

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ENHANCING EXTREME WEATHER FORECASTING VIA DYNAMICALLY WEIGHTED MSE

Anonymous authors

Paper under double-blind review

ABSTRACT

Data-driven weather forecasting empowered by deep learning has shown superior performance compared to traditional physics-based dynamical models. However, conventional training objectives (like Root Mean Squared Error (RMSE)) primarily focus on minimizing average prediction errors, often resulting in oversmoothed forecasts that fail to capture critical extreme weather phenomena, including heavy precipitation, hurricanes, and other high-impact events. To overcome this limitation, we propose a robust loss function, named Dynamically Weighted MSE (DW-MSE), that adaptively reweights training samples to better learning on extreme weather events. Specifically, we introduce a dual-branch meta-network alongside the prediction network to dynamically generate sample weights: one branch captures spatiotemporal dependencies across climate variables, while the other learns from training losses. Guided by a small set of validation samples, the meta-network can be jointly optimized with the prediction network via an efficient bi-level optimization strategy, which provides the fast convergence with the approximated first-order information. Overall, our framework is able to accurately identify and assign greater importance to extreme weather samples without manually designing reweight function and any prior knowledge. Extensive experiments in both training-from-scratch and fine-tuning climate models demonstrate that DW-MSE consistently outperforms existing approaches in forecasting extreme weather.

1 INTRODUCTION

Weather forecasting (Bi et al., 2023; Liu et al., 2025; Verma et al., 2024; Ling et al., 2024; Chen et al., 2025a; Gao et al., 2025) plays an essential role in society, influencing a wide range of industries and daily activities, such as transportation and agriculture. Accurate forecasts are particularly crucial for predicting extreme weather events, which significantly impact both human lives and economic stability. For example, *Hurricane Ian* in 2022 caused over \$112 billion in damages in the United States, making it one of the costliest hurricanes in history (Bucci et al., 2022). These examples highlight the urgent need for robust weather forecasting models, especially for the accuracy and lead time of extreme weather event predictions, to ensure effective disaster prevention and response.

Recently, deep (or machine) learning-based approaches have emerged as a promising alternative for weather forecasting (Zhao et al., 2025; Gong et al., 2025; Xu et al., 2024b; Chen et al., 2024; 2025b). By leveraging large datasets and powerful neural network architectures, these methods bypass the need for explicit physical modeling and instead learn intricate patterns and relationships directly from data. For example, Pangu-Weather (Bi et al., 2023) has shown superior performance in predicting temperature, wind speed, wind direction, and barometric pressure compared to traditional NWP models like the European Centre for Medium-Range Weather Forecasts (ECMWF) (Owens & Hewson, 2018). Instead of the prediction accuracy, deep learning approaches also exhibit advantages in that they can process high-dimensional inputs efficiently and are particularly adept at capturing complex nonlinear data (Xu et al., 2024a).

However, deep learning-based weather models are predominantly trained using regression loss functions, such as (Root) Mean Squared Error (RMSE/MSE) (Xu et al., 2024a; Verma et al., 2024; Chen et al., 2023; Subich et al., 2025), which often leads to poor performance in forecasting extreme weather events. These loss functions primarily focus on minimizing overall prediction error, fre-

quently at the cost of accurately capturing rare but high-impact events (Xu et al., 2024a). As a result, such models may perform suboptimally in disaster warning scenarios, including the prediction of hurricanes, heavy rainfall, or heatwaves. This limitation is particularly critical, as accurate forecasting of extreme weather is essential for reducing the severe societal and economic consequences associated with these events.

Designing a robust loss function that encourages the model to better capture extreme values or distributions has emerged as a promising approach (Lopez-Gomez et al., 2023; Xu et al., 2024a; Ni, 2023). These loss functions typically rely on manually defined weighting schemes—such as exponential adjustments (Lopez-Gomez et al., 2023) or fixed weights (Xu et al., 2024a)—that assign different levels of importance to normal and extreme weather values. For instance, a recent work (Xu et al., 2024a) proposed an asymmetric variant of the mean squared error loss, known as Exloss, which applies higher weights to prediction errors involving extreme events. This design boosts the influence of extreme samples (e.g., those in the top or bottom 10th percentile) during model training, thereby enhancing robustness. However, the manual specification of weighting functions, as seen in (Xu et al., 2024a; Meo et al., 2024), heavily depends on prior knowledge. This often leads to rigid and inflexible weight assignments, ultimately limiting the scalability and adaptability of such methods.

Motivated by MW-Net (Shu et al., 2019), a meta learning-based sample reweighting approach originally developed for noisy-label learning (Shu et al., 2019; Ren et al., 2018), we propose to dynamically reweight climate events to improve performance in extreme weather forecasting. However, directly applying this method faces two major limitations: (1) the limited capacity of the reweighting network, which struggles to capture the complexity of high-dimensional, time-dependent climate data, and (2) the high training cost incurred by the bi-level optimization process, involving the computation of second-order Hessian matrices.

To address these limitations, we propose a novel framework, dubbed dynamically weighted MSE (DW-MSE), that automatically learns sample weights for the prediction model to better fit extreme distributions while ensuring lower training costs. Specifically, we design a dual-branch reweight network alongside the prediction model, which replaces manually crafted weighting functions in previous methods with an adaptive mechanism. One branch leverages training dynamics (e.g., loss information) to identify hard or extreme samples, while the other captures spatiotemporal dependencies directly from raw climate fields. Based on a carefully constructed validation set, these two networks can be jointly optimized by an efficient bi-level optimization strategy, which is structured into two steps: 1) *Inner loop*: generate variable- and location-aware weights for training samples and update the prediction network with our weighted MSE loss. 2) *Outer loop*: optimize the reweight network on a validation set containing only extreme events, using first-order information for efficiency. Through this design, DW-MSE enables the prediction network to up-weight rare yet high-impact climate samples without relying on manually specified weighting functions.

In summary, our contribution can be summarized into three aspects:

- We propose DW-MSE, a meta-learning framework that adaptively reweights training samples via a dual-branch reweight network, which captures training dynamics and spatiotemporal dependencies for accurately weight assignment.
- We design an efficient bi-level optimization algorithm that avoids expensive second-order computations by leveraging approximate first-order information, ensuring computational efficiency.
- Extensive experiments in multiple climate forecasting settings verify that DW-MSE consistently improves the prediction of extreme events, while maintaining strong overall forecasting performance and outperforming existing loss functions.

2 RELATED WORK

Weather forecasting. Previously, weather forecasting has been widely studied as a sub-task of the field of Time-Series Forecasting (Zhou et al., 2021; Wu et al., 2021), which is identical to other time-series tasks like Traffic Flow Prediction (Ji et al., 2023; Li et al., 2021), Stock Price Prediction (Zhang et al., 2024; Qin et al., 2024), and Energy Load Forecasting (Zhou et al., 2021). Due to the simplicity of the adapted network and the low quality of the data, these methods struggle to support large-scale weather prediction as the number of climate variables and geographic locations

108 increases. Recently, with the improvement of computation resources and the release of high-quality
 109 climate data, many organizations like Google (Lam et al., 2022), Microsoft (Nguyen et al., 2023),
 110 and Huawei (Bi et al., 2023) published their weather foundation models trained on data at the scale of
 111 tens of terabytes (TB). The key points within these deep-learning-based approaches lie in the advanc-
 112 ing network. Although data-driven models outperform the physical-based ECMWF-IFS (Owens &
 113 Hewson, 2018) in standard metrics such as RMSE, they often produce overly smooth predictions
 114 and underperform in extreme events.

