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ABSTRACT

As deep learning relies on huge datasets for training, poisoning attacks that pollute
the datasets pose a significant threat to it security. Given more models pretrained
on private corpora inaccessible to external parties, earlier attacks demanding ac-
cess to the base training datasets have their impact largely diminished, while prac-
tical threats focus on the finetuning stage when attackers can accurately target spe-
cific (intended) classes by manipulating a small subset of the dataset under their
control. Fortunately, attackers could potentially be exposed also thanks to the sub-
stantially lowered data volume: e.g., correlation between identities and provided
data classes poses risks to attackers. To enable stealthy poisoning, we introduce
XPoison that strategically performs poisoning in a cross-class manner. Instead
of directly poisoning the intended classes, a XPoison attacker only needs to pro-
vide dataset for unintended classes and hence hides its identity. We first propose
a magnitude matching strategy to more efficiently align the malicious gradients.
Furthermore, we estimate contradiction from clean target data and compensate
gradient-wise, thereby counteracting its neutralizing influence on the poisoning
effect. Through extensive evaluations, we demonstrate that XPoison is capable
of robustly reducing the recognition accuracy of targeted classes by up to 38.37%
during finetuning, while preserving high accuracy in poison classes.

1 INTRODUCTION

Deep learning has achieved remarkable successes and been widely deployed across a variety of ap-
plications in recent time LeCun et al. (2015). Nevertheless, the reliance of models on large-scale
contributed training data makes them inherently vulnerable to attacks, whereby attackers introduce
malicious poison to training instances to influence specific model behaviors Nelson et al. (2008).
While some earlier studies Geiping et al. (2021) on data poisoning have largely concentrated on
models trained from scratch and assumed complete access to the model and its training data, in
real-world settings most deployed models are pretrained on private datasets that are inaccessible to
external attackers. As models are tasked with increasingly complex problems, finetuning Pan &
Yang (2010) provides an effective mechanism for learning from previously unseen domains or re-
fining knowledge in existing domains; however, it also exposes a more practical window for attacks.
Early attacks target the specific class associated with the attacker-controlled dataset and involved
direct, obvious label modifications, rendering them relatively easy to detect Biggio et al. (2012).

To further enhance stealth and bypass detection mechanisms, attackers instead inject subtle pertur-
bations into the input data while leaving labels unchanged; these modified samples are known as
poisons Shafahi et al. (2018); Geiping et al. (2021). Nonetheless, this method is not sufficiently
stealthy: attacker-controlled finetuning subsets usually map to a few classes, making detection and
attribution to the poison and attacker straightforward. Thus, cross-class poisoning is a preferable
strategy, as it allows attackers to select misclassification targets at will instead of being limited to
the poisoned class, widening the threat surface.

Although it offers greater potential and poses higher risks, developing poison attack algorithms
becomes increasingly challenging, as the attack surface requires the model to learn the associa-
tion between modified inputs and correct labels while keeping the labels fixed. While existing
works Shafahi et al. (2018); Huang et al. (2020); Geiping et al. (2021) can achieve decent poisoning
effect under specific assumptions, a critical asymmetry between victims and attacks inherently lim-
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its such attacks: in real-world model finetuning, attackers typically control only a subset of a data
class, while victims may aggregate data from multiple sources and collect clean, correctly-labeled
samples of that same class from other providers Russakovsky et al. (2015); Kaissis et al. (2021);
Sheller et al. (2020). Such clean data contradicts cross-class poison by providing conflicting or even
the exact opposite supervision signal. This raises a natural question: can attackers inject effective
biases into models even when correct information of that category is simultaneously present?

