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Abstract
Domain generalization aims at developing suit-
able learning algorithms in source training do-
mains such that the model learned can general-
ize well on a different unseen testing domain.
We present a novel two-stage approach called
Context-Aware Self-Adaptation (CASA) for do-
main generalization. CASA simulates an ap-
proximate meta-generalization scenario and in-
corporates a self-adaptation module to adjust pre-
trained meta-source models to the meta-target do-
mains while maintaining their predictive capabil-
ity on the meta-source domains. The core con-
cept of self-adaptation involves leveraging contex-
tual information, such as the mean of mini-batch
features, as domain knowledge to automatically
adapt a model trained in the first stage to new
contexts in the second stage. Lastly, we utilize an
ensemble of multiple meta-source models to per-
form inference on the testing domain. Experimen-
tal results demonstrate that our proposed method
achieves state-of-the-art performance on standard
benchmarks.

1. Introduction
Deep models generalize well if the training and testing data
share the same data distribution. However, when the test-
ing data distribution deviates from the training data, model
fine-tuning becomes necessary, requiring additional com-
putational resources that may not be available in resource-
constrained applications. Moreover, collecting and labeling
additional training data can be time-consuming and imprac-
tical for real-time inference scenarios. To address this chal-
lenge, domain generalization (DG) methods have emerged
as a promising solution. DG aims to train models on training
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domains with the expectation that they will generalize well
to unseen testing domains. Existing DG methods employ
various approaches (Wang et al., 2022; Zhou et al., 2022),
such as enriching the source data distribution through data
augmentation techniques (Volpi et al., 2018; Zhou et al.,
2020; Wang et al., 2020; Zhou et al., 2021; Kim et al., 2023)
or learning domain-invariant models (Li et al., 2018b;c;
Akuzawa et al., 2019; Li et al., 2020; Mahajan et al., 2021;
Bui et al., 2021). Some methods utilize meta-learning to
mimic the generalization process, enabling the learning of
models that exhibit generalization capabilities (Li et al.,
2018a; Du et al., 2020). Additionally, the ensemble of multi-
ple source models has been explored as a means to enhance
DG performance (Arpit et al., 2022). The primary challenge
in domain generalization lies in the lack of access to the
testing domain and the limited quantity of source domains
available.

In light of these challenges, we propose a novel two-stage
method, named Context-Aware Self-Adaptation (CASA) for
domain generalization . CASA simulates an approximate
meta-generalization scenario and designs a simple but fresh
self-adaptation module to adjust pre-trained meta-source
models to the meta-target domains while maintaining their
predictive capability on the meta-source domains. This is re-
alized through a two-stage training process: A regular model
is trained in the first stage on the meta-source domain, while
a self-adaptation module is added in the second stage that
leverages contextual information, such as the mean of mini-
batch features, as domain knowledge to automatically adapt
the model trained in the first stage to new contexts in the
second stage. To ensure that the adapted meta-target feature
vectors remain in the same vector space as the original vec-
tors, which plays a key factor for maintaining generalizabil-
ity on the original training data, we propose a context-aware
feature-wise linear modulation (CaFiLM) mechanism for
self-adaptation. This involves learning dimension-specific
weights and biases from the feature vector and the context
information. These learned weights and biases are then
used to linearly modulate the meta-target features. Finally,
we perform inference on the testing domain by utilizing
an ensemble of multiple adapted meta-source models. To
demonstrate the effectiveness of our proposed method, we
evaluate it on widely used domain generalization bench-
marks. The experimental results show that the proposed
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Figure 1. Diagram of the proposed two-stages Context-Aware Self-Adaptation method for domain generalization. Left upper: One model
is trained for each meta-source domain. Left lower: Context-Aware Self-Adaptation module is trained to adapt the pre-trained meta-source
model to the meta-target domain while preserving the prediction ability on the meta-source domain. Right: Ensemble of the adapted
meta-source models are used for testing.

