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Abstract
In open-environment applications, data are often
collected from heterogeneous modalities with dis-
tinct encodings, resulting in feature space hetero-
geneity. This heterogeneity inherently induces
label shift, making cross-modal knowledge trans-
fer particularly challenging when the source and
target data exhibit simultaneous heterogeneous
feature spaces and shifted label distributions. Ex-
isting studies address only partial aspects of this
issue, leaving the broader problem unresolved. To
bridge this gap, we introduce a new concept of
Heterogeneous Label Shift (HLS), targeting this
critical but underexplored challenge. We first ana-
lyze the impact of heterogeneous feature spaces
and label distribution shifts on model generaliza-
tion and introduce a novel error decomposition
theorem. Based on these insights, we propose a
bound minimization HLS framework that decou-
ples and tackles feature heterogeneity and label
shift accordingly. Extensive experiments on var-
ious benchmarks for cross-modal classification
validate the effectiveness and practical relevance
of the proposed approach.

1. Introduction
In many real-world tasks, data are collected from open
and dynamic environments, and the source and target data
may exhibit simultaneous heterogeneous feature spaces and
shifted label distributions. For instance, as in the cross-
modal classification task from images to text shown in Fig-
ure 1, the source and target domains may share the same
set of classes but differ in modality. At the same time, the
the heterogeneity of modalities also causes a certain degree
of label distribution shift. A similar situation also occurs
in cross-language (e.g., English/Spanish) text classification
task (Prettenhofer & Stein, 2010), the feature spaces are
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Figure 1. Illustration for the Heterogeneous Label Shift (HLS), in
which the data is with simultaneous heterogeneous feature spaces
and shifted label distributions.

referred to as vocabularies in different languages, and the
features across domains are neither in the same feature space
nor of the same dimensionality. Due to the differences be-
tween languages, label distribution shift is inevitable. We
formulate these real-world cross-modal knowledge transfer
problems as the Heterogeneous Label Shift (HLS), in which
the data is with simultaneous heterogeneous feature spaces
and shifted label distributions.

Reviewing traditional domain adaptation (DA) or label shift
(LS) approaches, most existing works assume a homoge-
neous cross-domain feature space (Pan & Yang, 2010; Ben-
David et al., 2010; Wang et al., 2023). The heterogeneous
feature spaces block the path of existing methods to directly
deal with the HLS problem. To relax this assumption, het-
erogeneous domain adaptation (HDA) (Dai et al., 2008;
Yang et al., 2009; Day & Khoshgoftaar, 2017; Zhou et al.,
2019), which tackle domain adaptation problems with dif-
ferent cross-domain feature spaces, has been an increased
focus. In such a context, plenty of practical HDA (Zhou
et al., 2014; Sukhija et al., 2016; Wang & Mahadevan, 2011;
Li et al., 2019a; Shi et al., 2010; Fang et al., 2023) have
been proposed. For example, Sukhija et al. proposed using
shared label distributions as pivots to learn a sparse feature
transformation in a supervised HDA framework (Sukhija
et al., 2016). Xiao and Guo develop a semi-supervised ker-
nel matching framework that simultaneously maps the target
domain instance into the source domain instances and learns
a prediction function on the labeled source instances (Xiao
& Guo, 2015).
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Despite the prominent performance achieved by these meth-
ods in applications, applying them directly to the HLS sce-
nario will suffer from the following obstacles. (1) They
ignore the adaptation to the shifted label distributions in the
target domain, which is crucial for practical machine learn-
ing systems (des Combes et al., 2020; Zhao et al., 2021a;
Wu et al., 2021; Bai et al., 2022; Zhou et al., 2023). (2)
They inherently depend on the availability of labeled data
in the target domain, which is either scarce or even absent
in many tasks. (3) The mismatched label distribution in-
evitably disrupts the existing theoretical guarantee of HDA,
so it is desirable to establish a theoretical guarantee that
is simultaneous applicable to heterogeneous feature spaces
and shifted label distributions. This paper aims to fill the
gap in terms of both theoretical understanding and practi-
cal methods for the heterogeneous label shift setting and
thereby move a step closer towards having a more complete
understanding on the cross-modal knowledge transfer for
heterogeneous label shift data.

To solve the aforementioned HLS problem, we first ana-
lyze the role that heterogeneous feature spaces and shifted
label distributions play in the generalization ability of the
model and present a novel error decomposition theorem.
Motivated by this, we suggest a bound minimization HLS
framework that decouples and tackles feature heterogene-
ity and label shift accordingly. For illustration, we devise
a novel Heterogeneous Label Shift Adversarial Network
(HLSAN) algorithm within the framework.

Extensive experiments on various benchmarks for cross-
modal classification validate the effectiveness and practical
relevance of the proposed approach. In summary, the contri-
butions of our paper are listed as follows.

• We introduce and investigate a novel learning problem,
namely, Heterogeneous Label Shift (HLS), which is
rarely studied and arisen from many real application
areas. To our knowledge, this may be the first attempt
concerning knowledge transfer in this simultaneous
heterogeneous feature spaces and shifted label distri-
butions scenario with a theoretical guarantee.

• We present a novel error decomposition theorem that
directly suggests a bound minimization HLS frame-
work. Motivated by the theoretical analysis, we de-
vise a Heterogeneous Label Shift Adversarial Network
(HLSAN) algorithm as an illustration within the frame-
work.

• Comprehensive experimental studies demonstrate the
effectiveness of our proposal on multiple benchmarks
with varying degrees of shifts for different types of
cross-modal classification tasks.

2. Related Works
Label shift. Label shift (Long et al., 2018b; 2019; Cai
et al., 2022a;b; Garg et al., 2020; Li et al., 2019b; Zhang
et al., 2021; Zhao et al., 2021b) assumes the source and
target domains have different class distributions but the
same feature distribution within each class. Lipton et al.
(Lipton et al., 2018b) explained that label shift is simpler
than covariate shift due to the simplicity of the label space
and exploited arbitrary black-box predictors to estimate
the importance weights using the confusion matrix. On
this basis, Azizzadenesheli (Azizzadenesheli et al., 2019b)
proposed a regularized weight estimator, which obtains good
statistical guarantees without a requirement on the problem-
dependent minimum sample complexity, and introduced
a novel regularization method to compensate for the high
estimation error of the importance weights in low target
sample settings (Azizzadenesheli, 2022). Alexandari et al.
(Alexandari et al., 2020) combined maximum likelihood
with bias-corrected calibration and introduced a principled
strategy for estimating source-domain priors that improves
robustness to poor calibration. Based on the above label
shift methods, Garg et al. (Garg et al., 2020) proposed a
unified view of label shift estimation based on confusion
matrices and maximum likelihood. These approaches are
not suitable for our investigations since they are limited
to homogeneous domain adaptation problems and cannot
handle the heterogeneous feature spaces directly.

Heterogeneous domain adaptation. Heterogeneous do-
main adaptation (HDA) (Li et al., 2014; Zhou et al., 2014;
Sukhija et al., 2016; Shen & Guo, 2018; Li & Zhang, 2019;
Xiao & Guo, 2015; Tsai et al., 2016; Hsieh et al., 2016;
Yao et al., 2019; Fang et al., 2023) aims to enable effective
cross-modal knowledge transfer between domains with in-
herently distinct feature spaces. This framework addresses
the challenges posed by feature-space heterogeneity, ensur-
ing meaningful alignment and adaptation across domains.
Early, Duan et al.(Li et al., 2014) propose a heterogeneous
feature augmentation method that transforms the data in
both domains into a common subspace and then augments
the projected data with original features. Later, Sukhija et al.
proposed using shared label distributions as pivots to learn
a sparse feature transformation in a supervised HDA frame-
work (Sukhija et al., 2016). Xiao and Guo (Xiao & Guo,
2015) develop a semi-supervised kernel matching frame-
work that simultaneously maps the target domain instance
into the source domain instances and learns a prediction
function on the labeled source instances. Shen et al. (Shen
& Guo, 2018) apply the linear transformation to map source
domain features onto the target domain and propose a sparse
feature transformation method to tackle the unsupervised
HDA problem. More recently, motivated by compatibility
condition in semi-supervised probably approximately cor-
rect (PAC) theory, Fang et al. (Fang et al., 2023) propose
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a generalization error estimation for target risk in semi-
supervised HDA and then develop two SsHeDA algorithms
based on the theoretical result. These prominent approaches
can not derectly tackle HLS problem either since (1) HLS
considers the unsupervised scenario, the requirement of la-
beled target instances remains to be a limitation for these
(semi-)supervised methods. (2) These methods only fo-
cus on one aspect of our setting and they ignore that label
distribution shifts.

