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ABSTRACT

Efficient reasoning distillation for long chain-of-thought (CoT) models is increas-
ingly constrained by the assumption of a single oracle teacher, despite the practical
availability of multiple candidate teachers and growing CoT corpora. We revisit
teacher selection and observe that different students have different “best teachers,”
and even for the same student, the best teacher can vary across datasets. There-
fore, to unify multiple teachers’ reasoning abilities into a student to overcome con-
flicts among various teachers’ supervision, we propose Merge-of-Thought Dis-
tillation (MoT), a lightweight framework that alternates between teacher-specific
supervised fine-tuning branches and weight-space merging of the resulting stu-
dent variants. On competition math benchmarks, using only about 200 CoT sam-
ples, applying MoT to a Qwen3-14B student surpasses strong models including
Deepseek-R1, Qwen3-32B, and OpenAI-O1, demonstrating substantial gains. Be-
sides, MoT consistently outperforms the best single-teacher distillation, improves
general reasoning beyond mathematics while reducing catastrophic forgetting, and
shows robustness to distribution-shifted and peer-level teachers. Finally, we have
demonstrated MoT possesses consensus CoT by eliminating teacher-specific in-
ductive biases and inter-teacher conflicts while repeatedly reinforcing the learning
of consensus reasoning features. These results position MoT as a simple, effec-
tive route to efficiently distilling long CoT capabilities from diverse teachers into
compact students.

1 INTRODUCTION

As large language models (LLMs) with long chain-of-thought (CoT) capabilities continue to emerge
(Jaech et al.l 2024} |Yang et al.l 2025a; |Guo et al., [2025), reasoning distillation is becoming the
key pathway for converting expensive reasoning ability into deployable efficiency. Compared with
imitating only final answers, directly supervising the reasoning trajectory enables a smaller student
model to learn multi-step solution procedures (Luo et al.,|2025b; |Qin et al., 2025; |Guo et al.| [2025)).

Building on these developments, the research focus is shifting from scaling data volume to im-
proving data quality. For example, supervised fine-tuning on only 1,000 teacher-distilled samples
delivers measurable reasoning gains when paired with test-time compute (Muennighoft et al.,[2025).
Likewise, when pretraining already imparts rich mathematical knowledge, a few hundred carefully
curated examples can effectively elicit complex reasoning (Ye et al., 2025). Taken together, these
findings indicate that efficiently distilling long CoT trajectories is an effective strategy for training
compact models that achieve competitive reasoning accuracy.

However, real-world deployments rarely features a “single oracle teacher.” We often have multiple
candidate teacher LLMs and a growing pool of distilled CoT data, giving rise to a basic question:
Given a student model, how we pick the most suitable teacher? Empirically, teacher choice mat-
ters—the teacher can imprint a recognizable “style signature” on the student (Chen et al., 2025b);
mismatches between teacher and student can weaken the transfer of long CoT skills (Wu et al.,
2025b). As illustrated in Figure [I] our observations are consistent: different students have differ-
ent “best teachers,” and even for the same student the best teacher can vary across datasets. Such
phenomena challenge the naive assumption that “a bigger/stronger teacher is necessarily better,”
prompting us to consider: Instead of being constrained by a single teacher and the inherent costs
of its selection, a more robust and effective paradigm involves aggregating knowledge from mul-
tiple teachers.
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As an effective technique for overcoming data distribution conflicts, model merging has been widely
applied to joint training across diverse domains and tasks (Yu et al.,|2024bj Zhou et al.,|2024; |Yadav
et al., |2024). However, our revisiting analysis also showed that a single Post-hoc merge does not
reliably resolve cross-teacher supervision conflicts and unify different teachers’ reasoning abilities.
These limitations motivate an approach that goes beyond one-shot merging to reconcile heteroge-
neous teacher signals by repeatedly reinforcing the learning of consensus reasoning features.

To this end, we propose Merge-of-Thought Distillation (MoT): a lightweight framework that alter-
nates between (i) teacher-specific branch SFT and (ii) weight-space merging of student variants.
Intuitively, branch SFT internalizes the reasoning style of each teacher into one student; the subse-
quent parameter-space merge then distills consensus—retaining features reinforced across teachers
while suppressing individual accidents and quirks. After multiple iterations, the student progres-
sively condenses into a merged student that reflects multi-teacher consensus reasoning. We found
that MoT significantly enhanced reasoning ability of the model and alleviated catastrophic for-
getting. In addition, we have experimentally and theoretically demonstrated that consensus CoT
emerges naturally with MoT: MoT eliminates teacher-specific inductive biases and inter-teacher
conflicts at the token level while repeatedly reinforcing the learning of consensus reasoning features,
enabling training in a flatter loss landscape and effective transfer to new student models.

We present, to our knowledge, the first systematic study of multi-teacher long CoT co-
distillation:

1. We conduct the revisiting analysis of teacher selection under Long CoT distillation set-
ting and find that there is no single best teacher consistently dominant across students or
datasets.

2. Rather than taking the cost on teacher selection, we propose a novel distillation method,
Merge-of-Thought Distillation (MoT), to unify multiple teachers’ reasoning abilities into
students by overcoming conflicts among the supervision of various teachers.

3. Using only about 200 CoT samples, applying MoT to a Qwen3-14B student surpasses
strong models including Deepseek-R1, Qwen3-32B, and OpenAl-Ol. Besides, MoT
consistently outperforms the best single-teacher distillation, improves general reason-
ing beyond mathematics while reducing catastrophic forgetting, and shows robustness to
distribution-shifted and peer-level teachers.

4. We have demonstrated MoT possesses consensus CoT by eliminating teacher-specific in-
ductive biases and inter-teacher conflicts while repeatedly reinforcing the learning of con-
sensus reasoning features, which enables the model to be trained on a flatter loss landscape
and further propagated to new student models.

2 RELATED WORK

Long Chain-of-Thought Distillation. Research on distilling long chains of thought (CoT) has
progressed rapidly (Wu et al., |2025b; (Guo et al., 2025). Early work (Li et al. 2023)) showed that
even small models can benefit from teacher CoT prompting and highlighted the importance of varied
reasoning chains. Subsequent approaches (Luo et al., [2025b; [Feng et al., 2024) further segment
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and simplify CoTs, employ keypoint weighting, and use progressive distillation to focus on critical
tokens. Studies on the key factors of CoT distillation reveal that teacher diversity and rationale
granularity often have a greater impact than raw teacher accuracy (Chen et al.||2025b)). Recent works
also show that long-CoT capability can be bootstrapped with a handful of in-context examples (Pang
et al.} 2025)), distilled as summaries to improve long-context memory (Ma et al., [2025)), or integrated
with vision reasoning using agent-based approaches (Shi et al., 2024). These findings underscore
that long-CoT distillation not only requires carefully curated examples but also faces challenges such
as teacher selection, noise amplification and distillation efficiency. Nevertheless, most existing
methods focus on a single teacher distillation; our work instead extends this line of work by fusing
multiple teachers’ reasoning abilities into a single student to achieve stronger performance.

Model Merging in LLMs. Model merging fuses the parameters of multiple trained models into
a single model, which is distinct from output-level ensembles (Yang et al., 2024} [Tam et al., | 2024)).
Empirical studies show that merging tends to balance performance and safety better than mixing data
across tasks or languages (Yang et al., [2025b; [Yadav et al.| 2024} |Yu et al.| 2024b; Jin et al.). More
advanced techniques adapt merging to pre-trained models by disentangling weights into magnitude
and direction (Yu et al., [2024a). Other approaches merge checkpoints during pre-training for faster
convergence or use activation importance to retain critical parameters (Li et al., 2025a; Nobari et al.,
2025)). Model merging has also been applied to combine models with different reasoning strategies
and to merge heterogeneous architectures (Wu et al.| [2025a; |[Zhang et al., [2024). However, most
existing work focuses on merging models specialised for different domains and tasks; by contrast,
our approach merges student models distilled by different teachers on the same dataset to unify their
reasoning abilities without conflicts among different teachers.

Table 1: Best teacher under STD for each base model and dataset.

Base model Best teacher on BOBA-200 Best teacher on S1K-200
Qwen3-8B QWQ QWQ
Qwen3-14B Qwen3-235B QWQ
Qwen3-30B-A3B Qwen3-235B Qwen3-235B

3 REVISITING MULTI-TEACHER LONG COT DISTILLATION

Setup and goals. We fine-tune three students from the Qwen3 family (Qwen3-8B / Qwen3-14B /
Qwen3-30B-A3B) on two teacher-distilled math subsets, BOBA-200 and S1K-200. We compare
three regimes: (i) single-teacher distillation (STD), (ii) a direct multi-teacher union (MTD) that
mixes all available teacher-distilled samples, and (iii) a one-shot post-hoc weight merge of stu-
dents independently distilled from different teachers. Further dataset/model/training details appear
in Sec. E} This section has two goals: (1) revisit teacher selection under long CoT distillation and
quantify that the best teacher is student and dataset-dependent; and (2) show that naive MTD or a
single post-hoc merge does not reliably resolve cross-teacher supervision conflicts.

Table 2: Final AIME24/25 AVG under three regimes. MTD denotes naive multi-teacher union. Best
STD denotes best single-teacher for that setting. MTD and Post-hoc weight merge do not reliably
overcome cross-teacher conflicts or unify heterogeneous reasoning styles.

Base Model Dataset Baseline MTD Best STD Post-hoc Merge
Qwen3-8B BOBA-200 71.46 72.50 71.88 73.12
wen>- S1K-200 71.46 73.23 72.09 73.02
Qwen3-14B BOBA-200 74.59 75.94 76.98 76.98
S1K-200 74.59 76.26 76.57 76.26
BOBA-200 75.77 76.67 78.65 78.54

Qwen3-30B-A3B ¢ 500 7577 1646 7161 77.08

Different students have different best teachers. Table|l|summarizes, which single-teacher dis-
tillation (STD) source achieves the best distillation performance for each base model and dataset.
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Figure 2: Workflow of Merge-of-Thought Distillation (MoT). After the candidate teachers generate
the teacher-specific distillation dataset based on the seed problem, the system enters the iterative
MoT algorithm process. In each round ¢, we perform three steps: Step 1 (branch training): ini-
tialize K branches from the current merged student and train each on its teacher-specific distillation
dataset D*) (Eq. ; Step 2 (weight merge): average the branch parameters in weight space to
obtain the aggregated model 6(*) (Eq. ; Step 3 (next-round initialization): use #(*) as the base
initialization for round ¢+1.
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We observe that different students have different best teacher, and even for the same student the
best teacher can vary across datasets. This revisiting analysis challenges the naive belief that a
larger/stronger teacher is always better. Details are provided in the Table ]

Simple mixing or one-shot post-hoc merging is insufficient. Table [2| reports final AIME24/25
AVG across two datasets and three student scales. While MTD often improves over the base model,
it sometimes lags behind the best per-setting STD especially when the scale of the student model
grows. In practice, post-hoc merging behaves similarly to MTD. This means that a straightforward
MTD that directly unioning all teachers’ distilled samples, and a single post-hoc weight merge of
independently distilled students do not reliably overcome cross-teacher conflicts or unify het-
erogeneous reasoning styles, motivating the need for an iterative merge-and-train approach
introduced next in Sec. [f] to reconcile heterogeneous teacher signals by repeatedly reinforcing the
learning of consensus reasoning features.

4 METHOD: MERGE-OF-THOUGHT DISTILLATION (MOT)

Our approach assumes access to a base language model, a small set of supervised problems with
reference answers, and multiple teacher models. The core idea is to consolidate reasoning signals
that are consistent across heterogeneous teacher rationales. MoT alternates between teacher-specific
supervised fine-tuning (SFT) branches and weight-space merging, and is performed iteratively. Con-
cretely, MoT consists of two core steps repeated for multiple rounds:

1. Branch training (teacher-specific SFT): For each teacher, fine-tune a branch of the student on that
teacher’s rationales.

2. Weight merge: Merge branch parameters by averaging to form the next student initialization.

We detail the setup and these steps below. An overview of the approach is illustrated in Figure

4.1 INITIALIZATION

Data. Let D = {(x;,;)})Y, be a set of problems = with reference answers y. We consider K
teacher models. For each input x, teacher 75, produces a rationale »(*) and a final answer ().
When y is available, we optionally retain only the teacher outputs that match the reference answer,
yielding teacher-specific datasets:

D) {(s, T(k))}Nk

i =17

which filters out teacher trajectories that do not reach the correct final answer.
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Model. Let m denote the student with parameters 6. We initialize from the base model parameters
6(©) and iterate the MoT procedure for ¢ = 1, ..., 7T rounds.

4.2 TEACHER-SPECIFIC SFT (BRANCH TRAINING)
Targets. For each teacher k, we train the student to produce the teacher’s rationale:
target(z; k) = ¥,

This choice encourages the student to internalize teacher-specific reasoning patterns, rather than
only the short final answer.