CASA method surpasses the state-of-the-art approaches on
small-scale datasets and achieves comparable results on
large-scale datasets, producing the best overall performance
among a great number of competitors.

2. Proposed Method
This paper addresses the following domain generalization
(DG) setting. Given the labeled data from d source training
domains D = {Dj}dj=1, the goal is to train a model that
generalizes well on an unseen testing domain. To tackle
this problem, we propose a novel two-stages method called
Context-Aware Self-Adaptation (CASA). CASA simulates
an approximate meta-generalization scenario by contruct-
ing a set of meta-source and meta-arget domain pairs from
the training domains. In the first stage, each meta-source
domain is used to train a meta-source model. In the second
stage, we introduce a context-aware self-adaption module
between the pre-trained meta-source feature extractor and
classifier. This module is designed to adapt the pre-trained
model to the meta-target domain while preserving the predic-
tion ability on the meta-source domain. Finally, we employ
an ensemble of multiple adapted meta-source models for
inference on the testing domain. The proposed method is
illustrated in Figure 1, and will be elaborated below.

2.1. Two-Stage Generalizable Learning

In view of the main obstacle of domain generalization—
the test domain is unknown and not accessible during the
training stage, we propose to simulate a meta-generalization
environment for learning generalizable mechanisms. In this
meta-generalization environment, we simulate a set of meta-
source and meta-target domain pairs, and design a two-stage
training procedure to allow automatic adaptation of pre-
trained models in the second stage with a self-adaptation
module.

Specifically, given the data from d training domains D =
{Dj}dj=1, we pick one or multiple domains to form the meta-
source domain Si and keep the rest as the corresponding
meta-target domain Ti:

Si = ∪d
j=1δi(j)Dj , Ti = D\Si. (1)

where δi(j) is 1 if Dj is picked to form Si and 0 otherwise.
Repeating this process, we can construct a set of meta-
source and meta-target domain pairs: T = {(Si, Ti)}.

For the two-stage training procedure, we train a regular
meta-source model for each meta-source domain Si in the
first stage. Considering the classification task, we denote
the classification model as the concatenation of a feature
extractor fi(·;θfi) and a classifier hi(·;θhi). The classifica-
tion model is thus denoted as hi ◦ fi(·;θfi ,θhi). For each
meta-source domain Si, we train one model hi ◦ fi with
empirical risk minimization, i.e.

θ∗
fi ,θ

∗
hi

= argmin
θfi

,θhi

Lsrc,

Lsrc = E(x,y)∈Si
ℓce(hi ◦ fi(x;θfi ,θhi), y)

(2)

where θ∗
fi ,θ

∗
hi

denotes the optimal parameters of the feature
extractor and classifier, (x, y) denotes a pair of instance and
label sampled from the training data of the meta-source
domain Si and ℓce denotes the cross-entropy loss.

Given the pre-trained meta-source model hi ◦ fi and the
meta-target domain Ti, a typical strategy to adapt to the tar-
get domain is to deploy the fine-tuning technique. However,
the fine-tuning process only seeks to adapt to the specific
target domain, providing no generalization capacity in light
of unknown test domains. In order to enable generalization
to unseen target domains, we need to learn an adaptation
mechanism that captures the intrinsic nature of adapting
the pre-trained meta-source models to different meta-target
domains. To this end, we plan to deploy a feature repre-
sentation adaptation module that can automatically adapt
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the features extracted from the pre-trained meta-source fea-
ture extractor in a context-aware manner, allowing the pre-
trained meta-source classifier to work effectively with the
adapted features from the meta-target domain. Simultane-
ously, in order to ensure genuine context-aware adaptation,
it is reasonable to expect that the upgraded model will con-
tinue to perform well in the original meta-source domain.