Backdoor attacks Gu et al. (2019) can tackle this problem by learning parallel associations where
a malicious shortcut to wrong mapping coexists with truthful mapping. This shortcut could be ac-
tivated by the presence of either a natural Zhao & Lao (2022) or a carefully-optimized Saha et al.
(2020) trigger on test-time inputs to affect specific test sample without being canceled out by clean
evidence. Because the truthful mapping is still present, normal model performance of correctly clas-
sifying inputs without triggers would also not be affected. However, this method loses effectiveness
when such trigger isn’t available during test-time: attackers may simply not have access to test data
for applying triggers or the circumstances determine that they may have little control over the pres-
ence of natural triggers in test data Shafahi et al. (2018). This is very likely in practical multi-source
data aggregation settings like medical diagnosis or social-media content moderation, where test in-
puts are directly provided by users Li et al. (2020). The core issue is that building extra pathways
based on trigger only temporarily circumvents the contradictory clean information given specific
conditions, but it doesn’t fundamentally solve the contradiction problem. Whenever the required
condition fails, the method no longer suffices. This constraint limits the practicality of clean-label
backdoor attacks and makes them inefficient in this specific scenario.

Therefore, trigger-free cross-class poisoning presents a more suitable alternative in this setting, as
this can achieve unconditional misclassification without requiring test-time trigger availability while
maintaining both efficacy and covertness. Some existing such approaches like Shafahi et al. (2018);
Zhu et al. (2019); Aghakhani et al. (2021) work well in transfer learning settings where a pretrained
model is finetuned for downstream tasks. Their poison can to certain degree overcome contradic-
tion from clean data either within frozen model knowledge or finetuning dataset. However, they
heavily rely on the pretrained feature extractor and cannot work effectively in scenarios where fea-
ture space changes significantly due to the large domain difference between finetuning data and
pretraining data Shafahi et al. (2018). Other works like Huang et al. (2020); Geiping et al. (2021)
have demonstrated promise in controlled settings and doesn’t demand feature extractor remaining
relatively stable, but they fundamentally assume the non-existence of clean data on target class.
This assumption renders them ineffective in realistic multi-source data aggregation setting. A new
method is required to overcome this challenge.

In this paper, we introduce XPoison, a novel attack paradigm based on gradient matching that
achieves trigger-free cross-class misclassification even when contradictory clean evidence is present.
We focus on the scenario of finetuning. In our setting, we assume the attackers know about the model
structure.

XPoison employs multiclass gradient matching with two key enhancements: magnitude alignment
to match both gradient direction and scale, and contradiction compensation to account for gradient
interference from clean data.

Our contributions are:

• Formalizing trigger-free cross-class poisoning as a distinct attack category in concept

• Providing the first evaluation under realistic constraints where finetuning contains clean
target information contradictory to poison and existing methods aren’t suitable due to failed
premises

• Identifying a practical real-world scenario that such attack threatens.

• Introducing clean interference compensation that makes attacks robust to the dilution that
occurs when victims train on mixed clean-poison data

This defines a new attack framework for further exploration and reveals a fundamental vulnerability
in real-world defense.
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The rest of the paper is organized as follows. Section 2 briefly captures related works. Section 3
presents the problem formulation in mathematical terms. Section 4 discusses details of our method.
Section 5 reports the experimental results. Finally, section 6 concludes the paper.

2 RELATED WORKS

2.1 MULTI-SOURCE DATA AGGREGATION

Multi-source data aggregation is the norm of modern ML. From massive webscraping of ImageNet
to federated medical systems, many real-world ML systems inherently involve multiple untrusted
data sources when collecting training data, which naturally exposes themselves to potential injec-
tion of malicious data Russakovsky et al. (2015); Kaissis et al. (2021); Sheller et al. (2020). Security
research in federated learning, which takes place in similar setting of distributed data sources con-
verging data to a center, also shows that attacks demonstrate strong effectiveness even with a small
percentage of participants being malicious Tolpegin et al. (2020). This validates the practicality of
our scenario setting. Such vulnerability to malicious data sources has motivated extensive research
into data poisoning attacks, which can be broadly categorized into backdoor attacks and trigger-free
attacks based on their activation mechanisms.