Objective. The SFT objective for teacher k is the token-level cross-entropy over the target sequence:

L(x,k)
‘C(S?T(H) = Egrm y)~npm Z —logpo (2t | @, 2<1), (D
t=1

where 21.7,(; k) tokenizes target(x; k). In round ¢, we initialize / branches from the current merged
model and fine-tune each branch on its teacher’s data:

0F) « arg min Eé@T(G) with init ¢~ 1.
0

4.3 WEIGHT-SPACE MERGING AND ITERATION

After branch training, we merge the K branch parameters by averaging to get the next initialization:

1 K
o6 = ?Zewﬂ). 2)
k=1

This step consolidates reasoning features that are shared across branches while smoothing out
teacher-specific noises. We repeat the two steps—branch training and weight merge—for 7" rounds,
resulting in the final merged model 8(7). We aim to leverage model merging to overcome conflicts
among various teachers’ supervision and, through continuous merge-and-training iterations, unify
different teachers’ reasoning abilities and ultimately converge to a consensus reasoning landscape.

5 EXPERIMENTS SETUP

Datasets. We work in a one-question—multiple-answers (1Q-multiA) setting. We use two high-
quality open-source mathematical datasets (BOBA (inclusionAll 2025) and S1K (Muennighoff
et al., 2025) as our source datasets. From each source dataset, we sample 200 prompts and de-
note the resulting subsets as BOBA-200 and S1K-200. For every prompt, we query four teacher
models—Qwen3-32B (Yang et al.| [2025a), QWQ (Team) [2024b)), Deepseek-R1 (Guo et al., [2025),
and Qwen3-235B (Yang et al.| [2025a). Each teacher generates 16 responses with temperature set to
0.6 and max_tokens set to 32,768. For distillation, we randomly select one correct reasoning path
among the 16 as the training label; if none of the 16 responses is correct, we discard that prompt for
the corresponding teacher’s distillation corpus. We construct two training regimes:

(1) Single-Teacher Distillation (STD), where we build one distilled corpus per teacher.

(2) Multi-Teacher Distillation (MTD), where we aggregate all available distilled samples from all
teachers for each source.

The resulting STD and MTD datasets and their sizes are summarized in Table 2I] Rows with a
specific teacher correspond to STD, while rows with “ALL TEACHERS” correspond to MTD.

Sampling strategy for BOBA-200 and S1K-200. Following the general observation that random
sampling can lead to variable prompt difficulty in reasoning tasks (Wang et al., |2025b)), we adopt
a simple but reproducible sampling strategy for our subsets. For BOBA-200, we directly use the
default 200 problems provided by the official BOBA release, which are themselves obtained by
random sampling from the full benchmark, without any additional filtering or manual selection. For
S1K-200, since some items are proof-style questions (about 200 items) without a verifiable final
answer, we first remove all such problems and then uniformly sample 200 prompts at random from
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the remaining questions that have a boxed checkable answer. In both cases, we keep the process
as random as possible under the constraint of automatic answer verification and use exactly the
same batch of prompts for all comparative experiments (MoT, all STDs, and MTD) to avoid cherry-
picking and minimize sensitivity to a particular sample.

Training Configuration. We fine-tune Qwen3-8B, Qwen3-14B, and Qwen3-30-A3B (Yang et al.,
2025a)) as base models across all experiments. For MoT, the base model alternates training on each of
the four STD corpora for 50 steps and then performs a merge; this constitutes one merge round. We
run 5 merge rounds in total and report the best-performing round as the final MoT result; For STD
and MTD baselines, to ensure fairness, we train for 250 steps in total and save a checkpoint every 50
steps. We also report the best-performing checkpoint as the final result. More details are provided in
the Appendix[G] We evaluate the capabilities of the model in mathematical reasoning using AIME24
(Math-AlL 2024)) and AIME25 (Math-AlL [2025). All AIME scores are 16-run averages.

Table 3: Main results with MoT on BOBA-200 and S1K-200. “/” denotes an item not reported in
the corresponding baseline’s source. All AIME scores are 16-run averages.

Base Model Configuration Annotated \y\ipoy AIME2s AV AVG
Examples Gain
Base — 75.83 67.08 71.46 -
DEER (Dai et al./[2025) 103K 76.70 / - -
Qwen3-8B S-GRPO (Dai et al.|[2025) 103K 77.30 / - -
MathSmith-HC (Zhan et al.||2025) 11K 76.70 70.00 73.35  11.89
BOBA-200 + MoT (Ours) 200 78.33 70.63 7448  13.02
S1K-200 + MoT (Ours) 200 77.50 71.67 7459  13.13
Base — 13.75 11.46 12.61 -
GRPO (Chen et al.|[2025a) 1K 13.33 13.13 13.23  10.62
SPO (Chen et al.|[2025a) IK 14.17 16.67 1542 1281
RefCritic (SFT) (Tang et al.|[2025) 10K 15.20 15.00 1510  12.49
QWEN?2.5-14B RefCritic (SFT+RL) (Tang et al.|[2025) 120K 23.00 21.20 22.10  19.49
Bespoke-Stratos-17k (Kou et al.|[2025) 17K 20.00 13.30 16.65  14.04
Difficulty-Flipped (Kou et al.![2025) 17K 23.00 23.30 23.15 11054
Long-CoT (Wang et al.|[2025a) 220K 30.00 / - -
BOBA-200 + MoT (Ours) 200 34.17 30.00 32.09  119.48
S1K-200 + MoT (Ours) 200 36.88 30.42 33.65 121.04
Base — 79.17 70.00 74.59 -
Qwen3-14B BOBA-200 + MoT (Ours) 200 7938 7688 7813  13.54
S1K-200 + MoT (Ours) 200 81.67 75.63 78.65  14.06
Base — 80.63 70.90 75.77 -
Qwen3-30B-A3B  UloRL-A3B-32k (Du et al.|[2025a) / / 73.50 - -
S1K-200 + MoT (Ours) 200 80.83 77.50 79.17  13.40
BOBA-200 + MoT (Ours) 200 82.92 78.33 80.63  14.86
Qwen3-32B Base — 81.46 72.08 76.77 -
Deepseek-R1 Base — 79.80 70.00 74.90 -
OpenAI-Ol Base — 74.30 79.20 76.75 -
OpenAI-O3-MINI  Base — 79.60 74.80 77.20 -

6 MULTI-TEACHER DISTILLATION AND MOT YIELD SUBSTANTIAL GAINS

6.1 PERFORMANCE ON COMPETITION MATH BENCHMARKS

Main results. To demonstrate the superiority of MoT, we report gains across multiple model scales
and compare them against two axes of baselines: (i) larger models like Deepseek-R1, Qwen3-32B
and (ii) same-base alternatives trained on methods using substantially larger, differently sourced
reasoning datasets. Because the Qwen3 family is very frontier and lacks extensive public base-
lines, we additionally include results of applying MoT to Qwen2.5-Instruct-14B (Team||20244a) as a
complementary case to test the effectiveness of MoT on 14B scale.

Table [3] reports the final results of MoT on BOBA-200 and S1K-200. For example, “Qwen3-
8B+BOBA-200” denotes Qwen3-8B trained with MoT on BOBA-200 dataset. As shown, with
only 200 training examples from either BOBA-200 or S1K-200, MoT lifts Qwen3-8B to match
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the baseline performance of Qwen3-14B. Moreover, MoT on Qwen3-14B surpasses strong models
including Deepseek-R1, Qwen3-32B, and OpenAI-O1, demonstrating substantial gains. In addition,
on Qwen2.5-Instruct-14B, MoT’s improvements far exceed baselines trained on very large reasoning
datasets, reinforcing our claim that multi-teacher, consensus-based efficient distillation of long
CoT reasoning can yield very substantial performance gains.

Comprehensive Ablations of STD, MTD, and MoT. To validate the effectiveness of MoT and
multi-teacher distillation, we conduct fine-grained ablations: (1) STD: train on each single-teacher
distilled dataset (QWQ, Qwen3-32B, Qwen3-235B, Deepseek-R1). (2) MTD: train on the union of
all teachers’ distilled samples. (3) MoT: our method that alternates across the four STD corpora
with periodic merges. For fairness, all methods save a checkpoint every 50 steps, and we report the
best checkpoint; full per-step results are provided in the Appendix

Table 4: Ablation on STD, MTD, and MoT across settings. AIME scores are 16-run averages.

Qwen3-8B Qwen3-14B Qwen3-30B-A3B

Dataset Method AIME24 AIME25 AVG AIME24 AIME25 AVG AIME24 AIME25 AVG
Baseline 75.83 67.08 7146  79.17 7000 7459  80.63 7090  75.77

MTD (All Teachers)  76.04 68.96 7250  76.46 7542 7594 79.38 7396 76.67

STD (QWQ) 76.25 67.50  71.88  79.58 7354 7656  79.79 7563 7171

BOBA  STD (Qwen3-32B) 75.42 6771 7157 7171 7125 7448  81.04 76.04  78.54
STD (Qwen3-235B)  74.58 6792 7125  79.17 7479 7698  81.88 7542 78.65

STD (Deepseck-R1)  67.71 6021 6396 7438 67.50 7094 7833 68.96  73.65

MoT (ours) 78.33 70.63 7448  79.38 7688 7813 8292 7833 80.63

Baseline 75.83 67.08 7146  79.17 7000 7459  80.63 7090  75.77

MTD (All Teachers)  75.63 7083 7323 79.17 7334 7626 7833 7458 76.46

STD (QWQ) 76.04 68.13  72.09  80.21 7292 7657  81.46 7292 77.19

S1K STD (Qwen3-32B) 77.50 66.67 72.09 79.79 72.50 76.15 79.58 73.13 76.36
STD (Qwen3-235B) 74.38 68.54 71.46 77.08 75.41 76.25 79.17 76.04 77.61
STD (Deepseek-R1) 70.00 61.46 65.73 73.75 62.92 68.34 78.54 70.63 74.59
MoT (ours) 77.50 71.67 74.59 81.67 75.63 78.65 80.83 77.50 79.17

Results are shown in Table[d] MoT consistently yields the strongest distillation gains in almost all
settings, which means that MoT is always superior to the optimal result of the teacher selection
method under each setting. This indicates that MoT can sidesteps brittle manual teacher selection
by fusing complementary reasoning abilities into a single student.

Training Loss Over Steps AIME Average Over Steps Training Loss Over Steps AIME Average Over Steps
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Figure 3: Qwen3-8B under MoT vs. STD (QWQ) on S/K and BOBA. Panels (a,b): S1K; panels
(c,d): BOBA. Left columns show training loss vs. steps; right columns show AIME vs. steps. All
runs log loss at every step on the same QWQ-distilled corpus; AIME is evaluated every 50 steps.

Training Dynamics: MoT vs. Best STD. We compare Qwen3-8B under MoT and under STD
with the best single teacher (QWQ) on both the S/K and BOBA datasets. We log training loss
on the same QWQ-distilled corpora at every step and evaluate AIME score every 50 step. From
Figure [3| we observe that MoT achieves substantially higher AIME scores even when its training
loss remains much higher than STD’s at the same step. This suggests that in long CoT training,
lower loss is not necessarily correlated with stronger reasoning ability. Moreover, MoT exhibits a
higher performance ceiling and suppresses overfitting, with STD typically peaking earlier and
then degrading while MoT remains stable or continues improving as steps increase.

6.2 COMPUTE-PERFORMANCE TRADE-OFF.

There is an inherent trade-off between computational cost and performance in our setting. For
the main BOBA-200 experiments with Qwen3-8B, the training budgets of STD and MoT can be
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Table 5: Training budgets of STD and MoT on BOBA-200 with Qwen3-8B.

Method # branches steps/branch rounds total branch-steps

STD 1 250 1 250
MoT 4 50 5 4 x 50 x 5 = 1000

Table 6: Equal-compute comparison between MoT and RFT-style single-teacher STD on
AIME24/25 with Qwen3-8B and BOBA-200. All STD variants are trained with 4 CoTs per question
for 1000 steps, matching MoT’s total branch-steps and distinct CoT budget.

Method AIME24 AIME25 AVG

Base 75.83 67.08 71.46
4xSTD (32B) 75.21 67.92 71.57
4xSTD (QWQ) 76.46 69.17 72.82
4xSTD (235B) 75.83 68.13 71.98
4xSTD (R1) 70.42 59.58 65.14
MoT (ours) 78.33 70.63 74.48

summarized as shown in Table 5} However, MoT is designed for the realistic setting where multiple
teachers are available and one wishes to maximally leverage them rather than commit to a single
teacher. In practice, MoT remains highly efficient: it takes only about 6 GPU hours to reproduce
the Qwen3+BOBA-200 training on a single 8 xH800 machine, and this can be further accelerated
by training branches in parallel.

