
Academic Expert Finding via (k,P)-Core based
Embedding over Heterogeneous Graphs

Abstract—Finding relevant experts in specified areas is often
crucial for a wide range of applications in both academia
and industry. Given a user input query and a large amount
of academic knowledge (e.g., academic papers), expert finding
aims to find and rank the experts who are most relevant
to the given query, from the academic knowledge. Existing
studies mainly focus on the embedding-based solutions that (1)
consider academic papers’ textual semantic similarities to a
given query through document representation models and (2)
extract the top-n experts with the greatest similarities. Beyond
the implicit textual semantics of papers, however, the papers’
explicit relationships (e.g., co-authorship, citation, and same-topic
relationship) in a heterogeneous academic graph (e.g., DBLP)
are critical for document representation, insofar as they help
improve the expert finding quality. Despite their importance,
the explicit relationships of papers generally have been ignored
in the literature. In this paper, we study the academic expert
finding on heterogeneous graphs by considering the explicit
relationships besides the implicit textual semantics of papers
in one representation model. Specifically, we first define the
(k,P)-core to denote a cohesive community of papers that are
closely connected via a meta-path P (P indicates the different
relationships of papers). We then propose an offline (k,P)-core
based document embedding model to capture papers’ various
explicit relationships for representation. Moreover, by using pa-
pers’ embeddings, we present an online threshold algorithm (TA)-
based method to efficiently return top-n experts via a carefully
designed proximity graph-based index (PG-Index). We extend our
approach to support multiple relationships simultaneously for
representation. Extensive experiments over real-world datasets
demonstrate the effectiveness and efficiency of our approach.

I. INTRODUCTION

Academic expert finding has recently attracted considerable
attention in the information retrieval (IR) community, as the
fast growing of the scientific literature and the urgent increas-
ing demands of expert searching in real applications [1]–[7].
Given a user input query that describes the user’s desired
expertise for target experts and a large amount of academic
knowledge, expert finding aims to find and rank experts who
are most relevant to the given query, by taking academic
knowledge as evidence [8]. Expert finding has been widely
used in reviewer assignment [9]–[11], consulting [2], [12],
supervisors recommendation [13], and technology transfer
between academia and industry [1], [14], etc. In this paper,
we target the domain of retrieving academic experts based on
papers they authored, which is known as the document-centric
expert finding [15], [16] (academic papers are defined as the
academic knowledge). The two most important query forms of
expert finding are topic-based and text-based query, as follows.
Topic-based query. A user usually forms a query by providing
a set of desired topics (or research areas) of interest and

expects to obtain a set of experts whose expertise can be
covered or represented by the input topics [12], [17]–[19].
For topic-based queries, the statistical language model is
commonly used to find relevant experts [2], [20]. To be more
precise, a conditional probability model with topics as the
condition is proposed to predict the probability of an expert
related to these topics, and then we can return the top-n
experts according to such probability. To further improve the
effectiveness, some works focus on integrating the topics’
semantic representations (i.e., embeddings) into the statistical
language model [18], [21]. The biggest problem of topic-based
query is that the topics’ textual content is too limited in terms
of language to express a user’s latent query intention [3].
Usually, a richer description of a specific topic is much better
to express exactly which expert a user is looking for [19].
For example, if a recruiter from a company is looking for a
researcher to work on a specific project, it is more likely that
she will use the detailed description of the project instead of a
few related topics of this project to find the right person. This
is the motivation behind text-based query research.

Text-based query. As an alternative, text-based query takes
a descriptive text as the input and aims to find the top-n
experts whose research work is semantically similar to the
given text [19]. A popular solution to text-based query is
to: (1) leverage a representation model (e.g., SciBERT [22],
SBERT [23]) to embed the semantics of each paper and query
text into d-dimensional vectors, (2) compute the similarity of
each paper to the query text, and (3) extract the top-n experts
from the most similar papers to the query text [4], [19], [21],
[23]. Besides the implicit textual semantics of papers, the
papers’ explicit relationships are also important to document
representation [24]. For example, if two papers have the same
co-authors or cite each other or focus on the same topics, then
they are likely to have the semantically similar textual content
[18]. Therefore, graph embedding-based solutions [3], [25]
consider the relationships of papers in a homogeneous paper-
paper graph to enhance the effectiveness of expert finding.
Specifically, a deep walk is conducted on the homogeneous
graph to preserve the features of relationships in the learned
vectors. Unfortunately, it does not distinguish the types and
strengths of the relationships in papers, but simply treats them
equally. Thus, it does not stimulate the potential value of
considering relationships for expert finding.

Problems of existing solutions. Nowadays, text-based query
has become the main-stream query form of expert finding.
Although existing solutions w.r.t. text-based query are easy

Fig. 1: Academic expert finding. (a) A homogeneous graph, where each paper node has a triple to describe the venue, topic, and author.
If two papers have an edge, that means they have at least one element of the triple that is the same. (b) Our solution to academic expert
finding over a heterogeneous graph.

to implement, they are problematic for the following reasons.
(1) The original representation-based solutions [4], [19], [21],
[23] only consider papers’ implicit semantics but ignore the
important explicit structural relationships among papers, which
leaves much room for effectiveness improvement. (2) Al-
though the graph embedding-based solution [3], [25] considers
the structural relationships, it still suffers, because the paper-
paper relation in a homogeneous graph will introduce noises
for embedding, which hampers the effectiveness. For instance,
as Figure 1(a) shows, two papers p5 and p8 both appear in
ICDE; hence, they have a relation in the homogeneous paper-
paper graph, but they are not semantically similar because
they focus on completely different research topics (machine
learning for p5 and community search for p8). In other words,
it is necessary and important to distinguish different types of
relationships among papers and carefully select the valuable
ones for document embedding. (3) A “free-rider effect” will
occur, because a paper with only one relation (e.g., p1) is
considered equally in the embedding model as other papers
having more relations. In fact, the cohesiveness of p1 to other
papers (e.g., {p2, p3 · · · p7}) is not that high, indicating it is of
less value for embedding and should be treated differently. (4)
Worse still, in real-world scenarios, papers are usually involved
in a heterogeneous graph (see Figure 1(b) (left bottom)) having
different types of nodes (e.g., paper p1, author a1, topic t1, and
venue v1, etc.) and edges (e.g., a1-Write-p1, p2-Cite-p3, and
p1-Mention-t5, etc.), such as the DBLP academic network. So,
existing solutions on homogeneous graphs cannot be deployed
directly on heterogeneous graphs. Though we can convert a
heterogeneous graph to a homogeneous graph by [26] then
apply the aforementioned solutions to find the top-n experts,
it adds expensive overhead in generating the homogeneous
graph and the above problems (2)-(3) still exists.

As discussed above, none of the existing works can well
support the academic expert finding by carefully considering
both the implicit textual semantics and the explicit structural
relationships of papers, over more general heterogeneous
graphs. This motivates us to present our solution as follows.

Our solution and contributions. To handle the above issues,
we first propose an offline (k,P)-core based document embed-
ding model to represent the academic papers and query input
text in the same vector space. To the best of our knowledge,
we are the first to integrate papers’ textual semantics and
structural relations into the same model for heterogeneous
graph embedding, by using the (k,P)-core. A specific meta-

path P in a graph indicates a certain relation between two
nodes, e.g., P -A-P (P and A stands for paper and author) is
a meta-path showing the co-authorship of papers (defined in
§II). A (k,P)-core is a cohesive subgraph of which each node
is connected to at least other k nodes via the given meta-path P
(defined in §II). By using the (k,P)-core, we can consider not
only different relationships for papers through different meta-
paths, but also consider the relations’ cohesiveness through
the size of k to eliminate the “free-rider effect”, which
improves the embedding quality. Then, we present an online
threshold algorithm (TA)-based method to efficiently return
top-n experts via a carefully designed proximity graph-based
index (PG-Index). Figure 1(b) shows the whole pipeline and
our contributions can be concluded as follows.

(1) (k,P)-core based embedding. Given a heterogeneous
graph G, our (k,P)-core based embedding consists of three
major steps. First, we present an optimized algorithm to search
a group of (k,P)-cores from G, as the cohesive communi-
ties of papers (§III-A). Each paper in the same (k,P)-core
community is regarded as closely structural-related via P . For
example, if we set P = P -A-P , then the obtained (k,P)-core
contains papers that share a large number of co-authors. It’s
natural that these papers focus on the similar research areas
and are likely to be similar in their textual contents. Second,
we design a sampling method to obtain positive and negative
papers w.r.t. a seed paper as training data (§III-B), based on
above (k,P)-core communities. Third, we apply a pre-trained
textual representation model as an encoder to combine the
textual semantics and structural relations of papers from the
training data into vectors, we then define a triplet loss function
to fine-tune the pre-trained representation model to output the
final embeddings E of all papers (§III-C). As a result, only
the papers with similar textual contents that are cohesively
connected in a (k,P)-core are showing the higher similarity.

(2) TA-based top-n expert finding through PG-Index.
Given a user input query text T and the learned embeddings
E, our top-n expert finding consists of three major steps.
First, we build a proximity graph-based index (PG-Index)
in §IV-A according to E (build offline but use it online).
Notice that, each node in the PG-Index represents a paper
and each paper only has edges to several other papers that
are similar to itself (measured by L2 norm distance of
papers’ representations). Second, we apply the fine-tuned
representation model to get the representation of T , denoted
by ~vT , and then we search the best m papers having the

t1 t2

(a) A heterogeneous academic graph

Cite

T P

Schema

3-core 2-core 1-core
0-corea1 a2 a3 a4 a5 a6 a7 a9

p1 p2 p3 p4 p5

a1 a2 a3 a4 a5 a6 a7 a9

p1 p2 p3 p4

a8

p6 p7 p8 p9 p10

p10p9p5 p6 p7 p8

a8

A

Vv1

(b) (k,)-core for k = {0,1,2,3} andP = P-A-PP

Fig. 2: A heterogeneous academic graph and (k,P)-cores

representations ~vp that are similar to ~vT by using the PG-
Index (§IV-B). Third, given m retrieved papers, we extract
all the authors who have appeared in m papers as candidates.
We then define a ranking score of each author according to
her contributions to her authored paper. Finally, we present a
threshold algorithm (TA)-based method to obtain the top-n
experts having the smallest ranking score efficiently, without
scanning and ranking all candidate experts (§IV-C). In our
implementation, we set m > n to ensure that we can obtain
sufficient top-n experts from m papers.