2.2 BACKDOOR ATTACK

Backdoor attack aims to manipulate model behavior by injecting poisoned data into training and
activating in test time through triggers. To increase stealthiness, clean-label backdoor attack is
developed to poison data content while maintaining the correct label. For example, Saha et al.
(2020) achieves misclassification by crafting poisoned images that appear similar to target-class
samples in pixel space while maintaining feature representations close to trigger-patched source
images. Zhao & Lao (2022) uses naturally-misclassified samples as poison; Severi et al. (2021)
uses SHAP value to select the most important training samples to poison.

There are also works that focus on defending against such attacks or using such attacks for benign
purpose. For example, He et al. (2023) trains clean model on poisoned data by isolating the poisoned
samples in early training and unlearn them. The key is that stronger attacks are learned faster,
which is reflected as bigger and quicker loss drop compared to normal samples Li et al. (2021) uses
indiscriminate poisoning attacks to protect unauthorized data usage.

However, all backdoor attacks share a fundamental limitation: they require the presence of trigger
during test-time to activate malicious behavior, which makes them infeasible in real-world scenarios
like ours.

2.3 UNCONDITIONAL ATTACKS

To overcome the limitation of requiring test-time triggers, trigger-free attacks aim to cause un-
conditional misclassification of unmodified target class through training-time manipulation alone.
Shafahi et al. (2018) pioneered this direction by optimizing source-class training images to collide
with target-class images in feature space, effectively associating target-class images with source-
class labels. Aghakhani et al. (2021) extended this approach by crafting poisons that push target
images toward a convex polytope in feature space formed by multiple poison class samples, im-
proving attack transferability across different model architectures. Huang et al. (2020) formulated
poisoning as a bilevel optimization problem, using expensive meta-learning to approximate the vic-
tim’s training process and get optimal poison optimization with unrolled gradient steps. Geiping
et al. (2021) simplified this approach through gradient matching, aligning source-class gradients
with target misclassification gradients and effectively decreased computational cost.

However, existing unconditional attacks face a critical limitation in realistic deployment scenarios:
they assume the victim’s training data consists minimal clean data from target class. In practice,
victims typically have access to substantial amounts of clean target class data that can dilute or
counteract poison effects through correct label associations. This gap between experimental as-
sumptions and real-world conditions motivates our attack that remains effective even when directly-
contradictory clean and poisoned data coexist during finetuning.

3
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3 PROBLEM FORMULATION

In this section, we present the modeling of the task we aim to address.

3.1 THREAT MODEL

We consider a poisoning attack against deep neural networks in the finetuning stage, where attackers
seek to manipulate a victim model’s behavior through strategic modification of training data.

Attacker Capabilities: The attacker can inject a limited number of maliciously crafted training
samples into the victim’s training set before the fine-tuning process begins. The attacker has no
control over the training procedure, model architecture, or labeling process, and must assign correct
labels to all injected samples (clean-label constraint).

Victim Model: We assume a victim model fθ : X → RC pretrained on a source dataset, which is
subsequently fine-tuned on a target datasetD = {(xi, yi)}Ni=1 where xi ∈ X and yi ∈ {1, 2, . . . , C}.
Attack Objective: Given a specific target sample (xt, yt) from the test set, the attacker aims to
cause the finetuned model to misclassify xt as one of any non-yt classes Ym = {y(1)m , y

(2)
m , . . . , y

(k)
m }

where yt /∈ Ym, while maintaining the model’s performance on clean samples.

3.2 MULTICLASS POISONING FRAMEWORK

Unlike traditional single-class approaches, we formulate a multiclass poisoning strategy that lever-
ages samples from multiple poison classes Cp = {c1, c2, . . . , ck} where Cp∩{yt} = ∅. The attacker
selects ni samples from each poison class ci, creating a poison set:

P =

k⋃
i=1

Pi, where Pi = {(x(i)
j , ci)}ni

j=1. (1)

The total poison budget is constrained by |P| =
∑k

i=1 ni ≤ ϵ · N for some small ϵ (typically
ϵ ≤ 0.01). Each poison sample is modified by adding an imperceptible perturbation δ

(i)
j subject to

the constraint ∥δ(i)j ∥∞ ≤ ξ for some small ξ, yielding poisoned samples x̃(i)
j = x

(i)
j + δ

(i)
j .

