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ABSTRACT

Efficient reasoning distillation for long chain-of-thought (CoT) models is increas-
ingly constrained by the assumption of a single oracle teacher, despite the practical
availability of multiple candidate teachers and growing CoT corpora. We revisit
teacher selection and observe that different students have different “best teachers,”
and even for the same student, the best teacher can vary across datasets. There-
fore, to unify multiple teachers’ reasoning abilities into a student to overcome con-
flicts among various teachers’ supervision, we propose Merge-of-Thought Dis-
tillation (MoT), a lightweight framework that alternates between teacher-specific
supervised fine-tuning branches and weight-space merging of the resulting stu-
dent variants. On competition math benchmarks, using only about 200 CoT sam-
ples, applying MoT to a Qwen3-14B student surpasses strong models including
Deepseek-R1, Qwen3-32B, and OpenAI-O1, demonstrating substantial gains. Be-
sides, MoT consistently outperforms the best single-teacher distillation, improves
general reasoning beyond mathematics while reducing catastrophic forgetting, and
shows robustness to distribution-shifted and peer-level teachers. Finally, we have
demonstrated MoT possesses consensus CoT by eliminating teacher-specific in-
ductive biases and inter-teacher conflicts while repeatedly reinforcing the learning
of consensus reasoning features. These results position MoT as a simple, effec-
tive route to efficiently distilling long CoT capabilities from diverse teachers into
compact students.

1 INTRODUCTION

As large language models (LLMs) with long chain-of-thought (CoT) capabilities continue to emerge
(Jaech et al., 2024; Yang et al., 2025a; Guo et al., 2025), reasoning distillation is becoming the
key pathway for converting expensive reasoning ability into deployable efficiency. Compared with
imitating only final answers, directly supervising the reasoning trajectory enables a smaller student
model to learn multi-step solution procedures (Luo et al., 2025b; Qin et al., 2025; Guo et al., 2025).

Building on these developments, the research focus is shifting from scaling data volume to im-
proving data quality. For example, supervised fine-tuning on only 1,000 teacher-distilled samples
delivers measurable reasoning gains when paired with test-time compute (Muennighoff et al., 2025).
Likewise, when pretraining already imparts rich mathematical knowledge, a few hundred carefully
curated examples can effectively elicit complex reasoning (Ye et al., 2025). Taken together, these
findings indicate that efficiently distilling long CoT trajectories is an effective strategy for training
compact models that achieve competitive reasoning accuracy.

However, real-world deployments rarely features a “single oracle teacher.” We often have multiple
candidate teacher LLMs and a growing pool of distilled CoT data, giving rise to a basic question:
Given a student model, how we pick the most suitable teacher? Empirically, teacher choice mat-
ters—the teacher can imprint a recognizable “style signature” on the student (Chen et al., 2025b);
mismatches between teacher and student can weaken the transfer of long CoT skills (Wu et al.,
2025b). As illustrated in Figure 1, our observations are consistent: different students have differ-
ent “best teachers,” and even for the same student the best teacher can vary across datasets. Such
phenomena challenge the naive assumption that “a bigger/stronger teacher is necessarily better,”
prompting us to consider: Instead of being constrained by a single teacher and the inherent costs
of its selection, a more robust and effective paradigm involves aggregating knowledge from mul-
tiple teachers.
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     Student Best Teacher
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Figure 1: Teacher choice is not universal. Left:
different students have different “best teachers”;
right: even for the same student the best teacher
can vary across datasets. This observation is em-
pirically confirmed in Table 1.

A natural follow-up question is: How can we
effectively fuse the diverse strengths of multi-
ple teachers? The goal is to consolidate their
complementary reasoning features into a sin-
gle student. Long CoTs often accumulate noise
and irrelevant content (Luo et al., 2025a; Zhang
et al., 2025; Li et al., 2025b). It is unclear
whether, in mixed-teacher long-CoT distilla-
tion, such noise is amplified through interac-
tions, and how to suppress noise while pre-
serving the consensus features. It suggest that:
Diversity of teachers and reasoning paths is
an asset—provided we can overcome conflicts
among the supervision of various teachers.

As an effective technique for overcoming data distribution conflicts, model merging has been widely
applied to joint training across diverse domains and tasks (Yu et al., 2024b; Zhou et al., 2024; Yadav
et al., 2024). However, our revisiting analysis also showed that a single Post-hoc merge does not
reliably resolve cross-teacher supervision conflicts and unify different teachers’ reasoning abilities.
These limitations motivate an approach that goes beyond one-shot merging to reconcile heteroge-
neous teacher signals by repeatedly reinforcing the learning of consensus reasoning features.

To this end, we propose Merge-of-Thought Distillation (MoT): a lightweight framework that alter-
nates between (i) teacher-specific branch SFT and (ii) weight-space merging of student variants.
Intuitively, branch SFT internalizes the reasoning style of each teacher into one student; the subse-
quent parameter-space merge then distills consensus—retaining features reinforced across teachers
while suppressing individual accidents and quirks. After multiple iterations, the student progres-
sively condenses into a merged student that reflects multi-teacher consensus reasoning. We found
that MoT significantly enhanced reasoning ability of the model and alleviated catastrophic for-
getting. In addition, we have experimentally and theoretically demonstrated that consensus CoT
emerges naturally with MoT: MoT eliminates teacher-specific inductive biases and inter-teacher
conflicts at the token level while repeatedly reinforcing the learning of consensus reasoning features,
enabling training in a flatter loss landscape and effective transfer to new student models.

We present, to our knowledge, the first systematic study of multi-teacher long CoT co-
distillation:

1. We conduct the revisiting analysis of teacher selection under Long CoT distillation set-
ting and find that there is no single best teacher consistently dominant across students or
datasets.

2. Rather than taking the cost on teacher selection, we propose a novel distillation method,
Merge-of-Thought Distillation (MoT), to unify multiple teachers’ reasoning abilities into
students by overcoming conflicts among the supervision of various teachers.

3. Using only about 200 CoT samples, applying MoT to a Qwen3-14B student surpasses
strong models including Deepseek-R1, Qwen3-32B, and OpenAI-O1. Besides, MoT
consistently outperforms the best single-teacher distillation, improves general reason-
ing beyond mathematics while reducing catastrophic forgetting, and shows robustness to
distribution-shifted and peer-level teachers.

4. We have demonstrated MoT possesses consensus CoT by eliminating teacher-specific in-
ductive biases and inter-teacher conflicts while repeatedly reinforcing the learning of con-
sensus reasoning features, which enables the model to be trained on a flatter loss landscape
and further propagated to new student models.

2 RELATED WORK

Long Chain-of-Thought Distillation. Research on distilling long chains of thought (CoT) has
progressed rapidly (Wu et al., 2025b; Guo et al., 2025). Early work (Li et al., 2023) showed that
even small models can benefit from teacher CoT prompting and highlighted the importance of varied
reasoning chains. Subsequent approaches (Luo et al., 2025b; Feng et al., 2024) further segment
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and simplify CoTs, employ keypoint weighting, and use progressive distillation to focus on critical
tokens. Studies on the key factors of CoT distillation reveal that teacher diversity and rationale
granularity often have a greater impact than raw teacher accuracy (Chen et al., 2025b). Recent works
also show that long-CoT capability can be bootstrapped with a handful of in-context examples (Pang
et al., 2025), distilled as summaries to improve long-context memory (Ma et al., 2025), or integrated
with vision reasoning using agent-based approaches (Shi et al., 2024). These findings underscore
that long-CoT distillation not only requires carefully curated examples but also faces challenges such
as teacher selection, noise amplification and distillation efficiency. Nevertheless, most existing
methods focus on a single teacher distillation; our work instead extends this line of work by fusing
multiple teachers’ reasoning abilities into a single student to achieve stronger performance.

Model Merging in LLMs. Model merging fuses the parameters of multiple trained models into
a single model, which is distinct from output-level ensembles (Yang et al., 2024; Tam et al., 2024).
Empirical studies show that merging tends to balance performance and safety better than mixing data
across tasks or languages (Yang et al., 2025b; Yadav et al., 2024; Yu et al., 2024b; Jin et al.). More
advanced techniques adapt merging to pre-trained models by disentangling weights into magnitude
and direction (Yu et al., 2024a). Other approaches merge checkpoints during pre-training for faster
convergence or use activation importance to retain critical parameters (Li et al., 2025a; Nobari et al.,
2025). Model merging has also been applied to combine models with different reasoning strategies
and to merge heterogeneous architectures (Wu et al., 2025a; Zhang et al., 2024). However, most
existing work focuses on merging models specialised for different domains and tasks; by contrast,
our approach merges student models distilled by different teachers on the same dataset to unify their
reasoning abilities without conflicts among different teachers.

Table 1: Best teacher under STD for each base model and dataset.

Base model Best teacher on BOBA-200 Best teacher on S1K-200
Qwen3-8B QWQ QWQ
Qwen3-14B Qwen3-235B QWQ
Qwen3-30B-A3B Qwen3-235B Qwen3-235B

3 REVISITING MULTI-TEACHER LONG COT DISTILLATION

Setup and goals. We fine-tune three students from the Qwen3 family (Qwen3-8B / Qwen3-14B /
Qwen3-30B-A3B) on two teacher-distilled math subsets, BOBA-200 and S1K-200. We compare
three regimes: (i) single-teacher distillation (STD), (ii) a direct multi-teacher union (MTD) that
mixes all available teacher-distilled samples, and (iii) a one-shot post-hoc weight merge of stu-
dents independently distilled from different teachers. Further dataset/model/training details appear
in Sec. 5. This section has two goals: (1) revisit teacher selection under long CoT distillation and
quantify that the best teacher is student and dataset-dependent; and (2) show that naive MTD or a
single post-hoc merge does not reliably resolve cross-teacher supervision conflicts.

Table 2: Final AIME24/25 AVG under three regimes. MTD denotes naive multi-teacher union. Best
STD denotes best single-teacher for that setting. MTD and Post-hoc weight merge do not reliably
overcome cross-teacher conflicts or unify heterogeneous reasoning styles.

Base Model Dataset Baseline MTD Best STD Post-hoc Merge

Qwen3-8B BOBA-200 71.46 72.50 71.88 73.12
S1K-200 71.46 73.23 72.09 73.02

Qwen3-14B BOBA-200 74.59 75.94 76.98 76.98
S1K-200 74.59 76.26 76.57 76.26

Qwen3-30B-A3B BOBA-200 75.77 76.67 78.65 78.54
S1K-200 75.77 76.46 77.61 77.08

Different students have different best teachers. Table 1 summarizes, which single-teacher dis-
tillation (STD) source achieves the best distillation performance for each base model and dataset.
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Figure 2: Workflow of Merge-of-Thought Distillation (MoT). After the candidate teachers generate
the teacher-specific distillation dataset based on the seed problem, the system enters the iterative
MoT algorithm process. In each round t, we perform three steps: Step 1 (branch training): ini-
tialize K branches from the current merged student and train each on its teacher-specific distillation
dataset D(k) (Eq. 1); Step 2 (weight merge): average the branch parameters in weight space to
obtain the aggregated model θ(t) (Eq. 2); Step 3 (next-round initialization): use θ(t) as the base
initialization for round t+1.

We observe that different students have different best teacher, and even for the same student the
best teacher can vary across datasets. This revisiting analysis challenges the naive belief that a
larger/stronger teacher is always better. Details are provided in the Table 4.

Simple mixing or one-shot post-hoc merging is insufficient. Table 2 reports final AIME24/25
AVG across two datasets and three student scales. While MTD often improves over the base model,
it sometimes lags behind the best per-setting STD especially when the scale of the student model
grows. In practice, post-hoc merging behaves similarly to MTD. This means that a straightforward
MTD that directly unioning all teachers’ distilled samples, and a single post-hoc weight merge of
independently distilled students do not reliably overcome cross-teacher conflicts or unify het-
erogeneous reasoning styles, motivating the need for an iterative merge-and-train approach
introduced next in Sec. 4 to reconcile heterogeneous teacher signals by repeatedly reinforcing the
learning of consensus reasoning features.

4 METHOD: MERGE-OF-THOUGHT DISTILLATION (MOT)

Our approach assumes access to a base language model, a small set of supervised problems with
reference answers, and multiple teacher models. The core idea is to consolidate reasoning signals
that are consistent across heterogeneous teacher rationales. MoT alternates between teacher-specific
supervised fine-tuning (SFT) branches and weight-space merging, and is performed iteratively. Con-
cretely, MoT consists of two core steps repeated for multiple rounds:
1. Branch training (teacher-specific SFT): For each teacher, fine-tune a branch of the student on that
teacher’s rationales.
2. Weight merge: Merge branch parameters by averaging to form the next student initialization.

We detail the setup and these steps below. An overview of the approach is illustrated in Figure 2.

4.1 INITIALIZATION

Data. Let D = {(xi, yi)}Ni=1 be a set of problems x with reference answers y. We consider K
teacher models. For each input x, teacher τk produces a rationale r(k) and a final answer ŷ(k).
When y is available, we optionally retain only the teacher outputs that match the reference answer,
yielding teacher-specific datasets:

D(k) = {(xi, r
(k)
i )}Nk

i=1,

which filters out teacher trajectories that do not reach the correct final answer.

4
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Model. Let m denote the student with parameters θ. We initialize from the base model parameters
θ(0) and iterate the MoT procedure for t = 1, . . . , T rounds.

4.2 TEACHER-SPECIFIC SFT (BRANCH TRAINING)

Targets. For each teacher k, we train the student to produce the teacher’s rationale:

target(x; k) = r(k).

This choice encourages the student to internalize teacher-specific reasoning patterns, rather than
only the short final answer.

