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ABSTRACT

Dynamical systems modeling is a core pillar of scientific inquiry across natural
and life sciences. Increasingly, dynamical system models are learned from data,
rendering identifiability a paramount concept. For systems that are not identifiable
from data, no guarantees can be given about their behavior under new conditions
and inputs, or about possible control mechanisms to steer the system. It is known
in the community that “linear ordinary differential equations (ODE) are almost
surely identifiable from a single trajectory.” However, this only holds for dense
matrices. The sparse regime remains underexplored, despite its practical relevance
with sparsity arising naturally in many biological, social, and physical systems. In
this work, we address this gap by characterizing the identifiability of sparse linear
ODEs. Contrary to the dense case, we show that sparse systems are unidentifiable
with a positive probability in practically relevant sparsity regimes and provide
lower bounds for this probability. We further study empirically how this theoretical
unidentifiability manifests in state-of-the-art methods to estimate linear ODEs from
data. Our results corroborate that sparse systems are also practically unidentifiable.
Theoretical limitations are not resolved through inductive biases or optimization
dynamics. Our findings call for rethinking what can be expected from data-driven
dynamical system modeling and allows for quantitative assessments of how much
to trust a learned linear ODE.

1 INTRODUCTION AND RELATED WORK

The field of dynamical systems has emerged early as a corner stone of scientific modeling, primarily
due to the high demand for modeling temporally evolving systems in the natural and life sciences.
For the most part, dynamical systems have been modeled “manually,” i.e., by humanly-prescribed
differential equations or simulators inspired by, and validated in real-world systems. With the advent
of machine learning and large data collection efforts, dynamical systems are increasingly learned
from data. This new perspective also brought about a shift from an original focus on the forward
problem—solving given differential equations from different initial conditions for predictions—to the
inverse problem—finding the governing differential equation from observed trajectories. Inferring
the underlying dynamical laws governing a system solely from observational data is a longstanding
aspiration across numerous scientific disciplines. A fundamental prerequisite to realize this goal is
the identifiability of the governing laws, i.e., that the true dynamics can, in principle, be uniquely
determined from the available observations. If multiple different laws could result in the exact same
observations, we are stuck. This is the problem of identifiability, as illustrated in Fig. 1: could the
observed data have arisen from only a single unique dynamic? While solving the inverse problem
poses a host of practical challenges, no guarantees can ever be given for unidentifiable systems.

The identifiability of different types of dynamical systems from different types of observed data has
been studied in a variety of domains like natural science (Donà et al., 2022; Muñoz-Tamayo et al.,
2018), control theory (Ding & Toulis, 2020; Gargash & Mital, 1980), experimental design (Raue et al.,
2010) and many more. Miao et al. (2011) provide a well-structured overview of how identifiability
analysis of different types of (non-linear) dynamics is approached in practice while Scholl et al. (2022;
2023) have characterized necessary and sufficient conditions about what needs to be observed for
identifiability in different functional classes of dynamics. The bio-mathematics community has been
among the first to develop rigorous approaches to study identifiability (Bellman & Åström, 1970),
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Figure 1: Identifiability differs between dense and sparse systems. The trajectories in a and b
correspond to solutions for two different initial conditions of the dense system in c; similarly,
trajectories in d and e correspond to solutions of the sparse system in c. All estimated trajectories
(colored dashed curves) fit the respective observations (thick gray curves) well, yet only the estimate
of the dense system is correct. The histogram in f shows that the normalized Hamming distance
between the estimated and true system matrix systematically increases as sparsity p increases.

referring to it as “structural identifiability.” Similarly, researchers in epidemiology have a strong track
record in analyzing identifiability for domain-specific compartment models (Saccomani, 2011; Miao
et al., 2011; Xia & Moog, 2003; Tuncer et al., 2016). Cunniffe et al. (2024) recently analyzed the
connection between identifiability and observability, as a critical aspect of epidemiological models,
where we typically cannot observe the entire state. Stochastic differential equations often enjoy
stronger theoretical identifiability guarantees, typically because the stochastic component is assumed
to have full support, allowing to “probe the entire space” (Bellot et al., 2021; Wang et al., 2023).