To directly assess whether MoT’s gains come purely from increased compute, we ran an additional
experiment following the RFT-style setup (Yuan et al., [2023). For each teacher, we re-distilled the
data by sampling 4 diverse CoT trajectories per question with high temperature, yielding 4 x 200 =
800 rationales per teacher. This matches MoT’s total number of distinct CoT sequences (4 teachers
x 200 questions x 1 CoT each = 800), so the comparison controls for both the total compute and
the amount of distinct CoT supervision. We then performed single-teacher STD for 1000 steps on
the chosen teacher’s 800 CoTs, matching the total branch-steps of MoT:

(1) MoT: 4 branches x 50 steps/branch x 5 rounds = 1000 branch-steps,

(2) RFT-style STD: single teacher, 4 CoTs per question (800 CoTs total), 1000 steps.

We saved a checkpoint every 200 steps and report the best checkpoint. The results on AIME24/25
(Qwen3-8B, BOBA-200) are summarized in Table@

The strongest single-teacher STD configuration in this equal-compute regime remains competitive,
but even with this strictly matched compute and data budget, it still underperforms MoT. This in-
dicates that MoT’s gains do not arise merely from using more optimization steps; instead, they come
from jointly leveraging multiple teachers, avoiding brittle teacher selection, and unifying comple-
mentary reasoning signals into a single student, thereby raising the overall reasoning ceiling.

6.3 MOT MITIGATES FORGETTING AND STRENGTHENS GENERAL REASONING

To assess whether CoT-style training with MoT affects basic capabilities, we evaluate the final
checkpoints trained by MoT and by STD with the per-setting best teacher (Best STD) against the
Base models on nine benchmarks: CEVAL (CEV) (Seifert et al., 2024), SUPER_GPQA (SG) (Du
et al.,[2025b), SIMPLE_QA (SQ) (Wei et al.}[2024), IFEVAL (IFE) (Zhou et al.}[2023)), MMLU_PRO
(MP) (Wang et al., [2024), MMLU _REDUX (MR) (Gema et al., 2025), PhyBench (PB) (Meng et al.,
2024), LiveCodeBench (LCB) (Jain et al., [2024), and GPQA-Diamond (GPQA-D) (Rein et al.
2024). We group these benchmarks into three categories: catastrophic-forgetting—sensitive tasks,
reasoning—knowledge tasks and pure reasoning tasks. Detailed descriptions of these tasks and
MoTivations for using and classifying them for evaluation are provided in the Appendix [H]

For each configuration, we report raw scores and summarize the average change versus the Base
model within each group: “Avg drop” for catastrophic-forgetting tasks and “Avg gain” for reasoning-
knowledge and pure reasoning tasks. We report the results in Table[7] Compared with training on the
single best teacher, MoT typically yields larger gains on reasoning-knowledge and pure reasoning
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tasks while incurring smaller declines on catastrophic-forgetting—sensitive tasks. This suggests that
MoT not only strengthens general reasoning but also helps mitigate catastrophic forgetting. In
Appendix [E| we provide a more detailed evaluation.

Table 7: Impact of Best STD and MoT on general benchmarks. All scores are 16-run averages.

Catastrophic-forgetting—sensitive tasks Reasoning-knowledge tasks Pure reasoning tasks
Dataset Base Config CEV  SG IFE Avg drop SQ MP MR Avggain PB LCB GPQA-D Avg gain
Base 83.58 10.51 83.60 - 3231 7142 8321 - 2047 55.76 57.77 -
BOBA 8B Best STD 8343 997 81.62 1-0.89 33.88 72.00 83.68 10.87 22.85 59.88 59.85 12.86
MoT 83.73 10.09 82.04 1-0.61 3444 7330 84.42 11.74 24.07 5879 60.54 13.13
Base 83.58 10.51 83.60 - 3231 7142 8321 - 2047 5576 57.77 -
S1K 8B Best STD 83.95 10.18 82.35 1-0.40 3275 7224 85.02 11.02 2276 59.47 56.31 1151
MoT 8432 10.15 83.51 10.10 3356 73.01 84.95 11.53 23.37 59.58 59.53 12.83
Base 86.78 10.76  84.69 - 3261 7526 8574 - 28.53 6141 60.83 -
BOBA  14B  BestSTD 83.73 10.26 82.56 1-1.89 32,17 7471 86.37 1-0.12 30.61 63.21 63.79 12.28
MoT 86.70 10.38 83.51 1-0.55 32,65 7559 86.53 10.39 30.77  63.59 64.26 12.62
Base 86.78 10.76  84.69 - 3261 7526 8574 - 28.53 6141 60.83 -
S1K 14B BestSTD 84.25 10.00 84.32 1-1.22 3249 7621 8647 10.52 3041 63.10 63.70 12.15
MoT 85.66 1045 84.42 1-0.57 3256 76.55 86.68 10.73 30.78 64.15 64.11 12.76
Base 85.88 10.66 83.76 - 31.68 7526 85.81 - 28.57 61.08 59.76 -
BOBA  30B BestSTD 84.18 10.02 80.44 1-1.89 31.52 7596 86.04 10.26 33.31 6134 61.81 12.35
MoT 86.55 10.52 83.54 10.10 3226 7621 86.74 10.82 3346 6254 62.34 12.98
Base 85.88 10.66 83.76 - 31.68 7526 8581 - 28.57 61.08 59.76 -
S1K 30B  BestSTD 84.62 10.04 79.74 1-1.97 3240 7549 86.67 10.60 33.38 63.96 61.46 13.13
MoT 86.48 10.14 8291 1-0.26 33.19 7649 87.28 11.40 3340 63.92 62.53 13.48

7 MOT ENABLES SELECTION-FREE COT DISTILLATION

Ablating a Distribution-Shifted Teacher from MoT: Evidence of Complementarity. As shown
in Table ] using Deepseek-R1 (R1) as the sole teacher (STD) induces notable performance drops
for QWEN bases, indicating a strong distribution shift. To verify that MoT can still leverage useful
signals from R1 despite the shift, we ablate R1 from the MoT teacher pool and keep all other settings
identical. As shown in Table [8] removing R1 reduces the final MoT performance on BOBA-200
(negative changes), implying that including R1 provides complementary, beneficial supervision that
MoT can harness. This proves that MoT can overcome the performance degradation caused by the
strong distribution shift teacher and extract beneficial common reasoning features from it. More
details are provided in the Appendix

Optimization Dynamics with Distribution-Shifted Typle 8: Impact of removing R1 from
Teacher. We visualize optimization dynamics on BOBA  the MoT teacher pool on BOBA-200.
for both 8B and 14B scales under standard MoT and MoT

without R1 (removing the R1 teacher). We log training Base model AVG change
loss at every step on the same QWQ—dlstﬂ.k:d corpus a}nd Qwen3-8B 20.62
evaluate AIME score every 50 steps (as in our ablation

tocol). From Fi bserve that although the v ens14B 021
protocol). From Figure ] we observe that although the Qwen3-30B-A3B 042

performance of the no-R1 variants converges faster, in-
cluding R1 raises the performance ceiling, delays satu-
ration and reduces post-peak degradation, suggesting better regularization and a higher training
upper bound at both scales. This indicates that even with the distribution-shifted teacher, MoT
extracts beneficial common reasoning signals while mitigating teacher-specific noise.

Can peer-level models act as teachers? We find that teacher usefulness extends beyond strictly
stronger models: distilling Qwen3-30B-A3B from peer-level QWQ or Qwen3-32B improves per-
formance. Combining peer-level trajectories with MoT boosts results further (Appendix [G.4).

8 CONSENSUS COT EMERGES NATURALLY WITH MOT

Better student is a better teacher. To verify that MoT learns higher-quality and more general-
izable chains-of-thought (CoT), we conduct a student-as-teacher experiment. Specifically, we take
models trained on BOBA-200 under three regimes (Base, Best STD and MoT) and use each as a
teacher to re-distill on BOBA-200 for a new student model. As shown in Appendix [C] when the
teacher itself is a student trained with MoT, it almost always provides the strongest distillation sig-
nal, yielding the best downstream student performance. These results indicate that consensus CoT
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Figure 4: BOBA dataset: MoT vs. MoT without R1 at two scales. Panels (a,b): 8B; panels (c,d):
14B. Left columns show training loss vs. steps; right columns show AIME vs. steps. All runs log
loss at every step on the same QWQ-distilled corpus; AIME is evaluated every 50 steps.

emerges naturally with MoT: the student learns trajectories that are both stronger and more con-
sistent, and when used as a teacher, this consensus supervision transfers effectively to new students.
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Token-level evidence for consensus CoT. We further
probe token-level confidence on QWQ-distilled CoTs. We
mark tokens for which the MoT model’s output confidence
drops relative to the Base under QWQ teacher’s distilled su-
pervision (Figs. [5)). Strikingly, the marked tokens concen-
trate on teacher-specific stylistic expressions (driven dis-
course markers, hedges, and rhetorical flourishes), whereas
core derivational tokens (e.g., operators, equations, inter-
mediate results) retain high confidence. This indicates that
MoT is essentially weakening the learning of inductive
bias of different teachers, while repeatedly reinforcing the
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learning of consensus reasoning ability. We also de-
tail token-level confidence for MoT and STD(R1) on R1-
distilled CoTs in the Appendix Figs.[7]and Figs.[§]

Figure 5: Tokens marked with confi-
dence drops relative to the Base model
after MoT.

MoT mitigates inter-teacher conflicts and trains in a flatter loss landscape. We design two
complementary evaluations with clear goals: (i) a theoretical “two-bonus” decomposition to test
whether expert-wise preconditioning boosts the useful driving term and whether cross-teacher inter-
ference is provably reduced—thereby explaining conflict mitigation and flatter updates than MTD;
and (ii) a linear mode connectivity probe to check loss landscape flatness of MoT. The “two-bonus”
decomposition (Appendix [A) shows that expert-wise preconditioning of MoT boosts the driving
term while a contractive bound reduces cross-teacher interference, with averaging further shrinking
the curvature penalty. Complementarily, a linear mode connectivity probe (Appendix [D) indicates
that MoT yields markedly smoother loss curves than MTD, indicating flatter regions and reduced
sensitivity to teacher noises.

9 CONCLUSION

We presented Merge-of-Thought Distillation (MoT), a lightweight framework that unifies super-
vision from multiple heterogeneous teachers for long chain-of-thought (CoT) reasoning by alter-
nating teacher-specific SFT with weight-space merging. Revisiting teacher selection shows that
different students have different “best teachers,” and even the same student’s best teacher varies
across datasets; MoT sidesteps brittle manual selection by fusing complementary reasoning abil-
ities into a single student. With only about 200 CoT samples, applying MoT to a Qwen3-14B
student surpasses Deepseek-R1, Qwen3-32B, and OpenAI-Ol. Besides, MoT consistently beats
the best single-teacher and naive multi-teacher unions, improves general reasoning while mitigating
catastrophic forgetting, and is robust to distribution-shifted and peer-level teachers. Finally, we pro-
vide theoretical and empirical evidence that MoT naturally induces a consensus CoT by eliminating
teacher-specific inductive biases and inter-teacher conflicts while repeatedly reinforcing the learning
of consensus reasoning feature, which enables training in a flatter region of the loss landscape and
effective transfer to new student models.

10
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Ethics Statement. We affirm compliance with the ICLR Code of Ethics. Our study does not
involve human subjects or personally identifiable information. Training/evaluation use public
math/QA benchmarks (e.g., AIME24/25, CEVAL, MMLU variants, GPQA, LiveCodeBench, Phy-
Bench) under their respective licenses; we follow all license terms and cite original sources. Teacher
trajectories (CoTs) are generated by publicly available LLLMs and filtered to remove potential toxic-
ity. No sensitive domains (medical/financial/legal advice) are targeted. We report all compute details
to support efficient replication. Any conflicts of interest or sponsorship will be disclosed per ICLR
policy at camera-ready; none are known that would bias the results at submission time.

Reproducibility Statement. We take reproducibility seriously. The method is fully specified in
Section |4] with training schedules and hyperparameters in Appendix and ablations in Table
We average AIME over 16 seeds and save checkpoints every 50 steps; full per-step results are re-
ported in Appendix|G] To facilitate exact reruns, we release (anonymized) artifacts as supplementary
material: main code, training scripts, data preprocessing steps, and environment requirement files
(conda). Appendix [3] details dataset sources, splits, and filtering; Appendix [G.] lists hardware.
These materials allow independent reproduction of tables and figures without additional calibration.
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A THEORETICAL ANALYSIS

In this section, we will provide a detailed theoretical analysis to explain the advantages of MoT over
MTD in addressing conflicts and mitigating forgetting issues.

Our analysis is based on a comparison of the gradient update processes of MoT and MTD.