(3) Extensive evaluation on real-world datasets. We con-
duct extensive experiments to evaluate: effectiveness and ef-
ficiency (§VI-B & §VI-C), parameter sensitivity (§VI-D),
and overhead of PG-Index (§VI-E). The experimental results
demonstrate our solution’s superiority over all competitors
from the domain of text-based expert finding.

We also optimize our solution by adopting different valuable
meta-paths simultaneously in the (k,P)-core based embedding
model (§V). Related work is discussed in §VII, and we
concluded this paper in §VIII.

II. PRELIMINARIES

Definition 1: Heterogeneous graph G [27]. A heteroge-
neous graph is defined as a graph G = (V,E,L), where V
is the node set, E is the edge set, and L is a label function.
(1) Each node v ∈ V has a node type φ(v) by a node type
mapping function φ : V → A (A is a set of node types). (2)
Each edge e ∈ E has an edge type ψ(e) by an edge type
mapping function ψ : E → R (R is a set of edge types). (3)
The label function L is used to specific information for each
node as L(v) in the form of text. (4) G consists of multiple
node types and edge types satisfying |A| > 1 and |R| > 1.

Definition 2: Schema of G. Given a heterogeneous graph
G = (V,E,L) with the node type mapping φ : V → A and
the edge mapping ψ : E → R, the schema of G is defined as
a graph TG = (A,R) with the node set A and edge set R.

In this paper, we tackle the academic expert finding problem
in an academic network, such as DBLP, which is a typical
heterogeneous graph. An example is illustrated as follows.

Example 1: Figure 2(a) illustrates a heterogeneous graph
G with the DBLP schema (right bottom). In this example,
the node set V contains four node types (A = {A,P,V,T}),
including a set of authors with type A, papers with type P,
venues with type V, and topics with type T, e.g., φ(a1) = A,
φ(p1) = P, φ(v1) = V, and φ(t1) = T. All the relationships
among authors, papers, venues, and topics are described by
the edge types R = {Publish,Mention,Write,Cite},
e.g., ψ(a1p1) = Write, ψ(p1v1) = Publish, ψ(p2t1) =

Mention, and ψ(p1p2) = Cite. Moreover, each paper is
labeled with its title and abstract as L(p) = title + abstract.

Definition 3: Meta-path P [27]. A meta path P is a path
defined on the schema TG = (A,R), and an l-hop meta-path

is denoted in the form of P = A1

R1

− A2

R2

− · · ·
Rl

− Al+1,
where Ai ∈ A and Ri ∈ R (1 ≤ i ≤ l).

Since the relation between different type of nodes are clear
in this paper, we ignore Ri in P for simplicity and only use
the node types to denote a meta-path. For example, given
two papers in a heterogeneous graph G, different relationships
between them can be described by different meta-paths, such
as P -A-P (co-authorship), P -T -P (same topics), and P -P
(citation). Moreover, we say a path (v1, v2 · · · vl+1) in G is a
path instance of a meta-path P in TG, if ∀i, φ(vi) = Ai and
ψ(ei) = Ri for each node vi and edge ei = vivi+1.

Definition 4: P-neighbor. Given two nodes {vi, vj} of a
heterogeneous graph G, and a meta-path P , vj is a P-neighbor
of vi, if vj is connected to vi via a path instance of P .

Example 2: As Figure 2(a) shows, the path (p1, a1, p2) is
a path instance of P=P -A-P , indicating that p1 and p2 have
the same author a1. Moreover, p2 is a P-neighbor of p1.

In this paper, we aim to use a specific meta-path P between
two papers to capture the cohesive k-core [28], [29] commu-
nities of papers w.r.t. this given P , and then leverage them to
improve the embedding quality. In the rest of the paper, when
we mention a meta-path P , it stands for the one between two
papers, such as P -A-P . We next define the (k,P)-core in a
heterogeneous graph G as follows.

Definition 5: (k,P)-core. Given a heterogeneous graph G,
a meta-path P , and a non-negative integer k, the (k,P)-core
on G is defined as Gk

P satisfying: (1) Gk
P ⊆ GP is a maximal

subgraph of G. (2) For each paper node p of Gk
P , it has deg(p)

≥ k, where deg(p) is the number of P-neighbors of p.

Example 3: We use (k,P)-core to describe a cohesive
community of papers and the cohesiveness increases as k
increases. Figure 2(b) illustrates four Gk

P with k = {0, 1, 2, 3}
and P = P -A-P for the heterogeneous graph G in Figure
2(a). Notice that, G0

P is the loosest community of papers that
contains all the papers (even the independent paper p10). As k
increases, Gk

P is getting more and more cohesive. Finally, G3
P

is the most cohesive community of papers, where each paper
in G3

P shares co-authors with another three papers.

By setting different meta-paths, we can achieve different
communities of papers. For instance, the (k,P)-core for P -T -
P indicates that all the involved papers share the same topics
with at least k other papers. Or, the involved papers cite or
be cited by at least k other papers for P -P . When k is large
enough, we can say that all the papers in the (k,P)-core show
greater similarity w.r.t. the given P .

A. Problem Definition

Given the aforementioned definitions, we are interested in
the following problem: finding a set of experts who are more

relevant to a user-input query text, based on the document-
document similarity, by carefully considering the (k,P)-core
community of papers in a heterogeneous academic graph.

Problem 1: Given a user-input query text T , a heterogeneous
graph G = (V,E, L), a non-negative integer k, and a meta-
path P , we aim to find top-n experts SA ⊆ V that satisfies:
• SA contains the best n experts (with node tyep A) who have

the minimized ranking score w.r.t. T (Eq. 1). R(ai) is the
ranking score of the expert ai (formally defined in §IV).

SA = {arg min
ai

R(ai)}, s.t. |SA| = n (1)

• ∀ai ∈ SA, ∃pij ∈ P (ai) that belongs to the (k,P)-core
Gk
P , where pij is the j-th paper of all the papers P (ai)

of the author ai. According to our definition of R(ai), the
more papers of ai that belong to Gk

P and show the higher
semantically similarity to T , the smaller R(ai) it is.
To handle this problem, we first design a (k,P)-core based

embedding model to improve the representation quality of
papers (Sec III) by considering both the implicit textual
semantics and explicit structural relationships of papers, then
we present a threshold algorithm (TA)-based algorithm to
return the top-n experts efficiently, through a proximity graph-
based index (Sec IV). To be more precise, we expect to find
the most similar papers to an input text T , then return the
top-n authors from these papers as the output experts.

III. (k,P)-CORE BASED DOCUMENT EMBEDDING

Figure 3 illustrates the framework of our (k,P)-core based
embedding model. First, we use a meta-path P to capture the
cohesive (k,P)-core communities of papers (§III-A). Then,
we design a sampling method to obtain the positive (green
nodes that belong to the (k,P)-core) and negative papers (blue
nodes that do not belong to the (k,P)-core) w.r.t. the given
seed papers (red nodes that are selected from the (k,P)-core)
as the training data (§III-B). Finally, we apply a pre-trained
representation model as an encoder to combine the textual
semantics and structural relations of papers into one vector,
and define a triplet loss function to fine-tune the pre-trained
model (§III-C). As a result, the positive papers are more likely
to be similar to the seed paper than the negative papers.

A. (k,P)-core Community Generation

We first take the meta-path P = P -A-P (co-authorship)
as an example to discuss how to generate the (k,P)-core
community of papers. In §V, we show how to further improve
the embedding quality by combining more valuable meta-paths
in our model. We next introduce our solution to quickly find a
(k,P)-core community of papers through community search.

Community search [28]. Given a graph H and an input
node u, community search aims to find a maximal subgraph
H ′ ⊆ H containing u, in which all the nodes have a greater
cohesiveness. Back to our case, given a heterogeneous graph
G, a meta-path P , and a seed paper ps, we expect to find
a (k,P)-core containing ps as the community. The papers’

Search (k,)-coreP

p1

p3

p4p2

= P-A-PP

p6
p7

p8

S
a
m

p
lin

g

Training data

…

w

…

…

w

Encoder

Fine-tune

v1

p3

p2

p1

p8

a1

v2p7a7

p6a6

t2a5 p5

a4

t1a3

p4

a2

Fig. 3: Overview of (k,P)-core based document embedding model

cohesiveness is measured by the size k of (k,P)-core. In
§III-B, we discuss how to select the seed paper.

Straightforward solution. A naive solution is to convert
a heterogeneous graph G into a homogeneous graph G′

according to the given meta-path P = P -A-P , and then use a
classic core decomposition algorithm [29] to find the k-core
from G′ containing the seed paper ps. However, this method
is computationally expensive, because it enumerates all paper
nodes to find all their P-neighbors to form G′, even if a paper
node is not connected to ps.