3. Problem Setting and Concepts
This section outlines the problem setting and key concepts,
with Table 1 providing a summary of primary notations.

3.1. Problem Setting

Considering a general k-class classification problem, let
Y = {1, · · · , k} be the label space. Denote the feature
spaces of the source and target domains by Xs ⊂ Rds and
Xt ⊂ Rdt , respectively. The source and target domains
correspond to two distinct joint distributions, P(Xs, Ys)
and P(Xt, Yt), where Xs ∈ Xs, Xt ∈ Xt, and Ys, Yt ∈ Y
are random variables. For simplicity, we use Ps and Pt
for short to denote P(Xs, Ys) and P(Xt, Yt), respectively.
Marginal feature distributions are indicated by subscripts,
for example, PXs

represents the marginal distribution ofXs.
The discrete label distribution is represented by specifying
random variables, such as Ps(Y ) represents the marginal
distribution of Ys. Then, the HLS problem is defined as
follows.
Problem 1 (Heterogeneous Label Shift, HLS). Given sets
of samples, namely a labeled source set, an unlabeled target
set, and a few additional unlabeled parallel instances

S = {xis, yis}
ns
i=1 ∼ PXsYs

i.i.d

T = {xit}
nt
i=1 ∼ PXt

i.i.d

O = {[xio,s,xio,t]}
np

i=1 ∼ PXs
× PXt

i.i.d .

Here PXs × PXt is the marginal distribution of the parallel
instances and np � ns, np � nt. The aim of HLS is
to enable effective knowledge transfer between the hetero-
geneous source and target domains, utilizing S, T , and O
to develop a model that performs well in classifying data
within the target domain.

3.2. Concepts

• Feature Transformations. Inspired by (Ben-David et al.,
2010), a common strategy involves learning representations
that are invariant to domain shifts. For the HLS problem,
we begin by introducing the following definition.

Definition 3.1 (Feature Transformations). Given a latent

Notation Definition

X ,Xs,Xt latent, source, target feature space
Y = {1, · · · , k} label space

Xs, Xt random variables on Xs,Xt
Ys, Yt random variables on Y
Ps,Pt source, target joint distributions
PXs

,PXt
source, target marginal distributions

Ps(Y ),Pt(Y ) discrete label distrbutions
Ts,Tt source, target feature transformation
Fs,Ft feature transformation space
S The labeled source data
T The unlabeled target data
O The unlabeled parallel instances

Table 1. Main Notations and Corresponding Definitions

space X ⊂ Rd, we denote

Fs ⊂ {Ts : Xs 7→ X}, Ft ⊂ {Tt : Xt 7→ X}

as source and target transformation spaces, respectively. The
feature transformations Ts and Tt transform the heteroge-
neous feature spaces into a common latent feature space and
induce similar distributions on PXs

and PXt
.

• Importance Weights. In the label shift setting, importance
weights play a crucial role.

Definition 3.2 (Importance Weights). For discrete label
distributions Ps(Y ) and Pt(Y ) of the source and target
domains, the importance weight w ∈ Rk is defined as

w(y) :=
Pt(Y = y)

Ps(Y = y)
,∀y ∈ Y = {1, · · · , k}.

• Hypothesis Space and Risks. Considering a general k-
class classification task with a hypothesis spaceH consist-
ing of scoring functions

h : X 7→ R1×|Y| = R1×k, x 7→ [h1(x), . . . , hk(x)]

where hj(x)(j = 1, . . . , k) indicates the confidence in the
prediction of label j. Given ` : Rk × Rk 7→ R≥0 as the
symmetric loss function, the expected risks of h ∈ H w.r.t.
loss ` under P(Tt(Xt), Yt) and the weighted expected risks
of h ∈ H w.r.t. loss ` under P(Ts(Xs), Ys) are given by

Rt(h ◦Tt) = E `(h(Tt(xt)), φ(yt)),

Rs(w,h ◦Ts) = E w(ys)`(h(Ts(xs)), φ(ys)).

where φ maps a label to the corresponding one-hot vector.
Correspondingly, the weighted empirical source risk are
defined as

R̂s(w,h ◦Ts) =
1

ns

ns∑
i=1

w(ys)`(h(Ts(x
i
s)), φ(yis)).
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4. Theoretical Analysis of HLS
To dissect the HLS problem, we make a theoretical analysis
of HLS and present a novel error decomposition theorem
that directly suggests a bound minimization HLS framework.
Due to space limitations, the detailed proofs are listed in
Appendix A.

4.1. Error Decomposition Theorem of HLS

Definition 4.1 (Heterogeneous Feature Alignment, HFA).
Considering two feature transformations Ts and Tt trans-
form the heterogeneous feature spaces into a common latent
feature space, i.e., X = Ts(Xs)∪Tt(Xt). The representa-
tion X ∈ X satisfies HFA if

Ps(X|Y = y) = Pt(X|Y = y),∀y ∈ Y.

HFA extends the concept of Generalized Label Shift (GLS)
introduced in (des Combes et al., 2020), addressing the
more complex challenge of aligning both feature spaces and
marginal feature distributions. Specifically, HFA employs
dual feature transformations to induce similar latent-space
distributions for Ps and Pt, thereby achieving alignment of
heterogeneous feature spaces.

Definition 4.2 (Conditional Error Gap). For a joint distribu-
tion P and a classifier h, where Ŷ = h(X), the conditional
error gap of h is defined as follows.

∆CE(h) := max
y 6=y′∈Y2

|Ps(Ŷ = y′|Y = y)−Pt(Ŷ = y′|Y = y)|.

Under the HFA assumption, it follows that ∆CE(h) = 0.
We proceed to establish an upper bound on the error gap be-
tween the source and target domains, which also facilitates
deriving a generalization bound for the target risk.

Theorem 4.3 (Error Decomposition Theorem). Consider-
ing a general k-class classification task. LetH be the family
of hypothesis set, and denote the hypothesis returned by the
model trained with the available data S, T , and O as h.
Suppose the loss function ` is M -bounded and L-Lipschitz
w.r.t. Euclidean norm. Then, for any δ > 0, with probability
at least 1− δ over the source domain sample of size ns and
target domain sample of size nt, the following inequalities
holds for any h ∈ H,

|Rt(h ◦Tt)− R̂s(ŵ,h ◦Ts)| ≤ ∆CE(h) + ‖ŵ −w‖2

+ 2LRns(H ◦Ts) +M

√
log(1/δ)

2ns
.

(1)
Here, Rns

(H ◦Ts) denotes the Rademacher complexity of
the hypothesis classH associated with Ts. w and ŵ denote
the true importance weights and the estimated importance
weights, respectively.

Theorem 4.3 presents a decomposition of the error gap be-
tween source and target domains, yielding a generalization
bound for the target riskRt(h,Ts,Tt). This bound consists
of three key components: 1) ∆CE(h), which measures the
divergence between the conditional distributions P(Ŷ |Y );
2) ‖ŵ−w‖2, representing the weight estimation error as the
discrepancy between estimated and true importance weights;
and 3) Finite sample errors. Unlike previous works [(Ben-
David et al., 2010), Theorem 2; (Zhao et al., 2019), Theorem
4.1], which decompose the error gap based on the distance
between marginal feature distributions (PXs

,PXt
) and opti-

mal labeling functions (fXs , f
X
t ), Theorem 4.3 introduces a

novel decomposition that circumvents reliance on unknown
optimal labeling functions, providing a distinctive and prac-
tical perspective.