4 METHOD

In this section, we begin by detailing the XPoison framework and subsequently extend it to address
the multi-class scenario.

4.1 ENHANCED GRADIENT MATCHING

Vanilla gradient matching Geiping et al. (2021) aims to cause unconditional misclassification by
matching the gradient of selected poisoned-class samples with that of target-class instances paired
with poisoned-class label. Given a target image xt with true label yt and intended malicious label
ym, the attack optimizes poison samples {x(i)

p } with correct labels {y(i)p } to minimize:

Ldirection = −
∑
l

⟨∇θlL(fθ(xt), ym),∇θlL(fθ(xp), yp)⟩, (2)

where θl represents parameters of layer l, and the objective maximizes alignment between target and
poison gradients.

While directional alignment ensures the poisoned samples point to the same directions as target
gradients, vanilla gradient matching suffers from two critical limitations. First, gradients aligning in
direction may still differ significantly in magnitude, leading to potentially suboptimal optimization
step sizes and consequently poor convergence to attack objectives. Second, during finetuning, clean
samples from target class generate contradictory gradients that directly counters the poison signal,
which significantly reduces the poison effectiveness as the vanilla approach lacks sufficient strength
to overcome the contradiction and achieve effectiveness. As formulated in Eqn. 3, during victim
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finetuning, the actual gradient experienced by the model combines poison effects with clean data
interference:

gtotal = gpoison + gclean. (3)
Vanilla gradient matching optimizes for gpoison ≈ gtarget, but the actual optimization direction be-
comes gpoison + gclean. This is why poison gradient needs to be enhanced so that clean gradient
cannot effectively push toward correct classification.

To address the limitations mentioned, we propose multiple enhancements as solution:

• Magnitude alignment: Explicitly matching the poisoned samples’ magnitude with target
samples’ magnitude in addition to the existing directional alignment. This ensures that
poisoned samples not only optimize in the right direction but also update in appropriate
strength to overcome potential contradiction from clean samples.

• Clean interference compensation: Estimating the potential impact of clean target data on
poison gradient by projection for compensation. This ensures the poison becomes more
robust to clean data interference in actual finetuning since clean effects are already approx-
imated in optimization.

Our enhanced objective function becomes:

Lenhanced = α · Ldirection(g
∗
t ,gp) + β · Lmagnitude(g

∗
t ,gp), (4)

where g∗
t represents the compensated target gradient and gp represents poison gradients. To

compute compensation, we estimate clean interference ĝclean using proxy clean samples and subtract
that influence from the target gradient:

g∗
t = gt − γ · projĝclean

(gt), (5)

where γ controls compensation strength and projĝclean
(gt) represents the projection of target gra-

dients onto the clean interference direction. Due to the significant difference between layers on
gradient scales and feature-extraction roles, we apply compensation independently to each layer l
for layer-specific projection coefficients:

g∗
t,l = gt,l − γ · ⟨gt,l, ĝclean,l⟩

∥ĝclean,l∥2
ĝclean,l. (6)

This removes the component of target gradients that aligns with expected clean interference while
preserving magnitude through renormalization, thereby achieving more robust poison against con-
tradictory clean signal. Note that since this is approximation in experimental conditions, samples
are randomly selected from the target class in finetuning dataset. Within real-world scenarios, this
should be done by sampling representative target class data from external data sources since attack-
ers may not have access to target class data actually used for finetuning. Building on the compen-
sated target gradients, we add explicit magnitude matching in the form of ratio between gp and g∗

t

Match
Graident

Poisoned Target

Clean TargetMultiple Poisoned Classes

Gradient
Magnitude

Model

Clean Target Test Target

Misclassification

Stage 1: Craft Poison

Other Data

Stage 2: Fine-tune Model Stage 3: Misclassification

Clean Target

Figure 1: An overview of our poisoning process. Stage 1: Poison samples from multiple classes
are crafted to match gradients with a clean target image, enhanced with magnitude alignment and
clean interference compensation. Stage 2: The victim model is finetuned on a dataset containing
both poisoned samples and clean data. Stage 3: At test time, the target class image is misclassified,
demonstrating successful cross-class attack. .
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to encourage poisoned gradient to either match or succeed the target gradient for greater poison
strength:

Lmagnitude = − log

(
∥gp∥2
∥g∗

t ∥2 + ϵ

)
. (7)

The logarithmic formulation provides several advantages: it naturally handles the vastly different
gradient scales across model layers by compressing the value range for consistent processing, pre-
vents optimization instability by bounding extreme magnitude ratios and providing smooth deriva-
tives that avoid sudden jumps during gradient descent, and ensures balanced treatment of both under-
magnitude and over-magnitude scenarios for more stable optimization.

4.2 MULTI-CLASS POISONING ENHANCEMENT

To further boost the attack effectiveness, we extend our enhanced framework to multi-class poison-
ing, where poisoned samples are distributed across multiple classes instead of one.

Given a set of poison classes Cp = {c1, c2, . . . , ck}, we distribute the poison budget B across all
classes:

Bi =

⌈
B

|Cp|

⌉
for each class ci ∈ Cp. (8)

We also compute target gradients by averaging across all intended classes rather than using a single
intended class:

gt =
1

|Cp|
∑
ci∈Cp

∇θL(fθ(xt), ci). (9)

This averaged gradient represents the optimization direction toward the centroid of the poisoned
class space, providing a potentially more robust and generalizable attack target. Also, the multi-
class approach integrates seamlessly with our existing enhancement framework. Clean gradients are
estimated independently for each poison class and averaged:

ĝclean =
1

|Cp|
∑
ci∈Cp

ĝclean,ci . (10)

Algorithm 1 Enhanced Gradient Matching with Dual Compensation (Multi-class)

Require: Target (xt, yt), Intended classes {y(j)m }, Poison set {(x(i)
p , y

(i)
p )}, Model fθ

Require: Parameters: α, β, γ, learning rate η, iterations T
1: Estimate clean interference: ĝclean ← EstimateCleanGradients(xt, yt)
2: Initialize poison perturbations: ∆(i) ← 0
3: for t = 1 to T do
4: Apply perturbations: x′(i)

p ← x
(i)
p +∆(i)

5: Multi-class target gradient:
6: gt ← 1

|{y(j)
m }|

∑
j ∇θL(fθ(xt), y

(j)
m )

7: Compensate target gradient: g∗
t ← CompensateGradient(gt, ĝclean, γ)

8: for each poison i do
9: Compute poison gradient: g(i)

p ← ∇θL(fθ(x′(i)
p ), y

(i)
p )

10: Compute direction loss: L(i)
dir ← −⟨g∗

t ,g
(i)
p ⟩/∥g∗

t ∥
11: Compute magnitude loss: L(i)

mag ← − log(∥g(i)
p ∥/(∥g∗

t ∥+ ϵ))

12: Combined loss: L(i)
enhanced ← α · L(i)

dir + β · L(i)
mag

13: end for
14: Update perturbations: ∆(i) ← ∆(i) − η∇∆L(i)

enhanced
15: Project perturbations: ∆(i) ← Projϵ(∆

(i))
16: end for
17: return {x(i)

p +∆(i)}

6
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Clean (ID: 22375) Poisoned Delta (max: 0.054)

Figure 2: An image example of before and after applying the poison.

It is later applied to the averaged target gradient:

g∗
t = gt − γ · projĝclean

(gt). (11)

The complete algorithm detail can be seen in Algorithm 1. Figure 2 presents an example image of
before and after applying the poison.