Extended solution. As an alternative, an extended solution
(FastBCore) is proposed in [30], which consists of two major
steps: (1) a labeled search and (2) cleaning up nodes. In the
first step, it uses the labeled search method to find every node
connecting to the seed paper ps via path instances of P . To
be more precise, it starts a BFS from ps to find all its P-
neighbors and assign a label of each visited paper node to
ensure that each paper is visited only once. Then, it repeats
the above procedure from all the explored papers until no
more P-neighbors can be found. Finally, we obtain a set
of candidate papers that could be involved in (k,P)-core,
denoted by S. This BFS traversal avoids enumerating some
unnecessary papers. For example, in Figure 2(a), if we set
ps = p4, then p10 will not be considered in BFS searching,
because it is not a P-neighbor of p4. Next, in the second step,
FastBCore finds up to k P-neighbors for each paper p ∈ S,
and then iteratively removes those papers that do not satisfy
the k-constraint from S until all nodes in S are satisfying the
k-constraint, and finally returns S as the output (k,P)-core.

However, this extended solution still has two limitations. (1)
In the first step, a paper that does not satisfy the k-constraint
still will be added in the candidate set S. Actually, these kinds
of papers will never be included in the final (k,P)-core, so
it is not worth continuing to search from them; instead, we
should prune them early. (2) In some cases, the k-constraint
is too strict, and may exclude some valuable papers from the
(k,P)-core community. For example, in Figure 2(a), suppose
that ps = p4, ps and p5 are two papers with similar topics
that are co-authored by the same author. Note that, p5 has
two P-neighbors (we have deg(p5) = 2). FastBCore will
exclude p5 from the final (k,P)-core community of papers
for any k >= 3, but in this case, p5 should be considered, as
it would benefit to improve the embedding quality. Obviously,
for the second limitation, we cannot solve it by simply setting
a small k, because a small k indicates that the (k,P)-core
is not cohesive enough, such as the (k,P)-cores for k = 1
shown in Figure 2(b), thus including more worthless papers

Algorithm 1: (k,P)-core search
Input: A heterogeneous graph G, a seed paper ps, a

non-negative integer k, and a meta-path P
Output: Community result S

1 Q← {ps}, S ← {ps}, D ← ∅,Visit← {ps};
2 while Q 6= ∅ do // candidate nodes selection
3 v = Q.poll();
4 for ∀u ∈ v’s P-neighbors do
5 if !Visit.contains(u) then
6 Ψ[v].add(u);
7 Visit.add(u);

8 S.add(Ψ[v]);
9 if |Ψ[v]| >= k then

10 Q.addAll(Ψ[v]);
11 else D.add(v) ;

12 while D 6= ∅ do // unpromising nodes prune
13 v ← D.poll();
14 S.remove(v);
15 for ∀u ∈ Ψ[v] && S.contains(u) do
16 Ψ[u].remove(v);
17 if Ψ[u].size() < k then
18 D.add(u);

19 N = getAllPNeighbor(ps)// (k,P)-core extension;
20 return S.addAll(N)

(e.g., p6, p7, p8, and p9). We therefore present the following
approach to resolve these issues.
Our solution. We optimize FastBCore from two aspects. (1)
In the labeled search step, we expand the search space from
a visited paper node, if this paper has at least k P-neighbors.
Otherwise, we prune this paper and stop expanding the search
space from it. We prove that this pruning operation is safe and
has no effect on the output (k,P)-core by Theorem 1. (2) We
not only return a strict (k,P)-core community containing the
seed paper ps, but also includes a small amount of P-neighbors
of ps having degree less than k. This can be viewed as a
complement to the closest (k,P)-core community. In §VI, we
show that the embedding quality is improved by these above
two optimization strategies.

Theorem 1: Suppose Gk
P and Gk

P
′ are the (k,P)-cores

returned by FastBCore and our solution. We have Gk
P = Gk

P
′.

Proof: Suppose that Gk
P 6= Gk

P
′, then there must ∃p with

deg(p) ≥ k that is pruned by our solution. To be more precise,
we have p ∈ Gk

P and p /∈ Gk
P
′. Since p ∈ Gk

P , there must
∃p∗ ∈ Gk

P that connects to p via path instances of a given
meta-path P . Note that, this node p∗ also will be included
in Gk

P
′ because it has deg(p∗) ≥ k. Therefore, we still can

include the paper p by expanding the search space from p∗,
which indicates that p ∈ Gk

P
′. This contradicts the assumption

of p /∈ Gk
P
′ and thus we have Gk

P = Gk
P
′.

We next introduce our solution based on the aforementioned
two optimizations (as shown in Algorithm 1).
Notations. We use a queue Q to record all the nodes that can
be used for further search expansion. It is initialized as the seed
paper Q = {ps}. A hash set S records all the nodes belonging
to the (k,P)-core. An array Ψ[v] is defined to record all the
explored P-neighbors of v, such as Ψ[v] = {u1, . . . un}. For

instance, if we set P = P -A-P , then each pair of 〈v, ui〉
represents two co-authored papers. We use a queue D to record
all the papers that should be removed, which do not satisfy
the k-constraint. We also use a hash set Visit to record all
visited nodes, avoiding duplicate access.

Overview. Our solution consists of three main steps: (1)
Candidate nodes selection. For each node v ∈ Q, we find
and record all v’s P-neighbors in Ψ[v] and S (Lines 4-8).
If |Ψ[v]| >= k, then we add all paper nodes in Ψ[v] to the
queue Q for further search expansion. Otherwise, we add v to
the queue D for pruning (Lines 9-11). (2) Unpromising nodes
prune. In this step, we iteratively remove all paper nodes that
do not meet the k-constraint from S and this prune is safe
according to Theorem 1. Since removing a paper node v from
S will affect v’s P-neighbors, we need to check if each P-
neighbor u of v still satisfies the k-constraint after removing v.
If |Ψ[u]| < k, the node u should also be removed from S and
then we add it to the queue D. We repeat this operation until
all paper nodes in S satisfy the k-constraint. In another word,
all paper nodes from S belong to the (k,P)-core Gk

P (Lines
13-18). (3) (k,P)-core extension. We expand Gk

P by adding
all P-neighbors of the seed paper ps that do not satisfy k-
constraint to S, thereby relaxing the strict constraint of (k,P)-
core to some extent (Lines 19-20).

Example 4: We show the (k,P)-core community search for
k = 3, P = P -A-P on the heterogeneous graph provided
in Figure 2(a), by setting the seed paper ps = p4. We start
searching from ps (Q = {ps} at first) and collect all the P-
neighbors of ps in Ψ[ps] and S, e.g., Ψ[ps] = {p1, p2, p3, p5}.
Since |Ψ[ps]| >= 3, we need to add all the paper nodes in
Ψ[ps] to Q. We expand the search space by accessing each
paper node in Q. For example, for paper p5 ∈ Q, since
|Ψ[p5]| < 3, p5 will be added to D, thereby pruning the search
space from p5, e.g., {p6, p7, p8, p9}. Now, we have D = {p5},
S = {p1, p2, p3, p4, p5}. Next, we should remove all the
nodes in queue D. There is only one paper p5 in D so we
remove p5 from S. Since the removal of p5 could decrease it’s
neighbor’s degree, we should update it’s neighbors’ degree and
keep removing the one that does not satisfy the k-constraint.
We repeat these operations until D is empty and we get
S = {p1, p2, p3, p4}. Finally, we expand the above community
appropriately by adding one P-neighbor (but does not satisfy
the k-constraint) of ps. After that, we obtain the final result
S = {p1, p2, p3, p4, p5}. This result includes not only all the
papers in (k,P)-core for k = 3 and P = P -A-P , but also a
valuable paper p5 (have the same author and topic as the seed
paper p4, but does not satisfy the k-constraint).

B. Sampling-based Training Data Generation
We aim to embed all the papers in a vector space in where

two similar papers have a closer representation, and vice versa.
Intuitively, we said that two papers are similar if (1) they both
belong to the same cohesive (k,P)-core, for example, two
papers having co-authorship (P = P -A-P) show a certain
degree of similarity and (2) two papers’ textual semantics are
similar. For the first condition, in this section, we propose

a sampling-based method to generate the training data based
on the (k,P)-core communities. We define the training data
as a set of triples of 〈p+, ps, p−〉, where p+ (p−) is the
positive (negative) sample w.r.t. a specific seed paper ps inside
(outside) the (k,P)-core. For the second condition, we adopt
a pre-trained model to capture the textual semantics (discussed
in §III-C). We next introduce the main procedures of sampling
based training data generation as follows.

(1) Seed papers selection. Given the meta-path P = P -A-P ,
we randomly select a fraction f of the paper nodes through a
simple random sampling from the heterogeneous graph G =
(V,E, L) as our seed papers, that is {p1s, · · · , prs} with r =
f · |V (P)|, where V (P) denotes all paper nodes of G (with
node type P). For each seed paper ps, we compute a (k,P)-
core containing ps and leverage this community to generate a
set of training data 〈p+, ps, p−〉. By combing all the training
data generated from each (k,P)-core community for every
ps, we can get the final training data. The reason that we
need a set of seed papers instead of one is that we expect
as much as possible papers could be covered by the returned
communities, so that we can get more representative samples
instead of getting a limited number of training data from only
one (k,P)-core community. The parameter f is used to control
the number of seed papers, thus control the size of training
data. The greater f is, the more training data can be generated.
In Sec VI, we show the effect of f on expert finding.

(2) Positive and negative samples collection. We first show
the definitions of positive and negative samples and then
discuss how to collect them effectively.

Definition 6: Positive sample. Given a (k,P)-core Gk
P

containing a seed paper ps, we define each paper node in Gk
P

(exclude ps) is a positive sample w.r.t. ps, denoted by p+.
Definition 7: Negative sample. Given a (k,P)-core Gk

P
containing a seed paper ps, we define each paper node in
GP\Gk

P is a negative sample w.r.t. ps, denoted by p−.
Note that, the (k,P)-core Gk

P containing ps is usually a
small, cohesive subgraph that contains a slight number of
papers, so that we directly use all papers in Gk

P as positive
samples w.r.t. ps. On the contrary, the number of papers in
G\Gk

P is obviously larger than Gk
P . We cannot directly take all

papers in G\Gk
P as negative samples w.r.t. ps, because as the

size of training data getting larger, the training time increases
significantly. Suppose we have 100 papers in Gk

P and 100000
papers in G\Gk

P , then we have 100 × 100000 = 107 triples
for only one community. Worse still, the imbalance in the
number of positive and negative samples will cause a trained
model with obvious bias [31]. The negative sample collection
strategy has an important impact on training efficiency and
effectiveness. Hence, we present two different strategies for
negative samples collection and show their effect in §VI.