Objective. The SFT objective for teacher k is the token-level cross-entropy over the target sequence:

L(k)
SFT(θ) = E(x,r(k),y)∼D(k)

L(x,k)∑
t=1

− log pθ
(
zt | x, z<t

)
, (1)

where z1:L(x,k) tokenizes target(x; k). In round t, we initialize K branches from the current merged
model and fine-tune each branch on its teacher’s data:

θ(t,k) ← argmin
θ

L(k)
SFT(θ) with init θ(t−1).

4.3 WEIGHT-SPACE MERGING AND ITERATION

After branch training, we merge the K branch parameters by averaging to get the next initialization:

θ(t) =
1

K

K∑
k=1

θ(t,k). (2)

This step consolidates reasoning features that are shared across branches while smoothing out
teacher-specific noises. We repeat the two steps—branch training and weight merge—for T rounds,
resulting in the final merged model θ(T ). We aim to leverage model merging to overcome conflicts
among various teachers’ supervision and, through continuous merge-and-training iterations, unify
different teachers’ reasoning abilities and ultimately converge to a consensus reasoning landscape.

5 EXPERIMENTS SETUP

Datasets. We work in a one-question–multiple-answers (1Q–multiA) setting. We use two high-
quality open-source mathematical datasets (BOBA (inclusionAI, 2025) and S1K (Muennighoff
et al., 2025) as our source datasets. From each source dataset, we sample 200 prompts and de-
note the resulting subsets as BOBA-200 and S1K-200. For every prompt, we query four teacher
models—Qwen3-32B (Yang et al., 2025a), QWQ (Team, 2024b), Deepseek-R1 (Guo et al., 2025),
and Qwen3-235B (Yang et al., 2025a). Each teacher generates 16 responses with temperature set to
0.6 and max tokens set to 32,768. For distillation, we randomly select one correct reasoning path
among the 16 as the training label; if none of the 16 responses is correct, we discard that prompt for
the corresponding teacher’s distillation corpus. We construct two training regimes:
(1) Single-Teacher Distillation (STD), where we build one distilled corpus per teacher.
(2) Multi-Teacher Distillation (MTD), where we aggregate all available distilled samples from all
teachers for each source.
The resulting STD and MTD datasets and their sizes are summarized in Table 21. Rows with a
specific teacher correspond to STD, while rows with “ALL TEACHERS” correspond to MTD.

Sampling strategy for BOBA-200 and S1K-200. Following the general observation that random
sampling can lead to variable prompt difficulty in reasoning tasks (Wang et al., 2025b), we adopt
a simple but reproducible sampling strategy for our subsets. For BOBA-200, we directly use the
default 200 problems provided by the official BOBA release, which are themselves obtained by
random sampling from the full benchmark, without any additional filtering or manual selection. For
S1K-200, since some items are proof-style questions (about 200 items) without a verifiable final
answer, we first remove all such problems and then uniformly sample 200 prompts at random from

5
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the remaining questions that have a boxed checkable answer. In both cases, we keep the process
as random as possible under the constraint of automatic answer verification and use exactly the
same batch of prompts for all comparative experiments (MoT, all STDs, and MTD) to avoid cherry-
picking and minimize sensitivity to a particular sample.

Training Configuration. We fine-tune Qwen3-8B, Qwen3-14B, and Qwen3-30-A3B (Yang et al.,
2025a) as base models across all experiments. For MoT, the base model alternates training on each of
the four STD corpora for 50 steps and then performs a merge; this constitutes one merge round. We
run 5 merge rounds in total and report the best-performing round as the final MoT result; For STD
and MTD baselines, to ensure fairness, we train for 250 steps in total and save a checkpoint every 50
steps. We also report the best-performing checkpoint as the final result. More details are provided in
the Appendix G. We evaluate the capabilities of the model in mathematical reasoning using AIME24
(Math-AI, 2024) and AIME25 (Math-AI, 2025). All AIME scores are 16-run averages.

Table 3: Main results with MoT on BOBA-200 and S1K-200. “/” denotes an item not reported in
the corresponding baseline’s source. All AIME scores are 16-run averages.

Base Model Configuration Annotated AIME24 AIME25 AVG AVG
Examples Gain

Qwen3-8B

Base — 75.83 67.08 71.46 -

DEER (Dai et al., 2025) 103K 76.70 / - -
S-GRPO (Dai et al., 2025) 103K 77.30 / - -
MathSmith-HC (Zhan et al., 2025) 11K 76.70 70.00 73.35 ↑1.89
BOBA-200 + MoT (Ours) 200 78.33 70.63 74.48 ↑3.02
S1K-200 + MoT (Ours) 200 77.50 71.67 74.59 ↑3.13

QWEN2.5-14B

Base — 13.75 11.46 12.61 -

GRPO (Chen et al., 2025a) 1K 13.33 13.13 13.23 ↑0.62
SPO (Chen et al., 2025a) 1K 14.17 16.67 15.42 ↑2.81
RefCritic (SFT) (Tang et al., 2025) 10K 15.20 15.00 15.10 ↑2.49
RefCritic (SFT+RL) (Tang et al., 2025) 120K 23.00 21.20 22.10 ↑9.49
Bespoke-Stratos-17k (Kou et al., 2025) 17K 20.00 13.30 16.65 ↑4.04
Difficulty-Flipped (Kou et al., 2025) 17K 23.00 23.30 23.15 ↑10.54
Long-CoT (Wang et al., 2025a) 220K 30.00 / - -
BOBA-200 + MoT (Ours) 200 34.17 30.00 32.09 ↑19.48
S1K-200 + MoT (Ours) 200 36.88 30.42 33.65 ↑21.04

Qwen3-14B
Base — 79.17 70.00 74.59 -

BOBA-200 + MoT (Ours) 200 79.38 76.88 78.13 ↑3.54
S1K-200 + MoT (Ours) 200 81.67 75.63 78.65 ↑4.06

Qwen3-30B-A3B

Base — 80.63 70.90 75.77 -

UloRL-A3B-32k (Du et al., 2025a) / / 73.50 - -
S1K-200 + MoT (Ours) 200 80.83 77.50 79.17 ↑3.40
BOBA-200 + MoT (Ours) 200 82.92 78.33 80.63 ↑4.86

Qwen3-32B Base — 81.46 72.08 76.77 -

Deepseek-R1 Base — 79.80 70.00 74.90 -

OpenAI-O1 Base — 74.30 79.20 76.75 -

OpenAI-O3-MINI Base — 79.60 74.80 77.20 -

6 MULTI-TEACHER DISTILLATION AND MOT YIELD SUBSTANTIAL GAINS

6.1 PERFORMANCE ON COMPETITION MATH BENCHMARKS

Main results. To demonstrate the superiority of MoT, we report gains across multiple model scales
and compare them against two axes of baselines: (i) larger models like Deepseek-R1, Qwen3-32B
and (ii) same-base alternatives trained on methods using substantially larger, differently sourced
reasoning datasets. Because the Qwen3 family is very frontier and lacks extensive public base-
lines, we additionally include results of applying MoT to Qwen2.5-Instruct-14B (Team, 2024a) as a
complementary case to test the effectiveness of MoT on 14B scale.

Table 3 reports the final results of MoT on BOBA-200 and S1K-200. For example, “Qwen3-
8B+BOBA-200” denotes Qwen3-8B trained with MoT on BOBA-200 dataset. As shown, with
only 200 training examples from either BOBA-200 or S1K-200, MoT lifts Qwen3-8B to match
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the baseline performance of Qwen3-14B. Moreover, MoT on Qwen3-14B surpasses strong models
including Deepseek-R1, Qwen3-32B, and OpenAI-O1, demonstrating substantial gains. In addition,
on Qwen2.5-Instruct-14B, MoT’s improvements far exceed baselines trained on very large reasoning
datasets, reinforcing our claim that multi-teacher, consensus-based efficient distillation of long
CoT reasoning can yield very substantial performance gains.

Comprehensive Ablations of STD, MTD, and MoT. To validate the effectiveness of MoT and
multi-teacher distillation, we conduct fine-grained ablations: (1) STD: train on each single-teacher
distilled dataset (QWQ, Qwen3-32B, Qwen3-235B, Deepseek-R1). (2) MTD: train on the union of
all teachers’ distilled samples. (3) MoT: our method that alternates across the four STD corpora
with periodic merges. For fairness, all methods save a checkpoint every 50 steps, and we report the
best checkpoint; full per-step results are provided in the Appendix G.2.

Table 4: Ablation on STD, MTD, and MoT across settings. AIME scores are 16-run averages.

Qwen3-8B Qwen3-14B Qwen3-30B-A3B
Dataset Method AIME24 AIME25 AVG AIME24 AIME25 AVG AIME24 AIME25 AVG

BOBA

Baseline 75.83 67.08 71.46 79.17 70.00 74.59 80.63 70.90 75.77
MTD (All Teachers) 76.04 68.96 72.50 76.46 75.42 75.94 79.38 73.96 76.67
STD (QWQ) 76.25 67.50 71.88 79.58 73.54 76.56 79.79 75.63 77.71
STD (Qwen3-32B) 75.42 67.71 71.57 77.71 71.25 74.48 81.04 76.04 78.54
STD (Qwen3-235B) 74.58 67.92 71.25 79.17 74.79 76.98 81.88 75.42 78.65
STD (Deepseek-R1) 67.71 60.21 63.96 74.38 67.50 70.94 78.33 68.96 73.65
MoT (ours) 78.33 70.63 74.48 79.38 76.88 78.13 82.92 78.33 80.63

S1K

Baseline 75.83 67.08 71.46 79.17 70.00 74.59 80.63 70.90 75.77
MTD (All Teachers) 75.63 70.83 73.23 79.17 73.34 76.26 78.33 74.58 76.46
STD (QWQ) 76.04 68.13 72.09 80.21 72.92 76.57 81.46 72.92 77.19
STD (Qwen3-32B) 77.50 66.67 72.09 79.79 72.50 76.15 79.58 73.13 76.36
STD (Qwen3-235B) 74.38 68.54 71.46 77.08 75.41 76.25 79.17 76.04 77.61
STD (Deepseek-R1) 70.00 61.46 65.73 73.75 62.92 68.34 78.54 70.63 74.59
MoT (ours) 77.50 71.67 74.59 81.67 75.63 78.65 80.83 77.50 79.17

Results are shown in Table 4. MoT consistently yields the strongest distillation gains in almost all
settings, which means that MoT is always superior to the optimal result of the teacher selection
method under each setting. This indicates that MoT can sidesteps brittle manual teacher selection
by fusing complementary reasoning abilities into a single student.

0 100 200
Global Steps

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

Training Loss Over Steps
MOT
STD

(a) S1K: Training loss

50 100 150 200
Step

70

71

72

73

74

AI
M

E 
Av

er
ag

e

AIME Average Over Steps

MOT
STD

(b) S1K: AIME Score

0 100 200
Global Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

Training Loss Over Steps
MOT
STD

(c) BOBA: Training loss

50 100 150 200
Step

69

70

71

72

73

74

AI
M

E 
Av

er
ag

e

AIME Average Over Steps
MOT
STD

(d) BOBA: AIME Score

Figure 3: Qwen3-8B under MoT vs. STD (QWQ) on S1K and BOBA. Panels (a,b): S1K; panels
(c,d): BOBA. Left columns show training loss vs. steps; right columns show AIME vs. steps. All
runs log loss at every step on the same QWQ-distilled corpus; AIME is evaluated every 50 steps.

Training Dynamics: MoT vs. Best STD. We compare Qwen3-8B under MoT and under STD
with the best single teacher (QWQ) on both the S1K and BOBA datasets. We log training loss
on the same QWQ-distilled corpora at every step and evaluate AIME score every 50 step. From
Figure 3, we observe that MoT achieves substantially higher AIME scores even when its training
loss remains much higher than STD’s at the same step. This suggests that in long CoT training,
lower loss is not necessarily correlated with stronger reasoning ability. Moreover, MoT exhibits a
higher performance ceiling and suppresses overfitting, with STD typically peaking earlier and
then degrading while MoT remains stable or continues improving as steps increase.

6.2 COMPUTE–PERFORMANCE TRADE-OFF.

There is an inherent trade-off between computational cost and performance in our setting. For
the main BOBA-200 experiments with Qwen3-8B, the training budgets of STD and MoT can be
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Table 5: Training budgets of STD and MoT on BOBA-200 with Qwen3-8B.

Method # branches steps / branch rounds total branch-steps

STD 1 250 1 250
MoT 4 50 5 4× 50× 5 = 1000

Table 6: Equal-compute comparison between MoT and RFT-style single-teacher STD on
AIME24/25 with Qwen3-8B and BOBA-200. All STD variants are trained with 4 CoTs per question
for 1000 steps, matching MoT’s total branch-steps and distinct CoT budget.

Method AIME24 AIME25 AVG

Base 75.83 67.08 71.46
4×STD (32B) 75.21 67.92 71.57
4×STD (QWQ) 76.46 69.17 72.82
4×STD (235B) 75.83 68.13 71.98
4×STD (R1) 70.42 59.58 65.14
MoT (ours) 78.33 70.63 74.48

summarized as shown in Table 5. However, MoT is designed for the realistic setting where multiple
teachers are available and one wishes to maximally leverage them rather than commit to a single
teacher. In practice, MoT remains highly efficient: it takes only about 6 GPU hours to reproduce
the Qwen3+BOBA-200 training on a single 8×H800 machine, and this can be further accelerated
by training branches in parallel.