Following this design scheme, we introduce a task-invariant
adaptation module denoted as g in the second stage, which
is inserted between the feature extractor fi and classifier hi,
and upgrades each pre-trained model hi ◦ fi to a combina-
tion model hi ◦ g ◦ fi, as shown in Figure 1. This module
g is shared across the set of meta adaptation tasks T . The
purpose of this adaptation module g is to learn how to adapt
the features extracted by fi to work well with a fixed classi-
fier hi, given the current task context C(·). The objective for
training the adaptation module g on the set of meta-target
domains from T is defined as follow,

min
θg

Ladapt = ETi∈T E(x,y)∈Ti

ℓce(hi ◦ gC(Ti) ◦ fi(x;θg,θ
∗
fi ,θ

∗
hi
), y)

(3)

where (x, y) is a pair of instance and label sampled from
the meta-target domain Ti, and C(Ti) denotes the context
information for domain Ti. The model parameters of the
pre-trained meta-source feature extractor and classifier re-
main fixed and the optimization is focused solely on the
parameters of the adaptation module g.

However, when adapting pre-trained meta-source models
using the objective above, there is a risk that the additional
adaptation module and the adaptation process might com-
promise the prediction ability on the original meta-source
domains. This means that the best-performing adaptation
module may not necessarily be the one that retains strong
performance on all the training domains. To address this
issue, it is crucial to introduce an additional objective that
specifically preserves the prediction ability on the original
meta-source domain as follow:

min
θg

Lpreserve = ESi∈T E(x,y)∈Si

ℓce(hi ◦ gC(Si) ◦ fi(x;θg,θ
∗
fi ,θ

∗
hi
), y)

(4)

where (x, y) is a pair of instance and label sampled from the
training data of the meta-source domain Si, and C(Si) de-
notes the context information for domain Si. This objective
is also essential to induce genuine context-aware adaptation
that can adjust the prediction based on the current given
context. The overall training objective in the second stage
for learning the adaptation module is

min
θg

Ladapt + λLpreserve (5)

where λ is the trade-off hyper-parameter. We expect such
a two-stage learning procedure can induce a context-aware
generalizable model that can readily adapt to new contexts.

2.2. Context-Aware Self-Adaptation Module

The design of the adaptation module g involves determin-
ing the input information, in particular, the form of context
representation, and the structure of the module itself. One
straightforward approach is to use a multi-layer perceptron
(MLP) model as a universal approximation function to pro-
cess each feature vector corresponding to an instance. How-
ever, relying solely on instance-wise processing does not
guarantee generalization to unseen testing domains, since an
identical instance has the potential to be perceived or classi-
fied differently within varying domain contexts. To address
this challenge, the module should possess the capability to
swiftly decode the domain context in the inference process
and dynamically adapt to the provided data. This places
significant demands on the choice of the domain context
information and the design of the adaptation module.

2.2.1. CHOICE OF CONTEXT INFORMATION

One of the most common and easily acquired local context
information is the mini-batch feature mean. Deep models
are typically trained using randomly sampled mini-batches,
which are considered to represent the global data distribu-
tion. Similarly, during testing, deep models often process
data in mini-batches to achieve faster inference speeds. This
mini-batch mechanism conveniently allows us to obtain the
context information in the form of mini-batch feature mean,
which can be considered as an approximation of the domain
feature mean during the training and inference processes.
By incorporating the mini-batch feature mean as an addi-
tional input to g during training, the self-adaptation module
can learn to interpret useful context information from it to
facilitate the instance feature adaptation. As a result, the
input information to the self-adaptation module includes
both the instance feature vector and the mini-batch feature
mean; and the g function can be expressed as:

gC(Ai∈T ) = gC(x) = g(fi(x),Ex∈Xb
fi(x);θg) (6)

where Ai denotes either a meta-source domain Si or a meta-
target domain Ti, and C(x) denotes the local context infor-
mation around x that can be computed as the mini-batch
data Xb around instance x in the corresponding domain Ai.