Preliminary. We approximate the model update for each expert by using second-order Taylor
expansion:

0e(0) ~ Lp(0r—1) + gg (60— 0p—1) + 5 (60— 0i—1) " Hi(0 — 0,-1),

where g = VU (0;_1), Hy = V2£,(0;_1), and 1 () is the loss function for expert k evaluated
at point . We also define the mixture gradient and Hessian as weighted sums of the individual

gradients and Hessians:
722%%7 H:Z@ka,
k k

where o, > 0 and ), ay, = 1 are the weights assigned to each expert.

Each branch performs Ej, steps of gradient descent with a stepsize 7 starting from 9t 1. Based on

second-order Taylor expansion, we have 8y g = 0;-1 — Prgr, Pr = nze 0 (I — nHg)e,
where Py is the “preconditioner” used in each branch’s local optimization process.

We also have the below closed-form solution for preconditioner:
E—1
1-(1-nx)
Pe= sm(). s = T STy
e=0

where s () represents the effective step size along the direction defined by the eigenvalue A of the
Hessian matrix Hy,.

The expression for sg(\) can be derived by considering the update rule for gradient descent in the
presence of a Hessian, where each step of gradient descent applies a scaling factor depending on the
eigenvalue \ of the Hessian matrix at each iteration. For large F or small nA, sg(A) approximates
the inverse of the eigenvalue )\, leading to more efficient updates along lower-curvature directions.

Hence, the branch displacement for expert & is given by:
0k = —Prgr = —sg, (Hi)gr,

and the MoT merge, which aggregates the displacements from all experts, is:

A=Y g =—Y_ arPigs
k k

For the MTD, which also runs E local steps at the same anchor point, the preconditioner is defined
as:

Pmtd = SE(H)a
where H is the weighted sum of the Hessians of all experts, and the E-step update is:
— Pmtdg = _SE(H)g
Here, P.,tq is the preconditioner used for the mixture of experts, and g is the mixture gradient.

Assumption 1 (Local quadratic & stable steps). Each £}, is C? in a neighborhood N of 0;_. Let
Hy = V203,(0;_1) and Lyax = maxg Amax(Hy). We choose a stepsize ) € (0, 2/ Linax) and run
E;, > 1 local steps whose iterates remain in N.

Two bonuses on the linear part. The one-round improvement under the quadratic surrogate
Fqo(8) =g'6+ 56" H 4 splits into a linear “driving” term and a quadratic penalty. For the linear
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term we have the following variance-type decompositions:

2
1 2
H Z%Pkng = o gk, Pagr) — 3> aic||Pigi — Pig; | 3)
k k ,J
MoT linear expert-wise preconditioning Imot >0
—_n2 —112
1901 Pes = D @k (ks Patag) — Y o llge — Gl “4)
™ k k
mtd linear
single preconditioner Imtd (Pmta) >0

where ||z||2;, = " M. Subtracting equationfrom equationyields the two-bonus difterence

2
A = || e~ gl
k

= gk, (Pe = Pua)9k) + Tmta(Panta) = ot - )
p

(B’) interference mitigation

(A’) preconditioning gain

When is (A’) > 0?

Lemma 1 (Monotonicity of sg). For any fixed E > 1 and n > 0, sg(\) = n Zfz_ol(l —nA)¢is
strictly decreasing in A on (0,2/7n).

If Hy, and H are (approximately) simultaneously diagonalizable, then Dy, := (g, (Px — Pmtd)gr) =

— T 2
ll gk >, We (SE(/\;“) — sE(/\T)), with weights wy, , = ((ﬁ}fﬁg

weight lies on directions where )\ . < \,.. Aggregating with oy, gives (A’)> 0.

. Hence D;. > 0 whenever most

When is (B’) > 0? A contractive bound on interference. Let S = span{g; — g,}; , be the
disagreement subspace.

Assumption (direction-wise contraction on S). There exists p € (0, 1] such that on S one of the
following equivalent conditions holds:

(Coord.) Hy and H are (approximately) simultaneously diagonalizable on S with eigenbasis {g; };
let px» = sg(Ag,r) and puea,r = sg(Ar). For all  with ¢, € S,

max pi,r < P Pmtd,r-
(Basis-free) Forall v € § and all &,

|Prol|? < p? ””H%’mm (ie,v' P Pov < p* v’ Ppav).

The above is natural on high-curvature/disagreement directions because sg () is decreasing in A:
along directions where at least one expert has directional curvature no smaller than the mixture (a
common empirical pattern), its preconditioning coefficient is smaller, yielding stronger contraction.

Under this assumption we have

Imot = 3 »_ i | Pigi — Pig;|I> < p* 5 cijlgi — g

2Pmtd = P2 Imtd(Pmtd)- 6)
Hence (B’) = mtd(Pmtd) — Tpot > (1 _ p2) Imtd(Pmtd) > 0.

Implicit shrinkage from averaging enters the quadratic penalty. With A = — 3", o Pgy, the
quadratic penalties satisfy

Rt = %ATE{A < %)\max(g)(zakupkngQ — Inmot )7 (7
k shrinkage from averaging
Ruwa = 305 05 < 5 Mo () (D2 anllPasagi | = Tinia(Pania) ) ®)
k

Note the minus interference terms, showing that averaging contracts the update norm and directly
reduces the curvature penalty.
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Table 9: MoT applied to Llama-3.1-8B-Instruct on Math500 under the BOBA-200 setting. MoT
consistently outperforms all single-teacher STD variants, indicating that MoT is not tied to Qwen-
specific design choices.

Method Math500 score
Base 49.65
STD (Qwen3-32B) 55.45
STD (QWQ) 55.80
STD (Qwen3-235B) 57.45
STD (Deepseek-R1) 53.80
MoT (ours) 62.65

Net one-round advantage. Combining equation [5}-equation[6]and the penalty bounds yields
Amot - Amtd z Zak<gka (Pk: - Pmtd)gk‘> + (]- - p2) Imtd(Pmtd) - % )\max(H) . |: e :|7
—_———

MoT minus MTD k (B”)
(A)

where [ - -] gathers the (usually small in the stable regime) difference of squared update norms.
Thus, under gradient/curvature heterogeneity and stable steps, MoT enjoys a larger linear driving
term (A’) and smaller interference (B’), while averaging further cuts the quadratic penalty.

Special case £ = 1 (for reference). Then P, = P,q = nl, and equation |§| reduces to the
familiar two-term decomposition

S anfillgel® = nllg® = 0 + 03 axlgr — gl
k A) k

f=n (B) variance bonus
Remark 1 (Implicit proximal effect (Mitigating Forgetting)). The matrix series identity P, =

n Zf:k(; Y(I —nHy,)e shows a direction-dependent shrink toward the anchor; in each eigendirection
A the effective step is sg(\), larger for low curvature and smaller for high curvature, explaining
MoT'’s stability without explicit proximal terms.

Remark 2 (Unified Improvements (Mitigating Conflicts)). A positive value for both bonus terms
indicates that MoT reduces gradient interference and produces a larger effective update, thereby
improving optimization progress.

A.1 ADDITIONAL ANALYSES: GENERALIZATION AND ROBUSTNESS OF MOT

Generalization to other backbones. To examine whether MoT is specific to the Qwen family
or can transfer to other architectures, we replicate the BOBA-200 setup on a different backbone,
Llama-3.1-8B-Instruct. We use exactly the same teacher pool, data, and MoT procedure, and
evaluate on Math500. The results are shown in Table [0l

MoT significantly improves the Llama-3.1-8B-Instruct backbone and provides a sizable margin over
the best single-teacher distillation, supporting the view that MoT is a lightweight, architecture-
agnostic training procedure rather than a Qwen-specific trick.

Seed sensitivity and early stopping. We further study the robustness of MoT to random seeds
and early-stopping choices. On Qwen3-8B with BOBA-200, we run MoT with 5 independent
seeds under the same 5-round schedule, and report the AIME average (AIME AVG = (AIME24 +
AIME25)/2) at each round. In addition, we implement a fixed validation-based early-stopping rule
for MoT: 10% of the original training set is held out as a validation set, and for each run we select
the checkpoint (across rounds) with the best validation score and then report its test performance.
The results are summarized in Table

The peak around merge round 4 is stable across seeds, without any “best-of”” checkpoint selection.
Validation-based early stopping yields slightly lower AIME AVG than always using round 4 (as ex-
pected, since the effective training set is smaller), but remains strong and better than any STD/MTD
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Table 10: MoT robustness across seeds and rounds on Qwen3-8B + BOBA-200. We report AIME
AVG (AIME24/25 average) as mean = std over 5 seeds. “Early-stopping” denotes validation-based
selection using a 10% held-out split.

Configuration AIME AVG (mean = std)
Merge round 1 70.17 £ 0.63
Merge round 2 72.37 £ 0.65
Merge round 3 73.38 + 0.09
Merge round 4 74.89 + 1.05
Merge round 5 72.75 £+ 0.81
Early-stopping (val-based) 73.46 + 0.31

Table 11: MoT on a code reasoning domain (LiveCodeBench) using 178 code-domain examples.
MoT again outperforms the best single-teacher STD.

Method LiveCodeBench score
Base 55.76
STD (32B) 58.08
STD (QWQ) 56.88
STD (235B) 58.89
STD (R1) 53.89
MoT (ours) 61.08

baseline, and it also improves over taking the same final checkpoint of MoT without early-stopping.
Overall, these results indicate that MoT’s gains are robust to random seeds and remain effective
under a fixed, validation-based early-stopping rule.

Generalization beyond mathematical reasoning. To evaluate whether MoT extends beyond
competition math, we consider a code reasoning domain using 178 code-domain examples from
and apply exactly the same distillation, training, and evaluation pipeline as in the
main experiments (same teacher pool, same 1Q-multiA CoT collection, same MoT procedure). We
evaluate on LiveCodeBench, and report the results in Table E

As in the mathematical reasoning setting, MoT again outperforms the best single-teacher STD, sug-
gesting that MoT is not restricted to math and can also improve code reasoning under the same
multi-teacher long-CoT setup. Furthermore, as reported in Section[6.3} MoT improves performance
on a range of general benchmarks (e.g., CEVAL, MMLU variants, physics and coding benchmarks)
while incurring smaller drops on catastrophic-forgetting—sensitive tasks compared to the best single-
teacher STD. Together, these results provide concrete evidence that MoT generalizes beyond com-
petition math to other domains and evaluation suites.

Additional math benchmark: HMMT. To further diversify mathematical evaluation, we also
evaluate Qwen3-8B distilled on BOBA-200 using MoT and four single-teacher STDs on the HMMT
benchmark. Results are shown in Table[12]

Here, QWQ remains the best single teacher, consistent with Table |I|for this student/dataset config-
uration, which supports the stability of our teacher-selection analysis under a fixed setting. Impor-
tantly, MoT still achieves the highest score, improving over the best STD and reinforcing that MoT
effectively unifies multiple teachers’ reasoning abilities and raises the student’s reasoning ceiling.

Summary across math and code domains. Across different evaluation domains—AIME24/25,
HMMT, and the code-reasoning setting—we observe that the identity of the “best” teacher changes
with the dataset or domain (e.g., QWQ vs. Qwen3-235B), supporting our claim that teacher choices
are not universal. At the same time, MoT consistently outperforms all single-teacher STDs in these
settings, confirming the effectiveness of our multi-teacher consensus distillation. A broader sweep
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Table 12: Performance of Qwen3-8B on HMMT after distillation on BOBA-200. QWQ remains the
strongest single teacher, whereas MoT achieves the best overall score.

Method HMMT score
Base 38.33
STD (32B) 43.33
STD (QWQ) 48.33
STD (235B) 45.83
STD (R1) 40.83
MoT (ours) 52.50

Table 13: Advanced merging baselines and MoT variants on Qwen3-8B + BOBA-200. TIES and
DARE are used both as one-shot merges and as merge operators inside MoT.

Method AIME AVG
Base 71.46
One-shot TIES 71.67
One-shot DARE 60.42
MoT (TIES) 73.34
MoT (DARE) 74.17

MoT (simple merge, ours) 74.48

over additional domains (e.g., large-scale scientific QA) is left for future work, but the new code and
HMMT experiments already provide further evidence beyond the original math benchmarks.

A.2 EFFECT OF MERGING OPERATOR AND NUMBER OF TEACHERS

Advanced merging operators: TIES and DARE. To compare MoT against more advanced
model-merging and data-fusion techniques, we incorporate several recent operators into our
pipeline. On Qwen3-8B + BOBA-200, we evaluate: (i) one-shot TIES merging, (ii) one-shot DARE
merging, and (iii) MoT variants that replace simple averaging with TIES or DARE in the merge step.
All other settings (teachers, data, schedule, evaluation) are kept identical. The final AIME average
(AIME24/25) is reported in Table [I3] We also report the per-round behavior of MoT(TIES) and
MoT(DARE) in Tables[T4] and[T3}

These results lead to three observations:

(1) First, advanced one-shot merges alone are not sufficient in our setting: one-shot TIES brings
only a minor gain over the base model, and one-shot DARE causes a severe performance drop. This
suggests that techniques designed for merging models trained on different domains or tasks may be
much less directly suitable for unifying different reasoning paths for the same questions.