115 **Extreme weather forecasting.** Extreme weather forecasting has attracted significant attention due
 116 to its critical real-world applications in early warning of natural disasters, such as the prediction of
 117 hurricanes, severe storms and heavy rainfall to mitigate potential damage and save lives (Ran et al.,
 118 2024). Methods in this field are generally categorized into two types: 1) network design-based
 119 methods and 2) robust loss design-based methods. In this paper, we focus solely on the design of
 120 the loss function, as it can be seamlessly integrated into any network to enhance performance in
 121 predicting extreme weather values.

122 In the family of *robust loss functions*, existing methods normally adapt the MSE loss by defining a
 123 loss weighted function to assign larger weights for the extreme cases. For example, (Lopez-Gomez
 124 et al., 2023) proposes a custom loss function based on an exponential L2 distance for extreme sam-
 125 ples, assigning different fixed weights to positive and negative extremes. Exloss (Xu et al., 2024a)
 126 employs an asymmetric scaling function to allocate weights for extreme samples, and EVloss (Meo
 127 et al., 2024) proposes an exponential adjustment function to gradually increase the weight for ex-
 128 treme cases. Despite non-trivial improvements, the design of weighted functions in these methods
 129 heavily relies on prior knowledge (like extreme distributions) and thus suffers from limited scalabil-
 130 ity. By contrast, our method automatically learns a set of weights for all training samples without
 131 access to any prior knowledge, offering strong adaptability.

132 **Meta learning**, also known as “learning to learn”, enables rapid model adaptation for new tasks
 133 by leveraging prior knowledge and optimizing learning strategies (Finn et al., 2017; Nichol, 2018;
 134 Snell et al., 2017). Inspired by the performance of meta-learning, some methods were proposed to
 135 automatically learn hyper-parameters (Real et al., 2020; Jaderberg et al., 2017), dynamically adjust
 136 and search network architecture (Zoph et al., 2018; Liu et al., 2019), reweight training samples (Shu
 137 et al., 2019; Ren et al., 2018), and sample/core-set selection (Yang et al., 2022).

138 Compared with previous methods, the challenge underlying the learning weight for weather data lies
 139 in the intricate interdependencies among climate variables (also called uncertainty in other works
 140 (Xu et al., 2024a)), which often exhibit non-linear and dynamic relationships across varying spatial
 141 and temporal scales. This complexity imposes higher demands on meta-learning, as the learned
 142 weights have to not only capture these multifaceted relationships but also adapt effectively to diverse
 143 scenarios and extreme weather conditions, ensuring robust and accurate predictions.

3 PRELIMINARIES

147 **Problem Definition.** We consider the data-driven climate forecasting task under the setting of fixed-
 148 size input and output windows. The training dataset is defined as $\mathcal{D}^{\text{train}} = \{(X_n, Y_n)\}_{n \in [N]}$, where
 149 $X_n = \{\mathbf{x}_1, \dots, \mathbf{x}_t\}_n$ denotes the input climate sequence of length t , and $Y = \{\mathbf{y}_{t+1}, \dots, \mathbf{y}_{t+U}\}_n$
 150 denotes the corresponding target sequence of length U . Note that $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{H \times W \times V}$ denotes a
 151 meteorological field consisting of V variables on a spatial grid of size $H \times W$.

152 Given a model $f_{\theta}(\cdot)$ parameterized by θ , the prediction for the input sequence n is $\hat{Y}_n = f_{\theta}(X_n)$.
 153 The model is trained by minimizing the average discrepancy between predictions and ground truth
 154 over all samples, which is defined as

$$155 \quad \mathcal{L}^{\text{train}} = \frac{1}{N} \sum_{n=1}^N L(Y_n, \hat{Y}_n), \quad (1)$$

158 where $L(\cdot)$ denotes the loss function, regularly the Root Mean Squared Error (MSE) (Xu et al.,
 159 2024a), which can be written as $L(Y, \hat{Y}) = \sqrt{\frac{1}{UHWV} \sum_{u=1}^U \sum_{h=1}^H \sum_{w=1}^W \sum_{v=1}^V (\mathbf{y}_{u;h,w,v} - \hat{\mathbf{y}}_{u;h,w,v})^2}$. Note
 160 that we omit an altitude-related coefficient for convenience.

Figure 1: **Smooth prediction issue.** We visualize the ground truth and predictions from two climate models (Pangu and FengWu) for *2m_temperature* and *10m_wind_speed*. Despite strong overall performance, both models produce smooth results, limiting their usefulness for disaster early warning.

3.1 CHALLENGE: SMOOTH PREDICTIONS IN EXTREME WEATHER FORECASTING

Although current data-driven weather models have achieved performance comparable to or even surpassing that of physics-based forecasting systems, they often struggle with predicting extreme weather events (Nguyen et al., 2023). Specifically, they tend to produce overly smooth outputs, failing to capture sharp, localized variations and instead generating non-extreme values. This limitation hinders their effectiveness in disaster early warning, where accurate and timely predictions of extremes are critical.

Figure 1 visualizes the predictions of two representative models - Pangu (Bi et al., 2023) and ClimaX (Nguyen et al., 2023) - compared to ground truth. We observe that these models often underestimate localized extremes due to excessive smoothing. Notably, this issue persists across different models, variables, and forecasting horizons, highlighting its widespread impact on current climate modeling techniques.

Here, an intuitive explanation for this issue is given from the perspective of the loss function. To minimize the overall error, MSE/RMSE inherently favors global error averaging, leading the model to fit common weather patterns (i.e., high-probability “normal” values) while neglecting the accurate prediction of extreme weather events. Currently, some works propose the robust loss function to mitigate this issue, such as EXloss (Xu et al., 2024a) and EVLoss (Meo et al., 2024), which leverage the loss re-weighting strategy by assigning larger weights to extreme weather events and smaller weights to regular events. Despite nontrivial improvements, their weight assignment mechanism heavily relies on prior knowledge and designing the adjustment function manually. This manner largely restricts their approach’s flexibility and scalability, especially when adapting or fine-tuning to another area’s weather conditions.

4 METHODOLOGY

To avoid manually defining the weight-adjust function for MSE losses, we propose to automatically learn weights across all climate variables and locations in a mete-learning manner, named dynamically weighted MSE (DW-MSE), which largely enhances the flexibility of the loss re-weighting framework while keeping lower training cost.

Concretely, while prior approaches assign a scalar weight $\lambda \in \mathbb{R}$ at the sample level (e.g., larger for extreme events and smaller for others), we refine this idea by learning a spatially-varying weight matrix $\lambda \in \mathbb{R}^{H \times W \times V}$ for each weather map, which allows more fine-grained control within a single sample during model learning. Compared to Eq. (1), the weighted training loss for the prediction network can be reformulated as

$$\mathcal{L}^{\text{train}} = \frac{1}{N} \sum_{n=1}^N \lambda_n \cdot L(Y_n, \hat{Y}_n). \quad (2)$$

Unlike previous approaches (Xu et al., 2024a; Lopez-Gomez et al., 2023), we automatically learn this weight through a carefully designed weighted-network $g_{\omega}(\cdot)$, parameterized by ω , rather than relying on a manually defined adjustment function.

At this point, our framework consists of two networks, each influencing the other. Specifically, the generation quality of λ influences the learning process of the prediction network, and a good

216 performance of the prediction network boosts the meta-network. To jointly optimize parameters of
 217 both two networks, we resort to a bi-level optimization framework for iterative improvement. The
 218 nested optimization objective ¹ can be written as

$$219 \theta^*(\omega) = \arg \min_{\theta} \mathcal{L}^{\text{train}}(Y^{\text{train}}, f_{\theta}(X^{\text{train}}); \lambda^{\text{train}}(\omega)) \text{ s.t. } \arg \min_{\omega} \mathcal{L}^{\text{val}}(Y^{\text{val}}, f_{\theta^*(\omega)}(X^{\text{val}})). \quad (3)$$

221 The first term in Eq. (3) is prediction network learning based on training data re-weighted by the
 222 data weight model, while the second term is to train the weighted network on a manually constructed
 223 validation set which only contains the extreme events.

