
habadi et al., 2021), and (Tay et al., 2021) mix effi-
cient adapters to BERT or T5 (Raffel et al., 2020).

2.3 Optimization-based Methods

While the above approaches mostly focus on modi-
fications of model architecture, training on diverse
datasets can still be challenging due to possible
negative transfer or unbalanced training between
tasks. Optimization for MTL is broadly studied
to mitigate the issues via gradient modulation and
task scheduling. Traditional approaches sample
tasks uniformly (Caruana, 1997) or proportionally
to data size (Sanh et al., 2018), thus may cause
underfitting or overfitting for various task sizes.
Subsequent studies have explored dynamic sam-
pling strategies based on the current performance
of the model: (Gottumukkala et al., 2020) uses
the gap between current metric and the best met-



ric from single task models to reweight the tasks,
and CA-MTL (Pilault et al., 2021) uses an entropy-
based uncertainty to reweight classification tasks.
(Sharma and Ravindran, 2017) studies MTL in re-
inforcement learning and casts the problem as a
multi-armed bandit problem, picking the task with
the highest reward in every episode.

Another line of work focuses on eliminating con-
flicting gradients from multiple tasks. PCGrad (Yu
et al., 2020) checks the gradient vectors from mul-
tiple tasks and removes the contradictory compo-
nents if their cosine similarity is smaller than zero.
GradVac (Wang et al., 2021) takes a step further to
actively update gradients when tasks are positively
related. Due to numerous variations of the pairwise
gradient modulation between a large number of
tasks, in our work we still focus on dynamic task
scheduling.

3 Methodology

3.1 Our Prompt Sharing Design

In this section, we will introduce our design of
prompt tuning on multi-task problems. Specifi-
cally, we will first introduce the preliminary on
prompt tuning in Sec. 3.1.1, and then introduce our
own design to cope with the multi-task setting in
Sec. 3.1.2 and Sec. 3.1.3.

3.1.1 Preliminary on Prompt Tuning

Consider we have a pre-trained Transformer model
with pre-trained weights ¢. A traditional classifi-
cation model takes a sequence of tokens X with
length Lg as input and takes the output of Trans-
former at the [CLS] token to calculate the class
probability Pry(y|X ). In prompt-based methods, a
set of task-specific prompt tokens P with length L
are prepended to the input and fine-tuning targets at
an optimization of arg maxp Pry(y|[P; X]) with
the pre-trained weights ¢ fixed. In GPT-3 (Brown
et al., 2020), the prompt tokens P are manually
selected from a fixed vocabulary with fixed em-
beddings. In prompt tuning (Lester et al., 2021),
the soft prompt tokens are a new set of parameters
P¢ € RE*4 which can be updated during train-
ing, with d being the dimension of hidden repre-
sentations. Thus we can rewrite the objective as
maximizing Pry(y|[P¢; X¢]), where X € is the em-
bedding matrix of the input sequence X. While in
prompt tuning methods, the pre-trained weights ¢
are often kept fixed in few-shot learning setting, in
a multi-task fully supervised setting where tasks

enjoy various sizes, difficulty levels and types of
loss functions, we found updating ¢ as well as P°
can benefit the final performance and encourage
positive transfer among tasks.

3.1.2 Concatenating Prompts from Multiple
Tasks

A simple way for fine-tuning N multiple tasks with
prompts is to initialize a prompt tensor Py €
RNxLxd " and slice through the first dimension
to get PS¢ RE*4 which can be prepended to
the input when training on task ¢, as pictured in
Fig. 1(a). This approach is not a good fit for our
goal to get multiple task outputs for a document in
one forward pass. This is because to achieve the
above goal, the hidden representations in a model
should be shared among tasks until the very last
task-specific classification layers. However, dif-
ferent prompts prepended with the same input se-
quence will lead to different hidden representations
after the first layer of the encoder, thus the fol-
lowing layers can not be shared by multiple tasks
as well. To enable hidden representations sharing
for multiple tasks, a direct way can be concate-
nating prompts for different tasks to get a shared
prompt pool {Pf, ..., P§} € RWVDIXd which is
later prepended to the input sequences, as shown
in Fig. 1(b). On the output side, the classification
layer is no longer attached to the [CLS] token, but
to an average pooling layer over the hidden outputs
of corresponding task prompts. We notate the hid-
den outputs of the transformer model as H, which
has the size of RUVE+Lo)xd with L as the length
of input data. Then the output class probability of
task ¢ is calculated by:

w=7 > H ()

Prd,(yi) = Softmax (VZ o (Wiai + b)) 2)

where H ; is the j-th sliced vector along the first
dimension of H. Notice that different from using
the [CLS] token to be sent into the classification
layer, leveraging the hidden outputs of correspond-
ing prompts can be conceptually seen as using dif-
ferent [CLS] tokens for different tasks.