5 EXPERIMENT

In this section, we begin by presenting the experiment setup, followed by a comprehensive evalua-
tion of XPoison.

5.1 EXPERIMENT SETUP

For fair comparison with existing baselines, we evaluate on ImageNet-pretrained ResNet18 fine-
tuned on CIFAR-100 This represents a realistic transfer learning scenario where attackers target
models adapted to new domains or improved on old domains. This setup also highlights the advan-
tages of our gradient-based enhancements even in favorable conditions for feature-based methods.

All our experiments are conducted on two nvidia A5000 GPUs. We set the perturbation budget to
8/225, which means maximum 8 intensity levels are allowed to be changed out of all possible values,
making poisoned images visually imperceptible to humans but effectively toxic to model, balancing
attack stealthiness with effectiveness. The finetuning learning rate is set to 0.1, selected empirically
for optimal performance. Other hyperparameters are kept as default.

We also investigate how pretrained feature representations as clean frozen knowledge affect poi-
soning transferability by comparing attacks on classes with and without ImageNet overlap. This
may better improve the poison effectiveness and isolate the feasibility of poison countering fresh
clean target data for finetuning. While pretrained knowledge is absent, poisoned classes include
dinosaur, plain, rocket, forest, mountain, sea, shrew, caterpillar, possum, and baby. Target class is
cloud. While pretrained knoweldge is present, poisoned classes include lion, leopard, tiger, bicy-
cle,motorcycle, shark, whale, spider, fox and elephant. Target class is bear. Note that these exper-
imental configurations involve manual class selection and is an imperfect simulation to the strict
domain boundaries typically enforced in real-world deployment.

While design-wise target image is optimized to be misclassified as any of the poisoned classes, in
reality, it is acceptable for it to be misclassified as any non-target class.

5.2 OVERALL PERFORMANCE

Table 1 shows the comparison between our method and the baseline methods. Compared with
clean baseline where no poison is introduced in finetuning, feature-based methods like Poison Frogs
Shafahi et al. (2018) and Bullseye Aghakhani et al. (2021), in which poisoned samples are optimized
to approach target samples in feature space, have achieved reasonable attack success that reduces
target class accuracies by 28.27% and 9.08%, respectively. However, such effectiveness comes
with a heavy cost as they are not stealthy enough and cannot maintain decent accuracy on poison
class, making them inappropriate for real-world deployment in this scenario. While vanilla gradient
matching Geiping et al. (2021) preserves poison class accuracy, it only reduces target class accuracy

7
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by 8.07%, indicating limited attack effectiveness. In contrast, our method achieves a reduction of
38.37%, exceeding the feature-based methods while mostly preserving recognition ability on poison
class with a small drop of 2.8%. This indicates the effectiveness and stealthiness of our method.

Table 1: Performance comparison with baselines
Method Poison Class Acc (%) Target Correct (%)

Clean 88.00 88.88
Poison Frogs 24.00 60.61

Bullseye 12.00 79.80
Gradient matching 83.30 80.81

Ours 85.20 50.51

5.3 IN-DEPTH ANALYSIS

As shown in Table 2, the best result among all different poison class numbers was achieved in
10 poisoned classes with a drop of 38.37% on target classification rate. While having only one
poisoned class, classification rate on poisoned class cannot be maintained well and dropped to 35%
while demonstrating suboptimal attack effectiveness. This is likely due to excessive pixel change,
which achieved small target misclassification rate at the cost of a complete destruction of poison
class recognition. As poison becomes distributed in multiple classes, target recognition linearly
drops as poisoned class number increases while preserving a decent level of poison class recognition
capability. Due to limited computational resources, we limit the class number within 10.