224 In what follows, we introduce 1) how to build a high-capability meta-net, 2) how to efficiently solve
 225 the nested optimization problem in Eq. (3), and 3) the construction of the validation set.

227 4.1 ARCHITECTURE OF THE WEIGHED NETWORK

229 We design the weighted network g_{ω} as a dual-branch
 230 meta-net to address the limitations of using a single
 231 source of information for weighting. Specifically, relying
 232 solely on training losses (like MW-Net (Shu et al.,
 233 2019)) tends to assign larger weights to samples with
 234 higher errors, but it ignores the global information in
 235 weather maps, thereby missing extreme weather sig-
 236 nals or rare-value patterns. On the other hand, raw
 237 weather data contain rich spatiotemporal structures that
 238 can highlight local-global climate patterns and extreme
 239 regions, but without considering the actual prediction
 240 errors, the network may misallocate weights to vis-
 241 ually salient yet less impactful areas. By jointly learn-
 242 ing from training losses and raw weather data, the pro-
 243 posed dual-branch design allows the meta-net to em-
 244 phasize high-error samples while capturing physically
 245 meaningful spatial patterns, ultimately generating more reliable and fine-grained weight maps.

246 To be specific, 1) in the first branch of *learning from losses*, the input for the sample X_n is the
 247 corresponding loss map, represented by $\ell(Y_n, f_{\theta}(X_n)) \in \mathbb{R}^{H \times W \times V}$, which is flattened to a
 248 vector of one dimension and then passed through fully connected layers to obtain a compact feature
 249 representation. This branch ensures that regions with higher prediction errors (probably the under-
 250 fitting extreme events) receive proportionally larger weights. 2) In the second branch of *learning*
 251 from raw weather map, we introduce a multi-head self-attention (MSA) structure (Voita et al., 2019)
 252 to enhance the network’s ability to model the local and global weather values, contributing to the
 253 weighted net being aware of extreme cases. Finally, we take the outputs from the two branches and
 254 compute their average, which is then reshaped into the spatial grid. To guarantee that the weights
 255 fall within a valid range, we deploy a Sigmoid activation function to the last layer that constrains
 256 each value to $[0, 1]$.

257 In summary, for sample n , the output of this weighted-net can be represented by

$$258 \lambda_n = g_{\omega}(X_n, \ell(Y_n, f_{\theta}(X_n))) \in \mathbb{R}^{H \times W \times V}. \quad (4)$$

259 Figure 2 shows the architecture of our proposed meta-net. More details of the MLP architecture and
 260 the self-attention module are provided in the Appendix A.1.

261 4.2 EFFICIENT BI-LEVEL OPTIMIZATION

263 Obtaining the optimal parameters θ^* and ω^* (in Eq. (3)) is a nested optimization problem that
 264 can be solved by bi-level optimization (Shu et al., 2019; Finn et al., 2017). Specifically, we build
 265 an online optimization processes that iteratively update the parameters of two networks. In each
 266 iteration t , the parameters of two networks are denoted by $\theta^{(t)}$ and $\omega^{(t)}$, respectively. The iterative
 267 optimization process can be divided into the following two steps:

268 ¹The superscripts train and val indicate that the samples are drawn from the training set and the validation
 269 set, respectively.

269 **Figure 2: Illustration of the weighted net**,
 which learns from both losses and raw weather
 data and then outputs the weights map.

270 • Prediction Model Update. At t -th iteration, we first update the prediction model via the
 271 reweighted training objective in Eq. (2). Specifically, given a mini-batch D_b^{train} with the sample
 272 size of b , the weighted network generate the corresponding weight matrix $\lambda(\omega^{(t)})$. The parameter
 273 update follows:

$$275 \quad \theta^{(t+1)} = \theta^{(t)} - \alpha \nabla_{\theta} \mathcal{L}^{\text{train}} \left(Y^{\text{train}}, f_{\theta^{(t)}}(X^{\text{train}}); \lambda^{\text{train}}(\omega^{(t)}) \right). \quad (5)$$

277 • Weighted Network Update. The weighted network is then updated based on the validation loss,
 278 which is depends the updated parameter $\theta^{(t+1)}$:

$$279 \quad \omega^{(t+1)} = \omega^{(t)} - \eta \nabla_{\omega} \mathcal{L}^{\text{val}} \left(Y^{\text{val}}, f_{\theta^{(t+1)}}(\omega^{(t)}) \right). \quad (6)$$

281 where α and η denotes the step size during optimization.

282 **Gradient Analysis.** In Eq. (6), the gradient of the validation loss *w.r.t.* ω can be formulated as

$$284 \quad \nabla_{\omega} \mathcal{L}^{\text{val}} = \frac{\partial \mathcal{L}^{\text{val}}}{\partial f_{\theta}} \cdot \frac{\partial f_{\theta}}{\partial \theta^{(t+1)}} \cdot \frac{\partial \theta^{(t+1)}}{\partial \omega}, \quad (7)$$

286 Since the parameter $\theta^{(t+1)}$ in the last term is dependent on ω thought Eq. (5), we have $\frac{\partial \theta^{(t+1)}}{\partial \omega} =$
 287 $-\alpha \frac{\partial^2 \mathcal{L}^{\text{train}}}{\partial \theta \partial \omega}$, where the Hessian vector product is introduced. Therefore, the original bi-level opti-
 288 mization makes the exact meta-gradient computationally expensive in practice, especially for high-
 289 dimensional climate prediction models.

291 To address this limitation, we refer to the first-order approximation strategy for MAML Finn et al.
 292 (2017), where the core-idea is to ignore the second-order derivative term (e.g., the last term in Eq.
 293 (7)). The meta-gradient can be approximated by treating $\theta^{(t+1)}$ as fixed *w.r.t.* ω , which is written as
 294 $\nabla_{\omega} \mathcal{L}^{\text{val}} = \frac{\partial \mathcal{L}^{\text{val}}}{\partial f_{\theta}} \cdot \frac{\partial f_{\theta}}{\partial \theta^{(t+1)}}$. Accordingly, the parameter update for the weighted network reduces to

$$296 \quad \omega^{(t+1)} \approx \omega^{(t)} - \eta \nabla_{\omega} \mathcal{L}^{\text{val}} \left(Y^{\text{val}}, f_{\theta^{(t+1)}}(X^{\text{val}}) \right). \quad (8)$$

297 Although the second-order information is discarded, the approximation still allows the weighted
 298 network to adapt effectively, as it captures the dominant influence of ω through its direct effect on
 299 the reweighted training process. A more discussion about the effectiveness of the approximated
 300 meta-gradient can be found in the Appendix A.2. Through the iterative application of Eq. (5) and
 301 Eq. (8), the two networks can gradually tend toward convergence.

302 **Validation Set Construction.** To emphasize the importance of rare but critical events, we delib-
 303 erately construct the validation set to contain only extreme climate samples. Specifically, for each
 304 weather map, we retain the top ρ and bottom ρ fraction of grid values corresponding to extreme
 305 highs and lows, while masking out the remaining non-extreme regions. This design ensures that the
 306 validation loss focuses exclusively on extreme events, thereby guiding the weighted network to as-
 307 sign higher importance to these regions. By doing so, the meta-optimization process avoids dilution
 308 from normal samples and explicitly encodes our objective of improving prediction accuracy under
 309 extreme weather conditions. In all experiments, this parameter ρ is set as 10%.