3.1.3 Gradient Stopping for Sharing Prompts

The above direct way of sharing prompts does not
lead to a good performance, which we will show in
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Figure 1: Paradigms of multi-task prompt tuning. (a) Task-specific prompts are prepended separately to the input
and the Transformer outputs separate representations for different tasks. (b) The prompts for multiple tasks are
concatenated together and prepended to the input. The output hidden representation of Transformer are shared by
classification layer of all tasks. (c) The output hidden representation of Transformer are shared by classification
layer of all tasks. However, there is only gradient backpropagation for prompts corresponding to the task being
trained. (d) Our Final Model: Adding shared prompt tokens to (c). This allows the model the flexibility to expand

prompts for larger tasks.

our experiments in Sec. 4.4. This is due to possible
negative transfer between tasks. For example, when
training a batch of data in task ¢, backpropogation
not only updates the corresponding prompt embed-
ding P7, but also affects irrelevant prompt embed-
dings Pf(j #14,1 <j < N).

Given the above concern, we only allow the
gradients of task i to backpropagate to prompt
embedding P, and stop the gradients for other
prompts, as shown in Fig. 1(c). The gradient-
stopping prompt sharing benefits the performance
of the model in two aspects: (1) Multiple prompts
are input together into the self-attention modules
so related tasks are easy for the Transformer model
to identify and refer to; and (2) non-related tasks
will less likely impair the results of each other
due to the gradient stopping policy. We notate the
shared prompt pool with gradient stopping policy
as PS = {Pf, ..., PG} e RIND)xd,

In our experiments, we empirically discover that
combining P¢ with another shared prompt P§ €
RL' %4 Jeads to the best performance, as shown
in Fig. 1(d). Our reasoning is that the optimal

length of prompts varies by task sizes, and the
shared prompts allow the flexibility for large tasks
to expand their prompt capacity. In our final model,
the input to the text encoder is [ﬁg, Pg; X¢] and
the output probability of task i is derived by Eq.(1)
and Eq.(2).

3.2 Dynamic Task Scheduling

Prior studies on multi-task learning typically sam-
ple tasks uniformly or proportionally to task size,
while some recent studies (Gottumukkala et al.,
2020; Pilault et al., 2021) adopt dynamic sam-
pling strategies to select the most needed task dur-
ing model training. In our paper, we refer to a
study (Sharma and Ravindran, 2017) in Reinforce-
ment Learning (RL) and cast the problem as a
multi-armed bandit problem with discounted re-
wards. We first introduce the preliminary on multi-
armed bandit problem and its discounted version in
Sec. 3.2.1 and then introduce our own adaptations
in Sec. 3.2.2.



3.2.1 Preliminary on Multi-armed Bandit
Problem

The multi-armed bandit problem aims to reach the
maximum expected reward by a strategy to select a
sequence of actions/arms. This can be comparable
to our goal of reaching the optimal performance
within a fixed amount of training steps on different
tasks. The Upper Confidence Bound (UCB) algo-
rithms (Auer et al., 2004; Auer and Ortner, 2010)
are often used for solving bandit problems, which
balances between exploitation and exploration of
arms. At time step ¢, the action taken can be se-
lected by:

logt

ni(a)

A; = arg max [Qt(a) +c } 3)

where Q¢(a) is the exploitation reward of action
a and the second term indicates the exploration
bonus of a, which decreases as n;(a) (the number
of times action a has been taken) accumulates.