Irrespective of theoretical considerations, new practical methods for learning dynamical systems from
data are proposed continuously. These range from traditional parameter estimation techniques for
ODEs (Lavielle et al., 2011; Commenges et al., 2011; Huang et al., 2006; Li et al., 2005; Brunton
et al., 2016), to neural-network-based parameter estimation (Rubanova et al., 2019; Qin et al., 2019)
as well as deep-learning based approaches that learn the dynamics as a neural net (Chen et al., 2018)
or predicts symbolic expressions (Becker et al., 2023; d’Ascoli et al., 2024). While these methods are
reported to achieve strong reconstruction performance, i.e., they find dynamics that, when integrated
from the same initial condition, recover the observed trajectories well, it is rarely reported to which
extent they actually identify the originally underlying dynamical law. Due to unidentifiability, these
methods could learn dynamical systems that do not generalize beyond the observed time spans or to
new initial conditions, let alone warrant claims of scientific insights.

In this work, we will focus on linear, homogeneous, autonomous ordinary differential equations
(ODE), ẋ(t) = Ax(t), heavily relied upon in many domains while also amenable to rigorous
theoretical analysis. Pioneering works by Stanhope et al. (2014) and, more recently, Qiu et al. (2022)
established as a key result that “almost all such linear ODEs are identifiable from a single solution
trajectory.” Here, it is assumed that we have observed the entire trajectory without any observation
noise in continuous time. This is often paraphrased as “linear ODEs are identifiable” and summoned
by practitioners as justification to assume that whenever a linear ODE is estimated well from data, one
has actually found the unique underlying governing law of the system with probability 1. The core
contributions in this work build on the observation that this, rightfully celebrated, result only holds
for dense matrices, i.e., they assume a measure over systems Rn×n that is absolutely continuous with
respect to the n-dimensional Lebesgue measure λn.

This is not satisfied by sparse systems. Sparsity in dynamical systems means that not all variables
depend on (or interact with) all other variables (Aliee et al., 2021), (Aliee et al., 2022). Hence, sparsity
allows us to understand and interpret complex networks pervasive in nature, society, and technology.
In fact, dynamical models in biology (Lu et al., 2011) or social networks (Ravazzi et al., 2017)
typically exhibit high degrees of sparsity. For example, Liben-Nowell (2005) asserts that “on average,
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a person has on the order of at most a thousand friends.” Similarly, interactions in gene regulatory
networks are known to be sparse, with only a tiny fraction of possible pair-wise interactions being
nonzero (Carey et al., 2018). Hence, in many settings researchers only attempt to learn dynamical
models from data when they assume interactions to be sparse, because meaningful interpretation
is only possible in sparse models in the first place (Xu et al., 2023). The resulting models are also
believed to have a lower risk of overfitting, particularly when data is limited (Bartoldson et al., 2020).

Contributions. This work puts an asterisk on the result that “almost all linear ODEs are identifiable”
proving positive lower bounds on the probability of sparse systems being unidentifiable. We also
quantify theoretically to what extent “near unidentifiability” poses a challenge for practical identi-
fication in identifiable cases. Finally, we bridge the gap from theory to practice and demonstrate
that (near) unidentifiability is not circumvented in practical methods by potential inductive biases
or optimization dynamics. Our work clearly characterizes the regimes (in terms of dimensionality
and sparsity) in which unidentifiability is an issue, and what observed time horizons are required to
escape near unidentifiability.