Incorporating the mini-batch feature mean as context in-
formation does not introduce complex processing during
the training procedure. Unlike requiring the frequent cal-
culation of a global domain feature mean at each iteration
step, using the mini-batch feature mean is a computation-
ally efficient approach. Furthermore, it does not alter the
inference procedure as there is no need to calculate a global
domain feature mean prior to inference. It is important to
note that the context information provided by the mini-batch
feature mean is not an unfair additional advantage acquired
from the testing domain. The use of mini-batch information,
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including the feature mean, is a common practice in deep
models, as exemplified by techniques like batch normaliza-
tion. It is interesting that batch normalization eliminates
the first-order statistic information from the features to aid
in generalization while our method incorporates it as the
domain information for the same purpose of enhancing gen-
eralization.

2.2.2. MODULE STRUCTURE DESIGN

The structure of the adaptation module g is another crucial
consideration. One straightforward approach is to concate-
nate the feature vector and the mini-batch feature mean,
and then employ an MLP to generate a new vector with
the same dimension as the original feature vector. How-
ever, this design maps the original feature vectors into a
completely different vector space. Since the pre-trained
meta-source classifier remains fixed for the purpose of gen-
eralizable self-adaptation, the ideal objective is to modify
the feature vectors in a controlled manner while keeping
them in the same vector space as their original represen-
tation. Moreover, from the perspective of preserving the
prediction ability on the meta-source domain, the output
vectors from the self-adaptation module should also reside
in the same vector space as the input vectors.

For this purpose, we draw inspiration from the concept of
feature-wise linear modulation (FiLM) (Perez et al., 2018)
and propose a context-aware feature-wise linear modulation
(CaFiLM) method for our self-adaptation module. Specif-
ically, let z = fi(x) represent the feature vector with di-
mension size C extracted from the pre-trained meta-source
feature extractor fi for the input instance x. Each individual
feature dimension, denoted as {zc}Cc=1, is modulated using
a pair of dimension-specific weight γc and bias βc, i.e.

CaFiLM(zc) = γczc + βc (7)

where c denotes the dimension index. Importantly, the
weight γc and bias βc are learned from the c-th dimensional
feature zc and the c-th dimensional mini-batch feature mean
µc, [

γc
βc

]
= A(2×2)

[
zc
µc

]
+ b(2×1) (8)

where the mini-batch feature mean is µ = Ex∈Xb
fi(x). Ma-

trix A and vector b are learnable parameters shared across
feature dimensions.

For implementation, feature vector z and mini-batch feature
mean µ are firstly stacked into a two-row matrix. Secondly,
a one-dimensional convolutional layer with parameters of
weight matrix A and bias vector b is applied along the
stacking dimension to produce the weight vector γ and bias
vector β. Finally, the feature vector z is linearly modulated
through Hadamard product (element-wise product) with γ
and addition with β.

Note that the parameters θg of the self-adaptation module
g consist solely of the weight matrix A and bias vector b,
totally only 6 parameters. This simple structure ensures that
the self-adaptation module adds minimal extra cost to the
classification model. However, when processing large-scale
complex datasets, there may be concerns about the ability
of the self-adaptation module to handle the increased com-
plexity and diversity of the data. We propose to handle this
issue by unfreezing the pre-trained meta-source classifier
hi and fine-tuning its parameters during the training of the
self-adaptation module g.

2.3. Inference with Ensemble Mechanism

Once the context-aware self-adaptation module has been
trained, we obtain multiple adapted models denoted as
{(hi ◦ g ◦ fi)}|T |

i=1, where |T | denotes the number of meta-
tasks. We deploy an ensemble strategy for the inference
process to further improve the test performance. In particu-
lar, a simple averaging ensemble strategy can be applied to
the predicted probability vectors generated by the multiple
adapted models, i.e.