To apply the algorithm to multi-task learning,
(Sharma and Ravindran, 2017) regards A; as the
task chosen at step ¢ and relates (Q¢(a) to the perfor-
mance (e.g., Fl1-score on dev set for classification
problems) of task a at step t. They further point out
that different from stochastic multi-armed bandit
problems that have stationary rewards, in multi-
task learning, the more times a task is chosen, the
less reward that task gains. A discounted UCB al-
gorithm is applied in their study which discounts
Q+(a) and ns(a) by a factor ~y as the training step
grows.

3.2.2 Our Adaptations

Directly applying the discounted UCB algorithm to
our setting is problematic for two reasons: (1) Un-
like (Sharma and Ravindran, 2017) that calculates
reward (Q¢(a) as the gap between a target score and
the current score, we are unable to acquire a suit-
able “target” score for each task unless performing
single-task fine-tuning in advance; and (2) their
study updates Q;(a) at every step, but obtaining a
metric value on dev set at every training step can
be prohibitively expensive.

In our dynamic task scheduling algorithm, we
define a metric probing interval I to update @QQ;(a).
Attime step t = K - I, we update the exploitation
reward Q¢(a) for each task a to be the sum of its
discounted history and the improvement over [
steps, divided by the discounted time steps trained

Algorithm 1: Dynamic task scheduling.

Input: Pre-trained model Myyr and N tasks to be
trained in a multi-task setting. Metric probing
interval I, discounted factor v, exploration
weight c.

Output: A fine-tuned model Myur, on multiple tasks.

1 fora < 170 N do
Qo(a) <+~ 0;
no(a) < 0;
/[Train for T steps;
Vg < 7'
forj < 0t T/I —1do
if j > O then
fora < 1t N do
| Qi) - Eq. (4);
fork < 1t01do
Select task A; by Eq. (6);
fora < 1t0 N do
‘ ni(a) < Eq. (5);
Train Mmur on task A for 1 step;
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where 7, is the discounted factor for Q;(a), and
my¢(a) is the metric value of model at step K - I on
dev set. In experiments we will demonstrate our
design of using performance progress between I
steps is better than using the gap between the target
metric and current metric as proposed in (Sharma
and Ravindran, 2017).

Between step K - [ and (K + 1) - I, we keep
Q¢(a) fixed but update the discounted number of
steps n(a). When task A; is selected, ni(a) is
updated as:

ne(a) = yni—1(a) + L(a = Ay) (5)

We set 7, = ~! to keep the same discounting
progress inside and outside the I steps. Our task
selection strategy is as below:

log >, ne(a) .

ni(a)

Ay = arg max {Qt(a) + c\/ w(a)*| (6)
Notice that we modify the exploration term with
w(a) being the size of task a, indicating that the
exploration term samples tasks proportionally to
their sizes when o = 1. To avoid catastrophic
forgetting on small tasks, we refer to the "annealed
sampling” in (Stickland and Murray, 2019) to train
on tasks more equally towards the end of training,
and set « to gradually decrease by:

e—1

—1-08
@ E—1
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Methods COLA MNLI MRPC QNLI QQP RTE SST-2 STS-B AVG
Single Task 63.2 884/879 892 929 723 696 957 883 824
MT-DNN 623 88.1/87.2 872 928 724 806 952 888 834
Prompt Tuning 60.6 87.8/87.0 894 930 72.0 80.8 952 889 834
P-Tuning v2 60.2 87.8/86.9 88.6 9277 725 792 942 89.2 83.0
CA-MTL 612 87.7/87.2 89.0 927 76.0 79.0 942 885 835
MTOP (w/o DTS) 63.6 87.7/87.4 88.9 9277 721 80.8 952 89.1 83.7
MTOP 65.1 87.4/86.6 84 927 72.0 8l1.1 952 885 83.9

Table 1: Performance of all methods on test set of GLUE benchmark. Reported metrics: F1 scores for QQP/MRPC,
spearman’s correlation for STS-B, matthew’s correlation for CoLA and accuracy for other tasks. MTOP is our
complete method and MTOP (w/o DTS) is our proposed method without Dynamic Task Scheduling (DTS).

where e is the current epoch number and E is the
total number of training epochs. An overall dy-
namic task scheduling algorithm is described in
Algorithm 1.

4 Experiments

In this section, we demonstrate the effectiveness of
our proposed method MTOP on the GLUE bench-
mark dataset (Wang et al., 2018). We also provide
a series of module analysis to evaluate the perfor-
mance of each module.