2 BACKGROUND AND PROBLEM SETTING

We focus on autonomous, homogeneous, linear, noise-free ordinary differential equations (ODE), i.e.,
initial value problems (IVP) of the form

ẋ(t) :=
dx(t)

dt
= Ax(t) , x(0) = x0 , (1)

where A ∈ Rn×n is also called the system or simply referred to as the “ODE,” x : [0, T ] → Rn

denotes the trajectory, x0 ∈ Rn is the initial condition, and t denotes time. In autonomous systems,
we can assume without loss of generality that the initial time is t = 0 as autonomy implies that the
system A is not time-dependent. Homogeneity ensures that the dynamics are not externally forced
or perturbed. The system matrix A is also referred to as the adjacency matrix following a graph
theoretic view on the dynamics. The key novelty in our work is in considering sparse systems, i.e.,
sparse matrices A.

Discussion of assumptions and limitations. Linearity, autonomy, homogeneity and the absence of
noise heavily restrict the types of systems studied in our work. The linearity assumption is in line
with existing work (Stanhope et al., 2014; Qiu et al., 2022; Fedoryuk, 2012; Ovchinnikov et al., 2022)
and required for the feasibility of theoretical analysis. Autonomy and homogeneity are adopted to
represent our focus on passive observations of naturally evolving systems without external forcing,
which corresponds closely to the idea of an observational distribution in the causal inference literature
and differentiates our work from approaches towards controllability/observability in the (optimal)
control and system identification literature. Some of the existing work on identifying linear ODEs
from a single trajectory have been extended to post-nonlinear models (breaking linearity) (Miao
et al., 2011), affine systems (extending homogeneity) (Duan et al., 2020), and include discrete, noisy
observations (Wang et al., 2024). We believe these works offer fruitful pointers towards extending our
analysis of sparse systems here beyond its current limitations. At the same time, Scholl et al. (2023)
show that in more general non-linear function classes identifiability requires observing trajectories
that essentially “cover the entire state space”, putting theoretical limits on what one can hope for in
generic non-linear settings. More implicitly, we also assume full observations, i.e., that the entire
state relevant for the evolution of the system can be observed. In many practical settings, one may be
limited by partial observability. Existing results indicate that identifiability is generally impossible
in such settings without strong assumptions on the observation function (Cobelli & Romanin-Jacur,
2007), which is why partial observations are beyond the scope of this work.

Main goal. Our main goal is to answer the following question: Given a trajectory x : [0, T ] → Rn

that solves the IVP in Eq. (1), (when) can we uniquely infer A under the assumption that A is sparse?

Let us first formalize and concretize this identifiability problem.
Definition 1 (identifiability from x in Ω ⊆ Rn×n). Let A ∈ Ω ⊆ Rn×n and let x : [0, T ] → Rn be
a solution of ẋ(t) := dx

dt (t) = Ax(t). We call A identifiable from x in Ω if there exists no B ∈ Ω

with B ̸= A and dx
dt (t) = Bx(t).

Remarks. The IVP in Eq. (1) has a unique solution x on all of R for all A and x0 by the Picard-
Lindelöf theorem and the fact that linear functions are globally Lipschitz (Arnold, 1992). Therefore,
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instead of [0, T ] we can use any interval (including all of R) as time interval in Definition 1. In this
work, we are specifically interested in identifying A for a given observed trajectory. Related but
different notions of identifiability studied in the literature include, for example (Stanhope et al., 2014;
Qiu et al., 2022): (a) For a fixed initial condition x0 ∈ Rn, all pairs of distinct systems A,B ∈ Ω
lead to different trajectories. (b) For all pairs of distinct systems A,B ∈ Ω, there exists some initial
condition x0 ∈ Rn leading to different trajectories. (c) For all pairs of distinct systems A,B ∈ Ω,
every initial condition x0 ∈ Rn leads to distinct trajectories. It is easy to see that notion (b) is true
“globally,” i.e., even for Ω = Rn×n (Stanhope et al., 2014). This relates closely to the typical linear
time invariant (LTI) setting in system identification including controls: when we can “probe” the
system by choosing different initial conditions as controls, we are always able to identify it fully.
Instead, we concretely focus on identifiability from merely observational data in the form of a single
solution trajectory. On the flip side, (c) is not true for Ω = Rn×n (and does not even hold for “most”
Ω ⊆ Rn×n, see Qiu et al., 2022, Sec. S1). This is primarily due to the existence of “unlucky” initial
conditions, which we will make rigorous below.