Notably, the conditional error gap ∆CE(h) can be minimized
by aligning the transformed conditional feature distributions
across domains. The importance weights ŵ can be esti-
mated with reference to the investigation of (Lipton et al.,
2018a), which the authors proved to be effective for large
enough sample sizes, and the distance ‖ŵ − w‖2 can be
bounded effectively. Synthesizing conditional error gap and
weight estimation error, the result suggests that, to minimize
the error gap, it suffices to align the transformed conditional
distributions P(X|Y = y) while simultaneously minimiz-
ing the weight estimation error. Before applying a bound-
minimization algorithm inspired by Theorem 4.3, two key
challenges must be addressed, i.e., Heterogeneous Feature
Alignment and Importance Weight Estimation.

4.2. Heterogeneous Feature Alignment

In HLS, the absence of target domain labels prevents direct
alignment of conditional label distributions. By leverag-
ing relative class weights between domains can provide a
necessary condition for HFA, we can bypass the explicit
alignment of conditional feature distributions.
Lemma 4.4 (Necessary condition for HFA). Considering
two feature transformations Ts and Tt, which transform
the heterogeneous source and target feature spaces into a
common latent feature space, i.e., X = Ts(Xs) ∪Tt(Xt).
If X ∈ X satisfies HFA, then

Pt(X) =
∑
y∈Y

w(y)Ps(X,Y = y) =: Pw
s (X).

In contrast to prior approaches that align Pt(X) with Ps(X)
maximum mean discrepancy (MMD) (Long et al., 2015) or
aim to alignPt(Ŷ⊗X) withPs(Ŷ⊗X) (Long et al., 2018a),
Lemma 4.4 proposes aligning Pt(X) with a reweighted
marginal distribution, Pw

s (X).
Theorem 4.5. Given the feature transformations Ts and
Tt, the common latent feature space X = Ts(Xs) ∪
Tt(Xt). Let ρ := miny∈YPt(Y = y) and wM :=
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miny∈Y w(y). For a hypothesis h, the following inequality
holds.

max
y∈Y

dTV (Ps(X|Y = y),Pt(X|Y = y))

≤
wMRs(h ◦Ts) +Rt(h ◦Tt) +

√
8dJS(Pw

s (X) ‖ Pt(X))

ρ
,

(2)
where dTV and dJS denote the the total variation and
Jensen-Shannon distance, respectively.

Theorem 4.5 confirms that using dJS to match Pt(X) and
Ps(X) is an appropriate objective for approximating the
discrepancy of feature distribution conditioned on the label.
It demonstrates that if marginal feature distributions are
aligned and the source error is zero, successful domain
adaptation (i.e., zero target error) implies that HFA holds.

4.3. Importance Weight Estimation

Accompanied by feature transformations, w can be esti-
mated within a latent invariant space. Drawing inspiration
from the moment-matching technique proposed by Lipton et
al. (Lipton et al., 2018a) for estimating w under label shift,
we develop a method to estimate w under HLS by solving a
regularized quadratic program (RQP). The approach begins
with the following definition.

Definition 4.6. Let Ŷ = h(X) be the predictions. Denote
C ∈ R|Y|×|Y| as the confusion matrix of the classifier on
the source domain and µ ∈ R|Y| as the distribution of
predictions on the target domain, ∀y, y′ ∈ Y

Cy,y′ := Ps(Ŷ = y, Y = y′), µ(y) := Pt(Ŷ = y).

Lemma 4.7. If the Feature Transformations Ts and Tt

achieved HFA, and if the confusion matrix C is invertible,
then w = C−1µ.

Lemma 4.7 indicates that estimating the importance weight
w under HLS does not require target domain labels. How-
ever, matrix inversion can be numerically unstable, particu-
larly with finite sample estimates Ĉ and µ̂ for C and µ. To
address this, we propose a regularized quadratic program
(RQP) to estimate ŵ

ŵ = arg min
w

||µ̂− Ĉw||22 + λ||w −w0||22

s.t. w ≥ 0,w>Ps(Y ) = 1.
(3)

Here, w0 is an initial weight incorporating prior information,
and λ is a parameter balancing the estimated loss with the
regularization term. In contrast to the estimation method in
(des Combes et al., 2020), the regularization term mitigates
extreme label shift, making the estimated weight ŵ more
robust to estimation biases of Ĉ and µ̂.

Theorem 4.8. Denote ŵ as the estimated importance
weight obtained by solving the RQP in Eq.(3). Then, with

probability at least 1− δ, the following inequality holds

||ŵ −w||2 ≤ ε(ns, nt, ||θ||2, δ), (4)

where

||ŵ −w||2 ≤ c1

√
72k

ns
log

(
12k

δ

)
+ c2

√
9k

nt
log

(
6k

δ

)
.

(5)
and

c1 =
(||θ||2 + 1)

σmin(C)
, c2 =

1

σmin(C)
. (6)

||θ||2 = ||w−w0||2 characterizes the distance between the
true weight and the initialized weight.

Theorem 4.8 establishes the effectiveness of estimating
the importance weight w via RQP, demonstrating that the
weight estimation error is tightly bounded. This bound is
directly affected by the sample sizes ns and nt, as well as
the number of classes k. Specifically, larger sample sizes
ns or nt result in a tighter bound, whereas an increase in
the number of classes k leads to a looser bound. Moreover,
the initial weight w0 indirectly impacts the bound; a closer
alignment of w0 to the true weight w reduces ||θ||2, further
tightening the bound.

5. Deep Neural Network Implementation
This section shows how to design theoretically guaranteed
algorithm, i.e., bringing HLS theory into the reality. As
discussed in above Theorems, the algorithm is carried out
from the following three aspects. (1) estimate w via the
available data, (2) align the target feature distributions with
the reweighted source feature distribution and, (3) minimize
the weighted souce risk. Overall, we should consider the
optimization problem as follows

min
h∈H,Ts∈Fs,Tt∈Ft

Rs(w,h ◦Ts) + α∆CE(h). (7)

According to Lemma 4.4, we can bypasses an explicit align-
ment of the conditional feature distributions by aligning
Pt(X) with a reweighted marginal distribution Pw

s (X).
Then Eq.(7) can be transformed into

min
h∈H,Ts∈Fs,Tt∈Ft

Rs(w,h◦Ts)+αdH(Pt(X),Pw
s (X)).

(8)

To measure the distribution discrepancy we introduce the
integral probability metric ((Mller, 1997), IPM).

Definition 5.1 (H-IPM). DenoteH as a set of real-valued
functions. For two distributions D and D′, the H-IPM
between distributions D and D′ is

dH(D,D′) := sup
h∈H
|EX∼D[h(X)]− EX∼D′ [h(X)]|
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Figure 2. Illustration for the proposed HLSAN architecture. HLSAN consists of two main components Feature Space Alignment and
Feature Distribution Alignment, which form a positive feedback loop, reinforcing each other to achieve an satisfactory result.

By approximating any function classH using parametrized
models, e.g., neural networks, we propose a general HLS
framework that is compatible with H-integral probability
metrics.

5.1. Network-Based HLS Algorithm

Inspired by domain-adversarial neural networks [(Ganin
et al., 2016), DANN], we instantiate Fs,Ft andH as fully-
connected neural networks and propose a network-based
algorithm Heterogeneous Label Shift Adversarial Network
(HLSAN). As illustrated in Figure 2, the HLSAN structure
consists of two main components. The first part, Feature
Space Alignment, projects the heterogeneous space into a
latent common space through two feature transformation
networks, Ts,θs and Tt,θt , parameterized by θs and θt, re-
spectively. In the second part, the distributions in the latent
common space are aligned while training a classifier suited
to the target domain. This second part includes two mod-
ules: a label classifier hφ, parameterized by φ, and a domain
discriminator dϕ, parameterized by ϕ. The design of the
HLSAN network is guided by two main objectives: (1)
optimizing Ts, Tt, and h to minimize the label classifier
loss, i.e., Weighted Source Risk Minimization, (2) optimiz-
ing fs, ft, and dϕ to maximize the domain discriminator
loss, achieving Feature Distribution Alignment.

In a nutshell, Feature Space Alignment and Feature Distri-
bution Alignment collaborate to achieve Heterogeneous Fea-
ture Alignment. Dynamically updated importance weights
mitigate the challenges of label shift, effectively linking
Heterogeneous Feature Alignment with Weighted Source
Risk Minimization.

5.2. Loss in HLSAN

Recalling the HLS framework formulated in Eq.(8),

min
h∈H,Ts∈Fs,Tt∈Ft

Rs(w,h◦Ts)+αdH(Pt(X),Pw
s (X)).

