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ABSTRACT

Probabilistic diffusion models are capable of modeling complex data distributions
on high-dimensional Euclidean spaces for a range applications. However, many
real world tasks involve more complex structures such as data distributions defined
on manifolds which cannot be easily represented by diffusions on Rn. This paper
proposes denoising diffusion models for tasks involving 3D rotations leveraging
diffusion processes on the Lie group SO(3) in order to generate candidate solutions
to rotational alignment tasks. The experimental results show the proposed SO(3)
diffusion process outperforms naı̈ve approaches such as Euler angle diffusion in
synthetic rotational distribution sampling and in a 3D object alignment task.

1 INTRODUCTION

Denoising diffusion probabilistic models are capable of generating high quality samples from complex
distributions and have delivered encouraging results in audio synthesis and image applications.
However, there are many problems such as pose estimation and protein docking for which the domain
Rn is unsuitable. As many of these problems are roto-translational in nature, sampling rotations from
a conditional diffusion model allows for a probabilistic model of possible poses. In this work, we
introduce denoising diffusion models on the Lie group of 3D rotations, SO(3).

Denoising diffusion probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a
set of generative models inspired by non-equilibrium thermodynamics. The underlying idea consists
of simulating a diffusion process that takes some form of observed data (e.g. images), denoted x0,
with unknown distribution q(x0) and transforms (diffuses) it into pure noise. A generative model can
thus be found by learning the reverse process, turning noise back into the structure of the underlying
data.

In practice, the diffusion is replaced by a non-homogenous discrete time Markov chain with one-step
transition density. The distribution at step t of the forward process Markov chain q(xt) is conditional
on only the step before it, q(xt|xt−1)

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where βt, t = 1, . . . , T denotes a variance schedule and N (y;µ,Σ) a Gaussian density with argu-
ment y, mean µ and covariance matrix Σ. Under appropriate conditions, the final value xT will
approximately follow an Gaussian distribution q(xT ) ≈ N (xT ;0, I).

Denoising models learn an approximation of the reverse process p(xt−1|xt) where p(xT ) = N (0, I).
The transition kernel p(xt−1|xt) hence learns to predict the previous time step of the forward process
and is parameterized by a normal distribution

pθ(xt−1 | xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (2)
The functions µθ and Σθ are implemented as outputs of a neural network with learned parameters θ.
More recent work (Ho et al., 2020) suggests that taking the covariance matrix Σt in equation 2 fixed
can result in better performance. Further reparameterization of the forward process xt ∼ q(xt|x0) =
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√
ᾱtx0 + (1− ᾱt)ϵ. where ϵ ∼ N (0, I), αt = 1− βt and ᾱt =

∏t
s=0 αs results in

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
. (3)

The loss equation then can be simplified to a function of added noise.

Lt(θ) = Eτ,ϵ,x0

[
∥ϵ− ϵθ(xτ , τ)∥2

]
. (4)

2 DEFINING A DIFFUSION ON THE ROTATION GROUP SO(3)

A key component of training diffusion models is the ability to sample from the diffusion distribution
at time t without having to calculate intermediate values. For the normal distribution in Rn (Euclidean
diffusion), this can be accomplished easily through the previously derived closed form equations.
However, this is not easily generalised to the space of rotations SO(3) due to several factors.

A naı̈ve approach to diffusion on SO(3) would be to use Euler angles, treating the rotations (ψ, ϑ, ϕ)
as diffusion over an R3 space. However, the nature of diffusions over Euler angles means that they
cannot correctly capture symmetries present in rotational systems. Alternatively, rotations may be
represented as unit quaternions. However, a diffusion process treating the quaternion representation
as R4 would require mapping the diffused position to the unit sphere at every step. The fast sampling
scheme previously defined (Ho et al., 2020) would not be usable due to this nonlinear mapping.
Similarly, a Gaussian distribution on R4 conditioned to lie on the 3-sphere is described by the Bingham
distribution (Bingham, 1974). Additionally, while quaternions are a continuous representation of
rotations, they form a double cover of SO(3). This results in each rotation being represented by two
equally valid quaternions, causing difficulties for neural networks (Zhou et al., 2019).