(2) Second, when TIES or DARE is used inside the MoT loop, performance improves substantially,
with DARE gaining almost +14 points over its one-shot counterpart. Algorithmically, this is consis-
tent with the fact that one-shot DARE acts on highly conflicting teacher-specific updates all at once
(leading to over-pruning of partially misaligned but useful directions), whereas DARE inside MoT
sees smaller, progressively more aligned deltas across rounds and branches, and thus behaves like a
gradual consensus regularizer that keeps directions repeatedly reinforced by multiple teachers.

(3) Third, simple averaging still achieves the highest and most robust ceiling: MoT(TIES) and
MoT(DARE) tend to converge faster across rounds but plateau at a slightly lower level or overfit
more, while MoT with plain averaging attains the best final AIME AVG. A plausible explanation,
consistent with our analysis in Section[7] is that simple averaging does not impose any parameter
filtering, allowing MoT to naturally absorb useful signals even from suboptimal or noisy teachers
and thereby achieve a higher reasoning ceiling.

Effect of the number of teachers. We also study how MoT behaves as we vary the number of
teachers. On BOBA-200 with Qwen3-8B, we start from the best single teacher (by STD perfor-
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Table 14: MoT(TIES) across merge rounds on Qwen3-8B + BOBA-200.

Round AIME24 AIME25 AIME AVG

1 73.33 66.67 70.00
2 77.50 67.50 72.50
3 77.50 69.17 73.34
4 74.17 65.00 69.59
5 75.00 65.83 70.42

Table 15: MoT(DARE) across merge rounds on Qwen3-8B + BOBA-200.

Round AIME24 AIME25 AIME AVG

1 75.00 62.50 68.75
2 76.67 65.00 70.84
3 78.33 70.00 74.17
4 79.17 69.17 74.17
5 73.33 65.83 69.58

mance), then progressively add the second-best, third-best, and finally the noisy teacher R1 into the
MoT pool, keeping the MoT configuration fixed. The results are shown in Table [I6]

We observe a monotonic improvement in AIME AVG as more teachers are added, and performance
continues to increase even after including the distribution-shifted/noisy teacher R1. This supports
the view that, in our experimental regime, MoT can effectively extract complementary signals from
additional teachers and is robust enough to benefit from them. We do not claim that this behavior
will persist for arbitrarily large pools of low-quality or adversarial teachers; in such extreme cases,
stronger filtering or adaptive weighting would likely be necessary. Systematically studying how
performance scales with larger and more heterogeneous teacher sets is an interesting direction for
future work.

B LIMITATIONS

(1) We currently merge branches via simple uniform parameter averaging; future work will explore
alternative merge strategies.

(2) Beyond AIME24/25, there is a lack of sufficiently challenging math benchmarks, which limits
evaluation depth on high-difficulty mathematical reasoning.

(3) Baseline results in the main results are taken from the original papers/reports because many
baselines do not release code/models or disclose key training details like data curation or key hyper-
parameters. Consequently, they were not re-evaluated under a unified, consistent evaluation config-
uration, which may affect strict comparability.

C BETTER STUDENT IS A BETTER TEACHER

Table 17: Student-as-teacher distillation on BOBA-200. Teachers are base model or student models
obtained with Best-STD/MoT. We report raw scores on reasoning benchmarks mentioned earlier.

Teacher model Student model Teacher Config AIME24 AIME25 PhyBench LiveCodeBench GPQA-Diamond AVG

Base 74.17 67.08 23.06 58.98 57.80 56.22
Qwen3-14B Qwen3-8B Best STD 75.21 64.17 23.74 56.74 58.33 55.64
MoT 75.63 68.96 24.28 58.83 59.22 57.38
Base (Vanilla) 79.17 68.96 28.31 61.41 61.65 59.90
Qwen3-30B-A3B  Qwen3-14B Best STD 77.08 71.88 29.40 63.36 61.87 60.72
MoT 80.00 71.67 29.63 62.99 62.69 61.40
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Table 16: Effect of the number of teachers in MoT on Qwen3-8B + BOBA-200. Teachers are
added in descending order of single-teacher STD performance, with R1 being the most distribution-
shifted/noisy teacher.

# Teachers in MoT AIME24 AIME25 AIME AVG

1 (best teacher) 76.25 67.50 71.88
2 77.50 68.33 72.92
3 78.13 69.17 73.65
4 (with R1) 78.33 70.63 74.48

D PROBING LOSS-LANDSCAPE FLATNESS VIA BASE-TO-CHECKPOINT
INTERPOLATION: MOT vs. MTD

Setup and purpose. To assess how stably a trained model sits in parameter space, we probe loss-
landscape flatness via linear mode connectivity (LMC) between the base model and the final trained
checkpoint (from either MTD or our MoT). For A € [0, 1], we define

9()\) = >\9base + (1_/\) eckph

so that A=1 recovers the base model and A=0 recovers the trained checkpoint. At each A on a fixed
grid, we evaluate AIME24 (pass@1, 64-run average). A smooth/high trajectory indicates a flatter,
more robust region with fewer barriers; a sharp/erratic trajectory suggests a bumpier landscape and
stronger interference among supervision signals.

Findings. On both BOBA-200 and S1K-200 with the 8B student, MoT yields a much smoother
and more stable performance curve than MTD as A varies: performance rises steadily toward the
checkpoint and decays gradually away from it. This behavior is consistent with MoT training in
a flatter region (greater robustness to weight perturbations) and better reconciliation of cross-
teacher supervision conflicts. In contrast, MTD exhibits steeper drops and local irregularities,
implying residual inter-teacher interference.

MOT and MTD vs Merge Weight for BOBA-200 MOT and MTD vs Merge Weight for S1K-200
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(a) Qwen3-8B on BOBA-200. (b) Qwen3-8B on S1K-200.

Figure 6: Base-to-checkpoint linear interpolation (LMC). MoT shows smoother, higher trajectories
than MTD on AIME24, indicating a flatter loss region and more robust training.

E TASK-TYPE BREAKDOWN ACROSS STD/MTD/MoT

Setup and goal. We provide a consolidated evaluation on BOBA-200 across al/l STD/MTD set-
tings alongside MoT, covering nine benchmarks: catastrophic-forgetting—sensitive (CEV/SG/IFE),
reasoning-knowledge (SQ/MP/MR), and pure reasoning (PB/LCB/GPQA-D). For each setting, we
report raw scores and group-wise average changes versus the same-scale Base: “Avg drop (cat.)”
for catastrophic-forgetting—sensitive tasks (negative indicates a drop), “Avg gain (reason.)” for
reasoning-knowledge tasks, and “Avg gain (pure)” for pure reasoning tasks. We observe a trade-off
among STD choices (stronger reasoning vs. better forgetting mitigation), while MoT simultaneously
yields strong math/general reasoning gains and significantly mitigates catastrophic forgetting.
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Summary. Results are shown in Table [T8] Table [I9] and Table 20} Single-teacher choices present
a clear trade-off: some teachers maximize reasoning gains but induce larger average drops on
forgetting-sensitive tasks, while others better preserve foundational abilities but yield smaller rea-
soning gains. MoT alleviates this tension: it delivers strong improvements on reasoning-knowledge
and pure reasoning benchmarks, while reducing average drops on forgetting-sensitive tasks across

scales.

Table 18: Catastrophic-forgetting—sensitive tasks on BOBA-200 (CEV / SG/IFE). “Avg drop (cat.)”
is the average change vs. the same-scale Base (negative indicates a drop). For Qwen3-30B-A3B, SG
for STD(QWQ) is unavailable (“—"); the average uses available metrics (CEV & IFE) and compares

to Base on the same subset.

Base model Setting CEV SG IFE  Avgdrop (cat.)
Base 83.58 10.51 83.60 -
STD (Qwen3-32B) 81.35 10.38 81.34 11.54
STD (Qwen3-235B) 83.28 9.57 81.18 11.22
Qwen3-8B STD (QWQ) 8343 997 81.62 10.89
STD (Deepseek-R1) 83.06 9.70 81.79 11.05
MTD (All Teachers) 83.14 10.04 82.07 10.81
MoT (ours) 83.73 10.15 82.04 10.59
Base 86.78 10.76  84.69 -
STD (Qwen3-32B) 84.55 10.07 82.76 11.62
STD (Qwen3-235B) 83.73 10.26 82.56 11.89
Qwen3-14B STD (QWQ) 83.73 1022 82.36 11.97
STD (Deepseek-R1) 84.32 992 8291 11.69
MTD (All Teachers) 85.14 9.88  82.22 11.66
MoT (ours) 86.70 10.38 83.51 10.55
Base 85.88 10.66 83.76 -
STD (Qwen3-32B) 85.74 993 82.32 10.77
STD (Qwen3-235B) 84.18 10.02 80.44 11.89
Qwen3-30B-A3B STD (QWQ) 83.80 9.65 80.03 12.27
STD (Deepseek-R1) 83.36  9.31  80.61 12.34
MTD (All Teachers) 84.55 10.12 79.77 11.95
MoT (ours) 86.55 10.52 83.54 10.10
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Table 19: Reasoning-related tasks on BOBA-200 (SQ / MP / MR). “Avg gain (reason.)” is the
average change vs. the same-scale Base (positive indicates an increase).

Base model Setting SQ MP MR  Avg gain (reason.)
Base 3231 7142 8321 -
STD (Qwen3-32B) 3437 73.05 84.82 11.77
STD (Qwen3-235B) 32.63 72.83 84.84 TL12
Qwen3-8B STD (QWQ) 33.88 72.00 84.42 TL12
STD (Deepseek-R1) 33.88 70.92 84.21 10.69
MTD (All Teachers) 33.60 72.34 84.65 11.22
MoT (ours) 3444 7330 84.42 11.74
Base 32.61 7526 85.74 -
STD (Qwen3-32B) 3231 75.36 85.93 10.00
STD (Qwen3-235B) 32.17 74.71 86.37 10.12
Qwen3-14B STD (QWQ) 3242 7476 85.19 10.41
STD (Deepseek-R1) 32.63 74.04 86.04 10.30
MTD (All Teachers) 32.77 7497 85.82 10.02
MoT (ours) 32.65 75.59 86.53 10.39
Base 31.68 7526 85.81 -
STD (Qwen3-32B) 3226 76.12 86.46 10.70
STD (Qwen3-235B) 31.52 7596 86.04 10.26
Qwen3-30B-A3B STD (QWQ) 3224 7528 84.86 10.12
STD (Deepseek-R1) 33.00 72.55 84.16 11.01
MTD (All Teachers) 32.31 74.75 86.67 10.33
MoT (ours) 3226 7621 86.74 10.82

Table 20: Pure reasoning tasks on BOBA-200 (PB / LCB / GPQA-D). “Avg gain (pure)” is the
average change vs. the same-scale Base (positive indicates an increase).

Base model Setting PB LCB GPQA-D Avg gain (pure)
Base 20.47 55.76 57.77 -
STD (Qwen3-32B)  23.19 59.06 57.42 11.89
STD (Qwen3-235B) 23.17 57.90 58.11 11.73
Qwen3-8B STD (QWQ) 22.85 59.88 59.85 12.86
STD (Deepseek-R1) 21.90 56.78 56.50 10.39
MTD (All Teachers) 22.47 54.79 60.32 11.19
MoT (ours) 24.07 58.79 60.54 13.13
Base 28.53 61.41 60.83 -
STD (Qwen3-32B) 30.72 62.84 61.52 11.44
STD (Qwen3-235B) 30.61 63.21 63.79 12.28
Qwen3-14B STD (QWQ) 28.36  62.80 63.44 11.28
STD (Deepseek-R1) 27.29 61.15 62.91 10.19
MTD (All Teachers) 29.51 58.50 63.19 10.14
MoT (ours) 30.77 63.59 64.26 12.62
Base 28.57 61.08 59.76 -
STD (Qwen3-32B) 3343 61.79 60.48 12.10
STD (Qwen3-235B) 33.31 61.34 61.81 12.35
Qwen3-30B-A3B STD (QWQ) 32.44  60.74 60.32 11.36
STD (Deepseek-R1) 29.31 59.02 59.66 10.47
MTD (All Teachers) 32.50 56.85 61.33 10.42
MoT (ours) 3346 62.54 62.34 12.98
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F DATASET

Table 21: STD and MTD distillation datasets derived from BOBA-200 and S1K-200.