ŷ = argmax
c

[
Ei∈{1:|T |}[(hi ◦ gC(x) ◦ fi(x))]

]
c

(9)

It’s important to note the distinction between the proposed
approach and EoA (Ensemble of Averages) (Arpit et al.,
2022). While EoA also employs ensemble methods for in-
ference, the key differences lie in the training process and
the use of training data. In EoA, multiple prediction models
are trained using the same training data but with different
random seeds and hyper-parameters. The ensemble of these
models aims to capture diverse perspectives and variations
that arise from the stochasticity of the training process. By
contrast, in the proposed approach, the multiple models are
trained with different training data from meta-source do-
mains and subsequently adapted using the context-aware
self-adaptation module. The use of models trained from
different meta-source and meta-target data provides distinct
aspects and viewpoints on the testing data, mimicking the
benefits of hearing from experts with different levels and
areas of knowledge. It shares similarity with the concept of
random forests (Breiman, 2001), except our approach can
work with a limited number of ensemble entities. Moreover,
the context-aware self-adaptation module contributes to the
generalization ability of each adapted model. By incorpo-
rating the context information and preserving the prediction
ability on the meta-source domain, the self-adaptation mod-
ule further improves the inference performance. Overall, the
combination of training models with different meta-source
data and applying the context-aware self-adaptation mod-
ule enables a comprehensive and robust inference process,
leveraging both the diversity of training data and the gener-
alization capabilities of the adaptation module.
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Table 1. Average accuracy (%) on the testing domain of all tasks for each dataset. Each experiment is conducted 3 times with random
seeds and the standard errors is reported with the average values. Results for the comparison methods are cited from the DomainBed and
the original papers. The same backbone ResNet-50 is used for all the methods.

Algorithm PACS VLCS OfficeHome TerraIncognita DomainNet Avg

ERM (Gulrajani & Lopez-Paz, 2021) 85.5 ± 0.2 77.5 ± 0.4 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
I-Mixup (Xu et al., 2020) 84.6 ± 0.6 77.4 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4
MLDG (Li et al., 2018a) 84.9 ± 1.0 77.2 ± 0.4 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6
SagNet (Nam et al., 2021) 86.3 ± 0.2 77.8 ± 0.5 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2
CORAL (Sun & Saenko, 2016) 86.2 ± 0.3 78.8 ± 0.6 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.5
mDSDI (Bui et al., 2021) 86.2 ± 0.2 79.1 ± 0.4 69.2 ± 0.4 48.1 ± 1.4 42.8 ± 0.1 65.1
ITL-Net (Gao et al., 2022) 86.4 78.9 69.3 51.0 41.6 65.4
MIRO (Cha et al., 2022) 85.4 ± 0.4 79.0 ± 0.0 70.5 ± 0.4 50.4 ± 1.1 44.3 ± 0.2 65.9
SWAD (Cha et al., 2021) 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
DNA (Chu et al., 2022) 88.4 ± 0.1 79.0 ± 0.1 71.2 ± 0.1 52.2 ± 0.4 47.2 ± 0.1 67.6
EoA (Arpit et al., 2022) 88.6 79.1 72.5 52.3 47.4 68.0

Ensemble (Ours) 87.8 80.9 73.0 49.0 44.7 66.8
CASA (Ours) 89.7 ± 0.1 81.5 ± 0.1 73.5 ± 0.2 52.0 ± 0.2 47.2 ± 0.1 68.8

3. Experiments
3.1. Experimental settings

Experiments were carried out using the domain generaliza-
tion test-bed called DomainBed (Gulrajani & Lopez-Paz,
2021). We conducted evaluations of our method on five
diverse datasets: PACS (Li et al., 2017) , VLCS (Fang
et al., 2013) , OfficeHome (Venkateswara et al., 2017) ,
TerraIncognita (Beery et al., 2018) , and DomainNet (Peng
et al., 2019) . These datasets provide a wide range of do-
mains and classes, allowing us to assess the performance and
generalization capabilities of our method across different
scenarios.