311 5 EXPERIMENTS

313 5.1 EXPERIMENTAL DETAILS

315 **Datasets.** Following previous works (Nguyen et al., 2023; Meo et al., 2024; Xu et al., 2024a), we
 316 build the test benchmarks on the 5th generation of ECMWF reanalysis (ERA5) platform. Con-
 317 sidering the popularity of climate foundation models, we construct two test settings, including 1)
 318 fine-tuning climate foundation models (like ClimaX) for regional forecasting using a small resolu-
 319 tion of 5.625° , and 2) training from scratch with a larger resolution of 1.40625° . More details of
 320 these two benchmarks can be found in Appendix B.

321 **Evaluation Metrics.** We employ three metrics to evaluate the performance of different approaches
 322 - two focusing on overall accuracy and one dedicated to extreme weather forecasting. **1) Root mean**
 323 **square error (RMSE)**, which measures the average magnitude of prediction errors by taking the
 square root of the mean of squared differences between predicted and observed values. **2) Anomaly**

324
 325 Table 1: Comparison results of RMSE (\downarrow) on *regional climate forecasting*. We highlight the best
 326 performance with the **bold** font. Our proposal DW-MSE achieve the state-of-the-art performance
 327 under almost all settings.

328 Variable	329 Hours	330 North-America			331 South-America			332 Australia		
		333 RMSE	334 EXloss	335 DW-MSE	336 RMSE	337 EXloss	338 DW-MSE	339 RMSE	340 EXloss	341 DW-MSE
329 z500	6	278.1	237.9	198.7	200.9	176.2	158.1	182.6	164.1	149.7
	12	310.9	294.7	262.4	212.5	198.6	177.8	174.7	168.8	159.3
	18	521.4	487.4	396.7	259.3	237.9	201.8	207.1	192.4	185.8
	24	490.2	467.5	402.8	297.2	274.9	270.7	318.9	298.5	281.6
333 t850	6	1.69	1.61	1.57	1.29	1.20	1.13	1.14	1.09	1.02
	12	1.79	1.67	1.61	1.55	1.48	1.49	1.24	1.18	1.11
	18	2.18	1.94	1.80	1.69	1.56	1.53	1.32	1.23	1.14
	24	2.19	2.08	1.91	1.88	1.74	1.66	1.88	1.64	1.70
336 t2m	6	1.65	1.58	1.48	1.76	1.68	1.59	1.49	1.43	1.36
	12	1.79	1.70	1.61	2.00	1.83	1.80	1.52	1.48	1.43
	18	2.19	2.08	1.95	2.09	2.01	1.89	1.64	1.57	1.51
	24	1.99	1.94	1.86	2.14	2.05	1.99	2.05	1.98	2.00
339 u10	6	1.69	1.54	1.38	1.19	1.08	1.02	1.31	1.27	1.14
	12	2.14	2.09	2.01	1.50	1.41	1.32	1.69	1.57	1.48
	18	3.15	2.94	2.76	1.75	1.54	1.38	2.00	1.91	1.84
	24	3.09	2.84	2.77	2.00	1.92	1.81	2.54	2.37	2.20
343 v10	6	1.74	1.68	1.59	1.26	1.19	1.12	1.39	1.30	1.17
	12	2.33	2.18	2.04	1.55	1.39	1.30	1.69	1.55	1.49
	18	3.42	3.18	3.04	1.83	1.76	1.69	2.23	2.14	2.07
	24	3.33	3.17	3.04	2.09	1.94	1.87	2.49	2.28	2.17

346
 347 **correlation coefficient (ACC)**, indicating the spatial correlations between prediction anomalies \hat{Y}'
 348 relative to climatology and ground truth anomalies Y' relative to climatology. 3) **Relative Quantile**
 349 **Error (RQE)** (Pathak et al., 2022), which quantifies the relative difference between the model-
 350 predicted quantile and the true quantile, indicating whether extremes are overestimated (positive
 351 RQE) or underestimated (negative RQE). Detailed formulation for these three metrics can be found
 352 in Appendix C.2.

353
 354 **Baselines.** We utilize ClimaX (Nguyen et al., 2023) as the prediction network, a typical global
 355 weather prediction foundation model published by Microsoft. Note that we mainly focus on de-
 356 signing robust loss functions instead of the advancing network architecture. Thus, we compare our
 357 Meta-MSE with the other loss functions, including: (1) **RMSE**, the square root of the average of the
 358 squared differences between predicted and actual values. (2) **Exloss** (Xu et al., 2024a), proposed a
 359 symmetric loss function that assigns larger weights (a fixed constant $\frac{100}{81}$) for extreme weather and
 360 keeps normal weights (a fixed constant 1) for typical weather.

361
 362 **Data preprocessing.** We follow the convention of previous works that normalizes all input data
 363 (Nguyen et al., 2023; Meo et al., 2024). For each weather variable, we calculate the mean and
 364 standard deviation to normalize them to zero mean and unit variance. In the inference/test phase, we
 365 denormalize the output results to the original value range before computing the evaluation metric.

366 We implement the code and data processing with PyTorch. All experiments were performed on 8
 367 NVIDIA H100 GPUs. To speed up the training process and reduce the use of GPU memory, we also
 368 used the FP16 technique. All trials are implemented three times, and the average score is reported.
 369 More details about the optimizers, training strategies, and etc can be found in Appendix C.3.

370 5.2 MAIN RESULTS

371
 372 **Regional Forecasting.** In Table 1, we fine-tune ClimaX model with different losses in three regions,
 373 including North America, South America, and Australia, where the data resolution is 5.625° . Across
 374 almost all regions and variables, our proposed DW-MSE consistently achieves the lowest RMSE
 375 compared with both the vanilla baseline and the EXloss variant. For example, in z500 forecasting
 376 over North America, DW-MSE reduces the 18-hour RMSE from 521.4 (RMSE) and 487.4 (EXloss)
 377 to 396.7, a substantial improvement. On near-surface variables such as u10, the advantage is even
 378 clearer: in South America at 18 hours, DW-MSE lowers the RMSE to 1.38, compared to 1.75

Figure 3: Comparison results with different metrics under *global forecasting*. Note that “RQE < 0 ” denotes underestimation, and “RQE > 0 ” denotes overestimation.

Figure 4: We plot global forecasting results in the region of North America under different losses. Note that *Error* denote the RMSE value computed between prediction results and ground-truth. The value of $t2m$ is converted from Kelvin (K) to Celsius ($^{\circ}$ C).

(RMSE) and 1.54 (EXloss). These consistent improvements across varying settings demonstrate the superiority of DW-MSE.

Global Forecasting. In Figure 3, we train a ClimaX model with three different losses from scratch for global forecasting, where the data resolution is 1.40625° . We report the results of three metrics (RMSE, ACC, and RQE) on five prediction points from Day 1 to Day 5. As the results shown in this table, we observe that our proposed DW-MSE consistently outperforms the baselines across all variables and metrics. For example, in terms of RMSE, DW-MSE achieves lower errors than both RMSE and EXloss, particularly on challenging variables such as $t2m$, where the Day-5 RMSE is reduced from about 2.3 (RMSE loss) to below 2.1. Similarly, for ACC, DW-MSE maintains higher correlations throughout the forecasting horizon; on $z500$, the Day-5 ACC of DW-MSE remains above 0.75, compared to only 0.65 for RMSE. Moreover, in terms of RQE, while both EXloss and DW-MSE mitigate the issue of over-smooth prediction (see red/blue lines vs. the black line), DW-MSE produces values closer to zero compared to EXloss. It means that our proposed dynamical re-weight mechanism does not lead to significant overfitting on the extreme events.

5.3 MORE ANALYSIS

Visualization. We plot the results of global forecasting to verify the effectiveness of our proposal on two aspects:

- *Performance in extreme value forecasting.* In Figure 4, we clip the predicted values under different loss functions in the North America region to highlight the local difference in detail. Compared with the baseline RMSE loss, which produces smoothed prediction values and achieves

Figure 5: Visualization of global forecasting with the corresponding bias.