To directly assess whether MoT’s gains come purely from increased compute, we ran an additional
experiment following the RFT-style setup (Yuan et al., 2023). For each teacher, we re-distilled the
data by sampling 4 diverse CoT trajectories per question with high temperature, yielding 4× 200 =
800 rationales per teacher. This matches MoT’s total number of distinct CoT sequences (4 teachers
× 200 questions × 1 CoT each = 800), so the comparison controls for both the total compute and
the amount of distinct CoT supervision. We then performed single-teacher STD for 1000 steps on
the chosen teacher’s 800 CoTs, matching the total branch-steps of MoT:
(1) MoT: 4 branches × 50 steps/branch × 5 rounds = 1000 branch-steps,
(2) RFT-style STD: single teacher, 4 CoTs per question (800 CoTs total), 1000 steps.

We saved a checkpoint every 200 steps and report the best checkpoint. The results on AIME24/25
(Qwen3-8B, BOBA-200) are summarized in Table 6.

The strongest single-teacher STD configuration in this equal-compute regime remains competitive,
but even with this strictly matched compute and data budget, it still underperforms MoT. This in-
dicates that MoT’s gains do not arise merely from using more optimization steps; instead, they come
from jointly leveraging multiple teachers, avoiding brittle teacher selection, and unifying comple-
mentary reasoning signals into a single student, thereby raising the overall reasoning ceiling.

6.3 MOT MITIGATES FORGETTING AND STRENGTHENS GENERAL REASONING

To assess whether CoT-style training with MoT affects basic capabilities, we evaluate the final
checkpoints trained by MoT and by STD with the per-setting best teacher (Best STD) against the
Base models on nine benchmarks: CEVAL (CEV) (Seifert et al., 2024), SUPER GPQA (SG) (Du
et al., 2025b), SIMPLE QA (SQ) (Wei et al., 2024), IFEVAL (IFE) (Zhou et al., 2023), MMLU PRO
(MP) (Wang et al., 2024), MMLU REDUX (MR) (Gema et al., 2025), PhyBench (PB) (Meng et al.,
2024), LiveCodeBench (LCB) (Jain et al., 2024), and GPQA-Diamond (GPQA-D) (Rein et al.,
2024). We group these benchmarks into three categories: catastrophic-forgetting–sensitive tasks,
reasoning–knowledge tasks and pure reasoning tasks. Detailed descriptions of these tasks and
MoTivations for using and classifying them for evaluation are provided in the Appendix H.

For each configuration, we report raw scores and summarize the average change versus the Base
model within each group: “Avg drop” for catastrophic-forgetting tasks and “Avg gain” for reasoning-
knowledge and pure reasoning tasks. We report the results in Table 7. Compared with training on the
single best teacher, MoT typically yields larger gains on reasoning-knowledge and pure reasoning
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tasks while incurring smaller declines on catastrophic-forgetting–sensitive tasks. This suggests that
MoT not only strengthens general reasoning but also helps mitigate catastrophic forgetting. In
Appendix E, we provide a more detailed evaluation.

Table 7: Impact of Best STD and MoT on general benchmarks. All scores are 16-run averages.
Catastrophic-forgetting–sensitive tasks Reasoning-knowledge tasks Pure reasoning tasks

Dataset Base Config CEV SG IFE Avg drop SQ MP MR Avg gain PB LCB GPQA-D Avg gain

BOBA 8B
Base 83.58 10.51 83.60 - 32.31 71.42 83.21 - 20.47 55.76 57.77 -
Best STD 83.43 9.97 81.62 ↓-0.89 33.88 72.00 83.68 ↑0.87 22.85 59.88 59.85 ↑2.86
MoT 83.73 10.09 82.04 ↓-0.61 34.44 73.30 84.42 ↑1.74 24.07 58.79 60.54 ↑3.13

S1K 8B
Base 83.58 10.51 83.60 - 32.31 71.42 83.21 - 20.47 55.76 57.77 -
Best STD 83.95 10.18 82.35 ↓-0.40 32.75 72.24 85.02 ↑1.02 22.76 59.47 56.31 ↑1.51
MoT 84.32 10.15 83.51 ↑0.10 33.56 73.01 84.95 ↑1.53 23.37 59.58 59.53 ↑2.83

BOBA 14B
Base 86.78 10.76 84.69 - 32.61 75.26 85.74 - 28.53 61.41 60.83 -
Best STD 83.73 10.26 82.56 ↓-1.89 32.17 74.71 86.37 ↓-0.12 30.61 63.21 63.79 ↑2.28
MoT 86.70 10.38 83.51 ↓-0.55 32.65 75.59 86.53 ↑0.39 30.77 63.59 64.26 ↑2.62

S1K 14B
Base 86.78 10.76 84.69 - 32.61 75.26 85.74 - 28.53 61.41 60.83 -
Best STD 84.25 10.00 84.32 ↓-1.22 32.49 76.21 86.47 ↑0.52 30.41 63.10 63.70 ↑2.15
MoT 85.66 10.45 84.42 ↓-0.57 32.56 76.55 86.68 ↑0.73 30.78 64.15 64.11 ↑2.76

BOBA 30B
Base 85.88 10.66 83.76 - 31.68 75.26 85.81 - 28.57 61.08 59.76 -
Best STD 84.18 10.02 80.44 ↓-1.89 31.52 75.96 86.04 ↑0.26 33.31 61.34 61.81 ↑2.35
MoT 86.55 10.52 83.54 ↑0.10 32.26 76.21 86.74 ↑0.82 33.46 62.54 62.34 ↑2.98

S1K 30B
Base 85.88 10.66 83.76 - 31.68 75.26 85.81 - 28.57 61.08 59.76 -
Best STD 84.62 10.04 79.74 ↓-1.97 32.40 75.49 86.67 ↑0.60 33.38 63.96 61.46 ↑3.13
MoT 86.48 10.14 82.91 ↓-0.26 33.19 76.49 87.28 ↑1.40 33.40 63.92 62.53 ↑3.48

7 MOT ENABLES SELECTION-FREE COT DISTILLATION

Ablating a Distribution-Shifted Teacher from MoT: Evidence of Complementarity. As shown
in Table 4, using Deepseek-R1 (R1) as the sole teacher (STD) induces notable performance drops
for QWEN bases, indicating a strong distribution shift. To verify that MoT can still leverage useful
signals from R1 despite the shift, we ablate R1 from the MoT teacher pool and keep all other settings
identical. As shown in Table 8, removing R1 reduces the final MoT performance on BOBA-200
(negative changes), implying that including R1 provides complementary, beneficial supervision that
MoT can harness. This proves that MoT can overcome the performance degradation caused by the
strong distribution shift teacher and extract beneficial common reasoning features from it. More
details are provided in the Appendix G.3.

Table 8: Impact of removing R1 from
the MoT teacher pool on BOBA-200.

Base model AVG change
Qwen3-8B -0.62
Qwen3-14B -0.21
Qwen3-30B-A3B -0.42

Optimization Dynamics with Distribution-Shifted
Teacher. We visualize optimization dynamics on BOBA
for both 8B and 14B scales under standard MoT and MoT
without R1 (removing the R1 teacher). We log training
loss at every step on the same QWQ-distilled corpus and
evaluate AIME score every 50 steps (as in our ablation
protocol). From Figure 4, we observe that although the
performance of the no-R1 variants converges faster, in-
cluding R1 raises the performance ceiling, delays satu-
ration and reduces post-peak degradation, suggesting better regularization and a higher training
upper bound at both scales. This indicates that even with the distribution-shifted teacher, MoT
extracts beneficial common reasoning signals while mitigating teacher-specific noise.

Can peer-level models act as teachers? We find that teacher usefulness extends beyond strictly
stronger models: distilling Qwen3-30B-A3B from peer-level QWQ or Qwen3-32B improves per-
formance. Combining peer-level trajectories with MoT boosts results further (Appendix G.4).

8 CONSENSUS COT EMERGES NATURALLY WITH MOT

Better student is a better teacher. To verify that MoT learns higher-quality and more general-
izable chains-of-thought (CoT), we conduct a student-as-teacher experiment. Specifically, we take
models trained on BOBA-200 under three regimes (Base, Best STD and MoT) and use each as a
teacher to re-distill on BOBA-200 for a new student model. As shown in Appendix C, when the
teacher itself is a student trained with MoT, it almost always provides the strongest distillation sig-
nal, yielding the best downstream student performance. These results indicate that consensus CoT
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Figure 4: BOBA dataset: MoT vs. MoT without R1 at two scales. Panels (a,b): 8B; panels (c,d):
14B. Left columns show training loss vs. steps; right columns show AIME vs. steps. All runs log
loss at every step on the same QWQ-distilled corpus; AIME is evaluated every 50 steps.

emerges naturally with MoT: the student learns trajectories that are both stronger and more con-
sistent, and when used as a teacher, this consensus supervision transfers effectively to new students.

Because the three points are A ( 0 , 0 ), B (c

, 0 ), Q ( 0 ,q ). So actually , the triangle

is formed by connecting those three points . The

area can be calculated as half the determinant :

Area = ( 1 / 2 )* | ( Ax (By - Cy ) + B x

(C y - Ay ) + C x (A y - By ) ) | . Pl

ugging in A ( 0 , 0 ), B (c , 0 ), Q ( 0 ,q

): Area = ( 1 / 2 )* | 0 *( 0 - q ) + c

*( q - 0 ) + 0 *( 0 - 0 )| = ( 1 / 2

)* | c *q | = ( 1 / 2 )c q . Similarly , the

area of triangle AD P . Triangle AD P has vertices

A ( 0 , 0 ), D ( 0 ,d ), and P (p , 0 ).

Using the same formula : Area = ( 1 / 2 )* | 0

*( d - 0 ) + 0 *( 0 - 0 ) + p *( 0 -

d )| = ( 1 / 2 )* | - pd | = ( 1 / 2 )

Figure 5: Tokens marked with confi-
dence drops relative to the Base model
after MoT.

Token-level evidence for consensus CoT. We further
probe token-level confidence on QWQ-distilled CoTs. We
mark tokens for which the MoT model’s output confidence
drops relative to the Base under QWQ teacher’s distilled su-
pervision (Figs. 5). Strikingly, the marked tokens concen-
trate on teacher-specific stylistic expressions (driven dis-
course markers, hedges, and rhetorical flourishes), whereas
core derivational tokens (e.g., operators, equations, inter-
mediate results) retain high confidence. This indicates that
MoT is essentially weakening the learning of inductive
bias of different teachers, while repeatedly reinforcing the
learning of consensus reasoning ability. We also de-
tail token-level confidence for MoT and STD(R1) on R1-
distilled CoTs in the Appendix Figs. 7 and Figs. 8.

MoT mitigates inter-teacher conflicts and trains in a flatter loss landscape. We design two
complementary evaluations with clear goals: (i) a theoretical “two-bonus” decomposition to test
whether expert-wise preconditioning boosts the useful driving term and whether cross-teacher inter-
ference is provably reduced—thereby explaining conflict mitigation and flatter updates than MTD;
and (ii) a linear mode connectivity probe to check loss landscape flatness of MoT. The “two-bonus”
decomposition (Appendix A) shows that expert-wise preconditioning of MoT boosts the driving
term while a contractive bound reduces cross-teacher interference, with averaging further shrinking
the curvature penalty. Complementarily, a linear mode connectivity probe (Appendix D) indicates
that MoT yields markedly smoother loss curves than MTD, indicating flatter regions and reduced
sensitivity to teacher noises.

9 CONCLUSION

We presented Merge-of-Thought Distillation (MoT), a lightweight framework that unifies super-
vision from multiple heterogeneous teachers for long chain-of-thought (CoT) reasoning by alter-
nating teacher-specific SFT with weight-space merging. Revisiting teacher selection shows that
different students have different “best teachers,” and even the same student’s best teacher varies
across datasets; MoT sidesteps brittle manual selection by fusing complementary reasoning abil-
ities into a single student. With only about 200 CoT samples, applying MoT to a Qwen3-14B
student surpasses Deepseek-R1, Qwen3-32B, and OpenAI-O1. Besides, MoT consistently beats
the best single-teacher and naive multi-teacher unions, improves general reasoning while mitigating
catastrophic forgetting, and is robust to distribution-shifted and peer-level teachers. Finally, we pro-
vide theoretical and empirical evidence that MoT naturally induces a consensus CoT by eliminating
teacher-specific inductive biases and inter-teacher conflicts while repeatedly reinforcing the learning
of consensus reasoning feature, which enables training in a flatter region of the loss landscape and
effective transfer to new student models.
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Ethics Statement. We affirm compliance with the ICLR Code of Ethics. Our study does not
involve human subjects or personally identifiable information. Training/evaluation use public
math/QA benchmarks (e.g., AIME24/25, CEVAL, MMLU variants, GPQA, LiveCodeBench, Phy-
Bench) under their respective licenses; we follow all license terms and cite original sources. Teacher
trajectories (CoTs) are generated by publicly available LLMs and filtered to remove potential toxic-
ity. No sensitive domains (medical/financial/legal advice) are targeted. We report all compute details
to support efficient replication. Any conflicts of interest or sponsorship will be disclosed per ICLR
policy at camera-ready; none are known that would bias the results at submission time.

Reproducibility Statement. We take reproducibility seriously. The method is fully specified in
Section 4, with training schedules and hyperparameters in Appendix G.1 and ablations in Table 4.
We average AIME over 16 seeds and save checkpoints every 50 steps; full per-step results are re-
ported in Appendix G. To facilitate exact reruns, we release (anonymized) artifacts as supplementary
material: main code, training scripts, data preprocessing steps, and environment requirement files
(conda). Appendix 5 details dataset sources, splits, and filtering; Appendix G.1 lists hardware.
These materials allow independent reproduction of tables and figures without additional calibration.
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A THEORETICAL ANALYSIS

In this section, we will provide a detailed theoretical analysis to explain the advantages of MoT over
MTD in addressing conflicts and mitigating forgetting issues.

Our analysis is based on a comparison of the gradient update processes of MoT and MTD.