Random Negative. We select a negative sample from G\Gk
P

by simple random sampling. Specifically, for each p+ ∈ Gk
P ,

we randomly select s negative samples, thus we have s
different triples 〈p+, ps, p−〉 for a specific p+. Although a
random negative solution is easy to implement, it still has

an obviously drawback: the paper that is close to the seed
paper ps and the paper that is far away from ps have the
same probability of being sampled from G\Gk

P and contribute
equally to the embedding model. In fact, the paper that is
close to ps is more valuable for training than the far away
papers [25], because if we can distinguish the close papers
into papers unsimilar to ps, then the far away papers probably
be distinguished into papers unsimilar to ps. So, we propose
an alternative strategy to select those papers that do not belong
to Gk

P but are close to Gk
P as negative samples.

Near Negative. As mentioned in Algorithm 1, we add those
papers with less than k P-neighbors into a delete queue D
for pruning, once we found them at the first time. Actually,
these papers are such of close papers to Gk

P . Therefore, for
each positive sample p+ ∈ Gk

P , we randomly select s papers
from D as negative samples to form s triples. In §VI, we
empirically found that s = 3 is enough to achieve a balance
between training efficiency and expert finding effectiveness.
We also show that using the near negative is better than random
negative for expert finding effectiveness.
(3) Training data generation. From these positive and neg-
ative samples, we get the training data as a set of triples
〈p+, ps, p−〉. For each paper in a triple, we take the paper’s
textual information as the input of our embedding model,
namely 〈L(p+), L(ps), L(p−)〉, where L(p) = title+abstract.
C. Document Embedding

Given a set of triples 〈p+, ps, p−〉, our document embedding
has three steps: (1) We use a pre-trained model to encode the
textual information of each paper as its initial semantically
representation. (2) We present a new triplet loss based on
the positive and negative samples to fine-tune each paper’s
initial semantically representation. To be more precise, we
use the structural relations of papers to fine-tune the semantic
representation (3) We train the model via gradient descent.
Document Encoder. In this paper, we use the pre-trained
model SciBERT [22] as the encoder, as it has been optimized
for scientific texts and is more suitable for representing aca-
demic textual contents [25]. According to the input format of
SciBERT, we first use Wordpiece [32] to split the textual
information L(p) of each paper p into tokens. If the number
of tokens exceeds the default maximum length limit (512) of
SciBERT, we then truncate the tokens to meet the limit.

Figure 4 shows the architecture of our encoder. Given a
L(p) = {w1, w2, . . . , wl} that is tokenized by Wordpiece,
each wi indicates a token of L(p). Our document encoder aims
to obtain an initial representation of L(p), denoted by

~vp = ΦP (ΦB({w1, w2, . . . , wl}; ΘB)) . (2)

Notice that, ΘB are the parameters of SciBERT and
ΦB : wi → ~wi is used to encode each token wi ∈ L(p)
by using ΘB . Then, we apply a pooling method to extract the
most valuable features from ΦB(L(p); ΘB) and generate the
representation of L(p), that is, ΦP : {~wi} → ~vp. Two pooling
strategies are used widely: (1) Mean pooling outputs the aver-
age representations of all tokens, that is ΦP = 1

l

∑l
i=1 ~wi. (2)

w1 w2 w3 w4 wl...L(p)

w1 w2 w3 w4 wl

Θ
B

Φ
B

...

...

...

...

...Φ
P

...

...

mean pooling

Fig. 4: Illustration for the document encoder

Max pooling takes the maximum value of the j-th dimension
of all tokens’ representations as the j-th dimension of ~vp, that
is, ΦP = {max{~w1j , ~w2j · · · ~wlj}}dj=1, where ~wij is the j-th
dimension of ~wi (each ~wi has d dimensions). We adopt mean
pooling as ΦP in this paper due to its better performance
than max pooling [23]. By applying this encoder, the implicit
textual semantics of a paper is embedded to the representation
~vp. We next present a triplet loss based on the positive and
negative samples to fine-tune ~vp.
Triplet Loss. In order to fine-tune the initial representations,
we present a margin-based triplet loss to update the parameters
ΘB . The basic idea of triplet loss is straightforward to make
those structurally cohesive papers (ps, p+) closer in the vector
space and papers that are not cohesively connected (ps, p−)
as far away as possible. The triplet loss is provided in Eq. 3
and we aim to minimize this loss function:

L(ΘB) = max{d(~vps
, ~vp+)− d(~vps

, ~vp−) + c, 0}, (3)

where ~vps
, ~vp+ , ~vp− are the representations of the seed node,

positive sample, and negative sample, respectively. The margin
hyperparameter c (we empirically choose c = 1) is used to
ensure that p+ is closer to ps than p− in terms of L2 norm
distance δ, that is, δ(~vi, ~vj) = ‖~vi − ~vj‖2.
Model Training We use the Adam optimizer [33] for
training following the suggested hyperparameter values in
[34], i.e., LR = 2e − 5, β1 = 0.9, β2 = 0.999. Notice
that, the hyperparameters β1, β2 control the exponential decay
rates. We refer the interested readers to [33] for more details.
We minimize the loss function (Eq. 3) thus to optimize the
model parameters ΘB . For each paper, we can obtain its new
representation by applying Eq. 2 with this optimized ΘB . In
this paper, we denote the embeddings of all papers in the
heterogeneous graph G by E = {~vp1 , · · ·~vp|V (P)|}, where
|V (P)| is the number of paper nodes in G. In §IV, we will
introduce how to use E for top-n experts finding.

IV. TOP-n EXPERT FINDING VIA EMBEDDINGS

We now discuss how to find the top-n experts who are
semantically match with the given query text T , based on
the document embeddings E obtained above. Figure 1(b) (top
part) shows three major steps of our expert finding: (1) We
build a proximity graph-based index (PG-Index) for all papers
via E (§IV-A). This is an offline operation, which is processed
once and can be used for online expert finding. (2) Given
a query text T , we apply the fine-turned encoder (Figure 4)
to get the representation of T , denoted by ~vT , and then we
search the best m papers having the representations ~vp that are
semantically similar to ~vT , by using the PG-Index (§IV-B). (3)
Given m retrieved papers, we extract all the authors who have

appeared in m papers as candidates and present a threshold
algorithm (TA)-based method to get the top-n experts having
the smallest ranking scores efficiently (§IV-C).

A. Proximity Graph-based Document Index

A straightforward way to retrieve the best m papers that are
semantically similar to the given query T is to enumerate all
papers, computer pair-wise semantic similarities between each
paper and T , and return m papers with the greatest similarities.
Although it is easy to implement, this straightforward method
is computationally expensive because of the time-consuming
enumeration. Comparing to the tardy exact m papers, it is
more desirable if we can quickly obtain approximate m
papers with acceptable accuracy. This motivates us to build
a proximity graph based index (PG-Index) for approximate
paper retrieval. The fundamental component of PG-Index is
actually a k nearest neighbor (kNN) graph [35] and we present
a refinement strategy to further improve it. We have the
following steps to build PG-Index, as shown in Algorithm 2.
(1) Navigating node selection. The navigating node is the
entry node of the PG-Index, where we can start the approx-
imate paper search. We define the navigating node q as the
approximate centroid of all papers V (P) (V (P) is the set
of paper nodes in a heterogeneous graph G). To be more
precise, the representation of q, denoted by ~vq , is closest to
the representation ~vg of the centroid g of all papers, where
~vg = 1

|V (P)|
∑

~vp∈E ~vp (Lines 1-2).

(2) Initialize kNN graph. We apply the paper embeddings E
to build a kNN graph via NNDescent [36] (a commonly used
method to construct kNN graphs). Specifically, we first find
the k nearest P-neighbors of a paper p (N(p)) by evaluating
the L2 norm distance (Line 4), and then add an edge between
p and ∀x ∈ N(p) in the original kNN graph (Line 6).
(3) Refining neighbors. According to [35], searching on the
original kNN graph suffers from the low search efficiency.
Given a query text T , the standard search procedure can be
described as: starting from the navigating node q, we select
the paper that is closest to T from q’s k nearest neighbors
as the next-hop node and expand the search space greedily to
approach T step by step. This greedy search is problematic
when the query T is far away from the navigating node q, be-
cause we need more search expansions to approach T , thereby
increasing the search overhead. A possible solution to this
issue is to add some long-distance neighbours for some papers
in the original kNN graph, so that we can quickly approach
T through these “highway” edges, significantly saving the
computation cost. For instance, as Figure 5(a) shows, we need
to expand search space 9 times (red edges) and visit 26 papers,
on the original kNN graph. By contrast, for PG-Index (Figure
5(b)), we only require 5 expansions (blue edges) and visit 18
papers. To achieve this, we refine the neighbors for each paper
in kNN graph via the following two operations.
Long-distance neighbors extension. For each paper p of the
original kNN graph, we access every paper x ∈ N(p) and
add an edge between p and each paper y ∈ N(x). By doing

Algorithm 2: PG-Index construction
Input: all document embeddings E, all papers nodes V (P)
Output: proximity graph based document index PG-index

1 ~vg = 1
|V (P)|

∑
~vp∈E ~vp // navigating node selection

2 ~vq = getNearestNode(E, ~vg);
3 for p ∈ V (P) do

// initialize kNN graph
4 N(p) = getKNearestNodes(E, ~vp);
5 for x ∈ N(p) do
6 PG-Index.addEdge(p, x);
7 for y ∈ N(x) do // neighbors expansion
8 PG-Index.addEdge(p, y);

9 for p ∈ PG-Index do
10 for {x, y} ∈ N(p) do // neighbors removal
11 if δ(x, y) ≤ δ(y, p) then
12 PG-Index.removeEdge(p, y);

13 return PG-index;

this, we build some “highway” edges that can quickly guide
the search to the nodes two hops away from p (Lines 7-8).
Although this operation can improve the search efficiency, it
still introduces overhead on the index construction and storage.
To reduce such overhead to some extent, we need to remove
some redundant long-distance neighbors in the next operation.