To decide when a system can be identified from a given trajectory, it is useful to characterize whether
there are systems for which this is never possible. Throughout this work, we will primarily focus on
the setting where Ω = Rn×n reflecting the fact that we typically cannot exclude any systems from
potentially being the ground truth, while still allowing for different probability measures on Ω.

Definition 2 (global unidentifiability). We call A ∈ Rn×n globally unidentifiable in Ω, if there exists
no x0 ∈ R such that A is identifiable from the corresponding solution trajectory x in Rn×n. We
denote the set of all globally unidentifiable A by U ⊆ Rn×n.

In words, a system A is globally unidentifiable if any solution trajectory is also the solution to some
other system B (this need not be a single alternative B, but for each trajectory there must exist at
least one). A necessary and sufficient condition for global unidentifiability that characterizes these
“hopeless” systems reads as follows.

Theorem 1 (Stanhope et al., 2014, Thm 2.5 + Thm 3.6). A system A ∈ Rn×n is globally unidentifiable
if and only if it has more than one Jordan block corresponding to the same eigenvalue (for at least
one eigenvalue) in the Jordan normal form of A.

Additionally, they also characterized when A is identifiable from x.

Theorem 2 (Stanhope et al., 2014, Lem 3.4 + Thm 3.4). A system A ∈ Rn×n is identifiable from x
if and only if x(0) is not contained in any A-invariant proper subspace of Rn.

Whenever any point along the solution trajectory (e.g., the initial condition) lies in an A-invariant
proper subspace of A, the entire trajectory will be confined to this subspace. The trajectory is thus not
“probing” the complement of this subspace in Rn×n. We can then construct another system B that
agrees with A (viewed as linear maps) on the A-invariant subspace, but differs on the complement.

3 GLOBAL UNIDENTIFIABILITY

We will refer to A being in U as “system level unidentifiability,” because when A ∈ U it is unidentifi-
able regardless of the observed trajectory. For all A /∈ U , there exists at least one solution trajectory
x, such that A is identifiable from x in Rn×n. However, there may still be “unlucky” x, namely
those confined to an A-invariant proper subspace, for which A remains unidentifiable. For any system
A, we define UA ⊆ Rn to be the set of initial conditions x0 ∈ Rn from which A is not identifiable.
We call this “trajectory level unidentifiability”.

Ultimately, our main goal aims at quantifying whether we should expect to be able to identify “a
random system” from “a random solution trajectory.” To formalize this question, consider a joint
probability distribution PA,x0

over pairs of systems and initial conditions (A,x0) ∈ Rn×n × Rn

(equipped with the Borel-σ-algebra). We are then interested in

PA,x0
(A not identifiable from x0) =

∫
PA,x0

(UA | A) dPA(A) (2)

= PA(U) +
∫

χA/∈U (A)PA,x0(UA | A) dPA(A) ,
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where χ is the indicator function, i.e., χA/∈U (A) = 1 if A /∈ U and 0 otherwise. The partitioning in
the last equality corresponds to a two-step reasoning: What is the probability of hitting a globally
unidentifiable system (on the system identification level) and, separately, for any non globally
unidentifiable model, what is the probability of hitting an “unlucky” initial condition.1

Before developing a lower bound for Eq. (2), we introduce the assumed sparsity model.
Definition 3 (Sparse-Continuous Ensemble). We call a matrix A := (BijXij)

n
i,j=1 with Bij ∼

Ber(1− p) independent Bernoulli random variables for some p ∈ [0, 1], and Xij ∼ PX independent
continuous random variables (i.e., their distribution is absolutely continuous with respect to the
Lebesgue measure on R), a sparse-continuous random matrix (or system) with sparsity level p.