Source Teacher Distillation dataset name  Size
QWQ BOBA-200-QWQ 195
Qwen3-32B BOBA-200-32B 191

BOBA-200 Qwen3-235B BOBA-200-235B 197
Deepseek-R1 BOBA-200-R1 198
ALL TEACHERS BOBA-200-MTD 781
QWQ S1K-200-QWQ 161
Qwen3-32B S1K-200-32B 164

S1K-200 Qwen3-235B S1K-200-235B 169
Deepseek-R1 S1K-200-R1 168
ALL TEACHERS SI1K-200-MTD 662

G ADDITIONAL TRAINING DETAILS AND FULL ABLATIONS

G.1 TRAINING HYPERPARAMETERS

Unless otherwise noted, all experiments follow a shared set of training choices designed for long
chain-of-thought (CoT) sequences and stable optimization:

* Model/input formatting: We use the Qwen3 instruction template to format prompts and
responses consistently across datasets.

* Context length: The maximum sequence length is 25k tokens to accommodate long CoT
traces with minimal truncation.

* Precision and kernels: Training uses bfloat16 with FlashAttention-2 to improve memory
efficiency and throughput for long contexts.

* Optimizer and schedule: AdamW with betas (0.9, 0.95), weight decay 0.1, cosine learning-
rate schedule with a base learning rate of le-5 and 1% warmup. Gradients are clipped at a
norm of 1.0 for stability.

* Batch and accumulation: We train on 8x H800 GPUs with a per-device batch size of 1
and gradient accumulation of 8, resulting in an effective batch size of 64 sequences per
optimization step.

* Logging and checkpointing: We log every step and save a checkpoint every 50 steps; up
to 10 most recent checkpoints are kept, and only model weights are saved to reduce I/O
overhead.

Protocol-specific details:

* MoT: One “round” consists of 50 optimization steps on a given teacher corpus before merg-
ing; we run five rounds and evaluate after each merge.

o STD/MTD: We train for 250 steps and save/evaluate checkpoints every 50 steps; the best
checkpoint is reported in the main text.

G.2 STD/MTD AND MOT PER-CHECKPOINT RESULTS

For STD and MTD, we train for 250 steps and save a checkpoint every 50 steps; we evaluate each
checkpoint and report the best in the main text.

For MoT, we alternate the base model across the four STD corpora (QWQ, Qwen3-32B, Qwen3-
235B, Deepseek-R1), training 50 steps on each corpus and then performing a merge; this constitutes
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Table 22: Complete ablations on AIME 2024 (A24) and AIME 2025 (A25). Each entry is a 16-run
average. We report per-checkpoint results for STD/MTD (every 50 steps, up to 250), and per-round
results for MoT (Rounds 1-5).

BOBA-200 SIK-200
Qwen3-8B  Qwen3-14B Qwen3-30B-A3B Qwen3-8B  Qwen3-14B Qwen3-30B-A3B
A24 A25 A24 A25 A24  A25  A24 A25 A24 A25 A24  A2S
Base model (40K) 75.83 67.08 79.17 70.00 81.67 7250 75.83 67.08 79.17 70.00 81.67  72.50

STEP 50 75.42 67.71 77.71 71.25 81.04 76.04  77.50 66.67 79.79 72.50 79.58  73.13
STEP 100 74.17 65.83 77.71 68.13 80.83 7250  74.58 68.96 77.71 70.21 79.58  70.63
STD (Qwen3-32B) STEP 150 75.41 63.96 78.13 66.04 81.88 7292  73.75 67.71 79.58 72.08 80.63  70.42
STEP 200 74.58 63.75 76.67 66.88 80.63  75.63 7521 66.67 79.79 69.58 79.58  70.83
STEP 250 73.96 62.92 77.50 70.21 79.38  69.79  76.04 66.04 77.29 70.63 79.17  70.00

STEP 50 74.58 67.92 78.13 74.79 80.00  78.13  74.38 68.54 77.92 7271 77.92  75.63
STEP 100 73.13 68.33 79.17 74.79 81.88 7542 7250 65.83 77.08 75.41 77.08  76.88
STD (Qwen3-235B) STEP 150 71.88 66.67 78.13 70.42 77.92  76.04 74.17 67.71 77.71 72.08 78.54  74.58
STEP 200 71.04 65.83 77.29 74.17 79.58  75.83  71.46 67.29 78.75 73.13 7833  74.58
STEP 250 75.00 67.29 79.38 74.17 80.42  73.54 73.96 67.08 76.67 71.46 79.17  76.04

STEP 50 72.50 64.38 76.46 68.54 79.58 7250  73.53 69.17 79.17 73.54 80.83  72.08
STEP 100 75.00 67.08 78.33 73.33 78.54 76.46  76.04 68.13 79.58 71.88 81.46  72.92
STD (QWQ) STEP 150 75.21 67.29 79.58 73.54 79.79  75.63  75.21 65.42 79.17 73.33 80.63  68.96
STEP 200 75.83 65.83 77.29 71.46 78.54 7396  74.58 65.63 80.21 72.92 82.08  70.63
STEP 250 76.25 67.50 78.54 71.67 78.33 7583  74.58 64.17 77.92 7479 8125 70.83

STEP 50 67.71 60.21 74.38 67.50 7833 6896  70.00 61.46 73.75 62.92 78.54  70.63
STEP 100 70.21 53.33 73.75 63.33 75.00 69.79  68.54 58.33 73.33 63.13 7646  64.58
STD (Deepseek-R1) STEP 150 65.83 56.04 74.58 63.75 7479  64.38  67.92 52.08 73.96 62.71 75.63  66.04
STEP 200 65.21 53.75 74.58 64.79 74.58 67.50  66.67 55.83 71.88 61.25 74.17  65.21
STEP 250 66.67 55.42 72.50 63.54 7542 66.88  66.88 51.67 72.71 63.96 74.17  70.00

STEP 50 68.54 61.04 74.79 66.88 79.17 7292  70.83 63.54 75.83 70.83 76.46  72.08
STEP 100 73.75 66.46 76.88 7292 79.17  73.75  75.63 70.83 78.75 73.13 7729  75.42
MTD (ALL TEACHERS) STEP 150 71.88 68.64 76.46 7542 77.92 7292  73.33 66.88 79.17 73.34 7833 7458
STEP 200 75.00 66.04 79.58 72.50 78.75  73.75  74.17 69.38 77.08 73.33 7833  74.58
STEP 250 76.04 68.96 77.29 73.54 79.38  73.96  73.96 69.17 79.79 73.13 79.58 72.71

Round 1 72.29 66.88 78.75 73.95 80.63  73.13 7479 69.17 78.33 69.79 80.00  75.42
Round2  75.83 69.79 79.58 73.54 79.79  76.04  77.71 70.63 80.21 74.38 82.29  74.58
MoT (ours) Round3  76.67 70.42 80.00 74.79 80.00  77.92  76.25 70.00 80.00 74.38 79.79  74.79
Round 4 7833 70.63 79.38 76.88 81.25 75.63  77.50 71.67 79.38 75.00 80.83  77.50
Round5 76.45 66.88 78.96 73.75 82.92 7833 7625 68.13 81.67 75.63 80.00  77.50

Method Config

one merge round. We run five rounds in total and evaluate after every round. The complete per-round
results for all base models and both sources (BOBA-200 and S1K-200) are reported in Table [22]

Key observations from the ablations:
1. MoT consistently yields the strongest distillation gains in almost all settings.

2. For 8B/14B bases, MTD typically surpasses the best single-teacher STD, indicating beneficial
complementarity across teachers.

3. For 30B-A3B, MTD brings little to no gain. We hypothesize that QWQ, Qwen3-32B, and
Deepseek-R1 are not clearly stronger than the 30B base, so the union is dominated by Qwen3-235B;
in contrast, MoT can glean useful signals from the other teachers while mitigating noise, yielding
the best results.

G.3 DETAILED MOT (WITHOUT R1) RESULTS ON BOBA-200

Table 23| reports per-round AIME scores for MoT after ablating the Deepseek-R1 teacher (all other
settings identical). AVG is computed as the mean of AIME24 and AIME25.
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Table 23: MoT without Deepseek-R1 on BOBA-200: per-round AIME24/AIME25 and AVG. AVG
= (AIME24 + AIME25)/2.

Base model Round AIME24 AIME25 AVG

Round 1 75.21 69.17 72.19
Round 2 75.42 72.29 73.86
Qwen3-8B  Round 3 76.67 70.00 73.34
Round 4 78.13 69.17 73.65
Round 5 76.46 69.79 73.13

Round 1 80.63 72.71 76.67
Round 2 79.79 74.58 77.19
Qwen3-14B  Round 3 80.83 74.58 77.71
Round 4 81.04 74.79 77.92
Round 5 79.58 74.79 77.19

Round 1 81.88 75.00 78.44
Round 2 81.88 77.08 79.48
Qwen3-30B Round 3 81.25 78.75 80.00
Round 4 81.88 71.71 79.80
Round 5 80.42 80.00 80.21

Overall, while MoT without R1 remains competitive, the best AVG per model is consistently below
the corresponding full MoT results reported in the main text. This supports the claim that R1 offers
complementary supervision that raises the training ceiling and improves late-stage generalization.

G.4 DETAILED MOT WITH PEER-LEVEL TEACHERS (QWQ + QWEN3-32B) oN BOBA-200

We find that teacher usefulness is not limited to strictly stronger models. Although QWQ, Qwen3-
32B, and Qwen3-30B-A3B have comparable parameter scale adn reasoning performance, distilling
Qwen3-30B-A3B from peer-level teachers (QWQ or Qwen3-32B) still yields gains. This might
imply that what truly benefits the model is not necessarily higher-quality reasoning trajectories, and
reasoning trajectories distilled from peer-level teachers can still help. In addition, combining peer-
level heterogeneous trajectories with MoT further improves results, and using all teachers performs
best. Table [24] reports 16-run AIME averages on BOBA-200 with Qwen3-30B-A3B as the base.
Table 25| reports per-round AIME scores for MoT when using only peer-level teachers (QWQ and
Qwen3-32B) with Qwen3-30B as the base. AVG is computed as the mean of AIME24 and AIME2S.

Overall, these findings support two key conclusions:
(1) Reasoning trajectories distilled from peer-level teachers can still help.

(2) MoT robustly integrates complementary and even distribution-shifted supervision, extracting
useful signals while mitigating noise.

Table 24: Peer-level teachers can still help. Results on BOBA-200 with Qwen3-30B-A3B as the
base; AIME scores are 16-run averages, AVG is the mean of AIME24 and AIME25.

Teacher setting AIME24 AIME25 AVG
Base 80.63 70.00 75.32
STD: only QWQ 79.79 75.63 77.71
STD: only Qwen3-32B 81.04 76.04 78.54
MoT: QWQ + Qwen3-32B 81.04 77.29 79.17
MoT: ALL TEACHERS 82.92 78.33 80.63
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Table 25: MoT with peer-level teachers (QWQ + Qwen3-32B) on BOBA-200: per-round
AIME24/AIME2S5 and AVG for Qwen3-30B. AVG = (AIME24 + AIME25)/2.

Round AIME24 AIME25 AVG

Round 1 82.70 73.95 78.33
Round 2 80.83 74.58 77.71
Round 3 82.08 75.83 78.96
Round 4 80.83 75.00 77.92
Round 5 81.04 77.29 79.17

H BENCHMARK CATEGORIES AND DETAILS

We evaluate nine benchmarks under three categories—catastrophic-forgetting—sensitive, reason-
ing—knowledge, and pure reasoning—to assess whether CoT-style training with MoT preserves
basic capabilities while strengthening reasoning. Here we have provided detailed content and de-
scriptions of these tasks, and given the MoTivations for using them for evaluation and classifying
them into the corresponding task categories.

H.1 CATASTROPHIC-FORGETTING—SENSITIVE TASKS

CEVAL (CEV).

Description: CEVAL is a Chinese multi-discipline multiple-choice exam suite with approximately
14,000 items spanning 52 subjects at varying difficulty levels.

Task: 1t evaluates factual and domain knowledge recall across humanities, sciences, and professional
tracks.

MoTivation: It probes retention of broad multilingual knowledge that can degrade after CoT-style
training.

SUPER_GPQA (SG).

Description: SUPER_GPQA is a graduate-level, multi-domain multiple-choice benchmark covering
a wide range of academic disciplines.

Task: It measures advanced factual knowledge with light multi-step reasoning.

MoTivation: 1t tests whether extensive pretraining knowledge is preserved following CoT fine-
tuning.

IFEVAL (IFE).

Description: IFEVAL is an instruction-following suite with automatically verifiable constraints such
as length, formatting, and keyword usage.

Task: It evaluates instruction compliance and adherence to explicit constraints.