Preliminary. We approximate the model update for each expert by using second-order Taylor
expansion:

ℓk(θ) ≈ ℓk(θt−1) + g⊤k (θ − θt−1) +
1
2 (θ − θt−1)

⊤Hk(θ − θt−1),

where gk = ∇ℓk(θt−1), Hk = ∇2ℓk(θt−1), and ℓk(θ) is the loss function for expert k evaluated
at point θ. We also define the mixture gradient and Hessian as weighted sums of the individual
gradients and Hessians:

ḡ =
∑
k

αkgk, H̄ =
∑
k

αkHk,

where αk ≥ 0 and
∑

k αk = 1 are the weights assigned to each expert.

Each branch performs Ek steps of gradient descent with a stepsize η starting from θt−1. Based on
second-order Taylor expansion, we have θk,E = θt−1 − Pk gk, Pk = η

∑E−1
e=0 (I − ηHk)

e,
where Pk is the “preconditioner” used in each branch’s local optimization process.

We also have the below closed-form solution for preconditioner:

Pk = sEk
(Hk), sE(λ) =

1− (1− ηλ)E

λ
= η

E−1∑
e=0

(1− ηλ)e,

where sE(λ) represents the effective step size along the direction defined by the eigenvalue λ of the
Hessian matrix Hk.

The expression for sE(λ) can be derived by considering the update rule for gradient descent in the
presence of a Hessian, where each step of gradient descent applies a scaling factor depending on the
eigenvalue λ of the Hessian matrix at each iteration. For large E or small ηλ, sE(λ) approximates
the inverse of the eigenvalue λ, leading to more efficient updates along lower-curvature directions.

Hence, the branch displacement for expert k is given by:

δk = −Pkgk = −sEk
(Hk)gk,

and the MoT merge, which aggregates the displacements from all experts, is:

∆ =
∑
k

αkδk = −
∑
k

αkPkgk.

For the MTD, which also runs E local steps at the same anchor point, the preconditioner is defined
as:

Pmtd = sE(H̄),

where H̄ is the weighted sum of the Hessians of all experts, and the E-step update is:

− Pmtdḡ = −sE(H̄)ḡ.

Here, Pmtd is the preconditioner used for the mixture of experts, and ḡ is the mixture gradient.

Assumption 1 (Local quadratic & stable steps). Each ℓk is C2 in a neighborhood N of θt−1. Let
Hk = ∇2ℓk(θt−1) and Lmax = maxk λmax(Hk). We choose a stepsize η ∈ (0, 2/Lmax) and run
Ek≥1 local steps whose iterates remain in N .

Two bonuses on the linear part. The one-round improvement under the quadratic surrogate
FQ(δ) = ḡ⊤δ + 1

2δ
⊤H̄ δ splits into a linear “driving” term and a quadratic penalty. For the linear
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term we have the following variance-type decompositions:∥∥∥∑
k

αkPkgk

∥∥∥2︸ ︷︷ ︸
MoT linear

=
∑
k

αk ⟨gk, Pkgk⟩︸ ︷︷ ︸
expert-wise preconditioning

− 1
2

∑
i,j

αiαj∥Pigi − Pjgj∥2︸ ︷︷ ︸
Imot ≥0

, (3)

∥ḡ∥2Pmtd︸ ︷︷ ︸
mtd linear

=
∑
k

αk ⟨gk, Pmtdgk⟩︸ ︷︷ ︸
single preconditioner

−
∑
k

αk ∥gk − ḡ∥2Pmtd︸ ︷︷ ︸
Imtd(Pmtd) ≥0

, (4)

where ∥x∥2M = x⊤Mx. Subtracting equation 4 from equation 3 yields the two-bonus difference

∆lin :=
∥∥∥∑

k

αkPkgk

∥∥∥2 − ∥ḡ∥2Pmtd

=
∑
k

αk⟨gk, (Pk − Pmtd)gk⟩︸ ︷︷ ︸
(A’) preconditioning gain

+ Imtd(Pmtd)− Imot︸ ︷︷ ︸
(B’) interference mitigation

. (5)

When is (A’) ≥ 0?
Lemma 1 (Monotonicity of sE). For any fixed E ≥ 1 and η > 0, sE(λ) = η

∑E−1
e=0 (1 − ηλ)e is

strictly decreasing in λ on (0, 2/η).

If Hk and H̄ are (approximately) simultaneously diagonalizable, then Dk :=⟨gk, (Pk−Pmtd)gk⟩ =
∥gk∥2

∑
r wk,r

(
sE(λk,r)− sE(λ̄r)

)
, with weights wk,r =

(q⊤r gk)
2

∥gk∥2 . Hence Dk ≥ 0 whenever most
weight lies on directions where λk,r ≤ λ̄r. Aggregating with αk gives (A’)≥ 0.

When is (B’) ≥ 0? A contractive bound on interference. Let S = span{gi − gj}i,j be the
disagreement subspace.

Assumption (direction-wise contraction on S). There exists ρ ∈ (0, 1] such that on S one of the
following equivalent conditions holds:

(Coord.) Hk and H̄ are (approximately) simultaneously diagonalizable on S with eigenbasis {qr};
let pk,r = sE(λk,r) and pmtd,r = sE(λ̄r). For all r with qr ∈ S,

max
i

pi,r ≤ ρ pmtd,r.

(Basis-free) For all v ∈ S and all k,

∥Pkv∥2 ≤ ρ2 ∥v∥2Pmtd
(i.e., v⊤P⊤

k Pkv ≤ ρ2 v⊤Pmtdv).

The above is natural on high-curvature/disagreement directions because sE(λ) is decreasing in λ:
along directions where at least one expert has directional curvature no smaller than the mixture (a
common empirical pattern), its preconditioning coefficient is smaller, yielding stronger contraction.

Under this assumption we have

Imot =
1
2

∑
i,j

αiαj∥Pigi − Pjgj∥2 ≤ ρ2 1
2

∑
i,j

αiαj∥gi − gj∥2Pmtd
= ρ2 Imtd(Pmtd). (6)

Hence (B′) = Imtd(Pmtd)− Imot ≥ (1− ρ2) Imtd(Pmtd) ≥ 0.

Implicit shrinkage from averaging enters the quadratic penalty. With ∆ = −
∑

k αkPkgk, the
quadratic penalties satisfy

Rmot =
1
2 ∆

⊤H̄∆ ≤ 1
2 λmax(H̄)

(∑
k

αk∥Pkgk∥2 − Imot︸ ︷︷ ︸
shrinkage from averaging

)
, (7)

Rmtd = 1
2 η

2 ḡ⊤H̄ ḡ ≤ 1
2 λmax(H̄)

(∑
k

αk∥Pmtdgk∥2 − Imtd(Pmtd)
)
. (8)

Note the minus interference terms, showing that averaging contracts the update norm and directly
reduces the curvature penalty.
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Table 9: MoT applied to Llama-3.1-8B-Instruct on Math500 under the BOBA-200 setting. MoT
consistently outperforms all single-teacher STD variants, indicating that MoT is not tied to Qwen-
specific design choices.

Method Math500 score

Base 49.65
STD (Qwen3-32B) 55.45
STD (QWQ) 55.80
STD (Qwen3-235B) 57.45
STD (Deepseek-R1) 53.80
MoT (ours) 62.65

Net one-round advantage. Combining equation 5–equation 6 and the penalty bounds yields

∆mot −∆mtd︸ ︷︷ ︸
MoT minus MTD

≳
∑
k

αk⟨gk, (Pk − Pmtd)gk⟩︸ ︷︷ ︸
(A’)

+ (1− ρ2) Imtd(Pmtd)︸ ︷︷ ︸
(B’)

− 1
2 λmax(H̄) ·

[
· · ·

]
,

where [· · · ] gathers the (usually small in the stable regime) difference of squared update norms.
Thus, under gradient/curvature heterogeneity and stable steps, MoT enjoys a larger linear driving
term (A’) and smaller interference (B’), while averaging further cuts the quadratic penalty.

Special case E = 1 (for reference). Then Pk = Pmtd = ηI , and equation 5 reduces to the
familiar two-term decomposition∑

k

αkfk∥gk∥2 − η∥ḡ∥2︸ ︷︷ ︸
fk=η

= 0︸︷︷︸
(A)

+ η
∑
k

αk∥gk − ḡ∥2︸ ︷︷ ︸
(B) variance bonus

.

Remark 1 (Implicit proximal effect (Mitigating Forgetting)). The matrix series identity Pk =

η
∑Ek−1

e=0 (I−ηHk)
e shows a direction-dependent shrink toward the anchor; in each eigendirection

λ the effective step is sE(λ), larger for low curvature and smaller for high curvature, explaining
MoT’s stability without explicit proximal terms.
Remark 2 (Unified Improvements (Mitigating Conflicts)). A positive value for both bonus terms
indicates that MoT reduces gradient interference and produces a larger effective update, thereby
improving optimization progress.

A.1 ADDITIONAL ANALYSES: GENERALIZATION AND ROBUSTNESS OF MOT

Generalization to other backbones. To examine whether MoT is specific to the Qwen family
or can transfer to other architectures, we replicate the BOBA-200 setup on a different backbone,
Llama-3.1-8B-Instruct. We use exactly the same teacher pool, data, and MoT procedure, and
evaluate on Math500. The results are shown in Table 9.

MoT significantly improves the Llama-3.1-8B-Instruct backbone and provides a sizable margin over
the best single-teacher distillation, supporting the view that MoT is a lightweight, architecture-
agnostic training procedure rather than a Qwen-specific trick.

Seed sensitivity and early stopping. We further study the robustness of MoT to random seeds
and early-stopping choices. On Qwen3-8B with BOBA-200, we run MoT with 5 independent
seeds under the same 5-round schedule, and report the AIME average (AIME AVG = (AIME24 +
AIME25)/2) at each round. In addition, we implement a fixed validation-based early-stopping rule
for MoT: 10% of the original training set is held out as a validation set, and for each run we select
the checkpoint (across rounds) with the best validation score and then report its test performance.
The results are summarized in Table 10.

The peak around merge round 4 is stable across seeds, without any “best-of” checkpoint selection.
Validation-based early stopping yields slightly lower AIME AVG than always using round 4 (as ex-
pected, since the effective training set is smaller), but remains strong and better than any STD/MTD
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Table 10: MoT robustness across seeds and rounds on Qwen3-8B + BOBA-200. We report AIME
AVG (AIME24/25 average) as mean ± std over 5 seeds. “Early-stopping” denotes validation-based
selection using a 10% held-out split.

Configuration AIME AVG (mean ± std)

Merge round 1 70.17 ± 0.63
Merge round 2 72.37 ± 0.65
Merge round 3 73.38 ± 0.09
Merge round 4 74.89 ± 1.05
Merge round 5 72.75 ± 0.81
Early-stopping (val-based) 73.46 ± 0.31

Table 11: MoT on a code reasoning domain (LiveCodeBench) using 178 code-domain examples.
MoT again outperforms the best single-teacher STD.

Method LiveCodeBench score

Base 55.76
STD (32B) 58.08
STD (QWQ) 56.88
STD (235B) 58.89
STD (R1) 53.89
MoT (ours) 61.08

baseline, and it also improves over taking the same final checkpoint of MoT without early-stopping.
Overall, these results indicate that MoT’s gains are robust to random seeds and remain effective
under a fixed, validation-based early-stopping rule.

Generalization beyond mathematical reasoning. To evaluate whether MoT extends beyond
competition math, we consider a code reasoning domain using 178 code-domain examples from
Deng et al. (2025) and apply exactly the same distillation, training, and evaluation pipeline as in the
main experiments (same teacher pool, same 1Q–multiA CoT collection, same MoT procedure). We
evaluate on LiveCodeBench, and report the results in Table 11.

As in the mathematical reasoning setting, MoT again outperforms the best single-teacher STD, sug-
gesting that MoT is not restricted to math and can also improve code reasoning under the same
multi-teacher long-CoT setup. Furthermore, as reported in Section 6.3, MoT improves performance
on a range of general benchmarks (e.g., CEVAL, MMLU variants, physics and coding benchmarks)
while incurring smaller drops on catastrophic-forgetting–sensitive tasks compared to the best single-
teacher STD. Together, these results provide concrete evidence that MoT generalizes beyond com-
petition math to other domains and evaluation suites.

Additional math benchmark: HMMT. To further diversify mathematical evaluation, we also
evaluate Qwen3-8B distilled on BOBA-200 using MoT and four single-teacher STDs on the HMMT
benchmark. Results are shown in Table 12.

Here, QWQ remains the best single teacher, consistent with Table 1 for this student/dataset config-
uration, which supports the stability of our teacher-selection analysis under a fixed setting. Impor-
tantly, MoT still achieves the highest score, improving over the best STD and reinforcing that MoT
effectively unifies multiple teachers’ reasoning abilities and raises the student’s reasoning ceiling.

Summary across math and code domains. Across different evaluation domains—AIME24/25,
HMMT, and the code-reasoning setting—we observe that the identity of the “best” teacher changes
with the dataset or domain (e.g., QWQ vs. Qwen3-235B), supporting our claim that teacher choices
are not universal. At the same time, MoT consistently outperforms all single-teacher STDs in these
settings, confirming the effectiveness of our multi-teacher consensus distillation. A broader sweep

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 12: Performance of Qwen3-8B on HMMT after distillation on BOBA-200. QWQ remains the
strongest single teacher, whereas MoT achieves the best overall score.

Method HMMT score

Base 38.33
STD (32B) 43.33
STD (QWQ) 48.33
STD (235B) 45.83
STD (R1) 40.83
MoT (ours) 52.50

Table 13: Advanced merging baselines and MoT variants on Qwen3-8B + BOBA-200. TIES and
DARE are used both as one-shot merges and as merge operators inside MoT.