According to the investigation of (des Combes et al.,
2020), dPH(Pt(X),Pw

s (X)) is instantiated with the Jensen-
Shannon Divergence. Specifically, the loss include domain
discriminator loss Lw

DA and classifier loss Lw
C .

• Domain Discriminator Loss. We align Pt(X) and Pw
s (X)

using a discriminator. For batches {xis, yis}B and {xit}B of
size B, the weighted domain discriminator loss is

Lw
DA({xis, yis}B , {xit}B ,Ts,Tt, ϕ)

= − 1

B

B∑
i=1

[
w(yis) log

(
dϕ(Ts(x

i
s))
)
+ log

(
1− dϕ(Tt(x

i
t))
)]
,

(9)
Moreover, we also verify that the standard ADA framework
applied to Lw

DA indeed minimizes dJS(Pw
s (X) ‖ Pt(X))

in Theorem 5.2.

Theorem 5.2. Let D(x, y) and D′(x) be two density dis-
tributions, and w(y) be a positive function such that∫
D(y)w(y)dy = 1. Let Dw(x) =

∫
D(x, y)w(y)dy de-

note the w-reweighted marginal distribution of x under D.
Define the following function with respect to d(x)

I(d) := E(x,y)∼D,x′∼D′ [−w(y) log(d(x))− log(1− d(x′))] .

The analysis shows that when

d(x) = d∗(x) =
Dw(x)

Dw(x) +D′(x)
,

I(d) attains the minimum value

I(d∗(x)) = log(4)− dJS(Dw(x) ‖ D′(x)).

6



Heterogeneous Label Shift: Theory and Algorithm

Instantiating D(x, y) and D′(x) to Pw
s (X) and Pt(X)

proves that the Lw
DA leads to minimizing dJS(Pw

s (X) ‖
Pt(X)).

• Classifier Loss. As for Weighted Souce Risk Minimization,
we adopt the commonly used cross-entropy loss. For batches
{xis, yis}S of size S, LC is formulated as

Lw
C ({xis, yis}B , {xit}B ,Ts, φ)

= − 1

B

B∑
i=1

w(yis) log
(
hφ(Ts(x

i
s))yis

)
.

(10)

• Overall Loss. Combining Lw
DA and Lw

C , we obtain the
overall loss

L = Lw
C − αLw

DA, (11)

where the hyper-parameter λ is used to tune the trade-off
between these two quantities during the learning process.

Everything seemed ready, however, a potential risk in Fea-
ture Space Alignment is that poor initialization can lead to
failed knowledge transfer, as demonstrated in (Zhao et al.,
2019; Ye et al., 2021). We further illustrate this scenario
with a simple example in the Appendix B.3. To mitigate
this risk, we aim to find a appropriate representation for
both source and target domain data within the common
space. Fortunately, parallel instances provide a natural
bridge for aligning source and target modalities, as they
share a common label (albeit unknown). By aligning the
marginal feature distributions of parallel instances across
the two modalities, we can effectively prevent extreme cases
of negative transfer. Specifically, we add a loss LO for Fea-
ture Space Alignment based on the parallel instances. For
batches {xio,s, xio,t}S of size S, LO is formulated as

LO(θs, θt) =

S∑
i=1

∥∥Ts,θs(xio,s)−Tt,θt(x
i
o,t)
∥∥
2
. (12)

The parallel instances create a cross-modal channel, en-
abling a solution to the HLS problem. Through this channel,
Feature Space Alignment and Feature Distribution Align-
ment form a positive feedback loop, reinforcing each other
to achieve an satisfactory result.

Within this cross-modal channel, leveraging the implicit
label information in parallel instances allows us to fur-
ther enhance Feature Distribution Alignment. Specifically,
dPH(Pt(X),Ps(X)) is instantiated with the projected max-
imum mean discrepancy (MMD) (Gretton et al., 2012) on
the parallel instances. For batches {xio,s, xio,t}S of size S,
LP is formulated as

LP (θs, θt, φ) =
1

S

S∑
i=1

∥∥∥hφ(Ts.θs(x
i
o,s))− hφ(Tt,θt(x

i
o,t))

∥∥∥
2
.

(13)

Take all the losses of Feature Distribution Alignment into
account, we obtain the overall knowledge transfer (KT) loss
as

LKT (θ̂s, θ̂t, φ̂, ϕ̂) = Lw
C + αLP − βLw

DA, (14)

where the hyper-parameter α and β are used to tune the
trade-off between these three quantities during the learn-
ing process. In summary, optimizing HLSAN involves two
key components, i.e, Feature Space Alignment and Fea-
ture Distribution Alignment, governed by the respective loss
functions LO and LKT . HLSAN alternately optimizes LO
and LKT either until a convergence criterion is satisfied or
for a predefined number of iterations. The more optimiza-
tion and implementation details are provided in Appendix
B.1 and B.2.

6. Experiment
In this section, we evaluate the performance of the HLS
approach with other closely related methods. Subsequently,
we present an in-depth analysis of the proposed CMAN
method from different aspects, including ablation study,
parameter sensitivity analysis and convergence behavior.
Before going into the details, let us introduce datasets and
baselines first.

6.1. Configuration

Dataset. We design cross-modal knowledge transfer tasks
using two real-world datasets: the Multilingual Reuters Col-
lection (Li et al., 2014) and Wikipedia (Fang et al., 2023).
Detailed descriptions of these tasks are provided in Ap-
pendix B.4. To simulate shifted label distributions in the
benchmark datasets, we employ the Dirichlet shift approach
proposed in (Guo et al., 2020). In this setup, the target
dataset is assumed to follow a uniform label distribution,
achieved through sampling, while the source domain label
distribution is altered. Specifically, the source label distribu-
tion is sampled from a Dirichlet distribution parameterized
by the concentration factor γ. Experiments are conducted
under three label distribution shift settings, γ = 2, γ = 5,
and γ = 10. Additional implementation details are provided
in Appendix B.2.

Compared Methods. We evaluate the performance of the
HLSAN algorithm by comparing it against two groups of
baseline methods with distinct objectives: modified label
shift (LS) approaches and heterogeneous domain adapta-
tion (HDA) methods. (1) To illustrate the challenges posed
by heterogeneous spaces and show the effectiveness of the
Heterogeneous Feature Alignment (HFA) module, we com-
pare HLSAN with traditional LS approaches, such as BBSL
(Lipton et al., 2018a) and RLLS (Azizzadenesheli et al.,
2019a). These methods are tailored to adapting heteroge-
neous source and target domains by employing dimension-

7
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Method
γ = 2 γ = 5 γ = 10

SP-EN SP-FR SP-GE SP-IT SP-EN SP-FR SP-GE SP-IT SP-EN SP-FR SP-GE SP-IT

BBSL 23.7±1.4 18.7±0.9 7.7±0.8 15.6±1.0 13.8±1.6 18.7±1.3 9.2±1.1 20.3±1.2 15.2±1.3 18.9±1.7 15.8±1.3 7.0±1.2

RLLS 22.4±1.3 18.2±1.0 6.4±0.8 15.6±1.6 13.6±1.1 19.3±1.5 9.8±1.0 21.0±1.1 14.3±1.2 18.7±1.4 15.4±1.1 6.9±1.1

TNT 26.7±5.8 25.2±3.5 18.9±2.5 22.4±3.7 25.2±4.4 24.0±4.0 20.2±2.0 19.4±2.4 25.0±3.1 20.4±3.7 21.9±2.6 24.7±2.3

JEMA 48.6±3.1 45.7±3.4 37.2±3.8 32.5±2.9 46.5±4.5 42.5±2.0 41.1±3.7 39.9±4.0 45.1±4.4 40.2±3.1 40.9±5.1 39.3±2.9

HLSAN 53.5±3.1 54.7±2.0 50.2±3.1 46.4±3.3 57.4±2.0 53.7±1.6 53.5±2.0 50.8±2.9 59.9±2.3 57.3±4.4 56.3±1.8 55.1±1.2

Table 2. Accuracy (%) with standard error on Multilingual Reuters Collection dataset from Text→Text. The best accuracy among all
algorithms are highlighted in boldface.