Examples include any iid sub-Gaussian random matrix masked by iid Bernoulli variables.
Lemma 1. For a sparse-continuous random matrix A, the probability that A has repeated nonzero
eigenvalues is zero. In other words,

PA({A ∈ Rn×n | ∃λ ∈ R : rank(A− λI) < n− 1}) = PA({A ∈ Rn×n | rank(A) < n− 1}) .

Proof. Let the random matrices B,X that make up the sparse-continuous random matrix A be
defined on a probability space (Ω, A, P ). For a fixed zero-pattern S ⊆ [n]2 (specifying which entries
are nonzero) we define

ES := {ω ∈ Ω | Bij(ω) = 1 iff (i, j) ∈ S} ∩ {ω ∈ Ω | A(ω) has a repeated nonzero eigenvalue} .

We have P ({S(ω) = S}) = p|S|(1 − p)n
2−|S| and conditionally on S(ω) = S, A(ω) is a vector

of |S| continuous random variables (Xij)(i,j)∈S that is absolutely continuous with respect to the
Lebesgue measure on R|S|. The matrix A has a repeated nonzero eigenvalue if there exists an
eigenvalue λ ̸= 0 of algebraic multiplicity at least 2, i.e., det(A− λI) = 0 and d

dλ det(A− λI) = 0.
These conditions define a nontrivial algebraic subset in Rn×n, imposing polynomial equations on
these |S| nonzero entries. These polynomials vanish only on a measure-zero subset of R|S| (since the
polynomials are not identically zero). Thus, P (ES) = 0. And by the union bound,

P ({A has a repeated nonzero eigenvalue}) ≤
∑

S⊆[n]2

P (ES) = 0 .

The second statement follows since the two events characterize having some repeated eigenvalue and
zero being a repeated eigenvalue, respectively.

With these preliminaries, we find the following lower bound.
Lemma 2. A sparse-continuous random matrix with sparsity p is globally not identifiable with
probability at least 1− (1− pn)n − npn(1− pn)n−1 for n ≥ 2 (and p for n = 1).

The proof we provide in Section A is driven by the presence of zero rows/columns. These correspond
to sink or source nodes in the corresponding adjacency graph, which are typically frequent in sparse
graphs and dominate the probability of rank deficiency. However, zero rows/columns are not required
for our results. We still find a non-zero lower bound when not allowing any zero rows/columns and
also empirically study a corresponding sparse model in Section C.5.

Next, we prove a sharp threshold on the dimension n and sparsity level p for global unidentifiability.
Lemma 3 (sharp threshold for global unidentifiablity). Let A be a sparse-continuous matrix with
n-dependent sparsity level p(n). Then, for pc(n) = 1− ln(n)

n and any function ω(n) → ∞ we have
that if p(n) = pc(n)+

ω(n)
n , then P (rank(A) ≤ n−2) → 1 for n → ∞ and if p(n) = pc(n)− ω(n)

n ,
then P (rank(A) ≤ n− 2) → 0 for n → ∞. That is, there is a threshold at p = ln(n)/n decisive
for whether A is asymptotically globally unidentifiable with high probability or not.

The proof can be found in Section A. This is consistent with known results on Bernoulli matrices
(e.g., Frieze & Karoński, 2015; Basak & Rudelson, 2021) where there exists a similar sharp transition

1The negation of “globally unidentifiable” is not called “globally identifiable” as this would convey the
wrong impression of it being “always” identifiable, i.e., from any initial condition.
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at p = 1 − ln(n)/n for the probability of singularity. Our proof extends the same threshold to
two-fold rank deficiency in sparse-continuous matrices and thus to global unidentifiability. In practice,
numerically evaluating matrix ranks requires thresholding. By the Eckart–Young–Mirsky theorem the
second smallest singular value σ2 of A corresponds to the distance of A the closest matrix A′ with
rank(A′) < n− 1. As such it provides a robust continuous numerical measure of unidentifiability.