Instead of attempting to use an Rn normal distribution on the space of rotations, we instead look for
an analogous distribution defined on SO(3). Before we proceed we outline some of the desirable
properties of Gaussian distributions that are required for the distribution on SO(3). For example, if
pX(x), pY (y) are (independent) normal distributions defined as N (µx, σ

2
x),N (µy, σ

2
y) respectively,

then the distribution of their sum pZ(z) can be written as Z ∼ N(µx +µy, σ
2
x +σ2

y). For this reason,
the normal distribution is said to be closed under convolution as the convolution of two normal
densities (corresponding to the density of the sum) is also a normal distribution. This property is key
in allowing us to derive the equation for the distribution of q(xt|x0) and sample a diffusion model
efficiently. A distribution for a diffusion on SO(3) must also have this property in order to derive
equations for efficient sampling of the forward process.

The Fisher matrix and Bingham distributions have previously been used in deep learning as probabilis-
tic rotation estimators (Mohlin et al., 2020; Gilitschenski et al., 2020) for ortho-normal matrix and
quaternion representations of SO(3) respectively. However, neither of these distributions are closed
under convolution (Schaeben & Nikolayev, 1998; Glover & Kaelbling, 2013), making quantifying
the rotational distribution at arbitrary timesteps difficult.

Instead, we consider the isotropic Gaussian distribution on SO(3) (IG) (Savjolova, 1985) g ∼
IGSO(3)(µ, ϵ

2), parameterized by a mean rotation µ and scalar variance ϵ. The IG distribution can be
parameterized in an axis-angle form, with uniformly sampled axes and rotation angle ω ∈ [0, π] with
density

f(ω) =
1− cosω

π

∞∑
l=0

(2l + 1)e−l(l+1)ϵ2 sin((l +
1
2 )ω)

sin(ω/2)
. (5)

Note that the uniform distribution on SO(3), denoted USO(3), is parameterized with uniform-axis and
f(ω) = 1−cosω

π and needs to be included as a scaling factor when sampling from the distribution.

The IG distribution is both a natural extension of the central limit theorem (CLT) and the expected
distribution of Brownian motion (Qiu, 2013) on SO(3), providing a strong motivation to use it for
denoising diffusion models. While the variance of the IG distribution is defined as a scalar value,
and thus has less flexibility than the Matrix-Fisher or Bingham distributions, Euclidean denoising
diffusion models assume no correlation between dimensions, and are thus also parameterized with a
scalar variance. Most importantly, the IG distribution is closed under convolution.
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We can use this relationship to derive similar equations to the Euclidean diffusion process, allowing
us to define the distribution at arbitrary timesteps for efficient sampling. Initially, data x0 ∈ SO(3) is
sampled from the distribution q(x0) and diffused. As before, at t = T we consider the data to be
fully diffused.

To derive the distribution q(xt|x0), note that the analogous Euclidean distribution (Equation 1)
requires a scaling term to be applied to the x0 term. A scaling term applied directly to a rotation
matrix is nonsensical, as the resulting value does not lie on the SO(3) manifold. If x0 ∼ q(x0) is
viewed as a translation away from the origin, it implies that x0 ∼ s(x0) can be viewed as a rotation
away from the identity rotation I, and we can scale our rotations by interpolating the angle of rotation
along the geodesic from the identity. For this, we rely upon the exponential and logarithmic maps
between the Lie algebra so(3) and SO(3). Intuitively, a rotation matrix R has an associated angle of
rotation θ, and a rotation matrix P = RR = R2 has an angle of rotation of 2θ. We follow standard
definitions (Cardoso & Leite, 2010) of the logarithm of a rotation matrix and define it as

logR =
θ

2 sin θ

(
R⊤ −R

)
where θ satisfies 1 + 2 cos θ = trace(R). Matrices in so(3) are skew-symmetric of form S(v) with