Table 2: Effect of each branch in the weighted network. Results for climate variable $z500$ are reported.

Component	72 hours		144 hours			
	B1	B2	RMSE	ACC	RMSE	ACC
✓			597.3	0.764	969.3	0.541
✓			562.1	0.817	842.9	0.602
✓	✓		508.4	0.889	782.4	0.648
Baseline			557.1	0.824	840.9	0.597

Table 3: Training convergence comparisons with different losses.

higher RMSE values, DW-MSE generates forecasts with less error, with sharper local extreme forecasting (the max and min values are closer to ground truth).

- *Global forecasting performance.* Figure 5 presents the global forecasting results for $t2m$ and $10m$ wind speed. Compared with the baseline RMSE loss, DW-MSE produces predictions that are closer to the ground truth, with sharper spatial structures and reduced bias. The bias maps further reveal that DW-MSE effectively suppresses systematic overestimation and underestimation across different regions, particularly in high-latitude and oceanic areas.

These results demonstrate that our reweighting strategy not only improves overall accuracy but also captures local detail variations more accurately, leading to more reliable global forecasts.

Ablation study. In Table 2, we evaluate the dual-branch design (B1 for the loss branch and B2 for the weather branch). The baseline refers to training with the standard RMSE loss. Using either B1 or B2 alone already improves performance over the baseline, while combining both achieves the best results—reducing RMSE from 557.1 to 508.4 (72h) and from 840.9 to 782.4 (144h), and consistently boosting ACC. These results highlight the complementary benefits of the two branches.

Convergence. Figure 3 illustrates the training loss curves under different loss functions. Compared with the standard RMSE objective, DW-MSE achieves a noticeably faster and more stable convergence. The loss decreases more rapidly in the early training phase and remains consistently lower throughout training, indicating that the proposed reweighting strategy provides more informative gradients for optimization.

6 CONCLUSION

In this paper, we propose a robust loss function to address the challenge of overly smooth predictions in climate forecasting. To tackle this issue, we introduce DW-MSE, a meta-learning-based framework that adaptively adjusts weights for MSE losses, allowing the climate prediction network to better capture extreme weather events. Our weighting scheme is neither reliant on prior knowledge nor manually predefined. Through an efficient bilevel optimization strategy that only leverages approximate first-order information, DW-MSE learns from both learning dynamics and spatio-temporal climate variables, while enabling fewer training costs. Experimental results show that DW-MSE consistently outperforms baseline methods by reducing overall prediction error while improving the accuracy of extreme weather event forecast.

486 ETHICS STATEMENT
487488 This work does not present any potential ethical concerns.
489490 USAGE OF LARGE LANGUAGE MODELS
491492 In this paper, LLMs (like ChatGPT-5, Gemini2.5) are utilized for writing assistance, including gram-
493 mar correction and text polishing.
494495 REPRODUCIBILITY STATEMENT
496497 We will release code, configurations, and logs to reproduce all tables and figures, including how to
498 download and reconstruct the benchmarks and the training procedure for regional/global forecasting.
500501 REFERENCES
502503 Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
504 range global weather forecasting with 3d neural networks. *Nature*, 619(7970):533–538, 2023.505 Lisa Bucci, Laura Alaka, Andrew Hagen, Sandy Delgado, and Jack Beven. National hurricane
506 center tropical cyclone report: Hurricane ian. *National Hurricane Center*, pp. 1–72, 2022.507 Hao Chen, Han Tao, Guo Song, Jie Zhang, Yunlong Yu, Yonghan Dong, and Lei Bai. Va-moe:
508 Variables-adaptive mixture of experts for incremental weather forecasting. In *Proceedings of the*
509 *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2025a.510 Kang Chen, Tao Han, Fenghua Ling, Junchao Gong, Lei Bai, Xinyu Wang, Jing-Jia Luo, Ben Fei,
511 Wenlong Zhang, Xi Chen, et al. The operational medium-range deterministic weather forecasting
512 can be extended beyond a 10-day lead time. *Communications Earth & Environment*, 6(1):518,
513 2025b.514 Kun Chen, Lei Bai, Fenghua Ling, Peng Ye, Tao Chen, Jing-Jia Luo, Hao Chen, Yi Xiao, Kang
515 Chen, Tao Han, et al. Towards an end-to-end artificial intelligence driven global weather forecast-
516 ing system. *Advances in Neural Information Processing Systems*, 2024.517 Lei Chen, Fei Du, Yuan Hu, Zhibin Wang, and Fan Wang. Swinrdm: Integrate swinrnn with diffu-
518 sion model towards high-resolution and high-quality weather forecasting. In *Proceedings of the*
519 *AAAI Conference on Artificial Intelligence*, volume 37, pp. 322–330, 2023.520 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
521 of deep networks. In *International Conference on Machine Learning*, pp. 1126–1135. PMLR,
522 2017.523 Yuan Gao, Hao Wu, Ruiqi Shu, Huanshuo Dong, Fan Xu, Rui Ray Chen, Yibo Yan, Qingsong Wen,
524 Xuming Hu, Kun Wang, et al. Oneforecast: a universal framework for global and regional weather
525 forecasting. In *International Conference on Machine Learning*, 2025.526 Junchao Gong, Siwei Tu, Weidong Yang, Ben Fei, Kun Chen, Wenlong Zhang, Xiaokang Yang,
527 Wanli Ouyang, and Lei Bai. Postcast: Generalizable postprocessing for precipitation nowcasting
528 via unsupervised blurriness modeling. In *International Conference on Learning Representations*,
529 2025.530 Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
531 Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based train-
532 ing of neural networks. *arXiv preprint arXiv:1711.09846*, 2017.533 Jiahao Ji, Jingyuan Wang, Chao Huang, Junjie Wu, Boren Xu, Zhenhe Wu, Junbo Zhang, and
534 Yu Zheng. Spatio-temporal self-supervised learning for traffic flow prediction. In *Proceedings of*
535 *the AAAI Conference on Artificial Intelligence*, volume 37, pp. 4356–4364, 2023.

540 Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirsberger, Meire Fortunato, Fer-
 541 ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Graphcast: Learning
 542 skillful medium-range global weather forecasting. *arXiv preprint arXiv:2212.12794*, 2022.

543

544 Mingqian Li, Panrong Tong, Mo Li, Zhongming Jin, Jianqiang Huang, and Xian-Sheng Hua. Traffic
 545 flow prediction with vehicle trajectories. In *Proceedings of the AAAI Conference on Artificial
 546 Intelligence*, volume 35, pp. 294–302, 2021.

547

548 Fenghua Ling, Zeyu Lu, Jing-Jia Luo, Lei Bai, Swadhin K Behera, Dachao Jin, Baoxiang Pan,
 549 Huidong Jiang, and Toshio Yamagata. Diffusion model-based probabilistic downscaling for 180-
 550 year east asian climate reconstruction. *npj Climate and Atmospheric Science*, 7(1):131, 2024.

551

552 Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
 553 *International Conference on Learning Representations*, 2019.

554

555 Yang Liu, Zinan Zheng, Jiashun Cheng, Fugee Tsung, Deli Zhao, Yu Rong, and Jia Li. Cirt: Global
 556 subseasonal-to-seasonal forecasting with geometry-inspired transformer. In *International Con-
 557 ference on Learning Representations*, 2025.

558

559 Ignacio Lopez-Gomez, Amy McGovern, Shreya Agrawal, and Jason Hickey. Global extreme heat
 560 forecasting using neural weather models. *Artificial Intelligence for the Earth Systems*, 2(1), 2023.