Method
γ = 2 γ = 5 γ = 10

Wiki T-I

BBSL 16.11±2.99 12.94±4.72 14.56±3.35

RLLS 18.26±3.88 11.07±4.15 9.02±4.88

TNT 60.26±4.24 54.07±6.38 56.25±5.54

JEMA 72.02±5.01 68.71±3.05 82.28±2.13

HLSAN 81.73±3.20 77.61±2.52 85.83±0.65

Table 3. Accuracy (%) with standard error on Wikipedia dataset
from Image→Text. The best accuracy among all algorithms are
highlighted in boldface.

ality reduction techniques to enforce an equal number of
features across the two domains. (2) To evaluate the effec-
tiveness of HLS in eliminating the dependency on labeled
target domain data and addressing label shift, we conduct
comparisons with HDA methods, including TNT (Chen
et al., 2016) and JMEA (Fang et al., 2023). For a fair com-
parison, we provide only a minimal amount of labeled target
domain data (one sample per class) to the SsHDA methods,
closely approximating the unsupervised setting.

6.2. Experiments Result

Based on the aforementioned datasets, we encounter
two types of cross-modal knowledge transfer tasks, i.e.,
Text→Text and Text→Image. Table 2 and 3 report the com-
parison results and we can obtain the following conclusions.
1) HLSAN consistently outperforms the comparison base-
line methods. 2) The modified LS performs the worst, high-
lighting that heterogeneous feature spaces introduce new
challenges for traditional LS methods. 3) The performance
of SsHDA methods heavily depends on label availability
in the target domain and significantly declines under inade-
quate supervision.

6.3. Insight Analyses

6.3.1. ABLATION STUDY

We perform ablation experiments on four tasks, SP→ EN,
SP → FR, SP → GE and SP → IT, under Dirichlet shift
(γ = 10) to evaluate the contributions of HLSAN compo-
nents. HLSAN is divided into three variants. (1) w/o P, ex-
cluding the parallel instances loss LP (13); (2) w/oW, ex-
cluding the importance weight w from (14); and (3) w/oD,
excluding the domain discriminator loss Lw

DA (9). Results,
shown in Figure 3, reveal two key findings. 1) Removing
any component degrades performance, demonstrating the
importance of each term. 2) Incorporating with importance
weight enhances performance, indicating the necessity of
aligning label distribution shifts.

SP-EN SP-FR SP-GE SP-IT
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Figure 3. The accuracy (%) of ablation study of HLSAN on four
cross-modal knowledge transfer tasks with γ = 10.

6.3.2. PARAMETER ANALYSIS

The HLSAN algorithm includes two key hyperparameters,
α and β, whose impact on performance is analyzed through
parameter sensitivity experiments on two tasks: SP→ EN
and SP→ IT, under the Dirichlet shift scenario with γ = 5.
The values of α and β are systematically varied within the
range [0.01, 0.05, 0.1, 0.5, 1, 5]. The results, presented in
Figure 4, demonstrate that the performance of HLSAN is
sensitive to these parameters, underscoring the importance
of their proper tuning. Notably, HLSAN achieves prominent
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Figure 4. The sensitivity analysis of parameters α and β for
HLSAN on two cross-modal knowledge transfer tasks with γ = 5.
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Figure 5. The convergence behavior of HLSAN on two cross-
modal knowledge transfer tasks with γ = 5.

performance when α and β are within the range {0.5, 1} for
both two tasks, indicating that the parameter interval [0.5, 1]
is more suitable for HLSAN.

6.3.3. CONVERGENCE BEHAVIOR

The HLSAN network utilizes alternating optimization for
its two components: Feature Space Alignment and Feature
Distribution Alignment. Figure 5 illustrates the evolution of
the losses LO and LKT for these components over training
epochs, alongside the accuracy curve to depict the knowl-
edge transfer process. As training progresses, both losses
steadily decrease and stabilize, while accuracy improves
until reaching a plateau. These observations suggest that
Feature Space Alignment and Feature Distribution Align-
ment interact synergistically, forming a positive feedback
loop that enhances overall performance.

7. Conclusion
This paper addresses the critical yet underexplored chal-
lenge of Heterogeneous Label Shift (HLS), characterized by
simultaneous feature space heterogeneity and label distribu-
tion shifts in cross-modal knowledge transfer. We bridge the
gap in both theoretical understanding and practical methods
for the HLS setting, advancing our comprehension of cross-
modal knowledge transfer in the presence of heterogeneous

label shift data. Building on these insights, we developed a
bound minimization framework to effectively decouple and
address feature heterogeneity and label shift. Our findings
highlight the importance of tackling complex, real-world
distribution shifts and lay a strong foundation for future
research in this area.
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A. Omitted Proofs
A.1. Proof of Error Decomposition Theorem 4.3

Proof. The proof of Theorem 4.3 will start with addition and subtraction based on |Rt(h,Tt)− R̂s(h,Ts)|. By addition
and subtraction we have

Rt(h ◦Tt)− R̂s(ŵ,h ◦Ts) = Rt(h ◦Tt)−Rs(w,h ◦Ts)︸ ︷︷ ︸
(a)

+Rs(w,h ◦Ts)−Rs(ŵ,h ◦Ts)︸ ︷︷ ︸
(b)

+Rs(ŵ,h ◦Ts)− R̂s(ŵ,h ◦Ts)︸ ︷︷ ︸
(c)

.
(15)

Here (a) is the heterogeneous space alignment error, (b) is the weight estimation error and (c) is the finite sample error.

Bounding term (a) Remember that Rt(h ◦ Tt) is the expected risks of h ∈ H w.r.t. loss ` under PTt(Xt)Yt
and

Rs(w,h ◦Ts) is the weighted expected risks of h ∈ H w.r.t. loss ` under PTs(Xs)Ys
. w ∈ Rk is the importance weights

of the target and source label distributions. k = |Y| is the cardinality of the finite domain of Y . Let Ŷ = h(X) be the
prediction of h, then we have

|Rt(h ◦Tt)−Rs(w,h ◦Ts)| = |E `(h(Tt(xt)), φ(yt))− E w(ys)`(h(Ts(xs)), φ(ys))|

1©
=

∣∣∣∣∣∣
∑
i 6=j

PYt
(Yt = j)Pt(Ŷ = i|Yt = j)−

∑
i 6=j

w(Y = j)PYs
(Ys = j)Ps(Ŷ = i|Ys = j)

∣∣∣∣∣∣
≤
∑
i 6=j

∣∣∣PYt
(Yt = j)Pt(Ŷ = i|Yt = j)−w(Y = j)PYs

(Ys = j)Ps(Ŷ = i|Ys = j)
∣∣∣

=
∑
i 6=j

PYt(Yt = j)
∣∣∣Pt(Ŷ = i|Yt = j)− Ps(Ŷ = i|Ys = j)

∣∣∣
≤
∑
i 6=j

PYt
(Yt = j) max

y 6=y′∈Y2

∣∣∣Ps(Ŷ = y′|Y = y)− Pt(Ŷ = y′|Y = y)
∣∣∣

= ∆CE(h).
(16)

Here, equality 1© holds due to the law of total probability.

Bounding term (b) Recalling that Rs(w,h ◦ Ts), Rs(ŵ,h ◦ Ts) are the weighted expected risks of h ∈ H w.r.t. loss
` under PTs(Xs)Ys

. w, ŵ ∈ Rk are the true importance weights and the estimated importance weights. k = |Y| is the
cardinality of the finite domain of Y . Let us define ˜̀∈ Rk with ˜̀

j = E Iyi=j`(yi;h(xi)). Notice that by definition ‖`‖1 ≤ 1
and ‖`‖∞ ≤ 1 from which it follows by Hoelder’s inequality that ‖`‖1 ≤ 1. Therefore, for all h we have via the Cauchy
Schwarz inequality that

|Rs(w,h ◦Ts)−Rs(ŵ,h ◦Ts)| =
∣∣E w(yis)`(h(Ts(x

i
s)), y

i
s)− E ŵ(yis)`(h(Ts(x

i
s)), y

i
s)
∣∣

=
∣∣(w(yis)− ŵ(yis))E `(h(Ts(x

i
s)), y

i
s)
∣∣

≤
k∑
j=1

∣∣∣(w(Y = j)− ŵ(Y = j))˜̀
j

∣∣∣ ≤ ‖ŵ −w‖2

. (17)

Bounding term (c) Inspired by the proof of Theorem 3.1 in (Jennings & Wooldridge, 2012), we bound (c) starting from
the standard Rademacher complexity bound forH. Let L ◦ H be the family of loss function associated toH. Suppose the
loss function ` is M -bounded and L-Lipschitz w.r.t. Euclidean norm. Now we defined a random variable Φ as follows,

Φ(S) := sup
h∈H

Rs(ŵ,h ◦Ts)− R̂s(ŵ,h ◦Ts).