Method AIME AVG

Base 71.46
One-shot TIES 71.67
One-shot DARE 60.42
MoT (TIES) 73.34
MoT (DARE) 74.17
MoT (simple merge, ours) 74.48

over additional domains (e.g., large-scale scientific QA) is left for future work, but the new code and
HMMT experiments already provide further evidence beyond the original math benchmarks.

A.2 EFFECT OF MERGING OPERATOR AND NUMBER OF TEACHERS

Advanced merging operators: TIES and DARE. To compare MoT against more advanced
model-merging and data-fusion techniques, we incorporate several recent operators into our
pipeline. On Qwen3-8B + BOBA-200, we evaluate: (i) one-shot TIES merging, (ii) one-shot DARE
merging, and (iii) MoT variants that replace simple averaging with TIES or DARE in the merge step.
All other settings (teachers, data, schedule, evaluation) are kept identical. The final AIME average
(AIME24/25) is reported in Table 13. We also report the per-round behavior of MoT(TIES) and
MoT(DARE) in Tables 14 and 15.

These results lead to three observations:
(1) First, advanced one-shot merges alone are not sufficient in our setting: one-shot TIES brings
only a minor gain over the base model, and one-shot DARE causes a severe performance drop. This
suggests that techniques designed for merging models trained on different domains or tasks may be
much less directly suitable for unifying different reasoning paths for the same questions.
(2) Second, when TIES or DARE is used inside the MoT loop, performance improves substantially,
with DARE gaining almost +14 points over its one-shot counterpart. Algorithmically, this is consis-
tent with the fact that one-shot DARE acts on highly conflicting teacher-specific updates all at once
(leading to over-pruning of partially misaligned but useful directions), whereas DARE inside MoT
sees smaller, progressively more aligned deltas across rounds and branches, and thus behaves like a
gradual consensus regularizer that keeps directions repeatedly reinforced by multiple teachers.
(3) Third, simple averaging still achieves the highest and most robust ceiling: MoT(TIES) and
MoT(DARE) tend to converge faster across rounds but plateau at a slightly lower level or overfit
more, while MoT with plain averaging attains the best final AIME AVG. A plausible explanation,
consistent with our analysis in Section 7, is that simple averaging does not impose any parameter
filtering, allowing MoT to naturally absorb useful signals even from suboptimal or noisy teachers
and thereby achieve a higher reasoning ceiling.

Effect of the number of teachers. We also study how MoT behaves as we vary the number of
teachers. On BOBA-200 with Qwen3-8B, we start from the best single teacher (by STD perfor-
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Table 14: MoT(TIES) across merge rounds on Qwen3-8B + BOBA-200.

Round AIME24 AIME25 AIME AVG

1 73.33 66.67 70.00
2 77.50 67.50 72.50
3 77.50 69.17 73.34
4 74.17 65.00 69.59
5 75.00 65.83 70.42

Table 15: MoT(DARE) across merge rounds on Qwen3-8B + BOBA-200.

Round AIME24 AIME25 AIME AVG

1 75.00 62.50 68.75
2 76.67 65.00 70.84
3 78.33 70.00 74.17
4 79.17 69.17 74.17
5 73.33 65.83 69.58

mance), then progressively add the second-best, third-best, and finally the noisy teacher R1 into the
MoT pool, keeping the MoT configuration fixed. The results are shown in Table 16.

We observe a monotonic improvement in AIME AVG as more teachers are added, and performance
continues to increase even after including the distribution-shifted/noisy teacher R1. This supports
the view that, in our experimental regime, MoT can effectively extract complementary signals from
additional teachers and is robust enough to benefit from them. We do not claim that this behavior
will persist for arbitrarily large pools of low-quality or adversarial teachers; in such extreme cases,
stronger filtering or adaptive weighting would likely be necessary. Systematically studying how
performance scales with larger and more heterogeneous teacher sets is an interesting direction for
future work.

B LIMITATIONS

(1) We currently merge branches via simple uniform parameter averaging; future work will explore
alternative merge strategies.

(2) Beyond AIME24/25, there is a lack of sufficiently challenging math benchmarks, which limits
evaluation depth on high-difficulty mathematical reasoning.

(3) Baseline results in the main results are taken from the original papers/reports because many
baselines do not release code/models or disclose key training details like data curation or key hyper-
parameters. Consequently, they were not re-evaluated under a unified, consistent evaluation config-
uration, which may affect strict comparability.

C BETTER STUDENT IS A BETTER TEACHER

Table 17: Student-as-teacher distillation on BOBA-200. Teachers are base model or student models
obtained with Best-STD/MoT. We report raw scores on reasoning benchmarks mentioned earlier.

Teacher model Student model Teacher Config AIME24 AIME25 PhyBench LiveCodeBench GPQA-Diamond AVG

Qwen3-14B Qwen3-8B
Base 74.17 67.08 23.06 58.98 57.80 56.22
Best STD 75.21 64.17 23.74 56.74 58.33 55.64
MoT 75.63 68.96 24.28 58.83 59.22 57.38

Qwen3-30B-A3B Qwen3-14B
Base (Vanilla) 79.17 68.96 28.31 61.41 61.65 59.90
Best STD 77.08 71.88 29.40 63.36 61.87 60.72
MoT 80.00 71.67 29.63 62.99 62.69 61.40

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 16: Effect of the number of teachers in MoT on Qwen3-8B + BOBA-200. Teachers are
added in descending order of single-teacher STD performance, with R1 being the most distribution-
shifted/noisy teacher.

# Teachers in MoT AIME24 AIME25 AIME AVG

1 (best teacher) 76.25 67.50 71.88
2 77.50 68.33 72.92
3 78.13 69.17 73.65
4 (with R1) 78.33 70.63 74.48

D PROBING LOSS-LANDSCAPE FLATNESS VIA BASE-TO-CHECKPOINT
INTERPOLATION: MOT VS. MTD

Setup and purpose. To assess how stably a trained model sits in parameter space, we probe loss-
landscape flatness via linear mode connectivity (LMC) between the base model and the final trained
checkpoint (from either MTD or our MoT). For λ ∈ [0, 1], we define

θ(λ) = λ θbase + (1− λ) θckpt,

so that λ=1 recovers the base model and λ=0 recovers the trained checkpoint. At each λ on a fixed
grid, we evaluate AIME24 (pass@1, 64-run average). A smooth/high trajectory indicates a flatter,
more robust region with fewer barriers; a sharp/erratic trajectory suggests a bumpier landscape and
stronger interference among supervision signals.

Findings. On both BOBA-200 and S1K-200 with the 8B student, MoT yields a much smoother
and more stable performance curve than MTD as λ varies: performance rises steadily toward the
checkpoint and decays gradually away from it. This behavior is consistent with MoT training in
a flatter region (greater robustness to weight perturbations) and better reconciliation of cross-
teacher supervision conflicts. In contrast, MTD exhibits steeper drops and local irregularities,
implying residual inter-teacher interference.
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(a) Qwen3-8B on BOBA-200.
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(b) Qwen3-8B on S1K-200.

Figure 6: Base-to-checkpoint linear interpolation (LMC). MoT shows smoother, higher trajectories
than MTD on AIME24, indicating a flatter loss region and more robust training.

E TASK-TYPE BREAKDOWN ACROSS STD/MTD/MOT

Setup and goal. We provide a consolidated evaluation on BOBA-200 across all STD/MTD set-
tings alongside MoT, covering nine benchmarks: catastrophic-forgetting–sensitive (CEV/SG/IFE),
reasoning-knowledge (SQ/MP/MR), and pure reasoning (PB/LCB/GPQA-D). For each setting, we
report raw scores and group-wise average changes versus the same-scale Base: “Avg drop (cat.)”
for catastrophic-forgetting–sensitive tasks (negative indicates a drop), “Avg gain (reason.)” for
reasoning-knowledge tasks, and “Avg gain (pure)” for pure reasoning tasks. We observe a trade-off
among STD choices (stronger reasoning vs. better forgetting mitigation), while MoT simultaneously
yields strong math/general reasoning gains and significantly mitigates catastrophic forgetting.
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Summary. Results are shown in Table 18, Table 19 and Table 20. Single-teacher choices present
a clear trade-off: some teachers maximize reasoning gains but induce larger average drops on
forgetting-sensitive tasks, while others better preserve foundational abilities but yield smaller rea-
soning gains. MoT alleviates this tension: it delivers strong improvements on reasoning-knowledge
and pure reasoning benchmarks, while reducing average drops on forgetting-sensitive tasks across
scales.

Table 18: Catastrophic-forgetting–sensitive tasks on BOBA-200 (CEV / SG / IFE). “Avg drop (cat.)”
is the average change vs. the same-scale Base (negative indicates a drop). For Qwen3-30B-A3B, SG
for STD(QWQ) is unavailable (“—”); the average uses available metrics (CEV & IFE) and compares
to Base on the same subset.

Base model Setting CEV SG IFE Avg drop (cat.)

Qwen3-8B

Base 83.58 10.51 83.60 –
STD (Qwen3-32B) 81.35 10.38 81.34 ↓1.54
STD (Qwen3-235B) 83.28 9.57 81.18 ↓1.22
STD (QWQ) 83.43 9.97 81.62 ↓0.89
STD (Deepseek-R1) 83.06 9.70 81.79 ↓1.05
MTD (All Teachers) 83.14 10.04 82.07 ↓0.81
MoT (ours) 83.73 10.15 82.04 ↓0.59

Qwen3-14B

Base 86.78 10.76 84.69 –
STD (Qwen3-32B) 84.55 10.07 82.76 ↓1.62
STD (Qwen3-235B) 83.73 10.26 82.56 ↓1.89
STD (QWQ) 83.73 10.22 82.36 ↓1.97
STD (Deepseek-R1) 84.32 9.92 82.91 ↓1.69
MTD (All Teachers) 85.14 9.88 82.22 ↓1.66
MoT (ours) 86.70 10.38 83.51 ↓0.55

Qwen3-30B-A3B

Base 85.88 10.66 83.76 –
STD (Qwen3-32B) 85.74 9.93 82.32 ↓0.77
STD (Qwen3-235B) 84.18 10.02 80.44 ↓1.89
STD (QWQ) 83.80 9.65 80.03 ↓2.27
STD (Deepseek-R1) 83.36 9.31 80.61 ↓2.34
MTD (All Teachers) 84.55 10.12 79.77 ↓1.95
MoT (ours) 86.55 10.52 83.54 ↑0.10
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Table 19: Reasoning-related tasks on BOBA-200 (SQ / MP / MR). “Avg gain (reason.)” is the
average change vs. the same-scale Base (positive indicates an increase).

Base model Setting SQ MP MR Avg gain (reason.)

Qwen3-8B

Base 32.31 71.42 83.21 –
STD (Qwen3-32B) 34.37 73.05 84.82 ↑1.77
STD (Qwen3-235B) 32.63 72.83 84.84 ↑1.12
STD (QWQ) 33.88 72.00 84.42 ↑1.12
STD (Deepseek-R1) 33.88 70.92 84.21 ↑0.69
MTD (All Teachers) 33.60 72.34 84.65 ↑1.22
MoT (ours) 34.44 73.30 84.42 ↑1.74

Qwen3-14B

Base 32.61 75.26 85.74 –
STD (Qwen3-32B) 32.31 75.36 85.93 ↓0.00
STD (Qwen3-235B) 32.17 74.71 86.37 ↓0.12
STD (QWQ) 32.42 74.76 85.19 ↓0.41
STD (Deepseek-R1) 32.63 74.04 86.04 ↓0.30
MTD (All Teachers) 32.77 74.97 85.82 ↓0.02
MoT (ours) 32.65 75.59 86.53 ↑0.39

Qwen3-30B-A3B

Base 31.68 75.26 85.81 –
STD (Qwen3-32B) 32.26 76.12 86.46 ↑0.70
STD (Qwen3-235B) 31.52 75.96 86.04 ↑0.26
STD (QWQ) 32.24 75.28 84.86 ↓0.12
STD (Deepseek-R1) 33.00 72.55 84.16 ↓1.01
MTD (All Teachers) 32.31 74.75 86.67 ↑0.33
MoT (ours) 32.26 76.21 86.74 ↑0.82

Table 20: Pure reasoning tasks on BOBA-200 (PB / LCB / GPQA-D). “Avg gain (pure)” is the
average change vs. the same-scale Base (positive indicates an increase).

Base model Setting PB LCB GPQA-D Avg gain (pure)

Qwen3-8B

Base 20.47 55.76 57.77 –
STD (Qwen3-32B) 23.19 59.06 57.42 ↑1.89
STD (Qwen3-235B) 23.17 57.90 58.11 ↑1.73
STD (QWQ) 22.85 59.88 59.85 ↑2.86
STD (Deepseek-R1) 21.90 56.78 56.50 ↑0.39
MTD (All Teachers) 22.47 54.79 60.32 ↑1.19
MoT (ours) 24.07 58.79 60.54 ↑3.13

Qwen3-14B

Base 28.53 61.41 60.83 –
STD (Qwen3-32B) 30.72 62.84 61.52 ↑1.44
STD (Qwen3-235B) 30.61 63.21 63.79 ↑2.28
STD (QWQ) 28.36 62.80 63.44 ↑1.28
STD (Deepseek-R1) 27.29 61.15 62.91 ↑0.19
MTD (All Teachers) 29.51 58.50 63.19 ↑0.14
MoT (ours) 30.77 63.59 64.26 ↑2.62

Qwen3-30B-A3B

Base 28.57 61.08 59.76 –
STD (Qwen3-32B) 33.43 61.79 60.48 ↑2.10
STD (Qwen3-235B) 33.31 61.34 61.81 ↑2.35
STD (QWQ) 32.44 60.74 60.32 ↑1.36
STD (Deepseek-R1) 29.31 59.02 59.66 ↓0.47
MTD (All Teachers) 32.50 56.85 61.33 ↑0.42
MoT (ours) 33.46 62.54 62.34 ↑2.98
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F DATASET

Table 21: STD and MTD distillation datasets derived from BOBA-200 and S1K-200.