Table 2: Performance comparison across different numbers of poison classes
Classes Poison Class Acc (%) Target Correct (%)
Clean 88.00 88.88

1 35.00 83.84
3 87.00 83.84
5 88.00 82.83
7 85.57 68.69

10 85.20 50.51

We also tested when selected classes have no overlap with the pretraining dataset so that the model
has no clean frozen knowledge on them. As shown in Table 3, single poison class achieves only
43.00% poison class accuracy despite having a decent 71.72% target correct rate, indicating poor
attack stealthiness. After entering multi-class poisoning, poison class accuracy gradually drops from
little poison effect in 3 classes to 76.77% with 5 and 7 classes, while in the end slightly increasing
back to 80.81% with 10 classes. This U-shaped pattern in target accuracy differs from the linear trend
observed in the case with pretrained knowledge, suggesting that the model’s adaptation dynamics
vary substantially when learning entirely new classes versus refining existing ones. The sustained
high poison class accuracy, combined with reasonable attack success rate, indicates that our attack
remains effective even without pretrained knowledge present.

Table 3: Comparison across different numbers of poison classes without pretrained knowledge
Classes Poison Class Acc (%) Target Correct (%)
Clean 88.00 88.88
Best 85.20 50.51

1 43.00 71.72
3 95.67 88.89
5 91.00 76.77
7 88.14 76.77

10 79.50 80.81

We also examined the influence of different target class on the attack performance by randomly
selecting poison classes from the 10 classes with pretrained knowledge as target. As shown in

8
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Table 4, our method demonstrates consistent performance across different target classes, with poison
class accuracy remaining high (75.60-81.60%) and averaging 78.94%. The target correct rates show
substantial variation across different target classes, ranging from 55.56% to 73.74% with an average
of 67.68%. Target class 88 achieves the strongest attack success with only 55.56% of target samples
correctly classified, while maintaining 78.10% poison class accuracy. Target class 43 shows the
highest poison class accuracy with 81.60%, but its target correct is at 70.71%, slightly lower than
class 88. Overall, this demonstrates that our multiclass gradient matching approach can maintain
excellent poison stealthiness and effectiveness regardless of the specific target class chosen.

Table 4: Attack performance across different target classes
Target Class Poison Class Acc (%) Target Correct (%)

31 79.60 73.74
42 75.60 65.66
43 81.60 70.71
73 79.80 72.73
88 78.10 55.56

Average∗ 78.94 67.68

Table 5 shows our ablation study on enhancement components. We use the best result under 10
poison classes and measure accuracies under different component weight configurations at the same
step for fair comparison. β represents the weight of magnitude-matching, while γ represents the
weight of clean compensation. Compared with the baseline of vanilla implementation where both
weights are zero, the individual enhancement components demonstrate a modest improvement, with
a maximum of 5.05% reduction in target class accuracies. When both are combined, they further
result in a substantial 30.30% decrease compared with baseline, confirming the effectiveness of our
proposed method.

Table 5: Ablation study
β γ Poison Class Acc (%) Target Correct (%)
1 1 85.20 50.51
1 0 77.40 77.75
0 1 80.60 75.76
0 0 83.30 80.81

6 CONCLUSION

In this work, we have addressed a critical gap in data poisoning research by examining cross-class
attacks under realistic finetuning scenarios where victims possess clean target samples that directly
contradict attacker-controlled poisons. The demonstrated effectiveness of trigger-free cross-class
poisoning under realistic constraints has significant implications for deployed machine learning sys-
tems. Organizations that aggregate finetuning data from multiple sources face previously underesti-
mated vulnerabilities. Even when defenders possess substantial amounts of clean data, sophisticated
attackers can still manipulate model behavior through carefully crafted poison samples distributed
across a small amount of classes. The formalization of trigger-free cross-class poisoning as a dis-
tinct threat category provides a foundation for future defensive research and helps practitioners better
assess risks in their ML pipelines.

Our evaluation focuses primarily on image classification tasks using CIFAR-100 in transfer learning
scenarios. Future work should extend these findings to other domains, larger-scale datasets, and dif-
ferent model architectures. Additionally, investigating defensive mechanisms specifically designed
to handle mixed clean-poison scenarios or cross-class manipulation represents an important research
direction.
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