S(v) =

(
0 z −y
−z 0 x
y −x 0

)
, v = [x, y, z] ,

where ∥v∥2 = θ. From this definition of the rotation matrix logarithm, we are able to scale rotation
matrices by converting them to values in the Lie algebra so(3), element-wise multiplying by a scalar
value and converting back to rotation matrices through matrix exponentiation. The composition
of rotations is done through matrix multiplication in SO(3), analogous to addition in Euclidean
diffusion models:

λ(γ,x) = exp (γ log (x)) . (6)
Thus the function λ(...) is the geodesic flow from I to x by the amount γ. Applying these to equations
from the original DDPM model we arrive at the following definitions:

q(xt|x0) = IGSO(3)(λ(
√
ᾱt,x0)), (1− ᾱt)); (7)

p(xt−1|xt,x0) = IGSO(3)(µ̃(xtx0), β̃t) (8)
and

µ̃(xt,x0) = λ

(√
ᾱt−1βt
1− ᾱt

,x0

)
λ

(√
αt−1(1− ᾱt−1)

1− ᾱt
,xt

)
. (9)

3 EXPERIMENTS

3.1 LEARNING DATA DISTRIBUTIONS ON SO(3)

To evaluate the validity of the proposed SO(3) diffusion process, a synthetic data distribution was
created. This distribution consists of rotations about the z-axis of ±90◦, with equal chance of either
rotation. A fully connected feed-forward network was trained using Algorithm 1. Inputs to the
network consisted of raw rotation matrices and sine-cosine encoded t values.

Rotations generated from the reverse diffusion process closely approximate the initial data distribution.
After generating 512 samples from the reverse process, the mean angular error between a sample
and the closest rotation in the synthetic dataset was 0.0239 radians. The 512 samples were then
categorised into z+90 (261 successes) and z−90 groups and modeled as a binomal distribution
with probability of success p. Using a Beta(α = 1, β = 1) distribution as the conjugate prior,
P(0.45 < p < 0.55 | z1:512) = 0.963, showing that the reverse process has also modeled the split of
the data correctly.

While this shows that the denoising diffusion on SO(3) is capable of learning a data distribution, it
does not show whether it is any more capable than Euclidean diffusion. To test this, we consider
an idiomatic approach to diffusion of rotations: Euclidean diffusion of Euler angles; and show
that this approach breaks down when the data distribution passes through singularities in the Euler
representation.
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Distribution M̂MDb p < 0.05
Small Uncorrelated Rotations 0.0433 Yes
Large Uncorrelated Rotations 0.0027 Yes
Large Correlated Rotations 0.0317 Yes

Table 1: MMD estimates between generated samples and samples taken from Quaternion-Bingham
distributions (See Appendix D). Significance testing shows that the diffusion model correctly captures
various distributions.

We construct a data distribution of uniformly sampled rotations about the y-axis between π
3 and 2π

3
radians (Figure 2a) and train two diffusion processes with equal network capacity until convergence.
Figure 2b shows samples from the trained Euclidean–Euler process, revealing an inability to correctly
capture the distribution, whereas the SO(3) diffusion process (Figure 2c) provides a significantly
better way of approximating the distribution and sampling.

(a) Target Distribution (b) Euler Angle Diffusion (c) IGSO(3) Diffusion

Figure 1: Visualisation of the columns of sampled rotation matrices, corresponding to the transforma-
tion of basis vectors. Euler angle diffusion is unable to reconstruct the distribution correctly due to
passing through the singularity at θ = π

2 .

To quantify the differences between the target distribution and samples generated from the diffusion
process, we repeat this experiment with Quaternions sampled from Bingham distributions over S3 ,
using the maximum mean discrepancy (Gretton et al., 2012), with k(x, y) = exp(−|| log(x−1y)||F ),
a kernel over the SO(3) geodesic distance.