Source Teacher Distillation dataset name Size

BOBA-200

QWQ BOBA-200-QWQ 195
Qwen3-32B BOBA-200-32B 191
Qwen3-235B BOBA-200-235B 197
Deepseek-R1 BOBA-200-R1 198
ALL TEACHERS BOBA-200-MTD 781

S1K-200

QWQ S1K-200-QWQ 161
Qwen3-32B S1K-200-32B 164
Qwen3-235B S1K-200-235B 169
Deepseek-R1 S1K-200-R1 168
ALL TEACHERS S1K-200-MTD 662

G ADDITIONAL TRAINING DETAILS AND FULL ABLATIONS

G.1 TRAINING HYPERPARAMETERS

Unless otherwise noted, all experiments follow a shared set of training choices designed for long
chain-of-thought (CoT) sequences and stable optimization:

• Model/input formatting: We use the Qwen3 instruction template to format prompts and
responses consistently across datasets.

• Context length: The maximum sequence length is 25k tokens to accommodate long CoT
traces with minimal truncation.

• Precision and kernels: Training uses bfloat16 with FlashAttention-2 to improve memory
efficiency and throughput for long contexts.

• Optimizer and schedule: AdamW with betas (0.9, 0.95), weight decay 0.1, cosine learning-
rate schedule with a base learning rate of 1e-5 and 1% warmup. Gradients are clipped at a
norm of 1.0 for stability.

• Batch and accumulation: We train on 8× H800 GPUs with a per-device batch size of 1
and gradient accumulation of 8, resulting in an effective batch size of 64 sequences per
optimization step.

• Logging and checkpointing: We log every step and save a checkpoint every 50 steps; up
to 10 most recent checkpoints are kept, and only model weights are saved to reduce I/O
overhead.

Protocol-specific details:

• MoT: One “round” consists of 50 optimization steps on a given teacher corpus before merg-
ing; we run five rounds and evaluate after each merge.

• STD/MTD: We train for 250 steps and save/evaluate checkpoints every 50 steps; the best
checkpoint is reported in the main text.

G.2 STD/MTD AND MOT PER-CHECKPOINT RESULTS

For STD and MTD, we train for 250 steps and save a checkpoint every 50 steps; we evaluate each
checkpoint and report the best in the main text.

For MoT, we alternate the base model across the four STD corpora (QWQ, Qwen3-32B, Qwen3-
235B, Deepseek-R1), training 50 steps on each corpus and then performing a merge; this constitutes
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Table 22: Complete ablations on AIME 2024 (A24) and AIME 2025 (A25). Each entry is a 16-run
average. We report per-checkpoint results for STD/MTD (every 50 steps, up to 250), and per-round
results for MoT (Rounds 1–5).

Method Config
BOBA-200 S1K-200

Qwen3-8B Qwen3-14B Qwen3-30B-A3B Qwen3-8B Qwen3-14B Qwen3-30B-A3B

A24 A25 A24 A25 A24 A25 A24 A25 A24 A25 A24 A25

Base model (40k) 75.83 67.08 79.17 70.00 81.67 72.50 75.83 67.08 79.17 70.00 81.67 72.50

STD (Qwen3-32B)

STEP 50 75.42 67.71 77.71 71.25 81.04 76.04 77.50 66.67 79.79 72.50 79.58 73.13
STEP 100 74.17 65.83 77.71 68.13 80.83 72.50 74.58 68.96 77.71 70.21 79.58 70.63
STEP 150 75.41 63.96 78.13 66.04 81.88 72.92 73.75 67.71 79.58 72.08 80.63 70.42
STEP 200 74.58 63.75 76.67 66.88 80.63 75.63 75.21 66.67 79.79 69.58 79.58 70.83
STEP 250 73.96 62.92 77.50 70.21 79.38 69.79 76.04 66.04 77.29 70.63 79.17 70.00

STD (Qwen3-235B)

STEP 50 74.58 67.92 78.13 74.79 80.00 78.13 74.38 68.54 77.92 72.71 77.92 75.63
STEP 100 73.13 68.33 79.17 74.79 81.88 75.42 72.50 65.83 77.08 75.41 77.08 76.88
STEP 150 71.88 66.67 78.13 70.42 77.92 76.04 74.17 67.71 77.71 72.08 78.54 74.58
STEP 200 71.04 65.83 77.29 74.17 79.58 75.83 71.46 67.29 78.75 73.13 78.33 74.58
STEP 250 75.00 67.29 79.38 74.17 80.42 73.54 73.96 67.08 76.67 71.46 79.17 76.04

STD (QWQ)

STEP 50 72.50 64.38 76.46 68.54 79.58 72.50 73.53 69.17 79.17 73.54 80.83 72.08
STEP 100 75.00 67.08 78.33 73.33 78.54 76.46 76.04 68.13 79.58 71.88 81.46 72.92
STEP 150 75.21 67.29 79.58 73.54 79.79 75.63 75.21 65.42 79.17 73.33 80.63 68.96
STEP 200 75.83 65.83 77.29 71.46 78.54 73.96 74.58 65.63 80.21 72.92 82.08 70.63
STEP 250 76.25 67.50 78.54 71.67 78.33 75.83 74.58 64.17 77.92 74.79 81.25 70.83

STD (Deepseek-R1)

STEP 50 67.71 60.21 74.38 67.50 78.33 68.96 70.00 61.46 73.75 62.92 78.54 70.63
STEP 100 70.21 53.33 73.75 63.33 75.00 69.79 68.54 58.33 73.33 63.13 76.46 64.58
STEP 150 65.83 56.04 74.58 63.75 74.79 64.38 67.92 52.08 73.96 62.71 75.63 66.04
STEP 200 65.21 53.75 74.58 64.79 74.58 67.50 66.67 55.83 71.88 61.25 74.17 65.21
STEP 250 66.67 55.42 72.50 63.54 75.42 66.88 66.88 51.67 72.71 63.96 74.17 70.00

MTD (ALL TEACHERS)

STEP 50 68.54 61.04 74.79 66.88 79.17 72.92 70.83 63.54 75.83 70.83 76.46 72.08
STEP 100 73.75 66.46 76.88 72.92 79.17 73.75 75.63 70.83 78.75 73.13 77.29 75.42
STEP 150 71.88 68.64 76.46 75.42 77.92 72.92 73.33 66.88 79.17 73.34 78.33 74.58
STEP 200 75.00 66.04 79.58 72.50 78.75 73.75 74.17 69.38 77.08 73.33 78.33 74.58
STEP 250 76.04 68.96 77.29 73.54 79.38 73.96 73.96 69.17 79.79 73.13 79.58 72.71

MoT (ours)

Round 1 72.29 66.88 78.75 73.95 80.63 73.13 74.79 69.17 78.33 69.79 80.00 75.42
Round 2 75.83 69.79 79.58 73.54 79.79 76.04 77.71 70.63 80.21 74.38 82.29 74.58
Round 3 76.67 70.42 80.00 74.79 80.00 77.92 76.25 70.00 80.00 74.38 79.79 74.79
Round 4 78.33 70.63 79.38 76.88 81.25 75.63 77.50 71.67 79.38 75.00 80.83 77.50
Round 5 76.45 66.88 78.96 73.75 82.92 78.33 76.25 68.13 81.67 75.63 80.00 77.50

one merge round. We run five rounds in total and evaluate after every round. The complete per-round
results for all base models and both sources (BOBA-200 and S1K-200) are reported in Table 22.

Key observations from the ablations:

1. MoT consistently yields the strongest distillation gains in almost all settings.

2. For 8B/14B bases, MTD typically surpasses the best single-teacher STD, indicating beneficial
complementarity across teachers.

3. For 30B-A3B, MTD brings little to no gain. We hypothesize that QWQ, Qwen3-32B, and
Deepseek-R1 are not clearly stronger than the 30B base, so the union is dominated by Qwen3-235B;
in contrast, MoT can glean useful signals from the other teachers while mitigating noise, yielding
the best results.

G.3 DETAILED MOT (WITHOUT R1) RESULTS ON BOBA-200

Table 23 reports per-round AIME scores for MoT after ablating the Deepseek-R1 teacher (all other
settings identical). AVG is computed as the mean of AIME24 and AIME25.
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Table 23: MoT without Deepseek-R1 on BOBA-200: per-round AIME24/AIME25 and AVG. AVG
= (AIME24 + AIME25)/2.

Base model Round AIME24 AIME25 AVG

Qwen3-8B

Round 1 75.21 69.17 72.19
Round 2 75.42 72.29 73.86
Round 3 76.67 70.00 73.34
Round 4 78.13 69.17 73.65
Round 5 76.46 69.79 73.13

Qwen3-14B

Round 1 80.63 72.71 76.67
Round 2 79.79 74.58 77.19
Round 3 80.83 74.58 77.71
Round 4 81.04 74.79 77.92
Round 5 79.58 74.79 77.19

Qwen3-30B

Round 1 81.88 75.00 78.44
Round 2 81.88 77.08 79.48
Round 3 81.25 78.75 80.00
Round 4 81.88 77.71 79.80
Round 5 80.42 80.00 80.21

Overall, while MoT without R1 remains competitive, the best AVG per model is consistently below
the corresponding full MoT results reported in the main text. This supports the claim that R1 offers
complementary supervision that raises the training ceiling and improves late-stage generalization.

G.4 DETAILED MOT WITH PEER-LEVEL TEACHERS (QWQ + QWEN3-32B) ON BOBA-200

We find that teacher usefulness is not limited to strictly stronger models. Although QWQ, Qwen3-
32B, and Qwen3-30B-A3B have comparable parameter scale adn reasoning performance, distilling
Qwen3-30B-A3B from peer-level teachers (QWQ or Qwen3-32B) still yields gains. This might
imply that what truly benefits the model is not necessarily higher-quality reasoning trajectories, and
reasoning trajectories distilled from peer-level teachers can still help. In addition, combining peer-
level heterogeneous trajectories with MoT further improves results, and using all teachers performs
best. Table 24 reports 16-run AIME averages on BOBA-200 with Qwen3-30B-A3B as the base.
Table 25 reports per-round AIME scores for MoT when using only peer-level teachers (QWQ and
Qwen3-32B) with Qwen3-30B as the base. AVG is computed as the mean of AIME24 and AIME25.

Overall, these findings support two key conclusions:

(1) Reasoning trajectories distilled from peer-level teachers can still help.

(2) MoT robustly integrates complementary and even distribution-shifted supervision, extracting
useful signals while mitigating noise.

Table 24: Peer-level teachers can still help. Results on BOBA-200 with Qwen3-30B-A3B as the
base; AIME scores are 16-run averages, AVG is the mean of AIME24 and AIME25.

Teacher setting AIME24 AIME25 AVG

Base 80.63 70.00 75.32
STD: only QWQ 79.79 75.63 77.71
STD: only Qwen3-32B 81.04 76.04 78.54
MoT: QWQ + Qwen3-32B 81.04 77.29 79.17
MoT: ALL TEACHERS 82.92 78.33 80.63
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Table 25: MoT with peer-level teachers (QWQ + Qwen3-32B) on BOBA-200: per-round
AIME24/AIME25 and AVG for Qwen3-30B. AVG = (AIME24 + AIME25)/2.

Round AIME24 AIME25 AVG

Round 1 82.70 73.95 78.33
Round 2 80.83 74.58 77.71
Round 3 82.08 75.83 78.96
Round 4 80.83 75.00 77.92
Round 5 81.04 77.29 79.17

H BENCHMARK CATEGORIES AND DETAILS

We evaluate nine benchmarks under three categories—catastrophic-forgetting–sensitive, reason-
ing–knowledge, and pure reasoning—to assess whether CoT-style training with MoT preserves
basic capabilities while strengthening reasoning. Here we have provided detailed content and de-
scriptions of these tasks, and given the MoTivations for using them for evaluation and classifying
them into the corresponding task categories.

H.1 CATASTROPHIC-FORGETTING–SENSITIVE TASKS

CEVAL (CEV).

Description: CEVAL is a Chinese multi-discipline multiple-choice exam suite with approximately
14,000 items spanning 52 subjects at varying difficulty levels.

Task: It evaluates factual and domain knowledge recall across humanities, sciences, and professional
tracks.

MoTivation: It probes retention of broad multilingual knowledge that can degrade after CoT-style
training.

SUPER GPQA (SG).

Description: SUPER GPQA is a graduate-level, multi-domain multiple-choice benchmark covering
a wide range of academic disciplines.

Task: It measures advanced factual knowledge with light multi-step reasoning.

MoTivation: It tests whether extensive pretraining knowledge is preserved following CoT fine-
tuning.

IFEVAL (IFE).

Description: IFEVAL is an instruction-following suite with automatically verifiable constraints such
as length, formatting, and keyword usage.

Task: It evaluates instruction compliance and adherence to explicit constraints.

MoTivation: It checks for forgetting of fundamental alignment and compliance behaviors after CoT
training.

H.2 REASONING–KNOWLEDGE TASKS

SIMPLE QA (SQ).

Description: SIMPLE QA is a collection of short, unambiguous fact-seeking questions with a sin-
gle correct answer. Task: It evaluates factual accuracy and calibrated answering by discouraging
uninformed guessing.

MoTivation: It tests whether CoT improves precision while avoiding hallucinations or overconfident
errors.
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Under review as a conference paper at ICLR 2026

MMLU PRO (MP).

Description: MMLU PRO is a harder variant of MMLU that increases item difficulty and option
counts to emphasize reasoning.