We perform multiple training and single testing domain gen-
eralization tasks. For each task, we create meta-source and
meta-target domains using the training domains for meta-
source model training and meta-target adaptation. We use
ResNet-50 as the classification model for all experiments.
For meta-source model training, models are optimized with
the Adam optimizer with learning rate 5× 10−5, batch size
32 for the first 4 datasets and 16 for DomainNet dataset.
For the context-aware self-adaptation module training, we
employ the same optimizer and batch size. The parame-
ters of the meta-source classifiers are frozen for the PACS,
VLCS, and OfficeHome datasets. For the TerraIncognita
and DomainNet datasets, we fine-tune the parameters of
the meta-source classifiers when training the self-adaptation
module. The learning rate is set to 5× 10−5 for fine-tuning
the meta-source classifier parameters and 10−3 for the self-
adaptation module parameters. The trade-off parameter for
the preserving loss is set as 0.1 for PACS dataset and 1 for
other datasets. The model selection method here is to use
the held-out validation sets from the training data.

3.2. Results

To assess the effectiveness of the proposed method, do-
main generalization experiments are conducted on all five
datasets. The results are reported as the average accuracy
of all tasks for each dataset. Table 1 presents the results
obtained from these experiments. Firstly, we evaluate the
ensemble of the multiple pre-trained meta-source models.
The ensemble model, as shown in the ”Ensemble (Ours)”
row, demonstrates a notable improvement in performance
compared to the baseline ERM approach. On average, our
ensemble method achieves a significant gain of 3.5 percent-
age points (pp) in accuracy. This highlights the remarkable
impact of model ensemble. The diversity of the meta-source
models, obtained through training on different combinations
of domains, allows them to provide varied perspectives and
insights into the unseen testing data. By aggregating the pre-
dictions of these models, we obtain more accurate decisions
than relying solely on a single expert with the most knowl-
edge. Furthermore, when comparing our simple ensemble
approach to previous domain generalization methods, it
outperforms all methods prior to MIRO. This further empha-
sizes the effectiveness of the ensemble model in improving
generalization performance in the domain generalization
setting.

Secondly, we evaluate the proposed Context-Aware Self-
Adaptation method. Based on the evaluation of the pro-
posed method, the ”CASA (Ours)” row in the results table
demonstrates a significant performance gain compared to
the baseline ERM approach. Our method achieves an im-
pressive performance improvement of 5.5 percentage points
(pp) on average. This performance gain can be attributed
to two key factors: the ensemble of multiple models and
the context-aware self-adaptation module. As mentioned



Context-Aware Self-Adaptation for Domain Generalization

Table 2. Average accuracy (%) on the testing domain of all tasks for each dataset. Ablation for adaptation training.

Algorithm PACS VLCS OfficeHome TerraIncognita DomainNet Avg

Ensemble (hi ◦ fi) 87.8 80.9 73.0 49.0 44.7 66.8
Ensemble (hi ◦ gi ◦ fi) 88.4 80.1 72.5 51.0 43.1 67.0
CASA 89.7 81.5 73.5 52.0 47.2 68.8

earlier, the ensemble approach, as shown in the ”Ensem-
ble (Ours)” results, already provides a 3.5 pp improvement
compared to the simple ERM baseline. The additional 2 pp
gain is a result of the context-aware self-adaptation module.
CASA adapts each pre-trained meta-source model to the
meta-target domain while preserving the prediction abil-
ity on the meta-source domain. The context information
of mini-batch feature mean, treated as domain knowledge,
is incorporated into the self-adaptation module to enable
self-adaptation. Through exposure to multiple pairs of meta-
source models and meta-target domain data, the module
learns how to process domain knowledge and modulate
the meta-target features, allowing the adapted meta-source
model to perform well on both the meta-source and meta-
target domains. In the face of new batches of unseen testing
data, the CASA method automatically incorporates context
information and aids in the adaptation of the meta-source
models, enabling them to generalize well on the testing
data. Compared to previous methods, our proposed CASA
method achieves state-of-the-art results on the first three
datasets and demonstrates the best average accuracy overall.