3.2 ROTATIONAL ALIGNMENT WITH SO(3) DIFFUSION PROCESSES

By using an SO(3) diffusion process to represent the rotation of a pointcloud, we can use denoising
diffusion models to generate solutions for a rotational alignment problem. In order to test this, an
alignment problem using point-clouds of aircraft from ShapeNet (Chang et al., 2015) was designed.
This dataset consists of pre-aligned point-clouds of various real and fictional aircraft. As the shape
and style of these aircraft differ greatly, the task of rotating them to the correct orientation, in effect
detecting the forward direction of the aircraft, relies on being able to generalize over common features.
At each training iteration, rotations at arbitrary timesteps were generated and used to rotate samples
from the dataset. The network architecture uses a non-causal transformer, with each token consisting
of SIREN (Sitzmann et al., 2020) encoded coordinates concatenated with a sinusoidal positional
embedding of the timestep. We compare angular errors from Euler and IGSO(3) diffusion models.
After generating a single sample for each aircraft from both diffusion models, angular error compared
to the known true orientation was calculated. We compare angular errors across the entire test set,
and calculate the maximum error of the test set across several percentile ranges.

Percentile
Method 1% 5% 10% 50% 90% 95%
Euler 0.64 1.09 1.37 2.26 2.97 3.05
IGSO(3) 0.01 0.02 0.03 0.16 2.94 3.03

Table 2: Distribution of angular error (radians) in an aircraft alignment task. Our method outperforms
the Euler angle diffusion method across all percentiles.
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4 CONCLUSION

In conclusion, we have introduced a denoising diffusion probabilistic model over SO(3) and shown
that it is capable of correctly learning distributions over the space of rotations. Furthermore, we used
this model as a framework for a synthetic alignment task, showing significantly lower errors than a
naı̈ve approach. This paper acts as an introduction to probabilistic sampling methods for alignment
tasks. In the future, we aim to extend this method to SE(3) and perform roto-translational alignment.
In particular, we believe diffusion models are a suitable model for protein receptor-ligand interactions
and can be used to probabilistically model the solution space to protein docking problems.
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A PARAMETERIZATION OF REVERSE PROCESS

When training or sampling from a euclidean diffusion model, the stochastic part of the forward and
reverse processes acan be calculated by scaling a standard normal distribution. In DDPMs (Ho et al.,
2020), the reverse process mean is given by Equation 3: As DDPMs resemble Langevin dynamics,
with ϵθ predicting a learned gradient of the data density, we run into the issue of what to predict in our
SO(3) model. We cannot directly predict values in SO(3) as the gradient of a rotation matrix is not
a rotation matrix. Instead, the gradient of a rotation matrix R lies on the tangent space TRSO(3) and
takes the form S(v)R, where S(v) is a skew symmetric matrix. Predicting the value S(v)R directly
involves predicting a point lying on a 3D hyperplane in a 9D space, and requires network knowledge
of the rotation R = xt. We simplify the job of the network by predicting v instead, noting that
S(v) can also be interpreted as an angular velocity tensor. Secondly, sampling from IGSO(3)(I, λ)
cannot be done by scaling samples taken from IGSO(3)(I, 1). Instead, during training (Algorithm 1),
we sample our diffusion rotation matrix R ∼ IGSO(3)(I,

√
1− ᾱt), convert into skew-symmetric

form through taking the matrix-logarithm and scale the target by 1√
1−ᾱt

in order to have a target
analogous to the standard normal distribution used when training an euclidean diffusion model. This
parameterization allows us to follow a similar scheme to euclidean diffusion models when sampling
(Appendix C)

B SAMPLING FROM THE ISOTROPIC GAUSSIAN ON SO(3) DISTRIBUTION

First we note that a rotation sampled from IGSO(3)(µ, ϵ
2) can be decomposed by sampling a pair

of rotations from (IGSO(3)(µ, 0) = µ, IGSO(3)(I, ϵ
2)) where I is the identity rotation. This

corresponds to rotating samples taken from an identity-mean distribution by a constant µ. We further
decompose IGSO(3)(I, ϵ