Task: It measures multi-step reasoning grounded in broad subject knowledge across many domains.

MoTivation: It assesses whether CoT enhances reasoning while maintaining robust domain knowl-
edge.

MMLU REDUX (MR).

Description: MMLU REDUX is a curated and corrected subset of MMLU designed to reduce la-
beling noise.

Task: It evaluates multi-subject knowledge with some analytical reasoning under cleaner annota-
tions.

MoTivation: It isolates capability changes from dataset artifacts and checks knowledge retention
under CoT.

H.3 PURE REASONING TASKS

PhyBench (PB).

Description: PhyBench is a set of physics problems ranging from high-school to Olympiad level
that require careful quantitative reasoning.

Task: It measures multi-step physics reasoning including derivations and the coordination of multi-
ple principles.

MoTivation: It emphasizes chain-of-thought style reasoning rather than rote memorization of facts.

LiveCodeBench (LCB).

Description: LiveCodeBench is a contamination-controlled suite of recent competitive program-
ming problems drawn from diverse sources.

Task: It evaluates algorithmic reasoning, program synthesis, and debugging under executable tests.

MoTivation: It probes problem decomposition and step-by-step solution planning independent of
encyclopedic knowledge.

GPQA-Diamond (GPQA-D).

Description: GPQA-Diamond is the hardest expert-vetted subset of GPQA spanning biology,
physics, and chemistry.

Task: It measures deep scientific reasoning on challenging multiple-choice questions that resist
superficial lookup.

MoTivation: It stresses genuine multi-step reasoning and scientific insight rather than retrieval of
surface facts.
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Legend: delta_prob < -0.01  others

user Let $ [ AB CD ]$ be a convex quadr ilateral with area $ 2 0

1 4 $ , and let $ P $ be a point on $ [ AB ]$ and $ Q $

a point on $ [ AD ]$ such that triangles $ [ AB Q ]$ and $ [

AD P ]$ have area $ 1 $ . Let $ R $ be the intersection of $ [

AC ]$ and $ [ P Q ]$ . Determine $\ frac {\ over line { RC }} {\

over line { RA }} $ . Please reason step by step , and put your final

answer within \ boxed {}. <|im_end|> <|im_start|> assistant <think> Alright ,

let 's tackle this geometry problem . It seems a bit complex at first , but

maybe if I break it down step by step , it will make more sense . So , we

have a convex quadr ilateral ABC D with area 2 0 1 4 . There 's a point

P on side AB and a point Q on side AD such that triangles AB Q and AD P

each have area 1 . Then we need to find the ratio RC / RA where R is

the intersection of AC and PQ . First , let me visualize this quadr ilateral

. Since it 's convex , all its interior angles are less than 1 8 0

degrees , and the diagon als AC and BD intersect inside the quadr ilateral .

The area is given as 2 0 1 4 , which is quite large compared to the

areas of the triangles mentioned ( which are 1 each ). Maybe setting up some

coordinate system would help here . Coordinates often make it easier to handle

areas and intersections . Let me try that . Suppose I place point A at the

origin ( 0 , 0 ) to simplify calculations . Let ’s denote the coordinates of

B as ( b , 0 ) since it 's on the x -axis . Similarly , point D would

then be on the y -axis , so let ’s say D is ( 0 , d ). Since ABC D is

a convex quadr ilateral , point C must be somewhere in the first quadrant .

Let me assign coordinates to C as ( c , e ), where c and e are positive

numbers . So , now we have : - A : ( 0 , 0 ) - B : ( b , 0 )

- D : ( 0 , d ) - C : ( c , e ) Now , since the quadr ilateral has

an area of 2 0 1 4 , maybe I can express that in terms of the

coordinates . The area of a quadr ilateral can be calculated using the sho el

ace formula . Let me recall the formula for the area of a polygon with

coordinates ( x 1 ,y 1 ), ( x 2 ,y 2 ), ..., ( xn , yn ): Area = 1

/ 2 | sum from i = 1 to n of ( xi *y i + 1 - xi + 1 *y i )| For

quadr ilateral ABC D , pl ugging in the coordinates : Area = 1 / 2 | (

0 * 0 + b *e + c *d + 0 * 0 ) - ( 0 *b + 0 *c + e * 0 + d

* 0 ) | = 1 / 2 | 0 + be + cd + 0 - 0 | = 1 / 2 | be

+ cd | So , | be + cd | / 2 = 2 0 1 4 => be + cd = 4 0 2

8 . That will be our first equation : be + cd = 4 0 2 8 . Now , let

Figure 7. Tokens marked with confidence drops in MoT under R1-distilled supervision.
Marked tokens cluster on teacher-specific stylistic tokens while derivational tokens stay high.
This indicates that MoT attenuates inter-teacher inductive biases while preserving consensus

reasoning steps. (Note: only tokens after <|im start|>are included in the loss.)
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's consider points P and Q . Point P is on AB , and point Q is on AD .

So , param etrize their coordinates . Since AB is from ( 0 , 0 ) to ( b

, 0 ), a point P on AB can be represented as ( p , 0 ) where p is

between 0 and b . Similarly , AD goes from ( 0 , 0 ) to ( 0 ,d ), so

Q can be represented as ( 0 , q ) where q is between 0 and d . Now ,

the problem states that triangles AB Q and AD P have area 1 each . First

, triangle AB Q : points A , B , Q . The coordinates are A ( 0 , 0 ),

B (b , 0 ), Q ( 0 ,q ). The area can be calculated as 1 / 2 * base

* height . The base AB has length b , and the height is the distance from

Q to AB , which is q ( since AB is along the x -axis and Q is on the y

-axis ). So area is ( 1 / 2 )* b *q = 1 . Hence , ( 1 / 2 )* b

*q = 1 => b *q = 2 . Equation 2 : bq = 2 . Similarly , triangle

AD P : points A , D , P . Coordinates A ( 0 , 0 ), D ( 0 ,d ), P (p

, 0 ). The area can again be calculated as 1 / 2 * base * height . The

base AD is length d , and the height is the distance from P to AD , which

is p ( since AD is along the y -axis and P is on the x -axis ). So area

is ( 1 / 2 )* d *p = 1 => d *p = 2 . Equation 3 : dp = 2 .

So , from equations 2 and 3 , we have bq = 2 and dp = 2 .

Therefore , we can solve for q and p : q = 2 /b and p = 2 /d . So

, Q is at ( 0 , 2 /b ) and P is at ( 2 /d , 0 ). Now , we need

to find the intersection point R of AC and PQ . First , let 's write

equations for lines AC and PQ . Line AC connects points A ( 0 , 0 ) and C

(c ,e ). So , the param etric equations for AC can be written as x = c *t

, y = e *t , where t is in [ 0 , 1 ]. Line PQ connects points P ( 2

/d , 0 ) and Q ( 0 , 2 /b ). To find the equation of PQ , let 's

compute the slope first . Slo pe = ( 2 /b - 0 )/( 0 - 2 /d ) = (

2 /b )/ (- 2 /d ) = - d /b . So , the slope of PQ is - d /b .

Therefore , the equation of PQ can be written in point -s lope form . Using

point P ( 2 /d , 0 ): y - 0 = (- d /b )( x - 2 /d ) => y =

(- d /b )x + ( d /b )( 2 /d ) => y = (- d /b )x + 2 /b .

Alternatively , using Q : y - 2 /b = (- d /b )( x - 0 ) => y = (-

d /b )x + 2 /b . Same equation . So , equation of PQ : y = (- d /b

)x + 2 /b . Now , we need to find the intersection point R of AC and PQ

. Param etr izing AC as ( ct , et ). Substitute into PQ 's equation : et

= (- d /b )( ct ) + 2 /b . So , solve for t : et = (- cd /b )t +

2 /b et + ( cd /b )t = 2 /b t (e + cd /b ) = 2 /b t =

( 2 /b ) / ( e + cd /b ) = ( 2 /b ) / (( be + cd )/ b ) = ( 2

/b ) * ( b / ( be + cd )) = 2 / ( be + cd ). But earlier , we

found that be + cd = 4 0 2 8 . Therefore , t = 2 / 4 0 2 8 =

Figure 7. Tokens marked with confidence drops in MoT under R1-distilled supervision.
Marked tokens cluster on teacher-specific stylistic tokens while derivational tokens stay high.
This indicates that MoT attenuates inter-teacher inductive biases while preserving consensus

reasoning steps. (Note: only tokens after <|im start|>are included in the loss.)
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1 / 2 0 1 4 . Therefore , the coordinates of R are ( c * t , e * t

) = ( c / 2 0 1 4 , e / 2 0 1 4 ). So , R divides AC such that RA

is the distance from A to R , and RC is from R to C . Since AC is

parameter ized by t from 0 to 1 , with t = 0 at A and t = 1 at C

, the ratio RC / RA is ( 1 - t )/ t . But in this case , t is 1 /

2 0 1 4 . Therefore , RC / RA = ( 1 - 1 / 2 0 1 4 ) / ( 1 / 2

0 1 4 ) ) = ( 2 0 1 3 / 2 0 1 4 ) / ( 1 / 2 0 1 4 ) ) = 2

0 1 3 . H ence , the ratio is 2 0 1 3 . Wait , so the answer is 2

0 1 3 ? That seems plausible . Let me check my steps again to be sure . 1

. Set coordinates for the quadr ilateral with A at ( 0 , 0 ), B (b , 0

), D ( 0 ,d ), C (c ,e ). Correct . 2 . Calcul ated area using sho el

ace formula : got be + cd = 4 0 2 8 . Seems right . 3 . Found points

P ( 2 /d , 0 ) and Q ( 0 , 2 /b ). Yes , based on the area

conditions . 4 . Equation for PQ : derived slope - d /b and equation y =

(- d /b )x + 2 /b . Check . 5 . Param etr izing AC as ( ct , et )

and solving for intersection . Found t = 1 / 2 0 1 4 . Then , RA is

the distance from A to R : since R is at t = 1 / 2 0 1 4 , RA

corresponds to t = 1 / 2 0 1 4 , and RC is the remaining distance from

R to C : 1 - t . Therefore , ratio RC / RA = ( 1 - t )/ t = ( 1

- 1 / 2 0 1 4 )/( 1 / 2 0 1 4 ) = ( 2 0 1 3 / 2 0 1 4 )/( 1

/ 2 0 1 4 ) = 2 0 1 3 . So yes , seems correct . Alternatively ,

since coordinates are linear , t is the parameter along AC , so the ratios

are related directly to the parameter t . So another way : RA : RC = t :

( 1 - t ), so RC / RA = ( 1 - t )/ t = ( 1 /( t ) ) - 1 .

Since t = 1 / 2 0 1 4 , RC / RA = 2 0 1 4 - 1 = 2 0 1 3 .

Perfect . Therefore , the final answer is 2 0 1 3 . Pretty elegant !

Using coordinates made it straightforward , even if setting up the coordinates

took some time . Let me just think if there 's any other way without

coordinates , but perhaps this is the most direct method here . ** Final

Answer ** \ boxed { 2 0 1 3 } </think> Given a convex quadr ilateral \(

AB CD \) with area 2 0 1 4 , points \( P \) on \( AB \) and \( Q \)

on \( AD \) are such that triangles \( AB Q \) and \( AD P \) each have

area 1 . We need to determine the ratio \ (\ frac {\ over line { RC }}

{\ over line { RA }} \) where \( R \) is the intersection of \( AC \) and

\( P Q \ ). 1 . ** Coordinate Setup ** : - Place \( A \) at \ (( 0

, 0 )\ ), \( B \) at \ (( b , 0 )\ ), \( D \) at \ (( 0 , d

)\ ), and \( C \) at \ (( c , e )\ ). - The area of \( AB CD \) is

given by the sho el ace formula , leading to the equation \( be + cd = 4

0 2 8 \ ). 2 . ** Points \( P \) and \( Q \ )** : - \( P \) on

Figure 7. Tokens marked with confidence drops in MoT under R1-distilled supervision.
Marked tokens cluster on teacher-specific stylistic tokens while derivational tokens stay high.
This indicates that MoT attenuates inter-teacher inductive biases while preserving consensus

reasoning steps. (Note: only tokens after <|im start|>are included in the loss.)
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\( AB \) is \ (( p , 0 )\ ) and \( Q \) on \( AD \) is \ (( 0 ,

q )\ ). - Areas of triangles \( AB Q \) and \( AD P \) are 1 ,

leading to \( b q = 2 \) and \( dp = 2 \ ). Thus , \( q = \ frac

{ 2 }{ b }\ ) and \( p = \ frac { 2 }{ d }\ ). 3 . ** Equ ations of

Lines ** : - Line \( P Q \) has slope \ (- \ frac { d }{ b }\ ) and

equation \( y = - \ frac { d }{ b } x + \ frac { 2 }{ b }\ ). -

Line \( AC \) is parameter ized as \( x = ct \) and \( y = et \) for \(

t \ in [ 0 , 1 ]\ ). 4 . ** Intersection Point \( R \ )** : -

Substitute the param etric coordinates of \( AC \) into the equation of \( P

Q \ ): \ [ et = - \ frac { d }{ b }( ct ) + \ frac { 2 }{ b }

\ ] - Sol ving for \( t \) gives \( t = \ frac { 2 }{ be + cd }

= \ frac { 1 }{ 2 0 1 4 }\ ). 5 . ** Ratio Calculation ** : - The

coordinates of \( R \) are \ (\ left (\ frac { c }{ 2 0 1 4 }, \ frac

{ e }{ 2 0 1 4 }\ right )\ ). - The ratio \ (\ frac {\ over line {

RC }} {\ over line { RA }} \) is \ (\ frac { 1 - t }{ t } = \ frac

{ 1 - \ frac { 1 }{ 2 0 1 4 }} {\ frac { 1 }{ 2 0 1 4 }} = 2 0

1 3 \ ). \ [ \ boxed { 2 0 1 3 } \ ] <|im_end|>

Figure 7. Tokens marked with confidence drops in MoT under R1-distilled supervision.
Marked tokens cluster on teacher-specific stylistic tokens while derivational tokens stay high.
This indicates that MoT attenuates inter-teacher inductive biases while preserving consensus

reasoning steps. (Note: only tokens after <|im start|>are included in the loss.)
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Legend: delta_prob < -0.01  others

user Let $ [ AB CD ]$ be a convex quadr ilateral with area $ 2 0

1 4 $ , and let $ P $ be a point on $ [ AB ]$ and $ Q $

a point on $ [ AD ]$ such that triangles $ [ AB Q ]$ and $ [

AD P ]$ have area $ 1 $ . Let $ R $ be the intersection of $ [

AC ]$ and $ [ P Q ]$ . Determine $\ frac {\ over line { RC }} {\

over line { RA }} $ . Please reason step by step , and put your final

answer within \ boxed {}. <|im_end|> <|im_start|> assistant <think> Alright ,

let 's tackle this geometry problem . It seems a bit complex at first , but

maybe if I break it down step by step , it will make more sense . So , we

have a convex quadr ilateral ABC D with area 2 0 1 4 . There 's a point

P on side AB and a point Q on side AD such that triangles AB Q and AD P

each have area 1 . Then we need to find the ratio RC / RA where R is

the intersection of AC and PQ . First , let me visualize this quadr ilateral

. Since it 's convex , all its interior angles are less than 1 8 0

degrees , and the diagon als AC and BD intersect inside the quadr ilateral .