Redundant neighbors removal. Given the expanded kNN
above, let us consider two neighbors x and y of p ({x, y} ∈
N(p)), we say y is a redundant paper compared to x iff
δ(y, x) ≤ δ(x, p) (δ is the L2 norm distance), and we can
remove y from N(p) (Lines 9-12). The logic behind this
removal is that if the distance between y and x is close enough,
then we can approach y quickly by accessing x from p, instead
of a long-distance edge from p directly to y, thereby reducing
the redundant long-distance edges. In other words, we expect
that the long-distance edge can guide the search to the nodes
far away from p, so as to well support the search scenario that
query text T is far away from the navigating node q.

B. Semantically Similar Document Retrieval

Given a PG-Index and a query text T , we take the navigating
node q as the current visiting node s to start the search.
Specifically, we first add s and all its neighbors N(s) in PG-
Index to the priority queue Q, where all the paper nodes in
Q are sorted in ascending order according to their distance to
T . Then, we sequentially extract the paper node (from Q) that
is closest to T and have not been visited, as the new current
visiting node s. We repeat the above steps until all the papers
in Q have been visited. Finally, we take the first m papers in
Q as the top-m papers, denoted by D. Next, we will introduce
how to use the retrieved top-m papers to find the best n experts
who are semantically match with the given query text T .

C. Top-n Expert Finding

Given a query T and the top-m papers D that are semanti-
cally similar to T , we do the top-n expert finding as follows.
We first extract all the authors that have appeared in D as the
candidate experts denoted by C. Then, we define a ranking

Tqq T

(a) Original kNN proximity graph (b) Our PG-Index after refinement

Fig. 5: An example of PG-Index

score to measure how an expert semantically matches with T .
Finally, we present a threshold algorithm (TA)-based method
to quickly return the top-n experts based on the ranking score,
without scanning and ranking all candidate experts in C.

Candidate experts. Because we have obtained the best m
papers D = {p1, p2, · · · , pm} that are semantically similar to
the given query text T , we directly extract all the authors for
each paper p ∈ D, denoted by Cp, and combine them to be the
candidate experts to T , denoted by C = Cp1∪Cp2∪· · ·∪Cpm .

Expert ranking score. We first define the expert score re-
garding a specific paper and then compute the final expert
ranking score based on it. In the document-centric expert
finding literatures, the retrieved paper is usually assumed as
the “expertise evidence” of experts used to score the candidate
experts [2], [15]. The reciprocal ranking [37] is a simple and
effective method for expert finding, which takes the inverse
value of a paper’s rank as the expert score. This ranking gives
a huge boost to candidates with at least one paper well ranked
and tends to promote candidates with more papers than others.
However, it ignores the fact that the contribution of each author
in the same paper is different. As an alternative, we define the
expert score w.r.t. a specific paper, denoted by S(a, p), by
considering an expert’s contribution to this paper as:

S(a, p) =
1

I(p)
· w(a, p) , (4)

where I(p) indicates the rank of the paper p in D, and w(a, p)
indicates the contribution of the author a to p. Instead of
setting the same weight for all authors in Cp, we assume
that the contribution increases as the author’s rank increases
[38], [39]. Therefore, in this paper, we assign the contribution
weight by using a Zipf distribution [40] as follows:

w(a, p) =
1

I(a) ·
∑|Cp|

i=1 (1/i)
, (5)

where I(a) = {1, 2, · · · , |Cp|} is the rank of the candidate
expert a in the paper p, and |Cp| represents the total number
of authors in p. This method emphasizes that a highly ranked
author has a significantly higher weight. Given an expert a,
we define the expert ranking score R(a) w.r.t. all the papers
in D as the sum of its expert score w.r.t. every paper (Eq. 6).

R(a) =
∑
pi∈D

S(a, pi) (6)

TA-based top-n experts finding. We present a threshold algo-
rithm (TA)-based method to find the top-n experts efficiently
without scanning and ranking all candidate experts. First, for
each paper pj ∈ D, we record all candidate experts’ scores
w.r.t. pj in a ranked list Lj in descending order (see Figure
6). Notice that, if an author a does not appear in pj , then

C p1

a4 0.83

a7 0.56

a2 0.49

… …

C p2

a7 0.83

a2 0.51

a5 0.3

… …

C p3

a1 0.71

a2 0.51

a7 0.32

… …

C LB UB

a4 0.83 2.37

a7 0.83 2.37

a1 0.71 2.37

Top-2：a7 and a2

1.45

C LB UB

a1

a7 1.71 1.71

a5 0.3 1.21

a2 1.51 1.51

a4 0.71 1.5

0.83C LB UB

a1 0.71 1.78

a7 1.39 1.9

a2 1.02 1.58

a4 0.83 1.85

1
st
 access

2
nd

 access

3
rd

 access

a2.LB > a4.UB

L1 L2 L3

Fig. 6: TA-based top-n expert finding

its expert score w.r.t. pj is set to be zero (S(a, pj) = 0).
Since we have m papers in D, we finally get m ranked lists.
Second, we access all lists from top to bottom and update
the upper and lower bound of expert ranking score for each
visited author ai, denoted by R(ai) and R(ai), respectively.
Finally, we terminate it early if n experts are found, of which
the smallest R is larger than other experts’ greatest R.

We now show how to update R(ai) and R(ai). According
to Eq. 6, the expert ranking score R(ai) is computed by
aggregating S(ai, pj) over all papers in D. Intuitively, if
we know the bounds of S(ai, pj), denoted by S(ai, pj) and
S(ai, pj), of an expert from each Lj , then we can compute
the bounds of the expert ranking score as follows.

R(ai) =
∑
pj∈D

S(ai, pj) and R(ai) =
∑
pj∈D

S(ai, pj) (7)

Upper bound of R(ai). At each access to the ranked list Lj ,
if an author ai is not visited so far, then we have S(ai, pj) =
S(ax, pj), where S(ax, pj) is the expert score w.r.t. pj of the
current accessed expert ax in Lj . This is because the expert is
ranked in descending order in each Lj according to its expert
score w.r.t. pj , so that all the unaccessed experts from Lj

must have a smaller expert score than S(ax, pj). If we find
ai from Lj , then we have S(ai, pj) = S(ai, pj). The upper
bound S(ai, pj) is decreased as TA-based access executes. By
applying Eq. 7, we can update the upper bound R(ai) based
on the value of S(ai, pj) from all each ranked list Lj .

Lower bound of R(ai). At each access to the ranked list Lj ,
if ai is not visited so far, then we have S(ai, pj) = 0, because
it is possible that ai is not an author of pj . If we find ai from
Lj , then we have S(ai, pj) = S(ai, pj). The lower bound
S(ai, pj) is increased from 0 to S(ai, pj) as the TA-based
access executes. We can update the lower bound R(ai) based
on the value of S(ai, pj) from each ranked list Lj (Eq. 7).

Termination check. We terminate the TA-based access if the
top-n experts are found: (1) we sort all visited experts in
descending order of R(ai), (2) we select the n-th largest R(ai)
as the lower bound of the top-n experts’ ranking score, denoted
as LB, (3) we select the greatest R(ai) among other experts
as their upper bound on expert ranking score, denoted as UB,
and (4) we terminate the TA-based access if LB ≥ UB.

Theorem 2: The TA-based access can terminate safely and
obtain the top-n final experts, when LB ≥ UB holds.

Proof: Since the lower bound S(ai, pj) increases from 0 to
the exact S(ai, pj) as the TA-based access processes, the lower
bound of the top-n experts’ ranking score LB also increases
(Eq. 7). Similar to LB, UB decreases because the upper bound

S(ai, pj) decreases to the exact S(ai, pj) as the TA-based
access processes. Hence, if LB ≥ UB holds at the r-th access,
then it will hold for all r′-th access (r′ > r). Therefore, the
TA-based access can terminate safely and return the top-n final
experts when LB ≥ UB holds.

Example 5: As Figure 6 shows, there ranked lists L1,L2

and L3, each list Lj records all candidate experts and their
expert scores w.r.t. pj . Suppose we want to find the top-2
experts, then the TA-based access is processed as follows.
In the 1st access, we visited three experts a4, a7, and a1
and we update their bounds of the expert ranking score
as R(a4) = 0.83, R(a4) = 2.37, R(a7) = 0.83, R(a7) =
2.37, R(a1) = 0.71, and R(a4) = 2.37. Since R(a1) >
min{R(a4), R(a7)}, we need to keep accessing. After the 2nd
access, we update the bounds of expert ranking score and we
find that max{R(a4), R(a1)} > min{R(a7), R(a2)}, hence
we continue accessing. The TA-based access terminates after
the 3rd access, because the termination condition is reached,
which means that it’s impossible to find other experts having
a greater ranking score than the smallest R of {a2, a7}. We
finally return the top-2 experts without scanning and ranking
all candidate experts.

V. OPTIMIZATION

In §III, we adopt the meta-path P = P -A-P (co-authorship)
to find (k,P)-core communities of papers. The explicit struc-
tural relationships of papers are captured in these communities
and are used to fine-tune the implicit textual semantics of
papers represented by a pre-trained model. Although it is
effective, it still has one limitation that should be handled.