561

562 Cristian Meo, Ankush Roy, Mircea Lică, Junzhe Yin, Zeineb Bou Che, Yanbo Wang, Ruben Imhoff,
 563 Remko Uijlenhoet, and Justin Dauwels. Extreme precipitation nowcasting using transformer-
 564 based generative models. *arXiv preprint arXiv:2403.03929*, 2024.

565

566 Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax:
 567 A foundation model for weather and climate. In *International Conference on Machine Learning*,
 568 2023.

569

570 Zekun Ni. Kunyu: A high-performing global weather model beyond regression losses. *arXiv
 571 preprint arXiv:2312.08264*, 2023.

572

573 A Nichol. On first-order meta-learning algorithms. *arXiv preprint arXiv:1803.02999*, 2018.

574

575 R Owens and Tim Hewson. Ecmwf forecast user guide. Technical report, Reading, 05/2018 2018.
 576 URL <https://www.ecmwf.int/node/16559>.

577

578 Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
 579 Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
 580 castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
 581 tors. *arXiv preprint arXiv:2202.11214*, 2022.

582

583 Molei Qin, Shuo Sun, Wentao Zhang, Haochong Xia, Xinrun Wang, and Bo An. Earnhft: Effi-
 584 cient hierarchical reinforcement learning for high frequency trading. In *Proceedings of the AAAI
 585 Conference on Artificial Intelligence*, volume 38, pp. 14669–14676, 2024.

586

587 Nian Ran, Peng Xiao, Yue Wang, Wesley Shi, Jianxin Lin, Qi Meng, and Richard Allmendinger.
 588 Hr-extreme: A high-resolution dataset for extreme weather forecasting. *arXiv preprint
 589 arXiv:2409.18885*, 2024.

590

591 Esteban Real, Chen Liang, David So, and Quoc Le. Automl-zero: Evolving machine learning
 592 algorithms from scratch. In *International Conference on Machine Learning*, pp. 8007–8019.
 593 PMLR, 2020.

594

595 Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
 596 robust deep learning. In *International Conference on Machine Learning*, pp. 4334–4343. PMLR,
 597 2018.

598

599 Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-
 600 weight-net: Learning an explicit mapping for sample weighting. *Advances in Neural Information
 601 Processing Systems*, 32, 2019.

594 Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. *Advances in Neural Information Processing Systems*, 30, 2017.

595

596

597 Christopher Subich, Syed Zahid Husain, Leo Separovic, and Jing Yang. Fixing the double penalty

598 in data-driven weather forecasting through a modified spherical harmonic loss function. In *Inter-*

599 *national Conference on Machine Learning*, 2025.

600 Yogesh Verma, Markus Heinonen, and Vikas Garg. Climode: Climate and weather forecasting with

601 physics-informed neural odes. In *International Conference on Learning Representations*, 2024.

602

603 Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head

604 self-attention: specialized heads fo the heavy lifting, the rest can be pruned. In *Proceedings of the*

605 *57th Annual Meeting of the Association for Computational Linguistics*, pp. 5797–5808, 2019.

606 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-

607 formers with auto-correlation for long-term series forecasting. *Advances in Neural Information*

608 *Processing Systems*, 34:22419–22430, 2021.

609

610 Wanghan Xu, Kang Chen, Tao Han, Hao Chen, Wanli Ouyang, and Lei Bai. Extremecast: Boosting

611 extreme value prediction for global weather forecast. *arXiv preprint arXiv:2402.01295*, 2024a.

612

613 Wanghan Xu, Fenghua Ling, Tao Han, Hao Chen, Wanli Ouyang, and LEI BAI. Generalizing

614 weather forecast to fine-grained temporal scales via physics-ai hybrid modeling. *Advances in*

615 *Neural Information Processing Systems*, 37:23325–23351, 2024b.

616

617 Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reduc-

618 ing training data by examining generalization influence. In *International Conference on Learning*

619 *Representations*, 2022.

620

621 Wentao Zhang, Lingxuan Zhao, Haochong Xia, Shuo Sun, Jiaze Sun, Molei Qin, Xinyi Li, Yuqing

622 Zhao, Yilei Zhao, Xinyu Cai, et al. A multimodal foundation agent for financial trading: Tool-

623 augmented, diversified, and generalist. In *Proceedings of the 30th ACM SIGKDD Conference on*

624 *Knowledge Discovery and Data Mining*, pp. 4314–4325, 2024.

625

626 Xiangyu Zhao, Zhiwang Zhou, Wenlong Zhang, Yihao Liu, Xiangyu Chen, Junchao Gong, Hao

627 Chen, Ben Fei, Shiqi Chen, Wanli Ouyang, et al. Weathergfm: Learning a weather generalist

628 foundation model via in-context learning. In *International Conference on Learning Representa-*

629 *tions*, 2025.

630

631 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.

632 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*

633 *of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 11106–11115, 2021.

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A METHODOLOGY
649650 A.1 THE WEIGHTED NETWORK
651

652 We formally introduce this network from the following two parts.

653 **Branch 1, learning from training losses.** In this branch, the input data is training losses represented
654 by $\ell^{\text{train}} \in \mathbb{R}^{H \times W \times V}$. By an operation of “flatten”, we can obtain a one-dimensional vector with a
655 dimension of $\mathbb{R}^{1 \times HWV}$, which is subsequently input into a three-layer fully connected MLPs where
656 the architecture is denoted by $\{HWV, W^{\text{hidden}}, HWV\}$, where W^{hidden} is the width of the hidden
657 layer. The output for the first branch denotes

658
$$\lambda_1 = g_{\omega_1}(\ell^{\text{train}}), \quad (9)$$

659

660 where ω_1 denotes the learnable parameters of the first branch. In experiments, we set $W^{\text{hidden}} =$
661 $4HWV$ for convenience.662 **Branch 2, learning from weather data.** In the second branch, we introduce a multi-head self-
663 attention (MSA) structure (Voita et al., 2019) to enhance the network’s ability to model spatiotem-
664 poral dependencies, contributing to the meta-net being aware of extreme cases. Let reshape the
665 climate field X to $Z_{in} \in \mathbb{R}^{S \times V}$ where $S = H \times W$, which is also the input of one MSA module.
666 The MSA structure uses B heads to jointly attend to the information from different representation
667 sub-spaces. In b -th attention head, we first project Z_{in} to Query \mathbf{Q}_b , Key \mathbf{K}_b , and Value \mathbf{V}_b :

668
$$\mathbf{Q}_b = Z_{in} \mathbf{W}_q^b \in \mathbb{R}^{S \times V_k}, \quad \mathbf{K}_b = Z_{in} \mathbf{W}_k^b \in \mathbb{R}^{S \times V_k}, \quad \mathbf{V}_b = Z_{in} \mathbf{W}_v^b \in \mathbb{R}^{S \times V_v}, \quad (10)$$

669

670 where \mathbf{W} denotes the projection matrices. Then, we can compute the self-attention matrix follows:

671
$$\mathbf{A}_b = \text{softmax}(\mathbf{Q}_b \mathbf{K}_b^\top / \sqrt{d_k}) \in \mathbb{R}^{S \times S}. \quad (11)$$

672 This matrix reflects the relationship between tokens, where a larger value in \mathbf{A}_b indicates a stronger
673 interaction between two tokens. The outopt feature of MSA is written as

674
$$Z_{out} = \text{MSA}(Z_{in}) = \text{Concat}([\mathbf{A}_b \mathbf{V}_b]_{b=1}^B) \mathbf{W}_0 + Z_{in}, \quad (12)$$

675

676 where \mathbf{W}_0 is a projection matrix. Subsequently, we flatten Z_{out} and input the enhanced feature to a
677 projector (i.e., one layer MLP). At that point, we obtain the generated weight vector from the second
678 branch. For clarity, we formalute the whole process as

679
$$\lambda_2 = g_{\omega_2}(Z_{in}) = g_{\omega_2}(X), \quad (13)$$

680

681 where ω_2 denotes the learnable parameters of the second branch.