4.1 Experiment Setup

We use ELECTRA-base (Clark et al., 2020)" as
the backbone model for our method and baselines,
and set the maximum sequence length to be 128.
We choose the best hyperparameters based on the
model performance on GLUE dev set, and then use
the best model to predict on GLUE test set. The
hyperparameters are listed below: For prompt shar-
ing, we use 4 task-specific prompt tokens per task
in GLUE and 32 shared prompt tokens. For dy-
namic sampling, we obtain the model performance
ateach I = 1000 step. We set the discounted factor
v = 0.99 and the exploration weight ¢ = 2e—5.
For dataset training, we use a batch size of 16 for
each task, and let the model train for 5 epochs. For
optimization, we set the learning rate to be le—5
and use linear warm-up schedule.

4.2 Compared Methods

We compare with several important multi-task
learning baselines and recently proposed prompt-
tuning methods, as well as the single-task fine-
tuning methods. For all baselines, we load

"There are two base ELECTRA models trained from dif-
ferent datasets. Here we use the base++ version derived from
the XLNET dataset.

ELECTRA-base model as the encoder. The com-
pared methods are listed below:

* Single Task: Single task fine-tuning on each
GLUE task independently.

e MT-DNN (Liu et al., 2019a): A multi-task deep
neural network that uses the transformer encoder
as a shared architecture among tasks, and the top
layer is attached to task-specific linear layers.

e Prompt Tuning: The vanilla prompt tuning in
(Lester et al., 2021) where task-specific prompts
are trained on each task.

e P-Tuning v2 (Liu et al., 2021): A recently pro-
posed advanced deep prompt tuning method that
adds independent prefix tokens in each trans-
former layer.

e CA-MTL (Pilault et al., 2021): The current state-
of-the-art model for multi-task learning that uses
adaptive modules parameterized by task embed-
dings.

For our own method, we report on two variations:

* MTOP (w/o DTS): Our proposed prompt-
sharing module without Dynamic Task Schedul-
ing (DTS), only sampling tasks proportionally to
their sizes.

e MTOP: Our complete proposed method with
prompt sharing and dynamic task scheduling.

4.3 Evaluation on GLUE

We evaluate our proposed model MTOP as well as
other baseline methods on GLUE test set of 8 tasks
in Table 1. As shown in the table, the multi-task
learning methods have higher average score than
the single task fine-tuning method, indicating the
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effectiveness of sharing the same backbone archi-
tecture between tasks. MTOP (w/o DTS) performs
better than other prompt-based methods, showing
that our proposed prompt-sharing module extracts
better task-related features. The CA-MTL method
is the current state-of-the-art on multi-task learn-
ing, but it overfits too much to the QQP dataset
and is not better than ours on the average score.
This is because they calculate classification un-
certainty based on shannon entropy to sample the
tasks, thus weighing QQP dataset too much due to
its F1-score being around 70 (compared to other co-
trained tasks with metrics around 80 or 90). Among
all the methods, MTOP achieves the best aver-
age score, and performs especially well on smaller
tasks (COLA, MRPC and RTE). This shows that
smaller tasks benefit more from multi-task learn-
ing, and dynamic task scheduling further improves
the results by balancing between large and small
tasks. As the trade-off, we notice metric for larger
task like MNLI slightly drops. We consider there
is still headroom for the proposed multi-task model
to improve.

4.4 Analysis on Prompt Sharing Module

To analyze the prompt sharing module, we disable
the dynamic scheduling and contrast over five dif-
ferent prompt settings: (1) using no prompts and
only do task-specific fine-tuning as a baseline; (2)
Fig. 1(a): using the prompt-tuning (Lester et al.,
2021) method that prepends task-specific prompts
to corresponding inputs; (3) Fig. 1(b): concatenat-
ing all task-specific prompts to be shared by all
inputs; (4) Fig. 1(c): concatenating task-specific
prompts for all inputs but stopping the gradient for

prompts of other tasks; and (5) Fig. 1(d): combin-
ing gradient-stopping task-specific prompts with
shared prompts. We show the performance on
GLUE dev set under these settings in Fig. 2(a).
The results clearly shows that concatenating the
task-specific prompts only does not help knowl-
edge transfer between tasks and can even harm the
original prompt-tuning method. However, if we
allow the gradient of a task to only propagate back
to its own prompts and stop updating the other
prompts, the results can be better than prompt-
tuning. Adding shared prompts further improve
the results, since shared prompts allow the flexibil-
ity for large tasks to expand their prompt capacity.