Analysis. The biggest problem by only using the meta-path
P -A-P is that it ignores the fact that one author could be
interested in many different research topics. For instances
where one author wrote several papers having different re-
search topics, these papers could be returned in the same
(k,P)-core community with P = P -A-P . If they are collected
as positive samples, then the representation quality of our
document embedding would be affected to some extent.

Optimization. In order to solve this problem, we enhance
our (k,P)-core based document embedding model by con-
sidering more valuable meta-paths simultaneously. Different
meta-paths represent the different relationships among papers,
such as P -T -P (same-topic relationship) and P -P (citation).
Both the two meta-paths can be viewed as a complement to
the co-authorship P -A-P . Suppose that we have l different
meta-paths {P1, · · · ,Pl}. We consider them in our model
simultaneously as follows: (1) As mentioned in Section III-B,
we select a set of seed papers randomly and find l different
(k,P)-core communities for each seed paper w.r.t. l meta-
paths, denoted by {Gk

P1
, · · · , Gk

Pl
}. (2) We next extract a

common sub-community of {Gk
P1
, · · · , Gk

Pl
} as the final com-

munity for each seed paper (Eq. 8), which can be viewed as
having a strong structurally cohesiveness. To be more precise,
for each paper in this common sub-community Gk

P1···l
, it has

the same author, the same topic with at least k other papers,

and cite (or be cited by) at least k other papers. (3) After
getting such communities, we can directly use them in our
(k,P)-core embedding model (§III-C) and conduct the top-n
expert finding based on the PG-Index (§IV).

Gk
P1···l

= Gk
P1
∩Gk

P2
∩ · · · ∩Gk

Pl
(8)

In §VI, we show the effect of meta-paths on the expert
finding effectiveness and efficiency, by testing the three meta-
paths (P1 = P -A-P , P2 = P -T -P , and P3 = P -P) individually
and all the possible combination of them, such as P1 + P2,
P1 + P3, P2 + P3, and P1 + P2 + P3.

VI. EXPERIMENTAL STUDY

We present experiments to evaluate (1) effectiveness
(§VI-B), (2) efficiency (§VI-C), (3) parameter sensitivity
(§VI-D), and (4) overhead of PG-Index (§VI-E). Our code
[41] were implemented in Python3.8, and all experiments were
conducted on 24 cores of a 3.0GHZ server (running Ubuntu
Linux) with 8 Tesla V100s GPUs (32G memory).

A. Experimental Setup

Datasets. We used three real-work academic networks:
Aminer [42], DBLP [43], and ACM [44]. Each provides the
various relationships among authors, papers, and topics in a
heterogeneous graph. All the original networks are provided
in [41]. The statistics of our datasets are shown in Table I.
Queries. Similar to other text-based expert finding solutions
[3], [19], [45], we formed 2680 queries (575, 999, and 1106 for
Aminer, DBLP, and ACM, respectively) by randomly selecting
papers from our datasets and directly use each paper’s textual
information L(p) as the query text. Moreover, we adopted
the same method as [3], [19], [45] to generate the ground
truths: for each query, we selected all the authors having the
same topics as the one of query as the ground truths. We refer
interested readers to [19] for more information.
Metrics. We used two popular information retrieval measures
[46], including the precision at rank n (P@n) and mean
averaged precision (MAP) as the effectiveness metrics. P@n
is the percentage of correct experts in the top-n retrieved
experts w.r.t. to the ground truths, which is estimated as P@n
= #correct experts/n. Suppose we have N correct
experts for a query T , then the average precision AP w.r.t. T
is defined as AP =

∑N
i=1(P@i ∗ I(ai))/N , where I(ai) = 1

if ai is a correct expert, otherwise I(ai) = 0, and MAP is
the average AP for all queries. Moreover, we also adopted the
average document similarities (ADS) of the top-n experts’
academic papers to the given query T as our metric to
measure how an expert ai is semantically related to T , that
is ADS =

∑n
i=1

∑
∀pij∈P (ai)

sim(pij , T)/|P (ai)|/n. We run
each query for 5 times, and used the averaged value of the
above metrics to evaluate the effectiveness. Besides, we used
the average response time to evaluate the efficiency.
Comparing methods. We compared with two types of text-
based expert finding methods. The first category includes
all the methods adopting the representation model that only

TABLE I. Statistics of datasets
Datasets ↓ # papers # experts # venues # topics # relations

Aminer 1,125,082 996,110 15,874 7 4,945,282
DBLP 1,347,410 968,046 7,497 13 6,222,800
ACM 1,964,946 1,573,114 11,688 13 6,681,328

consider the textual semantics of papers, such as TFIDF [47],
Avg.GloVe [48], and SBERT [23]. TFIDF is a bag-of-words
model that only considers lexical similarity. Avg.GloVe is
average word representations by factorizing the word-word co-
occurrence matrix. SBERT is a contextual vector representa-
tion method based on the pre-trained model. For the second
category, it includes several methods adopting the network
embedding models on homogeneous graphs, such as TADW
[49], GVNR-t [50], G2G [51] and IDNE [52]. Notice that,
TADW and GVNR-t are based on matrix factorization. G2G
are deep learning models. IDNE is based on the topic-word
attention. Moreover, no matter what representation model or
network embedding model is selected, they all need to access
and rank all the candidate experts, thus returning the final
top-n experts. Different from these methods, we are the first
method that consider both the explicit relations and implicit
textual semantics of papers over heterogeneous graphs in one
model, and we can return the top-n experts without accessing
and ranking all the candidates.
Parameters. We implemented our solution based on an open
source NLP project HuggingFace [53] providing many pre-
trained models. The default parameters are: (k,P)-core for
k = 4 and P ∈ {P -A-P , P -T -P , P -P} (we use P -A-P
and P -T -P together as default), sampling ratio f = 0.3 for
training data generation, near negative strategy for negative
samples collection (collect s = 3 negative samples for per
positive sample), top-m papers retrieval for m = 1000, and top-
n experts finding for n = 20. Moreover, we trained our model
by setting the margin of our loss function as c = 1, epochs
= 4, and the batch size of 64 for gradient accumulation.

B. Effectiveness Evaluation
Table II shows the effectiveness results for three datasets.

Notice that, the methods that only consider the textual seman-
tics of papers in the representation model perform the worst.
While the methods that adopting network embedding models
on homogeneous graphs are better than the ones that do not
consider the network relations. Finally, our solution outper-
forms all the methods compared (improved by at least 1.5X,
1.6X, and 1.4X for MAP, P@5, and ADS). This is because the
explicit relationships of papers on heterogeneous graphs (e.g.,
co-authorship, citation, and same-topic relationship) are also
important besides the implicit textual semantics of papers, and
our solution is the only one that consider both aspects in one
model, thus we achieve the best effectiveness results.
Case study. Some concrete case studies of expert finding on
Aminer dataset are shown in Table III. We selected the best
method (GVNR-t) besides ours as the competitor method to
show the top-5 experts of two queries from semantic web and
NLP research areas. Table III (left) shows the top-5 experts by
taking the L(p) of [54] as input query text and Table III (right)
shows the one of [55] (bold items are correct experts). Ours has

TABLE II. Effectiveness of expert finding over three datasets
Datasets → Dataset 1: Aminer Dataset 2: DBLP Dataset 3: ACM
Methods ↓ MAP P@5 P@10 P@20 ADS MAP P@5 P@10 P@20 ADS MAP P@5 P@10 P@20 ADS

TADW 0.445 0.544 0.386 0.264 0.486 0.288 0.528 0.460 0.365 0.616 0.266 0.488 0.365 0.267 0.614
GVNR-t 0.458 0.548 0.448 0.310 0.548 0.300 0.532 0.471 0.373 0.652 0.292 0.537 0.428 0.319 0.652

G2G 0.431 0.512 0.242 0.256 0.474 0.267 0.478 0.438 0.352 0.579 0.292 0.413 0.331 0.256 0.502
IDNE 0.443 0.537 0.404 0.263 0.500 0.282 0.508 0.441 0.360 0.601 0.219 0.405 0.329 0.255 0.487

TFIDF 0.375 0.431 0.329 0.234 0.345 0.210 0.448 0.334 0.232 0.372 0.218 0.464 0.358 0.266 0.415
AvgGlove 0.269 0.306 0.271 0.213 0.203 0.135 0.306 0.259 0.202 0.219 0.138 0.345 0.272 0.212 0.279

SBERT 0.405 0.505 0.312 0.243 0.345 0.213 0.461 0.368 0.276 0.383 0.194 0.425 0.351 0.275 0.394

Ours (P-A-P ∩ P-T-P) 0.690 0.883 0.654 0.381 0.812 0.381 0.721 0.609 0.465 0.843 0.371 0.647 0.569 0.445 0.866

TABLE III. Case study for expert finding (Aminer)
semantic web machine learning

GVNR-t Ours GVNR-t Ours

Ian Horrocks Ian Horrocks Ivan Bratko Ivan Bratko
Biplav Srivastava Biplav Srivastava John Shawe-Taylor Thomas G. Dietterich

Daniel S. Weld Katia P. Sycara Jason Weston Peter A. Flach
Katia P. Sycara Siegfried Handschuh Thomas Hofmann Jaime G. Carbonell

Boris Motik James A. Hendler Thomas G. Dietterich Prasad Tadepalli

better precision than GVNR-t, because (1) the papers of these
experts show greater semantic similarity to the query text, (2)
these experts have co-authored a lot of papers, and (3) the
papers of these experts have a lot of mutual citations. Since our
solution considers both the textual similarity and relations of
papers in one model, we have the better effectiveness results.