We further define a ghost data set S ′ and the corresponding ghost loss R̂′s(h, ŵ,Ts,Tt), where S and S ′ are two samples
differing by exactly one instance, and say Sm = (xis, y

i
s) in S and S′m = (xis, y

i
s)
′ in S ′. Then, since the difference of

13
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suprema does not exceed the supremum of the difference, we have

Φ(S)− Φ(S ′) ≤ sup
h∈H

R̂s(ŵ,h ◦Ts)− R̂′s(ŵ,h ◦Ts) = sup
h∈H

` ◦ h ◦Ts(Sm)− ` ◦ h ◦Ts(S
′
m)

ns
≤ M

ns
. (18)

Similarly, we can obtain Φ(S)−Φ(S ′) ≤M/ns, thus |Φ(S)− Φ(S ′)| ≤M/ns. Then, by McDiarmids inequality, for any
δ > 0, with probability at least 1− δ/2 over a sample S of size ns, the following inequality holds:

Φ(S) ≤ ES [Φ(S)] +M

√
log 2

δ

2ns
.

Now we will proceed bound ES [Φ(S)], the random variable Φ has the following properties

ES [Φ(S)] = ES
[

sup
h∈H

Rs(ŵ,h ◦Ts)− R̂s(ŵ,h ◦Ts)

]
= ES

[
sup
h∈H

ER̂′s(ŵ,h ◦Ts)− R̂s(ŵ,h ◦Ts)

]
. (19)

We can rewrite as

ES [Φ(S)] = ES
[

sup
h∈H

ES′

[
R̂′s(ŵ,h ◦Ts)− R̂s(ŵ,h ◦Ts)

∣∣∣{xis, yis}ns
i=1 ∼ PXsYs

]]
(20)

and swapping the sup with the expectation

ES [Φ(S)] ≤ ES
[
ES′

[
sup
h∈H

[
R̂′s(ŵ,h ◦Ts)− R̂s(ŵ,h ◦Ts)

∣∣∣{xis, yis}ns
i=1 ∼ PXsYs

]]]
. (21)

According to the law of iterated conditional expectation, we remove the condition have expectation on both of the samples;

ES [Φ(S)] ≤ ES,S′

[
sup
h∈H

[
R̂′s(ŵ,h ◦Ts)− R̂s(ŵ,h ◦Ts)

]]
= ES,S′

[
sup
h∈H

[
1

ns

ns∑
i=1

ŵ(yi
′

s )`(h(Ts(x
i′

s )), yi
′

s )− ŵ(yis)`(h(Ts(x
i
s)), y

i
s)

]]
1©
= Eσ,S,S′

[
sup
h∈H

[
1

ns

ns∑
i=1

σi

(
ŵ(yi

′

s )`(h(Ts(x
i′

s )), yi
′

s )− ŵ(yis)`(h(Ts(x
i
s)), y

i
s)
)]]

2©
≤ Eσ,S

[
sup
h∈H

[
1

ns

ns∑
i=1

−σi
(
ŵ(yis)`(h(Ts(x

i
s)), y

i
s)
)]]

+ EσS′

[
sup
h∈H

[
1

ns

ns∑
i=1

σi

(
ŵ(yi

′

s )`(h(Ts(x
i′

s )), yi
′

s )
)]]

3©
= 2Eσ,S

[
sup
h∈H

[
1

ns

ns∑
i=1

σi
(
ŵ(yis)`(h(Ts(x

i
s)), y

i
s)
)]]

= 2Rns
(` ◦ H ◦Ts)

4©
≤ 2LRns

(H ◦Ts),
(22)

where the equality 1© holds by using the usual symmetrizing technique through Rademacher variables. After propagation
sup, the latter inequality 2© is obtained. By propagating the expectation and again symmetry in the Rademacher variable we
obtain the inequality 3©. Last, the inequality 4© holds due to the loss function ` is L-Lipschitz. At this point, we bound term
(c) as follows:

sup
h∈H

∣∣∣Rs(ŵ,h ◦Ts)− R̂s(ŵ,h ◦Ts)
∣∣∣ ≤ 2LRns

(H ◦Ts) +M

√
log(1/δ)

2ns
, (23)

where Rns(H ◦Ts) is Rademacher complexity of hypothesis function classH associated to Ts.
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A.2. Heterogeneous Space Alignment

A.2.1. PROOF OF LEMMA 4.4

Proof. According to the definition of HFA, we know that Pt(X|Y = y) = Ps(X|Y = y). Applying the conditional
probability formula, we will maintain the equality. By the definition of w, we can obtain

Pt(X) =
∑
y∈Y
Pt(Y = y) · Pt(X|Y = y)

=
∑
y∈Y

w(y)Ps(Y = y) · Ps(X|Y = y)

=
∑
y∈Y

w(y)Ps(X,Y = y) =: Pw
s (X).

A.2.2. PROOF OF THEOREM 4.5

Proof. The proof of Theorem 4.5 essentially follow Theorem 3.4 from R.T. des Combes et al. (des Combes et al., 2020),
except for Theorem 3.4 needs to be adapted to the HLS scenario.

Denote Ŷ = h(X) as the prediction for some h : X 7→ Y . Now consider any measurable subset E ⊆ X , we would like to
upper bound the following quantity:

|Ps(X ∈ E|Y = y)− Pt(X ∈ E|Y = y)| = 1

Pt(Y = y)
|Ps(X ∈ E, Y = y)w(y)− Pt(X ∈ E, Y = y)|

≤ 1

ρ
|Ps(X ∈ E, Y = y)w(y)− Pt(X ∈ E, Y = y)|

. (24)

Next, we upper bound |Ps(X ∈ E, Y = y)w(y)− Pt(X ∈ E, Y = y)|. Considering the following decomposition:

Pt(X ∈ E, Y = y)− Ps(X ∈ E, Y = y)w(y) = Pt(X ∈ E, Y = y)− Pt(X ∈ E, Ŷ = y)︸ ︷︷ ︸
(a)

+ Pt(X ∈ E, Ŷ = y)− Pw
s (X ∈ E, Ŷ = y)︸ ︷︷ ︸

(b)

+Pw
s (X ∈ E, Ŷ = y)− Ps(X ∈ E, Y = y)w(y)︸ ︷︷ ︸

(c)

.
(25)

And then we have
|Ps(X ∈ E, Y = y)w(y)− Pt(X ∈ E, Y = y)| ≤ |(a)|+ |(b)|+ |(c)| (26)

We bound the above three terms in turn. First, consider
∣∣∣Pt(X ∈ E, Y = y)− Pt(X ∈ E, Ŷ = y)

∣∣∣.∣∣∣Pt(X ∈ E, Y = y)− Pt(X ∈ E, Ŷ = y)
∣∣∣

=

∣∣∣∣∣∣
∑
y′∈Y

Pt(X ∈ E, Y = y, Ŷ = y′)−
∑
y′∈Y

Pt(X ∈ E, Ŷ = y, Y = y′)

∣∣∣∣∣∣
≤
∑
y′ 6=y

∣∣∣Pt(X ∈ E, Y = y, Ŷ = y′)− Pt(X ∈ E, Ŷ = y, Y = y′)
∣∣∣

≤
∑
y′ 6=y

(
Pt(X ∈ E, Y = y, Ŷ = y′) + Pt(X ∈ E, Ŷ = y, Y = y′)

)
≤
∑
y′ 6=y

(
Pt(Y = y, Ŷ = y′) + Pt(Ŷ = y, Y = y′)

)
≤ Pt(Ŷ 6= Y ) = Rt(h ◦Tt),

(27)
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where the last inequality is due to the fact that the definition of error rate corresponds to the sum of all the off-diagonal
elements in the confusion matrix while the sum here only corresponds to the sum of all the elements in two slices. Similarly,
we can bound the third term as follows:∣∣∣Pw

s (X ∈ E, Ŷ = y)− Ps(X ∈ E, Y = y)w(y)
∣∣∣

=

∣∣∣∣∣∣
∑
y′∈Y

Pt(X ∈ E, Y = y, Ŷ = y, Y = y′)w(y′)−
∑
y′∈Y

Pt(X ∈ E, Ŷ = y′, Y = y)w(y)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
y′ 6=y

Pt(X ∈ E, Y = y, Ŷ = y, Y = y′)w(y′)− Pt(X ∈ E, Ŷ = y′, Y = y)w(y)

∣∣∣∣∣∣
≤ wM

∑
y′ 6=y

(
Pt(X ∈ E, Y = y, Ŷ = y, Y = y′) + Pt(X ∈ E, Ŷ = y′, Y = y)

)
≤ wMPs(Ŷ 6= Y )

≤ wMRs(h ◦Ts).