682 Eventually, we combine the weight vectors from both branches:

683
$$\lambda = \delta(\gamma \lambda_1 + (1 - \gamma) \lambda_2), \quad (14)$$

684

685 where $\delta(\cdot)$ represents the activation function and γ is a trade-off hyperparameter. In all experiments,
686 we use the Sigmoid function and set $\gamma = 0.5$.687 A.2 GRADIENT DISCUSSION
688689 Modified by the first-order approximation strategy, the meta-gradient at the training iteration t is
690 converted to

691
$$\nabla_{\omega} \mathcal{L}^{\text{val}} \approx \frac{\partial \mathcal{L}^{\text{val}}}{\partial f_{\theta}} \cdot \frac{\partial f_{\theta}}{\partial \theta^{(t+1)}}. \quad (15)$$

692

693 While this gradient no longer explicitly contains the dependence on the parameters ω through
694 $\frac{\partial \theta^{(t+1)}}{\partial \omega}$, it can still be effectively updated. This is because that the update of $\theta^{(t+1)}$ in the inner
695 loop still depends on ω due to the reweighting mechanism in Eq. (5). Therefore, even under only
696 the first-order information, ω implicitly influences the trajectory of $\theta^{(t+1)}$ via the weighted training
697 loss, which achieves parameters update, while avoiding the prohibitive second-order computation.698 A.3 ALGORITHM
699700 We show the learning algorithm of our proposal DW-MSE in Algorithm 1, where an iterative update
701 process is applied.

702 **Algorithm 1** Learning algorithm of DW-MSE.

703 **Require:** Training dataset $\mathcal{D}^{\text{train}} = \{(X_n, Y_n)\}_{n \in [N]}$, validation dataset $\mathcal{D}^{\text{val}} =$
704 $\{(X_n, Y_n)\}_{m \in [M]}$, batch size bs , max iterations T .
705 **Ensure:** Prediction network parameters $\theta^{(T)}$.
706 1: Initialize $\theta^{(0)}$ for classifier network and $\omega^{(0)}$ for the meta-network.
707 2: **for** $t = 1$ to T **do**
708 3: Randomly sample two batches $B_{\text{bs}}^{\text{train}}$ and $B_{\text{bs}}^{\text{val}}$ from $\mathcal{D}^{\text{train}}$ and \mathcal{D}^{val} , respectively. \triangleright Eq. (4)
709 4: Generate the dynamic weights $[\lambda_1, \dots, \lambda_{\text{bs}}]$ for the training samples \triangleright Eq. (5)
710 5: Update $\omega^{(t+1)}$. \triangleright Eq. (5)
711 6: Update $\theta^{(t+1)}$. \triangleright Eq. (8)
712 7: **end for**
713

714 Table 4: List of variables used in the experiments. These two benchmark has the same climate
715 variables, where the only difference is their resolution. ‘‘Input’’ denotes this variable is input for
716 model training and ‘‘Output’’ denotes the prediction model would output this variable.
717

718

Type	Variable name	Abbrev.	Levels	Input	Output
Static	Land-sea mask	lsm		✓	✗
Static	Orography			✓	✗
Single	2 metre temperature	t2m		✓	✓
Single	10 metre U wind component	u10		✓	✓
Single	10 metre V wind component	v10		✓	✓
Atmospheric	Geopotential	z	500	✓	✓
Atmospheric	Temperature	t	850	✓	✓

726 **B DATASET**
727 We manually constructed a dataset of ERA5 hourly data on single levels from 1979 to 2018
728 via the official website by API requests (see <https://cds.climate.copernicus.eu/datasets/>), where the temporal resolution of all data is 6 hours. Then, we regrid these data
729 to two different resolutions, including 5.625° and 1.40625° . More details for the datasets can be
730 found in Table 4 and Table 5.
731
735 **C TRAINING DETAILS**736 **C.1 TASKS**
737 In experiments, we made comparison with current methods on two tasks, including 1) **Regional**
738 **forecasting**, we fine-tune a ClimaX model with different loss functions. In this task, the model is
739 required to predict the weather variables within the next 36 hours, where the lead time is 6 hours.
740 Here, we select three representative regions (North America, South America, and Australia), which
741 keeps the same as the setting in previous works Verma et al. (2024); Nguyen et al. (2023). 2) **Global**
742 **forecasting**, we train a ClimaX model from scratch with different loss functions, where the model
743 is required to generate prediction within the next 144 hours, where the lead time is also 6 hours.
744
746 **C.2 METRICS**
747 The formulation for the used three metrics are as follows.
748

749

750 - **Root mean square error (RMSE)**, which measures the average magnitude of prediction errors
751 by taking the square root of the mean of squared differences between predicted and observed
752 values. It is formally written as

753
$$\text{RMSE} = \sqrt{\frac{1}{UHWV} \sum_{u=1}^U \sum_{h=1}^H \sum_{w=1}^W \sum_{v=1}^V \mathcal{W}(z) (\mathbf{y}_{u;h,w,v} - \hat{\mathbf{y}}_{u;h,w,v})^2}. \quad (16)$$
754

755

Table 5: Details of dataset split

Task	resolution	Training	Validation	Test
Regional forecasting	5.625°	1990-2015	2016	2017-2018
Global forecasting	1.40625°	1979-2015	2016	2017-2018

where $\mathcal{W}(z)$ is the latitude weighting factor that is related to the location in map grids (Nguyen et al., 2023) and z denotes the altitude.

- **Anomaly correlation coefficient (ACC)**, to evaluate the ability of the model to capture anomaly patterns relative to climatology, we compute the anomaly correlation coefficient. Let $\bar{y}_{h,w,v}$ denote the climatological mean at each grid point. The anomaly fields are defined as

$$\hat{\mathbf{y}}'_{u;h,w,v} = \hat{\mathbf{y}}_{u;h,w,v} - \bar{\mathbf{y}}_{h,w,v}, \quad \mathbf{y}'_{u;h,w,v} = \mathbf{y}_{u;h,w,v} - \bar{\mathbf{y}}_{h,w,v}.$$

Then, the ACC is computed as

$$\text{ACC} = \frac{\sum_{u=1}^U \sum_{h=1}^H \sum_{w=1}^W \sum_{v=1}^V \hat{\mathbf{y}}'_{u;h,w,v} \mathbf{y}'_{u;h,w,v}}{\sqrt{\sum_{u=1}^U \sum_{h=1}^H \sum_{w=1}^W \sum_{v=1}^V (\hat{\mathbf{y}}'_{u;h,w,v})^2} \cdot \sqrt{\sum_{u=1}^U \sum_{h=1}^H \sum_{w=1}^W \sum_{v=1}^V (\mathbf{y}'_{u;h,w,v})^2}}. \quad (17)$$

- **Relative Quantile Error (RQE)** (Pathak et al., 2022), To evaluate the prediction accuracy on extreme events, we compare the quantiles of the predicted and observed fields. Let $Q_p(\hat{y})$ and $Q_p(y)$ denote the p -quantile of the predicted and ground-truth values, computed over all $U \times H \times W \times V$ elements. Then, the RQE at quantile level p is defined as

$$\text{RQE}(p) = \frac{Q_p(\hat{\mathbf{y}}) - Q_p(\mathbf{y})}{Q_p(\mathbf{y})}, \quad (18)$$

when $RQE > 0$, the extreme value at that quantile is overestimated; when $RQE < 0$, the extreme value is underestimated.