Effect of different meta-paths. We studied the effect of
different meta-paths on the effectiveness. We conducted our
solution by configuring one meta-path, two meta-paths, and
three meta-paths, respectively. For the case of one meta-
path, we have three different choices P -A-P (A), P -T -P
(T), and P -P (C). While for the case of two meta-paths,
we have another three choices P -A-P ∩ P -T -P (AT), P -
P ∩ P -T -P (CT), and P -A-P ∩ P -P (AC). For the case
of three meta-paths, we consider P -A-P ∩ P -P ∩ P -T -P
(ACT). Table IV shows that instances considering the (k,P)-
core in the embedding model performs better than the one
without considering (k,P)-core (1st row: w/o (k,P)-core).
This is because the similar papers can be clustered in the same
(k,P)-core community and we can collect the representative
positive samples from this community, thereby improving the
embedding quality. Moreover, for the case of one meta-path,
we found that P -A-P is the best one and P -P is the worst
one. This is because it’s normal that one paper cites other
less-relevant papers in terms of the textual content. Compared
to the citation relationship, the other two relationships can
better reflect the similarity of papers. Moreover, we found
that when we consider instances involving multiple meta-
paths simultaneously in our model, the combination of P -
A-P ∩ P -T -P is the best one. And another interesting
finding emerged: the case of considering three meta-paths
simultaneously performs worse than considering two meta-
paths. This is because the more meta-paths are considered, the
less (k,P)-core communities that satisfy the three meta-paths
at the same time can be found, resulting in the insufficient
training data which affect the embedding quality.

C. Efficiency Evaluation

Figure 7 shows the efficiency results for three datasets. Since
we improve the efficiency of expert finding through a threshold
algorithm (TA)-based method by using the PG-Index, we have
four versions of our solution: (1) Ours-1: w/ PG-Index & w/
TA (default version), (2) Ours-2: w/ PG-Index & w/o TA,
(3) Ours-3: w/o PG-Index & w/ TA, and (4) Ours-4: w/o

TABLE IV. Effect of meta-paths on effectiveness
Datasets → Dataset 1: Aminer Dataset 2: DBLP Dataset 3: ACM
Methods ↓ MAP P@5 ADS MAP P@5 ADS MAP P@5 ADS

w/o (k,P)-core 0.31 0.34 0.27 0.186 0.397 0.383 0.19 0.43 0.39
P-A-P (A) 0.63 0.81 0.80 0.37 0.71 0.81 0.35 0.62 0.83

P-P (C) 0.49 0.71 0.79 0.34 0.64 0.79 0.32 0.56 0.82
P-T-P (T) 0.61 0.78 0.80 0.37 0.67 0.81 0.33 0.59 0.79

AT 0.69 0.88 0.81 0.38 0.72 0.84 0.37 0.65 0.87
AC 0.63 0.77 0.79 0.36 0.71 0.81 0.34 0.63 0.82
CT 0.59 0.76 0.80 0.37 0.68 0.81 0.35 0.60 0.83

ACT 0.55 0.69 0.78 0.36 0.65 0.80 0.34 0.58 0.82

O u r s -
1

O u r s -
2

O u r s -
3

O u r s -
4

T A D W
G V N R - t

G 2 G
I D N E

T F I D F

A v g G
l o v e
S B E R T

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0 A C M

Re
sp

on
d T

im
e(m

s)

O u r s -
1

O u r s -
2

O u r s -
3

O u r s -
4

T A D W
G V N R - t

G 2 G
I D N E

T F I D F

A v g G
l o v e
S B E R T

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

D B L PA m i n e r

Re
sp

on
d T

im
e(m

s)

O u r s -
1

O u r s -
2

O u r s -
3

O u r s -
4

T A D W
G V N R - t

G 2 G
I D N E

T F I D F

A v g G
l o v e
S B E R T

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0

Re
sp

on
d T

im
e(m

s)

Fig. 7: Efficiency of expert finding over three datasets

PG-Index & w/o TA. As shown in Table 7, Ours-1, Ours-
2, and Ours-3 outperform all the other methods, and Ours-
1 is the best one among these three versions. This proves
that the PG-Index and TA method are useful to improve the
efficiency. Moreover, from the results, we found that nearly
80% efficiency improvement is driven by the PG-Index while
nearly 20% improvement is caused by TA-based method.

D. Parameter Sensitivity

Figure 8 reports the parameter sensitivity of our approach
for (1) the sample ratio f , (2) the size k of (k,P)-core, (3)
the size m of top-m papers, (4) the size n of top-n experts,
and (5) the strategies of negatives sampling.
Effect of sample ratio f . We varied f from 10% to 50%
to show its effect on expert finding effectiveness and training
efficiency. Note that the larger f is, the larger the amount of
training data collected (§III-B). Since larger training data usu-
ally offers a high embedding quality, we can see that the MAP
and P@k increases as f increases in Figure 8(a). Moreover,
it’s natural that training time increases as f increases. Finally,
we found that a balance is achieved when f = 30%.
Effect of the size k of (k,P)-core. We varied k from 2
to 9 to see it’s effect on expert finding effectiveness and
training efficiency (Figure 8(b)). The larger k is, the more
cohesiveness of the (k,P)-core has, but with fewer papers are
included in (k,P)-core. We cannot obtain sufficient training
data from such a small community, affecting the embedding
quality. On the contrary, if we set a smaller k, then we can
obtain a relatively large community in where the relationships
of papers are not close enough. Hence, we could collect
more unrepresentative positive samples from such a loose
community, but this also would harm the embedding quality.
Moreover, it’s natural that we require more time to search a
(k,P)-core with a large k than the one of small k. Finally, we
found that a balance can be achieved when k = 4, k = 5, and
k = 5 for Aminer, DBLP, and ACM datasets, respectively.

Fig. 8: Parameter sensitivity: effect of the size k of (k,P)-core, sample ratio f , size m of top-m papers, and size n of top-n experts

Effect of the size m of top-m papers. We varied m from 50
to 1000 to see its effect on the expert finding effectiveness and
efficiency. Figure 8(c) shows that both results increase as m
increases, because we need more time to obtain more papers,
and if more papers are taken as the “expertise evidence”, then
the returned experts are more accurate.
Effect of the size n of top-n experts. We varied n from
5 to 100 to see its effect on the expert finding effectiveness
and efficiency. In this test, we show P@n for each n as the
effectiveness result. In Figure 8(d), the effectiveness result
decreases as n increases. This is because most relevant experts
are observed at the beginning and less high-quality experts
can be returned as n increases. Besides, the efficiency result
increases as n increases, because we need more TA access to
meet the termination condition and return the top-n experts.
Effect of negatives sampling strategies. We implemented
two sampling strategies: random negative and near negative
(§III-B). As Table V shows, the near negative performs better
than the random negative. This is because the near negative
pays more attention to those more valuable papers (not belong-
ing to the community but close to the seed paper). Moreover,
for each positive sample we would collect s negative samples,
and we found that s = 3 is enough to achieve a balance
between the effectiveness and training efficiency.

E. Overhead of PG-Index

We extracted four sub-graphs {G1 · · ·G4} with different
size from the original dataset G (e.g., G1 contains 0.8M nodes
and 3.8M edges), to study the overhead of PG-Index. Table
VI shows that the construction time and memory usage of our
PG-Index are modest, e.g., within 543.1 s and 3.5 GB.

VII. RELATED WORK

Topic-based expert finding. This kind of expert finding
focuses on finding the experts whose expertise can be rep-
resented by the input topics. The typical approach to topic-
based expert finding is statistical language model [2], [12],
[17], [19], [20], [56], [57]. The basic idea behinds these
algorithms is that the expertise of an expert can be estimated
by aggregating textual evidence from relevant documents. To
be more precise, a conditional probability model with topics
as the condition is proposed to predict the probability of
an expert related to these topics, and then return the top-n
experts according to such a probability. To further improve

TABLE V. Effect of the negative sampling
strategy (Aminer)

Methods → MAP P@5 ADS Time (h)
Random (1:3) 0.44 0.61 0.74 13.3

Near (1:1) 0.46 0.63 0.77 4.2
Near (1:2) 0.51 0.67 0.79 8.7
Near (1:3) 0.63 0.81 0.80 13.3
Near (1:4) 0.63 0.82 0.81 17.4

TABLE VI. Overhead of PG-
Index (Aminer)

Methods → Mem (G) Time (s)
G(1.1M, 4.9M) 3.5 543.1
G1(0.8M, 3.8M) 2.6 334.9
G2(0.4M, 2.1M) 1.3 178.5
G3(0.2M, 0.9M) 0.62 43.46
G4(0.1M, 0.6M) 0.31 16.46

the effectiveness, some works focus on integrating the topics’
semantic representations (i.e., embeddings) into the statistical
language model [21].

Text-based expert finding. The problem of topic-based query
is that the textual content of the topics is too limited in terms
of language to express the user’s latent query intention, thus
motivating the text-based expert finding. A popular solution
to text-based query is to find the most relevant experts by
using the document representation model [1], [4], [18], [23].
Besides the implicit semantics of papers’ textual contents, the
explicit relations of papers are also important to document
representation. Therefore, [3], [25] consider the structural
relations among papers in a homogeneous paper-paper graph
to enhance the effectiveness of expert finding. Specifically, a
deep walk is conducted on the homogeneous graph to preserve
the features of paper-paper relations in the learned vectors.

VIII. CONCLUSION

We studied the academic expert finding on heterogeneous
graphs by considering both the explicit relationships and the
implicit textual semantics of papers in one model. We first
proposed an offline (k,P)-core based embedding model based
on a pre-trained model. Moreover, by using papers’ embed-
dings, we next presented an online threshold algorithm (TA)-
based method to efficiently return top-n experts on the top of
a carefully designed proximity graph-based index (PG-Index).
All the unpromising papers could be pruned through PG-Index,
thereby improving the efficiency. Besides, we can quickly
return the top-n experts without scanning and ranking all the
expert candidates by using the TA-based method. Moreover,
we extended our approach to support multiple relationships
simultaneously in our representation model. Experimental re-
sults on real-world datasets confirmed the effectiveness and
efficiency of our approach.