3.3. Ablation study

Is adaptation training necessary? To rigorously evaluate
the necessity of self-adaptation module training, an abla-
tion study is conducted. Despite the earlier observation that
the CASA method outperforms simple ensemble model, a
more comprehensive comparison is performed to ensure
fairness. In this study, the self-adaptation module is added
as an component of each meta-source feature extractor dur-
ing meta-source model training, and the ensemble of the
meta-source models is evaluated. This analysis aims to as-
sess the impact of incorporating the self-adaptation module
at different stages and determine its necessity in improv-
ing the overall performance of the ensemble model. The
results are shown in Table 2. Upon integrating the adap-
tation module into the meta-source feature extractor, the
ensemble model produces comparable results to the ensem-
ble model without the adaptation module. This indicates
that the module alone does not enhance the model’s gen-
eralization ability. However, through the proposed CASA
approach, the self-adaptation module is trained using multi-
ple pairs of meta-source model and meta-target data. The
results demonstrate that training the module with adaptation
improves the model’s generalization to unseen domains.

Table 3. Accuracy (%) on the 4 tasks of OfficeHome dataset.

Algorithm A C P R Avg

w/o context 68.3 57.5 81.1 82.8 72.4
w/ context 70.5 58.0 82.0 83.4 73.5

Is context information necessary? Incorporating the con-
text information of the mini-batch feature mean into the
self-adaptation module serves as domain information and
enhances the generalization ability. To determine the neces-
sity of this context information, experiments are conducted
by removing it from the self-adaptation module. Since only
feature vectors are provided as input to the module, an MLP
network is used as a replacement for the FiLM structure to
adapt the meta-source models to the meta-target domains.
The results of these experiments are presented in Table 3.
The results demonstrate that self-adaptation training with
context information significantly improves the performance
across all the tasks. This indicates the importance and ef-
fectiveness of incorporating the context information into
the self-adaptation module. The improved performance sug-
gests that the module is able to leverage the domain-specific
information provided by the mini-batch feature mean to en-
hance the model’s generalization ability and achieve better
results on various tasks.

4. Conclusion
In this paper, we propose a novel two-stage approach
for domain generalization called Context-Aware Self-
Adaptation (CASA). The proposed method simulates a meta-
generalization scenario and incorporates a self-adaptation
module to adjust pre-trained meta-source models to meta-
target domains while preserving their performance on the
meta-source domains. The self-adaptation process leverages
contextual information, such as mini-batch feature means,
as domain knowledge to automatically adapt the model to
new contexts. To ensure the adapted meta-target feature vec-
tors remain in the same vector space as the original vectors,
we propose a feature-wise linear modulation mechanism
to linearly modulate the meta-target features. Finally, we
employ an ensemble of multiple meta-source models for in-
ference on the testing domain. Experimental results validate
the effectiveness of our approach, achieving state-of-the-art
performance on standard benchmarks.



Context-Aware Self-Adaptation for Domain Generalization

References
Akuzawa, K., Iwasawa, Y., and Matsuo, Y. Adversarial

invariant feature learning with accuracy constraint for
domain generalization. In ECML PKDD, 2019.

Arpit, D., Wang, H., Zhou, Y., and Xiong, C. Ensemble
of averages: Improving model selection and boosting
performance in domain generalization. In NeurIPS, 2022.

Beery, S., Van Horn, G., and Perona, P. Recognition in terra
incognita. In ECCV, 2018.

Breiman, L. Random forests. Machine learning, 2001.

Bui, M.-H., Tran, T., Tran, A., and Phung, D. Exploiting
domain-specific features to enhance domain generaliza-
tion. In NeurIPS, 2021.

Cha, J., Chun, S., Lee, K., Cho, H.-C., Park, S., Lee, Y., and
Park, S. Swad: Domain generalization by seeking flat
minima. In NeurIPS, 2021.