(28)

Now we bound the last term. Recall the definition of total variation, we have∣∣∣Pt(X ∈ E, Ŷ = y)− Pw
s (X ∈ E, Ŷ = y)

∣∣∣
=
∣∣∣Pt(X ∈ E ∧X ∈ Ŷ −1(y))− Pw

s (X ∈ E ∧X ∈ Ŷ −1(y))
∣∣∣

≤ sup
E′∈X is measurable

|Pt(X ∈ E′)− Pw
s (X ∈ E′)|

= dTV (Pt(X),Pw
s (X)).

(29)

Combining the above three parts yields

|Ps(X ∈ E|Y = y)− Pt(X ∈ E|Y = y)| ≤ 1

ρ
·
(
wMRs(h ◦Ts) +Rt(h ◦Tt) + dTV (Pw

s (X),Pt(X))

)
.

Now realizing that the choice of y ∈ Y and the measurable subset E is arbitrary, this leads to

max
y∈Y

sup
E
|Ps(X ∈ E|Y = y)− Pt(X ∈ E|Y = y)| ≤ 1

ρ
·
(
wMRs(h ◦Ts) +Rt(h ◦Tt) + dTV (Pw

s (X),Pt(X))

)
.

From Briet and Harremoes (Briet & Harremoes, 2009), we have

dTV (Pt(X),Pw
s (X)) ≤

√
8dJS(Pw

s (X) ‖ Pt(X)).

To sum up, we obtain

max
y∈Y

dTV (Ps(X|Y = y),Pt(X|Y = y)) 6
wMRs(h ◦Ts) +Rt(h ◦Tt) +

√
8dJS(Pw

s (X) ‖ Pt(X))

ρ
,

which completes the proof.

A.2.3. PROOF OF THEOREM 5.2

Before proving Theorem 5.2, we first introduce the Jensen-Shannon Divergence.

Definition A.1 (Jensen-Shannon Divergence). For two distributions D and D′, the Jensen-Shannon (JS) divergence
dJS(D ‖ D′) is defined as:

dJS(D ‖ D′) :=
1

2
dKL(D ‖ DM ) +

1

2
dKL(D′ ‖ DM )

where dKL(· ‖ ·) is the Kullback-Leibler (KL) divergence and DM := 1
2 (D +D′).
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Proof. Recalling the function I(d), we see that

I(d) = −
∫ ∫ ∫

[w(y) log(d(x)) + log(1− d(x′))] p(x, y)q(x′)dxdx′dy

= −
∫ [∫

w(y)p(x, y)dy

]
log(d(x)) + q(x) log(1− d(x))dx

= −
∫
pw(x) log(d(x)) + q(x) log(1− d(x))dx.

(30)

From the last line, we follow the exact method from Goodfellow et al. (Goodfellow et al., 2014) to see that point-wise in x
the minimum is attained for d∗(x) = pw(x)

pw(x)+q(x) and that I(d∗) = log(4)− 2dJS(pw(x) ‖ q(x)).

Instantiating pw(x) and q(x) to Pw
s (X) and Pt(X) proves that the Lw

DA leads to minimizing dJS(Pw
s (X) ‖ Pt(X)).

A.3. Importance Weight Estimation

A.3.1. PROOF OF LEMMA 4.7

Proof. According to the definition of HLS, and with the joint hypothesis Ŷ = h(X) over both source and target domains, it
is straightforward to see that the induced conditional distributions over predicted labels match between the source and target
domains, i.e.:

Ps(Ŷ = h(X)|Y = y) = Pt(Ŷ = h(X)|Y = y),∀y ∈ Y. (31)

Then we can compute µ(y),∀y ∈ Y as

µ(y) = Pt(Ŷ = y)

=
∑
y′∈Y

Pt(Ŷ = y|Y = y′) · Pt(Y = y′)

=
∑
y′∈Y

Ps(Ŷ = y|Y = y′) · Pt(Y = y′)

=
∑
y′∈Y

Ps(Ŷ = y, Y = y′) · Pt(Y = y′)

Ps(Y = y′)

=
∑
y′∈Y

Cy,y′ ·w(y′)

(32)

Rewrite the above equation in matrix form yields µ = Cw, and C is invertible, thus w = C−1µ.

A.3.2. PROOF OF THEOREM 4.8

Proof. The proof of Theorem 4.8 starts from Lemma 3.5 and theorem 3.7 proposed by (Pires & Szepesvári, 2012). For
a squared penalized loss L2(θ) + λ||θ||2, where L(θ) = ||b − Aθ||2, λ is the regularization parameter. Let θ̂ =

arg minθ{L2(θ) + λ||θ||2} with λ = ∆A, ∆A = ||Â−A||2 and ∆b = ||b̂− b||2, the following inequality holds with
probability at least 1− δ:

L(θ̂) ≤ inf
θ′
{L(θ′) + 3∆A||θ′||2}+ 3∆b, (33)

Consider a feasible θ = θ′ which satisfies ||b−Aθ||2 = 0 and then we can get an upper bound on the right hand side of
Eq.(33),

inf
θ′
{L(θ′) + 2∆A||θ′||2} ≤ L(θ) + 3∆A||θ||2 = 3∆A||θ||2. (34)

Combining Eq.(33) and Eq.(34), the following conclusion is established.

L(θ̂) = ||b−Aθ̂||2 = ||A(θ − θ̂)||2 ≤ 3∆A||θ||2 + 3∆b. (35)
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Recalling the estimation of w, i.e., ŵ = arg min
w

||µ̂− Ĉw||22 + λ||w −w0||2. Denote θ̂ = w − w0, A = C and

b = µ−Cw0. We have, ∆b = ||(µ̂− µ) + (Cw0 − Ĉw0)||2 ≤ ||µ̂− µ||2 + ||C− Ĉ||2 ∗ ||w0||2 ≤ ∆µ + ∆C,

∆A = ||(C− Ĉ||2 = ∆C.
(36)

Denote σmin(C) as the minimum singular value of C and ||A(θ̂ − θ)||2 = ||C(ŵ −w)||2 ≥ σmin(C)||ŵ −w||2. Thus,

||ŵ −w||2 ≤
3

σmin(C)
||A(θ̂ − θ)||2 ≤

3

σmin(C)
(∆A||θ||2 + ∆b)

≤ 3

σmin(C)

(
∆C(||θ||2 + 1) + ∆µ

)
.

(37)

Applying the Lemma 4.2 proposed by (Azizzadenesheli, 2022), with probability at least 1 − δ, the following inequality
holds:

∆C ≤ 2

√
2k

ns
log

(
4k

δ

)
, ∆µ ≤

√
k

nt
log

(
2k

δ

)
. (38)

As a result, we have with probability at least 1− δ that

||ŵ −w||2 ≤
(||θ||2 + 1)

σmin(C)

√
72k

ns
log

(
12k

δ

)
+

1

σmin(C)

√
9k

nt
log

(
6k

δ

)
. (39)

Here, ||θ||2 = ||w −w0||2 characterizes the distance between the true weight and the initialized weight.