REFERENCES

[1] P. Cifariello, P. Ferragina, and M. Ponza, “Wiser: A semantic approach
for expert finding in academia based on entity linking,” Information
Systems, vol. 82, pp. 1–16, 2019.

[2] S. Lin, W. Hong, D. Wang, and T. Li, “A survey on expert finding
techniques,” Journal of Intelligent Information Systems, vol. 49, no. 2,
pp. 255–279, 2017.

[3] R. Brochier, A. Gourru, A. Guille, and J. Velcin, “New datasets and
a benchmark of document network embedding methods for scientific
expert finding,” in European Conference on Information Retrieval, 2020,
pp. 16–29.

[4] M. Berger, J. Zavrel, and P. Groth, “Effective distributed representations
for academic expert search,” in EMNLP, 2020, pp. 56–71.

[5] S. Yuan, Y. Zhang, J. Tang, W. Hall, and J. B. Cabotà, “Expert finding
in community question answering: a review,” Artif. Intell. Rev., vol. 53,
no. 2, pp. 843–874, 2020.

[6] W. Fan, X. Wang, and Y. Wu, “Expfinder: Finding experts by graph
pattern matching,” in ICDE, 2013, pp. 1316–1319.

[7] J. Sun, J. Xu, R. Zhou, K. Zheng, and C. Liu, “Discovering expert
drivers from trajectories,” in ICDE, 2018, pp. 1332–1335.

[8] J. Zhang, J. Tang, and J. Li, “Expert finding in a social network,” in
DASFAA. Springer, 2007, pp. 1066–1069.

[9] R. Roberts, “Understanding the validity of data: a knowledge-based
network underlying research expertise in scientific disciplines,” Higher
Education, vol. 72, no. 5, pp. 651–668, 2016.

[10] A. T. P. Silva, “A research analytics framework for expert recommen-
dation in research social networks,” Ph.D. dissertation, City University
of Hong Kong, 2014.

[11] S. Price and P. A. Flach, “Computational support for academic peer
review: A perspective from artificial intelligence,” Communications of
the ACM, vol. 60, no. 3, pp. 70–79, 2017.

[12] H. Deng, I. King, and M. R. Lyu, “Formal models for expert finding on
DBLP bibliography data,” in ICDM, 2008, pp. 163–172.

[13] F. Alarfaj, U. Kruschwitz, D. Hunter, and C. Fox, “Finding the right
supervisor: Expert-finding in a university domain,” in NAACL, 2012,
pp. 1–6.

[14] A. D. Nobari, S. S. Gharebagh, and M. Neshati, “Skill translation models
in expert finding,” in SIGIR, 2017, pp. 1057–1060.

[15] K. Balog, Y. Fang, M. De Rijke, P. Serdyukov, and L. Si, “Expertise
retrieval,” Foundations and Trends in Information Retrieval, vol. 6, no.
2–3, pp. 127–256, 2012.

[16] R. Gonçalves and C. F. Dorneles, “Automated Expertise Retrieval: A
Taxonomy-based Survey and Open Issues,” ACM Computing Surveys,
vol. 52, no. 5, pp. 1–30, 2019.

[17] S. Momtazi and F. Naumann, “Topic modeling for expert finding using
latent dirichlet allocation,” Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, vol. 3, no. 5, pp. 346–353, 2013.

[18] H. Gui, Q. Zhu, L. Liu, A. Zhang, and J. Han, “Expert finding in
heterogeneous bibliographic networks with locally-trained embeddings,”
arXiv, vol. abs/1803.03370, 2018.

[19] R. Brochier, A. Guille, B. Rothan, and J. Velcin, “Impact of the query set
on the evaluation of expert finding systems,” CoRR, vol. abs/1806.10813,
2018.

[20] K. Balog, Y. Fang, M. De Rijke, P. Serdyukov, and L. Si, “Expertise
retrieval,” Foundations and Trends in Information Retrieval, vol. 6, no.
2–3, pp. 127–256, 2012.

[21] C. Van Gysel, M. de Rijke, and M. Worring, “Unsupervised, efficient
and semantic expertise retrieval,” in WWW, 2016, pp. 1069–1079.

[22] I. Beltagy, K. Lo, and A. Cohan, “Scibert: A pretrained language model
for scientific text,” CoRR, vol. abs/1903.10676, 2019.

[23] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in EMNLP, 2019, pp. 3980–3990.

[24] C. Shi, X. Kong, P. S. Yu, S. Xie, and B. Wu, “Relevance search in
heterogeneous networks,” in EDBT, 2012, pp. 180–191.

[25] A. Cohan, S. Feldman, I. Beltagy, D. Downey, and D. Weld, “SPECTER:
Document-level Representation Learning using Citation-informed Trans-
formers,” in ACL, 2020, pp. 2270–2282.

[26] Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao, “Effective and efficient
community search over large heterogeneous information networks,”
PVLDB, vol. 13, no. 6, pp. 854–867, 2020.

[27] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks,” PVLDB,
vol. 4, no. 11, pp. 992–1003, 2011.

[28] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang, R. Cheng, and X. Lin,
“A survey of community search over big graphs,” VLDBJ, vol. 29, no. 1,
pp. 353–392, 2020.

[29] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decompo-
sition of networks,” arXiv, vol. cs.DS/0310049, 2003.

[30] Y. Yang, Y. Fang, X. Lin, and W. Zhang, “Effective and Efficient
Truss Computation over Large Heterogeneous Information Networks,”
in ICDE, 2020, pp. 901–912.

[31] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for
person re-identification,” CoRR, vol. abs/1703.07737, 2017.

[32] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s
neural machine translation system: Bridging the gap between human and
machine translation,” CoRR, vol. abs/1609.08144, 2016.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

[34] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018.

[35] M. Wang, X. Xu, Q. Yue, and Y. Wang, “A comprehensive survey and
experimental comparison of graph-based approximate nearest neighbor
search,” CoRR, vol. abs/2101.12631, 2021.

[36] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph
construction for generic similarity measures,” in WWW, 2011, pp. 577–
586.

[37] C. Macdonald and I. Ounis, “Voting for candidates: Adapting data fusion
techniques for an expert search task,” in CIKM, 2006, pp. 387–396.

[38] E. A. Corrêa Jr, F. N. Silva, L. d. F. Costa, and D. R. Amancio,
“Patterns of authors contribution in scientific manuscripts,” Journal of
Informetrics, vol. 11, no. 2, pp. 498–510, 2017.

[39] L. Weigang, “First and others credit-assignment schema for evaluating
the academic contribution of coauthors,” Frontiers of Information Tech-
nology & Electronic Engineering, vol. 18, no. 2, pp. 180–194, 2017.

[40] R. L. Axtell, “Zipf distribution of us firm sizes,” Science, vol. 293, no.
5536, pp. 1818–1820, 2001.

[41] J. Liu, “Our code and datasets,” https://github.com/leleyi/Kcore Expert
Finding, 2021.

[42] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
Extraction and mining of academic social networks,” in SIGKDD, 2008,
pp. 990–998.

[43] M. Ley, “The dblp computer science bibliography: Evolution, research
issues, perspectives,” in International symposium on string processing
and information retrieval. Springer, 2002, pp. 1–10.

[44] C. L. Hennessey, “Acm digital library,” The Charleston Advisor, vol. 13,
no. 4, pp. 34–38, 2012.

[45] S. D. Gollapalli, P. Mitra, and C. L. Giles, “Ranking experts using
author-document-topic graphs,” in Proceedings of the 13th ACM/IEEE-
CS joint conference on Digital libraries, 2013, pp. 87–96.

[46] S. Büttcher, C. L. Clarke, and G. V. Cormack, Information Retrieval:
Implementing and Evaluating Search Engines. Mit Press, 2016.

[47] W. B. Croft, D. Metzler, and T. Strohman, Search Engines: Information
Retrieval in Practice, vol. 520.

[48] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in EMNLP, 2014, pp. 1532–1543.

[49] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information.” in IJCAI, 2015, pp.
2111–2117.

[50] R. Brochier, A. Guille, and J. Velcin, “Global vectors for node repre-
sentations,” in WWW, 2019, pp. 2587–2593.

[51] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking,” CoRR, vol.
abs/1707.03815, 2017.

[52] R. Brochier, A. Guille, and J. Velcin, “Inductive document network
embedding with topic-word attention,” in European Conference on
Information Retrieval, 2020, pp. 326–340.

[53] “HuggingFace,” https://github.com/huggingface/transformers, 2021.
[54] L. Li and I. Horrocks, “A software framework for matchmaking based

on semantic web technology,” International Journal of Electronic Com-
merce, vol. 8, no. 4, pp. 39–60, 2004.

[55] D. Wettschereck, “A study of distance-based machine learning algo-
rithms,” 1994.

[56] K. Balog, L. Azzopardi, and M. De Rijke, “Formal models for expert
finding in enterprise corpora,” in SIGIR, 2006, pp. 43–50.

[57] H. Fang and C. Zhai, “Probabilistic models for expert finding,” in
European conference on information retrieval. Springer, 2007, pp.
418–430.

https://github.com/leleyi/Kcore_Expert_Finding
https://github.com/leleyi/Kcore_Expert_Finding

	Introduction
	Preliminaries
	Problem Definition

	(k,P)-core based Document Embedding
	(k,P)-core Community Generation
	Sampling-based Training Data Generation
	Document Embedding

	Top-n Expert Finding via Embeddings
	Proximity Graph-based Document Index
	Semantically Similar Document Retrieval
	Top-n Expert Finding

	Optimization
	Experimental Study
	Experimental Setup
	Effectiveness Evaluation
	Efficiency Evaluation
	Parameter Sensitivity
	Overhead of PG-Index

	Related Work
	Conclusion
	References