Cha, J., Lee, K., Park, S., and Chun, S. Domain gener-
alization by mutual-information regularization with pre-
trained models. In ECCV, 2022.

Chu, X., Jin, Y., Zhu, W., Wang, Y., Wang, X., Zhang, S.,
and Mei, H. Dna: Domain generalization with diversified
neural averaging. In ICML, 2022.

Du, Y., Xu, J., Xiong, H., Qiu, Q., Zhen, X., Snoek, C. G.,
and Shao, L. Learning to learn with variational infor-
mation bottleneck for domain generalization. In ECCV,
2020.

Fang, C., Xu, Y., and Rockmore, D. N. Unbiased metric
learning: On the utilization of multiple datasets and web
images for softening bias. In ICCV, 2013.

Gao, B., Gouk, H., Yang, Y., and Hospedales, T. Loss
function learning for domain generalization by implicit
gradient. In ICML, 2022.

Gulrajani, I. and Lopez-Paz, D. In search of lost domain
generalization. In ICML, 2021.

Kim, M., Li, D., and Hospedales, T. Domain generalisation
via domain adaptation: An adversarial fourier amplitude
approach. In ICLR, 2023.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. M. Deeper,
broader and artier domain generalization. In ICCV, 2017.

Li, D., Yang, Y., Song, Y.-Z., and Hospedales, T. Learning
to generalize: Meta-learning for domain generalization.
In AAAI, 2018a.

Li, H., Pan, S. J., Wang, S., and Kot, A. C. Domain gen-
eralization with adversarial feature learning. In CVPR,
2018b.

Li, H., Wang, Y., Wan, R., Wang, S., Li, T.-Q., and Kot, A.
Domain generalization for medical imaging classification
with linear-dependency regularization. In NeurIPS, 2020.

Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K.,
and Tao, D. Deep domain generalization via conditional
invariant adversarial networks. In ECCV, 2018c.

Mahajan, D., Tople, S., and Sharma, A. Domain generaliza-
tion using causal matching. In ICML, 2021.

Nam, H., Lee, H., Park, J., Yoon, W., and Yoo, D. Reducing
domain gap by reducing style bias. In CVPR, 2021.

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and Wang,
B. Moment matching for multi-source domain adaptation.
In ICCV, 2019.

Perez, E., Strub, F., De Vries, H., Dumoulin, V., and
Courville, A. Film: Visual reasoning with a general
conditioning layer. In AAAI, 2018.

Sun, B. and Saenko, K. Deep coral: Correlation alignment
for deep domain adaptation. In ECCV 2016 Workshops,
2016.

Venkateswara, H., Eusebio, J., Chakraborty, S., and Pan-
chanathan, S. Deep hashing network for unsupervised
domain adaptation. In CVPR, 2017.

Volpi, R., Namkoong, H., Sener, O., Duchi, J. C., Murino,
V., and Savarese, S. Generalizing to unseen domains via
adversarial data augmentation. In NeurIPS, 2018.

Wang, J., Lan, C., Liu, C., Ouyang, Y., Qin, T., Lu, W., Chen,
Y., Zeng, W., and Yu, P. Generalizing to unseen domains:
A survey on domain generalization. IEEE Transactions
on Knowledge and Data Engineering, 2022.

Wang, Y., Li, H., and Kot, A. C. Heterogeneous domain
generalization via domain mixup. In ICASSP, 2020.

Xu, M., Zhang, J., Ni, B., Li, T., Wang, C., Tian, Q., and
Zhang, W. Adversarial domain adaptation with domain
mixup. In AAAI, 2020.

Zhou, K., Yang, Y., Hospedales, T., and Xiang, T. Learning
to generate novel domains for domain generalization. In
ECCV, 2020.

Zhou, K., Yang, Y., Qiao, Y., and Xiang, T. Domain gener-
alization with mixstyle. In ICLR, 2021.

Zhou, K., Liu, Z., Qiao, Y., Xiang, T., and Loy, C. C. Do-
main generalization: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022.