MoTivation: 1t checks for forgetting of fundamental alignment and compliance behaviors after CoT
training.

H.2 REASONING-KNOWLEDGE TASKS

SIMPLE QA (SQ).

Description: SIMPLE_QA is a collection of short, unambiguous fact-seeking questions with a sin-
gle correct answer. Task: It evaluates factual accuracy and calibrated answering by discouraging
uninformed guessing.

MoTivation: It tests whether CoT improves precision while avoiding hallucinations or overconfident
errors.
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MMLU_PRO (MP).

Description: MMLU_PRO is a harder variant of MMLU that increases item difficulty and option
counts to emphasize reasoning.

Task: Tt measures multi-step reasoning grounded in broad subject knowledge across many domains.

MoTivation: It assesses whether CoT enhances reasoning while maintaining robust domain knowl-
edge.

MMLU_REDUX (MR).

Description: MMLU_REDUX is a curated and corrected subset of MMLU designed to reduce la-
beling noise.

Task: 1t evaluates multi-subject knowledge with some analytical reasoning under cleaner annota-
tions.

MoTivation: Tt isolates capability changes from dataset artifacts and checks knowledge retention
under CoT.

H.3 PURE REASONING TASKS

PhyBench (PB).

Description: PhyBench is a set of physics problems ranging from high-school to Olympiad level
that require careful quantitative reasoning.

Task: Tt measures multi-step physics reasoning including derivations and the coordination of multi-
ple principles.

MoTivation: It emphasizes chain-of-thought style reasoning rather than rote memorization of facts.
LiveCodeBench (LCB).

Description: LiveCodeBench is a contamination-controlled suite of recent competitive program-
ming problems drawn from diverse sources.

Task: 1t evaluates algorithmic reasoning, program synthesis, and debugging under executable tests.

MoTivation: It probes problem decomposition and step-by-step solution planning independent of
encyclopedic knowledge.

GPQA-Diamond (GPQA-D).

Description: GPQA-Diamond is the hardest expert-vetted subset of GPQA spanning biology,
physics, and chemistry.

Task: It measures deep scientific reasoning on challenging multiple-choice questions that resist
superficial lookup.

MoTivation: It stresses genuine multi-step reasoning and scientific insight rather than retrieval of
surface facts.
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Figure[7} Tokens marked with confidence drops in MoT under R1-distilled supervision.
Marked tokens cluster on teacher-specific stylistic tokens while derivational tokens stay high.
This indicates that MoT attenuates inter-teacher inductive biases while preserving consensus

reasoning steps. (Note: only tokens after <|im_start| >are included in the loss.)
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user Let B [ AB (D 1% ® be a convex quadr ilateral QUREN area 2 0

0:00E8D «t s s be apint@es [ = BB s o s

a point on $ 1$ such that triangles ® ¢ [ BN Q 1$ ® and $ [
P 1$ have area $.Let $B$ be $n
AC 1$% and [ P Q m. frac {\ over line { RC }}

{ }} ¢ . Please .m your ERSLFLE

answer boxed {}. <|im_end|> assistant <think> Alright ,

let 's tackle this geometry problem . I88 seems a bit at first , but
maybe if I break it down step by step , it will make more sense . So a we
have a convex quadr ilateral ABC D with area 2 0 1 4 . There 's a point
P on side AB and a point Q on side AD such that triangles AB Q and AD P
each have area 1 . we need to find the ratio RC / RA where R is
the intersection of AC and PQ . ® 5 me visualize this quadr ilateral
. Since it 's convex , all its interior angles are less than 1 8 0

degrees , and the diagon als AC and BD intersect inside the quadr ilateral

The area 1is given as 2 0 1 4 , which 1is quite Tlarge compared to the

areas of the triangles mentioned ( which are 1 each ). Maybe setting up some
coordinate system would help here . Coordinates often make it easier to handle
areas and intersections . Let me try that . Suppose I place point A at the
origin ( © , © ) to simplify calculations . Let 's denote the coordinates of
B as ( b , ®@ ) since it 's m the x =-axis . Similarly , point D would
then be on the y -axis , so let say D is ( @ , d ). Since ABC D is
a convex quadr ilateral , point C must be somewhere in the first quadrant

Let m assign coordinates to C as ( ¢ , e ), where c and e are positive
numbers . So ' now we have : - A : ( 0 , e ) - B : ( b , o )

- b : (@ , d ) - C : ( c , e ) Now , since the quadr ilateral has
an area of 2 0 1 4 , maybe I can express that in terms of the

coordinates . The area of a quadr ilateral <can be calculated using the sho el
ace formula . Let me recall the formula for the area of a polygon with
coordinates ( x 1 ,y 1 ), ( x 2 ,y 2 ), +.., ( xn , yn ): Area = 1
/ 2 | sum from i = 1 to n of ( xi xy i + 1 - xi + 1 *xy i )] For
quadr ilateral ABC D , pl wugging in the coordinates : Area = 1 /7 2 | |«

O x 0 + b xe + c *xd + 0 x 0 ) - ( 0 *xb + 0 % + e *x 0 + d
o )@ - 1/ 2 | © + be + cd + © - 0 | = 1/ 2 | be
+ cod | So , | be + cd | / 2 = 2 0 1 4 = be + cd = 4 0 2
8 . That will be our first equation : be + cd = 4 0 2 8 . Now , let
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's consider points P and Q . Point P is on AB , and point Q is on AD
So , param etrize their coordinates . Since AB is from ( @ , © ) to ( b
, © ), a point P on AB can be as ( p , 0 ) where p is
between @ and b . Similarly , AD goes from ( © , © ) to ( @ ,d ), so
Q <can be represented as ( @ , q ) where q 1is between @ and d . Now ,
the problem states that triangles AB Q and AD P have area 1 each . First
, triangle AB Q : points A , B , Q . The coordinates are A ( © , © ),
B (b , @ ), Q@ ( © ,qg ). The area can be calculated as 1 / 2 x base
* height . The base AB has 1length b , and the height is the distance from
Q to AB , which is g ( since AB is along the x =-axis and Q is on the vy
-axis ). So area is ( 1 / 2 )x b xq = 1 . Hence , ( 1 / 2 )x b
*q = 1 = B *q = 2 . Equation 2 : bg = 2 . Similarly , triangle
AD P : points A , D , P . Coordinates A ( © , © ), D ( @ ,d ), P (p
, © ). The area can again be calculated as 1 / 2 % base *x height . HE
base AD is length d , and the height is the from P to AD , which
is p ( since AD is along the y -axis and P is on the x =-axis ). So area
is (1 / 2 )x d *xp = 1 = d *xp = 2 . Equation 3 : dp = 2
So . from equations 2 and 3 , we have bg = 2 and dp = 2
Therefore , we <can solve for q and p : q = 2 /b and p = 2 /d .
, Q is at ( o , 2 /b ) and P is at ( 2 /d , 0 ). QETY , we need
to find the intersection point R of AC and PQ . First , 1let 's write
equations for lines AC and PQ . Line AC connects points A ( © , © ) and C
(c ,e ). , the param etric equations for AC can be written as x = ¢ xt
, Yy = e *xt , where t is in [ © , 1 m Line PQ connects points P ( 2
/d @ ) and Q ( o , 2 /b ). To find the equation of PQ , 1let 's
compute the slope first . Slo pe = ( 2 /b - o )/( o - 2 /d ) = |
2 /b )/ (- 2 /d ) = - d /b . So , the slope of PQ is - d /b
Therefore , the equation of PQ can be written in point -s Tlope form . Using
point P ( 2 /d , 0 )y - 0 = (- d /b )( x - 2 /d ) =y =
(= d /b )x + ( d /b ) 2 /d ) =y = (- d /b )x + 2 /b
Alternatively , wusing Q : y - 2 /b = (- d /b )( x - 0 ) =y = (-
d /b )x + 2 /b . Same equation . So , equation of PQ : y = (- d /b
)X+ 2 /b . Now , we need to find the intersection point R of AC and PQ
Param etr izing AC as ( ct , et ). Substitute into PQ 's equation : et
= (- d /b )( ct ) + 2 /b . So , solve for t : et = (- cd /b )t +
2 /b et + ( cd /b )t = 2 /b t (e + cd /b ) = 2 /b t =
(2 /6) / (e + cd /b ) = (2 /b ) / (( be + cd )/ b )@ C2
/b ) x (b / ( be + cd )) = 2 / ( be + cd ). But earlier , we
found that be + cd = 4 0 2 8 . Therefore . t = 2/ 4 0 2 8 =
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1 / 2 0 1 4 . Therefore , the coordinates of R are ( ¢ *x t , e x t
) = (¢ / 20 14 , e/ 2 0 1 4 ). so , [[) divides AC such that RA
is the distance from A to R , and RC is from R to C . Since AC is
parameter ized by t from 0 to 1 , with t = © at A and t = 1 at C
, the ratio RC / RA is ( 1 - t )/ t But in this <case , t B 1 /
2 0 1 4 . Therefore @ RC / RA = (1 - 1 / 2 @ 1 4 OB 0OE
o 14 ) )@ (2013 /2014 )/ (1 /7 2014) ) = 2
@ 1 3 . H ence , the ratio is 2 © 1 3 . Wait , so the answer is ® 2
@ 1 3 ? That seems plausible . Let me my steps again to be sure . 1
Set iJ the quadr ilateral with A at ( © , © ), B (b , @
), b (e ,d ), C (c ,e ). Correct . 2 . Calcul ated area using sho el
ace formula : got be + cd = 4 0 2 8 . Seems right . 3 . Found points
P ( 2 /d , @ ) and Q ( 0 , 2 /b Yes , based on the area
conditions . 4 . Equation PQ : derived slope - d /b and equation y =
(- d /b )x + 2 /b . Check . 5 . Param etr izing AC as ( ct , et
and solving for intersection . Found t = 1/ 2 © 1 4 . Then ' RA
the distance from A to R : since R is at t = 1 /7 2 © 1 4 , RA
corresponds to t = 1/ 2 © 1 4 , and RC is the remaining distance from
R to C : 1 - t . Therefore , ratio RC / RA = ( 1 - t )/ t = ( 1

- 1/ 2014/ 1/ 2014 )@ 2013 7/72%0e14)/1
/ 2 0 1 4 )a 2 0 1 3 .yes ,correct . Alternatively ,

since coordinates are linear , t 1is the parameter along AC , so ratios

related directly to the parameter t . So another way : RA RC = t
(1 -t ), so RC / RA = ( 1 - t )/ t = (1 /C t ) ) - 1
Since t = i1/ 2 © 1 4 , RC / RA = 2 061 4 - 1 = 2 0 1 3
Perfect . Therefore , the final answer 2 © 1 3 . Pretty elegant !
Using coordinates made it straightforward , even if setting up the coordinates
took some time . Let me just think if there 's any other way without
coordinates , but perhaps this is the most direct method here . *xk Final
Answer %k \ boxed { 2 © 1 3 } </think> Given a convex quadr ilateral \(

AB CD \) with area 2 @ 1 4 , points \N( P \) on \( AB \) and \( Q \)
on \( AD \) are such that triangles \( AB Q \) and \( AD P \) each have
area 1 . We need to determine the ratio \ (\ frac BAY over 1line { RC }}

{\ over 1line { RA }} \) where \( R \) is the intersection of \( AC \) and

\( P Q \ ). 1 . xk Coordinate Setup sk : - Place \( A \) at \ (( o

’ o )\ ), \( B \) at \ (( b , e )\ ), \( D \) at \ (( @ , d

)\ ), and \N( C \) at \ (( c , e I\ ). - The area of \( AB (D \) is
given by the sho el ace formula , leading to the equation \( be + cd = 4
@ 2 8 \ ). 2 . s Points \( P \) and \( Q \ )¥x - \(C P \) on
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\( AB \) is \ (C p , @ )\ ) and \(C Q \) on \( AD \) is \ (( o ,

q I\ ). - Areas of triangles \( AB Q \) and \( AD P \) are iy
leading to \( b q = 2 \) and \( dp = 2 \ ). Thus , \( g = \ frac
{ 2 H b N ) and \N( p = \ frac { 2 ¥ d ¥} ). 3 . *k Equ ations of
Lines *kx - Line \( P Q \) has slope \ (- \ frac { d ¥ b 3} ) and
equation \( y = - \ frac { d X b } x + \ frac { 2 X b I} ). =
Line \( AC \) 1is parameter ized as \( x = ct \) and \( y = et \) for \(
t \ in [ o , 1 I\ ). 4 . xk Intersection Point \( R \ )kk : -