2) into an axis-angle form. The axis of rotation is uniformly distributed over
S2, allowing for easy sampling, whereas the PDF of the angle of rotation f(ω) : ω ∈ [0, π] is given
by: (Nikolayev & Savyolov, 1997)

f(ω) =
1− cosω

π

∞∑
l=0

(2l + 1)e−l(l+1)ϵ2 sin((l +
1
2 )ω)

sin(ω/2)
(10)

Due to the e−l(l+1)ϵ2 term in this equation, convergence of this equation is poor for small values of ϵ.
We adapt the approximation derived by (Matthies et al., 1988), suitable for ϵ ≤ 1.

f (ω) =
(1− cos (ω))

π

√
πϵ−

3
2 e

ϵ
4 e−

(ω
2 )

2

ϵ ·

[
ω − e−

π2

ϵ

(
(ω − 2π) e

πω
ϵ + (ω + 2π) e−

πω
ϵ

)]
2 sin

(
ω
2

) (11)

We sample from an approximation of f(t) using an inverse-transform sampling process, a numerical
approximation of the CDF is taken through trapezoidal integration of the PDF, with a bias of more
samples near 0 as to more accurately capture the distribution for small ϵ. Linear interpolation of
uniform samples [0, 1] are then used to to approximate sampling from f(t).

Once an angle has been sampled, an arbitrary axis is chosen from the uniform distribution, and the
rotation composed with the mean rotation of the initial distribution. While in general the order of
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operations matters in SO(3), the isotropic nature of an identity-mean IG distribution means the order
of matrix-multiplication does not affect the final distribution. Consider a sample from the distribution
IGSO(3)(µ, ϵ), which can be decomposed as µz1 or z2µ. As µz1 = z2µ, and µz1µ−1 = z2, the
matrices z1 and z2 are similar. Note that this implies tr(z1) = tr(z2) = 1 + 2 cos θ, where θ is the
angle of rotation. As z1 and z2 share the same angle of rotation and differ only in axis, which is
uniformly sampled, the distributions of µz1 and z2µ are the same.

C TRAINING AND SAMPLING ALGORITHMS FOR SO(3) DIFFUSION

The neural network ϵθ learns an approximation of the gradient of the data density at each timestep t.
In order to train this network we need to sample from q(xt) efficiently. Once trained, the network is
then used to generate samples matching the distribution q(x0).

Algorithm 1 Training
1: repeat
2: t ∼ Uniform({1, ..., T})
3: x0 ∼ q(x0)
4: R ∼ IGSO(3)(I,

√
1− ᾱt)

5: S(v) = log(R)√
1−ᾱt

6: xscale = exp
(√
ᾱt logx0

)
7: Take gradient descent step on:

∇θ||v − ϵθ(Rxscale, t)||2
8: until converged

Algorithm 2 Sampling

1: xT ∼ USO(3)

2: for t = T, ..., 1 do
3: if t > 1 then
4: R ∼ IGSO(3)(I, β̃t)
5: else
6: R = I
7: end if
8: v = ϵθ(xt, t)
9: a1 = exp( 1√

ᾱt
log(xt))

10: a2 = exp(S( 1√
1−ᾱt

v))

11: x̃0 = a1a
−1
2

12: xt−1 = ν̃(xt, x̃0)R
13: end for

D VISUALISATION OF QUATERNION-BINGHAM DISTRIBUTIONS

The distributions chosen in Table 1 were chosen to cover a range of possible distributions. A Bingham
distribution is defined over Sn by an (n+ 1)× (n+ 1) covariance matrix. It can be thought of as
samples from the Gaussian distribution in Rn+1 normalised to unit length. As unit vectors in R4 can
be interpreted as quaternion rotations of the form (x0 + x1i+ x2j+ x3k), we use this distribution to
generate samples in SO(3)
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(a) Small Uncorrelated Rotations
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
(c) Large Correlated Rotations

Figure 2: Visualisation of the basis vectors of 512 samples of the each Quaternion-Bingham distribu-
tion and their respective co-variance matrices.

8