B. Experimentation Details
B.1. The Optimization of HLSAN

As mentioned in the main text, HLSAN alternately optimizes LO and LKT either until a convergence criterion is satisfied or
for a predefined number of iterations. Regarding to LKT , the three losses contained in LKT can be optimized simultaneously
simultaneously via stochastic gradient descent (Li et al., 2017) in a unified neural network architecture introduced by
HLSAN. Specifically, the optimization of LKT is equivalent to finding a saddle point (θ̂s, θ̂t, φ̂, ϕ̂) such that

(θ̂s, θ̂t, φ̂) = arg min
θ̂s,θ̂t,φ̂

LKT (θ̂s, θ̂t, φ̂, ϕ̂),

ϕ̂ = arg min
ϕ̂

LKT (θ̂s, θ̂t, φ̂, ϕ̂).

And the saddle point can be identified as a stationary point through the following gradient updates.

θs ← θs − µ
(
∂Lw

C

∂θs
+ α

∂LP
∂θs

− β ∂L
w
DA

∂θs

)
,

θt ← θt − µ
(
∂Lw

C

∂θt
+ α

∂LP
∂θt

− β ∂L
w
DA

∂θt

)
,

φ← φ− µ
(
∂Lw

C

∂φ
+ α

∂LP
∂φ

)
,

ϕ← ϕ− µβ ∂L
w
DA

∂ϕ
.

In addition, the HLSAN algorithm includes two stages, i.e., warming-up and training. In the warming-up stage, a suitable
initial weight w0 is provided for HLSAN, and in the starting-up stage, the distribution shifts alignment of both features and
labels are performed based on the initial weights. To summarize, the HLSAN algorithm is summarized in Algorithm 1.
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Algorithm 1 HLSAN Algorithm
1: Input: Data S , T and O; Parameters α, β, learning rate µ, warming up epochs E1 and traning epochs E2 and batches
per epoch B;
2: Output: neural network {Ts,Tt,hφ, dϕ}and the predicted target labels Ŷt = h ◦Tt(Xt).
3: Initial fs, ft, h and dϕ;
4: Shuffle datasets S, T and O;
Warming-up
5: for i = 1 to E1 do
6: Sample batches {xis, yis}S {xit}S and {xio,s, xio,t}S ;
7: Minimize LO w.r.t. Ts and Tt;
8: Maximize LDA w.r.t. θs and θt, minimize LDA w.r.t. ϕ and minimize LC + αLP w.r.t. φ, θs and θt;
9: Calculate the initial weight w0 according to Lemma 4.7.
Starting-up
10: while stopping criterion is not met do
11: for i = E1 to E1 + E2 do
12: Sample batches {xis, yis}S {xit}S and {xio,s, xio,t}S ;
13: Minimize LO w.r.t. fs and ft;
14: Maximize Lw

DA w.r.t. θs and θt, minimize Lw
DA w.r.t. ϕ and minimize Lw

C + αLP w.r.t. φ, θs and θt;
15: Update the weight w by solving RQP(3).
16: End for
17: End while

B.2. Implementation Details

Network Architecture. In CMAN, the feature transformation network Ts,θs and Tt,θt are instanced with four-layer
fully-connected neural networks. The label classifier hφ and domain discriminator dϕ are instanced with three-layer
fully-connected neural networks. All network parameters are optimized using SGD with momentum. And the learning rate
is set to 0.02, The activation function is RELU.

Parameters Setting. There are two parameters α and β in HLSAN, the value ranges of α and β are set to
[0.01, 0.05, 0.1, 0.5, 1, 5]. As for the comparison methods, we utilize the suggested default parameter settings provided by
their original authors. In addition, the number of parallel instances is set to 100, i.e., np = 100. The warming-up epochs
E1 = 20 and the starting-up epochs E2 = 50. For the Dirichlet shift, we draw Ps(Y ) from a dirichlet distribution with
concentration parameter as 10.

Remark B.1. Note that in the Importance Weight Estimation, an appropriate initial weight w0 should be provided before
solving the RQP in Eq.(3). Specifically, we first warm up HLSAN by training without weighting for the first 20 epochs, and
then we build estimators Ĉ and µ̂ of C and µ by averaging the predictions of the classifier on the source (per true class) and
target (overall) to calculate w0. Subsequently, the importance weight w is estimated on the fly during training.

B.3. Examples of knowledge transfer failures

In the main text we mentioned that the initialization of common space in the extreme case could lead to the failure of
knowledge transfer. Take a simple example, as shown in Figure 6(a), the transformed source and target domains have
perfectly aligned marginal feature distributions in the latent common space, but this is an impossible knowledge transfer
task, which has been fully demonstrated in (Zhao et al., 2019; Ye et al., 2021). In addiotion, as highlighted in the main text,
parallel instances serve as a natural bridge for aligning source and target modalities due to their shared (albeit unknown)
labels. Aligning the marginal feature distributions of parallel instances across modalities effectively mitigates the risk of
extreme negative transfer. To validate the effectiveness of this technique, we conducted comparative experiments between
HLSAN and its variant w/oO, which excludes the Feature Space Alignment parallel instances loss LO (12). The results,
presented in Figure 6(b), demonstrate that omitting LO induces significant negative shifts, ultimately leading to the failure
of the knowledge transfer task.
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拓扑视角下的深度学习可解释性：揭示模型的内在结构与决策边界 
深度学习模型的复杂性使得其可解释性成为亟待解决的问题。拓扑学的理论和方法为探

索深度学习可解释性提供了一个新的视角。通过计算模型中间层输出的拓扑特征，揭示数据
在模型中的拓扑变换过程以及模型的决策边界。拓扑特征通常具有一定的稳定性和不变性，
对数据的微小变化不敏感。因此，基于拓扑学的深度学习模型可能具有更好的泛化能力，能
够在不同的数据集和任务中保持较好的性能。利用拓扑不变量来刻画模型对不同类别数据的
区分能力，从而为理解模型的决策机制提供一种全新的、具有几何直观性的数学解释。 
 

代数几何与深度学习可解释性：探寻模型泛化的数学本质 
深度学习模型的泛化能力是其实际应用中的关键因素，然而目前对于模型泛化的内在机

制尚缺乏深入的理解。将代数几何的工具应用于深度学习可解释性研究为理解深度学习黑箱
提供了一种全新的视角。通过构建模型参数空间和数据空间的代数几何表示，分析模型在不
同数据集上的泛化性能与代数几何结构之间的关系。利用代数簇、奇点等概念来解释模型在
训练过程中的优化行为和泛化能力的变化，揭示深度学习模型泛化的数学本质。 
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Figure 6. Examples of knowledge transfer failures. The left is a failure case, where the marginal feature distributions are perfectly aligned,
but knowledge transfer fails. The right is the comparative experiment results of HLSAN and w/oO.

B.4. Description of the cross-modal knowledge transfer tasks

Three real-world datasets are used in the experiments, i.e., Multilingual Reuters Collection, NUS+ImageNet, and Wikipedia,
which arise from different cross-modal knowledge transfer tasks.

• Wikipedia1 is sourced from Wikipedia feature articles and contains 2,866 image-text pairs across 10 semantic categories.
Following the the settings in (Fang et al., 2023), image features (I) are extracted using the Big Transfer-M (BiT-M)
model with ResNet-101 (Kolesnikov et al., 2020), while text features (T) are obtained using the Big Bird model (Zaheer
et al., 2020), which is well-suited for long sequences like Wikipedia texts. In the Text→Image task, text features (T)
serve as the source domain, and image features (I) as the target domain.

• Multilingual Reuters Collection2 contains over 11,000 news articles spanning six categories across five languages,
i.e., English, French, German, Italian, and Spanish. Each text data is represented by a bag-of-words weighted by
TF-IDF. Since the original data is not tractable due to its high dimensionality, following (Li et al., 2014), we perform
dimensionality reduction of features using PCA with 60% energy preserved. After reduction, the feature dimensions
for English, French, German, Italian, and Spanish are 1,131, 1,230, 1,471, 1,041, and 807, respectively. Inspired by the
setup from (Hsieh et al., 2016; Fang et al., 2023), we designate Spanish as the source domain, while the other four
languages serve as target domains, resulting in four Text→Text tasks.

1http://www.svcl.ucsd.edu/projects/crossmodal/
2http://multilingreuters.iit.nrc.ca/ReutersMultiLingualMultiView.htm
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