Substitute the param etric coordinates of \( AC \) into the equation of \( P

Q \ ): \ I et = - \ frac { d ¥H b } ct ) + \ frac { 2 ¥H b 1}
A - Sol wving for \( t \) gives \( t = \ frac { 2 3} be + cd }
= \ frac { 1 ¥ 2 © 1 4 }\ ). 5 . sk Ratio Calculation sk : - The

coordinates of \( R \) are \ (\ left (\ frac { ¢ ¥ 2 o 1 4 3}, \ frac

{ e ¥ 2 o0 1 4 I\ vright )\ ). - The ratio \ (\ frac BAY over line {
RC }} {\ over line { RA }} \) is \ (\ frac { 1 - t M t } = \ frac
{ 1 -\ frac { 1 H{ 2 o0 1 4 } {\ frac { 1 X 2 @ 1 4 }} = 2 0

1 3 \ ). N [ \ boxed { 2 @ 1 3 } \ 1 <|im_end|>
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Figure[8} Tokens marked with confidence drops in STD(R1) under R1-distilled supervision.
Marked tokens are rare to nearly absent, indicating that direct distillation fully adopts the
teacher’s trajectory, including stylistic tokens and latent inductive biases, rather than
filtering them. (Note: only tokens after <|im_start| >are included in the loss.)
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user ® |et B [ AB (D be a quadr ilateral area 0
. and let BGB be a point a.a [ AB .m Q
a point on [ such that triangles [ Q and

" 0008E 600 - o« >00
AC and n P Q . {\ 7% line { RC AN
over line { . Please . your
answer {}. <|im_end|> assistant ® <think> Alright ,

let 's tackle this geometry problem . It seems a bit complex at first , but
maybe if I break it down step by step , it will make more sense . So , we
have a convex quadr ilateral ABC D with area 2 0 1 4 . There 's a point

P on side AB and a point Q on side AD such that triangles AB Q and AD P

each have area 1 . Then we need to find the ratio RC / RA where R is
the intersection of AC and PQ . First , 1let me visualize this quadr ilateral
. Since it 's convex , all its interior angles are less than 1 8 0

degrees , and the diagon als AC and BD intersect inside the quadr ilateral

The area 1is given as 2 0 1 4 , which 1is quite Tlarge compared to the

areas of the triangles mentioned ( which are 1 each ). Maybe setting up some
coordinate system would help here . Coordinates often make it easier to handle
areas and intersections . Let me try that . Suppose I place point A at the
origin ( © , © ) to simplify calculations . Let 's denote the coordinates of
B as ( b , @ ) since it 's on the x -axis . Similarly , point D would
then be on the y -axis , so let ’'s say D is ( @ , d ). Since ABC D is
a convex quadr ilateral , point C must be somewhere in the first quadrant

Let me assign coordinates to C as ( ¢ , e ), where c and e are positive
numbers . So , now we have : - A : ( o , e ) - B : ( b , o )

- b : (@ , d ) - C : ( c , e ) Now , since the quadr ilateral has
an area of 2 0 1 4 , maybe I can express that in terms of the

coordinates . The area of a quadr ilateral <can be calculated using the sho el
ace formula . Let me recall the formula for the area of a polygon with
coordinates ( x 1 ,y 1 ), ( x 2 ,y 2 ), +.., ( xn , yn ): Area = 1
/ 2 | sum from i = 1 to n of ( xi xy i + 1 - xi + 1 *xy i )] For
quadr ilateral ABC D , pl wugging in the coordinates : Area = 1 /7 2 | |«

O x 0 + b xe + c *xd + 0 x 0 ) - ( 0 *xb + 0 % + e *x 0 + d
* 0 ) | = 1/ 2 | © + be + cd + 0 - 0 | = 1 / 2 | be
+ cod | So , | be + cd | / 2 = 2 0 1 4 = be + cd = 4 0 2
8 . That will be our first equation : be + cd = 4 0 2 8 . Now , let
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Figure 8, Tokens marked with confidence drops in STD(R1) under R1-distilled supervision.
Marked tokens are rare to nearly absent, indicating that direct distillation fully adopts the
teacher’s trajectory, including stylistic tokens and latent inductive biases, rather than
filtering them. (Note: only tokens after <|im_start| >are included in the loss.)

s consider points P and Q . Point P is on AB , and point Q is on AD

So , param etrize their coordinates . Since AB is from ( @ , © ) to ( b
, © ), a point P on AB can be represented as ( p , 0 ) where p is
between @ and b . Similarly , AD goes from ( © , © ) to ( @ ,d ), so
Q <can be represented as ( @ , q ) where q 1is between @ and d . Now ,
the problem states that triangles AB Q and AD P have area 1 each . First
, triangle AB Q : points A , B , Q . The coordinates are A ( © , © ),

B (b , @ ), Q@ ( © ,qg ). The area can be calculated as 1 / 2 x base
* height . The base AB has 1length b , and the height is the distance from

Q to AB , which is g ( since AB is along the x =-axis and Q is on the vy

-axis ). So area is ( 1 / 2 )x b xq = 1 . Hence , ( 1 / 2 )x b

*q = 1 => b xq = 2 . Equation 2 : bg = 2 . Similarly , triangle
AD P : points A , D , P . Coordinates A ( © , © ), D ( @ ,d ), P (p
, © ). The area can again be calculated as 1 / 2 % base * height . The

base AD is length d , and the height is the distance from P to AD , which

is p ( since AD is along the y -axis and P is on the x =-axis ). So area

is (1 / 2 )x d *xp = 1 = d *xp = 2 . Equation 3 : dp = 2
So , from equations 2 and 3 , we have bg = 2 and dp = 2
Therefore , we <can solve for q and p : q = 2 /b and p = 2 /d . So
, Q is at ( 0 , 2 /b ) and P is at ( 2 /d , @ ). Now , we need
to find the intersection point R of AC and PQ . First , 1let 's write
equations for lines AC and PQ . Line AC connects points A ( © , © ) and C
(c ,e ). So , the param etric equations for AC can be written as x = ¢ xt
, Yy = e %t , where t dis in [ © , 1 1. Line PQ connects points P ( 2
/d @ ) and Q ( o , 2 /b ). To find the equation of PQ , 1let 's
compute the slope first . Slo pe = ( 2 /b - o )/( o - 2 /d ) = |
2 /b )/ (- 2 /d ) = - d /b . So , the slope of PQ is - d /b
Therefore , the equation of PQ can be written in point -s Tlope form . Using
point P ( 2 /d , 0 )y - 0 = (- d /b )( x - 2 /d ) =y =
(= d /b )x + ( d /b ) 2 /d ) =y = (- d /b )x + 2 /b
Alternatively , wusing Q : y - 2 /b = (- d /b )( x - 0 ) =y = (-
d /b )x + 2 /b . Same equation . So , equation of PQ : y = (- d /b
)X+ 2 /b . Now , we need to find the intersection point R of AC and PQ
Param etr izing AC as ( ct , et ). Substitute into PQ 's equation : et
= (- d /b )( ct ) + 2 /b . So , solve for t : et = (- cd /b )t +
2 /b et + ( cd /b )t = 2 /b t (e + cd /b ) = 2 /b t =
(2 /b ) / (e +# cd /b ) = (2 /b ) / (( be +# cd )/ b ) = ( 2
/b ) x (b / ( be + cd )) = 2 / ( be + cd ). But earlier , we
found that be + cd = 4 @ 2 8 . Therefore , t = 2/ 4 0 2 8 =
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1 / 2 0 1 4 . Therefore , the coordinates of R are ( ¢ *x t , e x t
) = (¢ / 2 0 1 4 , e / 2 © 1 4 ). So , R divides AC such that RA
is the distance from A to R , and RC is from R to C . Since AC is
parameter ized by t from 0 to 1 , with t = © at A and t = 1 at C

, the ratio RC / RA is ( 1 - t )/ t But in this <case , t is 1 /
2 @ 1 4 . Therefore , RC / RA = ( 1 - i1/ 2 e 1 4 ) / (1 /7 2
e 14 ) ) = (2 013 /7 2014 ) / (1 /2014 ) ) = 2
@ 1 3 . H ence , the ratio is 2 0 1 3 . Wait , so the answer is 2
@ 1 3 ? That seems plausible . Let me check my steps again to be sure . 1

Set coordinates for the quadr ilateral with A at ( @ , © ), B (b , ©

), b ( @ ,d ), C (c ,e ). Correct . 2 . Calcul ated area wusing sho el
ace formula : got be + cd = 4 0 2 8 . Seems right . 3 . Found points
P ( 2 /d , @ ) and Q ( 0 , 2 /b ). Yes , based on the area
conditions . 4 . Equation for PQ : derived slope - d /b and equation y =

(- d /b )x + 2 /b . Check . 5 . Param etr izing AC as ( ct , et )

and solving for intersection . Found t = 1/ 2 © 1 4 . Then , RA is
the distance from A to R : since R is at t = 1 /7 2 © 1 4 , RA
corresponds to t = 1/ 2 © 1 4 , and RC is the remaining distance from
R to C : 1 - t . Therefore , ratio RC / RA = ( 1 - t )/ t = ( 1
= i/ 2 e 1 4 )1/ 2 0 1 4 ) = (2 0 1 3 /7 2 0 1 4 )/ 1
/ 2 0 1 4 ) = 2 6 1 3 . So yes , seems correct . Alternatively ,

since coordinates are linear , t is the parameter along AC , so the ratios

are related directly to the parameter t . So another way : RA : RC = t
(1 -t ), so RC / RA = ( 1 - t )/ t = (1 /C t ) ) - 1
Since t = i1/ 2 © 1 4 , RC / RA = 2 061 4 - 1 = 2 0 1 3
Perfect . Therefore , the final answer is 2 © 1 3 . Pretty elegant !

Using coordinates made it straightforward , even if setting up the coordinates

took some time . Let me just think if there 's any other way without
coordinates , but perhaps this is the most direct method here . *xk Final
Answer %k \ boxed { 2 © 1 3 } </think> Given a convex quadr ilateral \(

AB CD \) with area 2 @ 1 4 , points \N( P \) on \( AB \) and \( Q \)
on \( AD \) are such that triangles \( AB Q \) and \( AD P \) each have
area 1 . We need to determine the ratio \ (\ frac {\ over 1line { RC }}

{\ over 1line { RA }} \) where \( R \) is the intersection of \( AC \) and

\( P Q \ ). 1 . xk Coordinate Setup sk : - Place \( A \) at \ (( o

’ o )\ ), \( B \) at \ (( b , e )\ ), \( D \) at \ (( @ , d

)\ ), and \N( C \) at \ (( c , e I\ ). - The area of \( AB (D \) is
given by the sho el ace formula , leading to the equation \( be + cd = 4
@ 2 8 \ ). 2 . s Points \( P \) and \( Q \ )¥x - \(C P \) on
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\( AB \) is \ (C p , @ )\ ) and \(C Q \) on \( AD \) is \ (( o ,

q I\ ). - Areas of triangles \( AB Q \) and \( AD P \) are N
leading to \( b q = 2 \) and \( dp = 2 \ ). Thus , \( g = \ frac
{ 2 H b N ) and \N( p = \ frac { 2 ¥ d ¥} ). 3 . *k Equ ations of
Lines *kx - Line \( P Q \) has slope \ (- \ frac { d ¥ b 3} ) and
equation \( y = - \ frac { d X b x + \ frac { 2 H b XN ). =
Line \( AC \) 1is parameter ized as \( x = ct \) and \( y = et \) for \(
t \ in [ o , 1 I\ ). 4 . xk Intersection Point \( R \ )kk : -

Substitute the param etric coordinates of \( AC \) into the equation of \( P

Q \ ): \ I et = - \ frac { d ¥H b } ct ) + \ frac { 2 ¥H b 1}
A - Sol wving for \( t \) gives \( t = \ frac { 2 3} be + cd }
= \ frac { 1 ¥ 2 © 1 4 }\ ). 5 . sk Ratio Calculation sk : - The

coordinates of \( R \) are \ (\ left (\ frac { ¢ ¥ 2 o 1 4 3}, \ frac

{ e ¥ 2 0 1 4 I} right )\ ). - The ratio \ (\ frac {\ over line {
RC }} {\ over line { RA }} \) is \ (\ frac { 1 - t M t } = \ frac
{ 1 -\ frac { 1 H{ 2 o0 1 4 } {\ frac { 1 X 2 @ 1 4 }} = 2 0

1 3 \ ). N [ \ boxed { 2 @ 1 3 } \ 1 <|im_end|>
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Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as general-purpose assist tools for editing (English proof-
reading, minor wording/LaTeX refactoring) and for generating figure/table captions drafts that were
subsequently verified and rewritten by the authors. LLMs did not design experiments, select re-
sults, write the core method, or generate evaluation numbers. All experimental outputs, metrics, and
plots derive from our released code and logs. Separately, the research subject of this paper employs
teacher LLMs to produce chains-of-thought for distillation; this is part of the method under study,
not assistance in authorship. The authors take full responsibility for the content and have verified
factual claims and citations. No text was copied from third-party sources without attribution.
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