The area is given as 2 0 1 4 , which is quite large compared to the

areas of the triangles mentioned ( which are 1 each ). Maybe setting up some

coordinate system would help here . Coordinates often make it easier to handle

areas and intersections . Let me try that . Suppose I place point A at the

origin ( 0 , 0 ) to simplify calculations . Let ’s denote the coordinates of

B as ( b , 0 ) since it 's on the x -axis . Similarly , point D would

then be on the y -axis , so let ’s say D is ( 0 , d ). Since ABC D is

a convex quadr ilateral , point C must be somewhere in the first quadrant .

Let me assign coordinates to C as ( c , e ), where c and e are positive

numbers . So , now we have : - A : ( 0 , 0 ) - B : ( b , 0 )

- D : ( 0 , d ) - C : ( c , e ) Now , since the quadr ilateral has

an area of 2 0 1 4 , maybe I can express that in terms of the

coordinates . The area of a quadr ilateral can be calculated using the sho el

ace formula . Let me recall the formula for the area of a polygon with

coordinates ( x 1 ,y 1 ), ( x 2 ,y 2 ), ..., ( xn , yn ): Area = 1

/ 2 | sum from i = 1 to n of ( xi *y i + 1 - xi + 1 *y i )| For

quadr ilateral ABC D , pl ugging in the coordinates : Area = 1 / 2 | (

0 * 0 + b *e + c *d + 0 * 0 ) - ( 0 *b + 0 *c + e * 0 + d

* 0 ) | = 1 / 2 | 0 + be + cd + 0 - 0 | = 1 / 2 | be

+ cd | So , | be + cd | / 2 = 2 0 1 4 => be + cd = 4 0 2

8 . That will be our first equation : be + cd = 4 0 2 8 . Now , let

Figure 8. Tokens marked with confidence drops in STD(R1) under R1-distilled supervision.
Marked tokens are rare to nearly absent, indicating that direct distillation fully adopts the

teacher’s trajectory, including stylistic tokens and latent inductive biases, rather than
filtering them. (Note: only tokens after <|im start|>are included in the loss.)
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's consider points P and Q . Point P is on AB , and point Q is on AD .

So , param etrize their coordinates . Since AB is from ( 0 , 0 ) to ( b

, 0 ), a point P on AB can be represented as ( p , 0 ) where p is

between 0 and b . Similarly , AD goes from ( 0 , 0 ) to ( 0 ,d ), so

Q can be represented as ( 0 , q ) where q is between 0 and d . Now ,

the problem states that triangles AB Q and AD P have area 1 each . First

, triangle AB Q : points A , B , Q . The coordinates are A ( 0 , 0 ),

B (b , 0 ), Q ( 0 ,q ). The area can be calculated as 1 / 2 * base

* height . The base AB has length b , and the height is the distance from

Q to AB , which is q ( since AB is along the x -axis and Q is on the y

-axis ). So area is ( 1 / 2 )* b *q = 1 . Hence , ( 1 / 2 )* b

*q = 1 => b *q = 2 . Equation 2 : bq = 2 . Similarly , triangle

AD P : points A , D , P . Coordinates A ( 0 , 0 ), D ( 0 ,d ), P (p

, 0 ). The area can again be calculated as 1 / 2 * base * height . The

base AD is length d , and the height is the distance from P to AD , which

is p ( since AD is along the y -axis and P is on the x -axis ). So area

is ( 1 / 2 )* d *p = 1 => d *p = 2 . Equation 3 : dp = 2 .

So , from equations 2 and 3 , we have bq = 2 and dp = 2 .

Therefore , we can solve for q and p : q = 2 /b and p = 2 /d . So

, Q is at ( 0 , 2 /b ) and P is at ( 2 /d , 0 ). Now , we need

to find the intersection point R of AC and PQ . First , let 's write

equations for lines AC and PQ . Line AC connects points A ( 0 , 0 ) and C

(c ,e ). So , the param etric equations for AC can be written as x = c *t

, y = e *t , where t is in [ 0 , 1 ]. Line PQ connects points P ( 2

/d , 0 ) and Q ( 0 , 2 /b ). To find the equation of PQ , let 's

compute the slope first . Slo pe = ( 2 /b - 0 )/( 0 - 2 /d ) = (

2 /b )/ (- 2 /d ) = - d /b . So , the slope of PQ is - d /b .

Therefore , the equation of PQ can be written in point -s lope form . Using

point P ( 2 /d , 0 ): y - 0 = (- d /b )( x - 2 /d ) => y =

(- d /b )x + ( d /b )( 2 /d ) => y = (- d /b )x + 2 /b .

Alternatively , using Q : y - 2 /b = (- d /b )( x - 0 ) => y = (-

d /b )x + 2 /b . Same equation . So , equation of PQ : y = (- d /b

)x + 2 /b . Now , we need to find the intersection point R of AC and PQ

. Param etr izing AC as ( ct , et ). Substitute into PQ 's equation : et

= (- d /b )( ct ) + 2 /b . So , solve for t : et = (- cd /b )t +

2 /b et + ( cd /b )t = 2 /b t (e + cd /b ) = 2 /b t =

( 2 /b ) / ( e + cd /b ) = ( 2 /b ) / (( be + cd )/ b ) = ( 2

/b ) * ( b / ( be + cd )) = 2 / ( be + cd ). But earlier , we

found that be + cd = 4 0 2 8 . Therefore , t = 2 / 4 0 2 8 =

Figure 8. Tokens marked with confidence drops in STD(R1) under R1-distilled supervision.
Marked tokens are rare to nearly absent, indicating that direct distillation fully adopts the

teacher’s trajectory, including stylistic tokens and latent inductive biases, rather than
filtering them. (Note: only tokens after <|im start|>are included in the loss.)
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1 / 2 0 1 4 . Therefore , the coordinates of R are ( c * t , e * t

) = ( c / 2 0 1 4 , e / 2 0 1 4 ). So , R divides AC such that RA

is the distance from A to R , and RC is from R to C . Since AC is

parameter ized by t from 0 to 1 , with t = 0 at A and t = 1 at C

, the ratio RC / RA is ( 1 - t )/ t . But in this case , t is 1 /

2 0 1 4 . Therefore , RC / RA = ( 1 - 1 / 2 0 1 4 ) / ( 1 / 2

0 1 4 ) ) = ( 2 0 1 3 / 2 0 1 4 ) / ( 1 / 2 0 1 4 ) ) = 2

0 1 3 . H ence , the ratio is 2 0 1 3 . Wait , so the answer is 2

0 1 3 ? That seems plausible . Let me check my steps again to be sure . 1

. Set coordinates for the quadr ilateral with A at ( 0 , 0 ), B (b , 0

), D ( 0 ,d ), C (c ,e ). Correct . 2 . Calcul ated area using sho el

ace formula : got be + cd = 4 0 2 8 . Seems right . 3 . Found points

P ( 2 /d , 0 ) and Q ( 0 , 2 /b ). Yes , based on the area

conditions . 4 . Equation for PQ : derived slope - d /b and equation y =

(- d /b )x + 2 /b . Check . 5 . Param etr izing AC as ( ct , et )

and solving for intersection . Found t = 1 / 2 0 1 4 . Then , RA is

the distance from A to R : since R is at t = 1 / 2 0 1 4 , RA

corresponds to t = 1 / 2 0 1 4 , and RC is the remaining distance from

R to C : 1 - t . Therefore , ratio RC / RA = ( 1 - t )/ t = ( 1

- 1 / 2 0 1 4 )/( 1 / 2 0 1 4 ) = ( 2 0 1 3 / 2 0 1 4 )/( 1

/ 2 0 1 4 ) = 2 0 1 3 . So yes , seems correct . Alternatively ,

since coordinates are linear , t is the parameter along AC , so the ratios

are related directly to the parameter t . So another way : RA : RC = t :

( 1 - t ), so RC / RA = ( 1 - t )/ t = ( 1 /( t ) ) - 1 .

Since t = 1 / 2 0 1 4 , RC / RA = 2 0 1 4 - 1 = 2 0 1 3 .

Perfect . Therefore , the final answer is 2 0 1 3 . Pretty elegant !

Using coordinates made it straightforward , even if setting up the coordinates

took some time . Let me just think if there 's any other way without

coordinates , but perhaps this is the most direct method here . ** Final

Answer ** \ boxed { 2 0 1 3 } </think> Given a convex quadr ilateral \(

AB CD \) with area 2 0 1 4 , points \( P \) on \( AB \) and \( Q \)

on \( AD \) are such that triangles \( AB Q \) and \( AD P \) each have

area 1 . We need to determine the ratio \ (\ frac {\ over line { RC }}

{\ over line { RA }} \) where \( R \) is the intersection of \( AC \) and

\( P Q \ ). 1 . ** Coordinate Setup ** : - Place \( A \) at \ (( 0

, 0 )\ ), \( B \) at \ (( b , 0 )\ ), \( D \) at \ (( 0 , d

)\ ), and \( C \) at \ (( c , e )\ ). - The area of \( AB CD \) is

given by the sho el ace formula , leading to the equation \( be + cd = 4

0 2 8 \ ). 2 . ** Points \( P \) and \( Q \ )** : - \( P \) on

Figure 8. Tokens marked with confidence drops in STD(R1) under R1-distilled supervision.
Marked tokens are rare to nearly absent, indicating that direct distillation fully adopts the

teacher’s trajectory, including stylistic tokens and latent inductive biases, rather than
filtering them. (Note: only tokens after <|im start|>are included in the loss.)
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\( AB \) is \ (( p , 0 )\ ) and \( Q \) on \( AD \) is \ (( 0 ,

q )\ ). - Areas of triangles \( AB Q \) and \( AD P \) are 1 ,

leading to \( b q = 2 \) and \( dp = 2 \ ). Thus , \( q = \ frac

{ 2 }{ b }\ ) and \( p = \ frac { 2 }{ d }\ ). 3 . ** Equ ations of

Lines ** : - Line \( P Q \) has slope \ (- \ frac { d }{ b }\ ) and

equation \( y = - \ frac { d }{ b } x + \ frac { 2 }{ b }\ ). -

Line \( AC \) is parameter ized as \( x = ct \) and \( y = et \) for \(

t \ in [ 0 , 1 ]\ ). 4 . ** Intersection Point \( R \ )** : -

Substitute the param etric coordinates of \( AC \) into the equation of \( P

Q \ ): \ [ et = - \ frac { d }{ b }( ct ) + \ frac { 2 }{ b }

\ ] - Sol ving for \( t \) gives \( t = \ frac { 2 }{ be + cd }

= \ frac { 1 }{ 2 0 1 4 }\ ). 5 . ** Ratio Calculation ** : - The

coordinates of \( R \) are \ (\ left (\ frac { c }{ 2 0 1 4 }, \ frac

{ e }{ 2 0 1 4 }\ right )\ ). - The ratio \ (\ frac {\ over line {

RC }} {\ over line { RA }} \) is \ (\ frac { 1 - t }{ t } = \ frac

{ 1 - \ frac { 1 }{ 2 0 1 4 }} {\ frac { 1 }{ 2 0 1 4 }} = 2 0

1 3 \ ). \ [ \ boxed { 2 0 1 3 } \ ] <|im_end|>

Figure 8. Tokens marked with confidence drops in STD(R1) under R1-distilled supervision.
Marked tokens are rare to nearly absent, indicating that direct distillation fully adopts the

teacher’s trajectory, including stylistic tokens and latent inductive biases, rather than
filtering them. (Note: only tokens after <|im start|>are included in the loss.)
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Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as general-purpose assist tools for editing (English proof-
reading, minor wording/LaTeX refactoring) and for generating figure/table captions drafts that were
subsequently verified and rewritten by the authors. LLMs did not design experiments, select re-
sults, write the core method, or generate evaluation numbers. All experimental outputs, metrics, and
plots derive from our released code and logs. Separately, the research subject of this paper employs
teacher LLMs to produce chains-of-thought for distillation; this is part of the method under study,
not assistance in authorship. The authors take full responsibility for the content and have verified
factual claims and citations. No text was copied from third-party sources without attribution.
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