C.3 TRAINING STRATEGY

For regional forecasting, we adopt the fine-tuning strategy and load the pre-trained checkpoint from ClimaX model ². We use AdamW optimizer with the combination of parameters $\beta_1 = 0.9, \beta_2 = 0.999$. We set the initial learning rate as 5×10^{-7} and the weight decay as 1×10^{-5} . We set the linear warm-up schedule for the first 5 epochs and a cosine-annealing schedule for the next 45 epochs.

For global forecasting, we train from scratch with a ClimaX model. We use AdamW optimizer with the combination of parameters $\beta_1 = 0.9$, $\beta_2 = 0.95$. We set the initial learning rate as 5×10^{-4} and the weight decay as 1×10^{-5} . Similarly, We set the linear warm-up schedule for the first 5 epochs and a cosine-annealing schedule for the next 45 epochs.

For the weighted network, we adopt the Adam optimizer with the initial learning rate of 1×10^{-3} and the weight decay of 1×10^{-5} . Meanwhile, there is no adjustment of the learning rate schedule. We set the batch size as 16 for both two networks.

D EXPERIMENTS

D.1 DISCUSSION OF TRAINING OVERHEAD

Compared to existing loss functions such as EXloss, which rely on manually designed and tuned weighting mechanisms, our framework introduces an additional reweighting network for adaptively learning the weights and thus leads to slight computational overhead. Empirically, we compared our proposal with existing loss function in regional forecasting (the North America) and show the results in Table 6. We train the model with 50 epoch in one H100 GPU.

²<https://github.com/microsoft/ClimaX>

Table 6: Training cost comparison.

Metric	Learnable Parameters	GPU memory	Training hours
RMSE/EXLoss	107 MB	~17.4 GB	21.7 h
Ours	107 MB + 2.4 MB	~21.1 GB	24.3 h

Table 7: Performance under different ratio settings for the validation set. Note that “ \downarrow ” indicates an error reduction and “ \uparrow ” indicates an error increase relative to the RMSE baseline.

Ratio	1	1/2	1/3	1/6	1/12	1/24
z500	198.7 (79.4↓)	199.8 (78.3↓)	204.8 (73.3↓)	239.1 (39.0↓)	257.6 (20.5↓)	280.4 (2.3↑)
t2m	1.48 (0.17↓)	1.49 (0.16↓)	1.52 (0.13↓)	1.58 (0.07↓)	1.62 (0.03↓)	1.67 (0.02↑)
t850	1.57 (0.12↓)	1.58 (0.11↓)	1.62 (0.07↓)	1.64 (0.05↓)	1.66 (0.01↑)	1.69 (0.04↑)
u10	1.38 (0.31↓)	1.40 (0.29↓)	1.43 (0.26↓)	1.57 (0.12↓)	1.61 (0.08↓)	1.68 (0.01↓)

Our method introduces minimal overhead: the base ClimaX model has about 107 MB of parameters, and the reweighting meta-network adds fewer than 3 MB (under 3% more), while peak GPU memory on an H100 increases only from roughly 17.4 GB to 21.1 GB to store meta-update gradients, and total training time rises modestly from 21.7 h to 25.3 h (roughly 16% overhead), which we believe is justified by the improvements in RMSE and EXLoss, especially for extreme events.

D.2 IMPACT OF THE SIZE OF VALIDATION SET

In the paper, we follow the setup of ClimaX, where the validation set is constructed using climate data from the year 2016, and testing is performed on data from 2017 and 2018. To further evaluate the robustness of our approach, we conduct additional experiments over the North America region using smaller validation sets — specifically utilizing only $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{12}$, or $\frac{1}{24}$ of the 2016 data.

Table 7 reports the next 6-hour prediction errors. The results show that our model remains robust when the validation set is reduced to $\frac{1}{3}$ of its original size, with only mild degradation when using extremely small subsets (e.g., $\frac{1}{12}$ or $\frac{1}{24}$), demonstrating the method's strong generalization ability even under limited validation data.

D.3 IMPACT OF THE EXTREME THRESHOLD

In our paper, the setting of the extreme value threshold $\rho = 10\%$, which indicates that top/bottom 10% values are selected as the “extreme event”. In this section, we explore the sensitivity of this parameter with three settings of the ratio $\rho \in [2\%, 5\%, 10\%]$ for regional forecasting and report the results in the North-America.

As shown in Table 8, we can observe that (1) stable and superior performance. Compared with the baseline, RMSE, our method remains the superior performance across different quantile thresholds. Besides, the results difference are marginal (within 3% for all climate variables), indicating that the model is not sensitive to the exact choice of the threshold used to define extreme samples. (2) excessively high thresholds (e.g., $\rho = 2\%$) may slightly degrade performance. This is because when the ratio of extreme samples becomes too large, the meta-learning objective puts disproportionate emphasis on rare events, causing the optimization to focus less on the overall distribution. We will further investigate the distribution of the meta-generated weights in future work to better understand how different values of ρ influence the learning dynamics.

Table 8: Performance under different values of ρ .

value of ρ	z500			t2m			t850			v10		
	2%	5%	10%	2%	5%	10%	2%	5%	10%	2%	5%	10%
Ours	207.4	201.4	198.7	1.56	1.53	1.48	1.58	1.58	1.57	1.63	1.60	1.59
RMSE		278.1			1.65			1.69			1.74	

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
Table 9: Comparison of NowcastingGPT under different training losses.

NowcastingGPT	w/ RMSE	w/ EVLoss	w/ Ours
PCC (\uparrow)	0.20 ± 0.002	0.22 ± 0.002	0.23 ± 0.001
MSE (\downarrow)	3.60 ± 0.02	3.45 ± 0.02	3.39 ± 0.02
MAE (\downarrow)	0.72 ± 0.005	0.69 ± 0.005	0.66 ± 0.004

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

D.4 PRECIPITATION NOWCASTING

In this section, we conduct an experiment on a new task, Precipitation Nowcasting, to verify our method’s effectiveness. We refer to the training details in the literature (Meo et al., 2024) and adopt the same prediction network, NowcastingGPT. Note that (1) This task is a minute-level climate forecasting, which contains many extreme events, and 2) Different from Climax, NowcastingGPT is a generative-based model. As shown in Table 9, our method consistently improves key metrics over both RMSE and EVLoss, demonstrating that our approach can be integrated with probabilistic or generative forecasters and still yield improvements.

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

D.5 VISUALIZATION OF FORECASTING

In Figures 6 and 7, we visualize the ground-truth and prediction results on *South America* region under global forecasting, where the resolution is 1.40625° . The results verify that our prediction is closer to the real values.

In Figure 8, we visualize the ground-truth, prediction results, and their gap under global forecasting. It clearly shows that DW-MSE achieves close alignment with the ground-truth fields, with the remaining biases exhibiting relatively small magnitude and spatially localized patterns.

Figure 9 illustrates an example of the training sample (t2m) and the corresponding weight distribution produced by our meta-network. It can be observed that regions exhibiting extreme values (e.g., high-latitude areas) are assigned larger weights, while relatively stable regions are assigned smaller weights.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940

(a) Ground-Truth

(b) Ours

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 6: Visualization of forecasting results within the next 24 hours on **South America** (lat_range: [-55, 20], lon_range: [270, 330]). Note that these plots is cropped from the results of global forecasting and *10m wind speed* is computed by $\sqrt{u^2 + v^2}$.

(a) Ground-Truth

(b) Ours

Figure 7: Visualization of forecasting results within the next 24 hours on **Southeast Asia** (lat_range: [-10, 25], lon_range: [95, 130]).

1004 Figure 8: Visualization of prediction bias on four climate variables.
1005
1006
1007
1008
1009
1010
1011
10121022 Figure 9: Visualization of training sample and its corresponding generated weight map.
1023
1024
1025