We perform hyperparameter study for prompt-
sharing module by varying the length of task-
specific/shared prompt tokens, and show the model
performance in Fig. 2(b). Overall, the model per-
forms best when the number of task-specific and
shared prompt tokens per task are 4 (32 prompt
tokens on 8 GLUE tasks), and is quite stable when
the prompt length is even smaller. This indicates
that our proposed method is robust and does not
require a large set of new parameters.

4.5 Analysis on Dynamic Task Scheduling

For dynamic task scheduling, we first demonstrate
four options for updating the exploitation reward
Q)+(a) and their performance on GLUE dev set in
Fig. 3(a). ‘Metric Diff’ is our choice that calcu-
lates the performance gap between I steps, while
‘(1-Metric)’ indicates the gap between target per-
formance (set to 1) and current performance. ‘Inde-
pendent’ means that the exploitation reward Q(a)
for each task is calculated independently accord-
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from 15 runs.

ing to Eq. (4), while ‘Weighted’ means we add up
Q¢(a) for all tasks and distribute the total reward to
tasks by their task sizes. Fig. 3(a) clearly shows that
our proposed adaptations of task scheduling is more
effective and stable than traditional approaches.

We also perform hyperparameter for dynamic
task scheduling by varying the discounted factor
and the exploration weight c. We illustrate the re-
sults of proportional sampling by exploration bonus
(oo = 1) in Fig. 3(b) and annealed sampling by ex-
ploration bonus (o = 1 — 0.84=%) in Fig. 3(c).
We observe that model performanoe is more sta-
ble under the annealed sampling than proportional
sampling, and the best exploration weight is around
2e—5.

4.6 Discussions

We discuss about the effect of dynamic task
scheduling. In Table 2 we list the average scores on
GLUE dev set and test set for three different task
scheduling settings: (1) w/o DTS which purely
uses proportional sampling; (2) w/ DTS (o = 1)
which lets the explorations bonus term weigh tasks
proportionally, and (3) w/ DTS (o« =1 — 0.8 gill)
which lets the explorations bonus term weigh tasks
from proportionally to equally. We found that
even though both DTS strategies perform better
on GLUE dev set than without DTS, their GLUE
test set performances are not always better. We
believe this is because DTS uses dev set scores in
the training process to adjust task weights, thus
the optimal hyperparameters might overfit to dev
sets, and cannot achieve the best performance on
the test set. In the future we will explore more on
improving the dynamic task scheduling technique
such as partitioning the training set to get held-out
datasets and using ensemble methods to simulate

the rewards.

Ablations GLUE dev  GLUE test
w/o DTS 84.79 (0.24) 83.74
w/ DTS

a=1 84.99 (0.31) 83.45
a=1-0.8 g__ll 85.23 (0.18) 83.88

Table 2: Average scores on GLUE dev set (with stan-
dard deviation over 15 runs) and test set of different
dynamic task scheduling settings.

5 Conclusion

In this paper we propose an inference-efficient
multi-task learning algorithm that is able to out-
put a generalized representation for all tasks in one
forward pass, while preserving the overall model
performance. We propose a prompt-sharing mod-
ule with gradient stopping to let the model take
all task prompts into consideration and output all
task heads simultaneously. To further improve
the results, we propose a dynamic task schedul-
ing method by probing the model performance
and adapting an algorithm for multi-armed ban-
dit. Our method achieves strong performance on
GLUE benchmark dataset and outperforms previ-
ous state-of-the-art.

Several interesting directions can be explored
in future studies. Based on our prompt-sharing
module, we can add MOE layers or other prompt
merging techniques to deal with scalable issues.
For the dynamic scheduling module, other UCB-
based algorithms are worth exploring. Moreover,
since our architecture is focused on sentence-level
tasks, it would be interesting to extend the study
to token-level tasks where each token has a set of
labels to be predicted.
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