Remark on sparsity, rank-deficiency, and non-identifiability. Stanhope et al. (2014); Qiu et al.
(2022) establish a tight connection between global non-identifiability and rank deficiency to then
argue that rank deficiency (and thus unidentifiability) is rare. One of our key contributions is to
demonstrate and quantify how sparsity, commonly assumed in dynamical models, leads to rank
deficiency that ultimately result in unidentifiability.2 Crucially, this link does not rely on sparsity
inducing entire zero rows/columns (obviously giving rank deficiency), but also hold for sparse systems
without zero rows/columns, see also Section C.5. Finally, we link to systems studied in the literature
to corroborate that the found phenomena are relevant for real-world modeling Section B.

4 TRAJECTORY UNIDENTIFIABILITY

We now turn to “trajectory unidentifiability”, i.e., the situation where A is not globally unidentifiable,
yet it may be unidentifiable from specific observed trajectories x. Let (A,x0) ∼ PA ⊗ Px0 with
an absolutely continuous Px0 (w.r.t. the Lebesgue measure on Rn) and PA the distribution of a
sparse-continuous matrix A. Since, according to Theorem 2, A is unidentifiable from x if and
only if x0 is in a proper invariant subspace of A, and the fact that any proper subspace of Rn has
zero probability under any absolutely continuous probability measure (with respect to the Lebesgue
measure), we conclude that PA,x0

(UA | A = A′) = 0 for all A′ /∈ U . Therefore, the second term
in Eq. (2) is zero. The probability of a “random” A being identifiable from a “random” solution
trajectory is thus given entirely by the probability of A being globally unidentifiable—the probability
of “unlucky” initial conditions is zero.

However, x0 being close to a proper A-invariant subspace can still be problematic in practice, which
we later demonstrate empirically. To measure this “closeness to unidentifiability”, we define

dA : Rn → [0, 1] , x0 7→ 1

∥x0∥2
min{dist(x0, V ) | V ∈ I(A)} , (3)

where I(A) is the set of proper A-invariant linear subspaces of Rn and dist(x0, V ) := miny∈V ∥x0−
y∥2 is the Euclidean distance of x0 from the subspace V . We have that dA(x0) = 0 if and only if
x0 lies in a proper A-invariant subspace, and dA provides a continuous measure for the “level of
unidentifiability from the trajectory,” formalized as follows.
Lemma 4. Let A,A′ ∈ Rn×n and assume there is an A-invariant subspace V ∗ such that (A −
A′)V ∗ = {0}. Then, for every t ≥ 0 and x0 ∈ Rn, we have that

∥eAtx0 − eA
′tx0∥2 ≤ C(t, A,A′)∥A−A′∥2 dA(x0)

with C(t, A,A′) :=
∫ t

0
∥eA(t−s)∥2∥eA

′s∥2ds. Further, for any ε > 0, the condition

∥(eAt − eA
′t)x0∥ ≤ ε for all 0 ≤ t ≤ T

holds whenever
T ≤ 1

α
W

(
α

ε

∥A−A′∥M2 dA(x0)

)
,

where W (·) denotes the Lambert function and constants α ∈ R,M ≥ 1 such that ∥eAt∥, ∥eA′t∥ ≤
Meαt for all t ≥ 0.

The proof can be found in Section A. Assume A is identifiable from x0, but x0 is close to a proper
A-invariant subspace V ∗ with distance dA(x0). Then there exists another A′ ̸= A that agrees with A
on V ∗, i.e., A′ could practically be mistaken for the underlying true dynamic. Lemma 4 guarantees
guarantees ϵ-closeness of A and A′ up to time T , which scales inversely with both the distance
dA(x0) and the norm ∥A−A′∥2, so trajectories remain indistinguishable for longer horizons when

2Generally sparse matrices can have full rank (e.g., identity) and full rank matrices can be dense (all ones).
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Figure 2: Proportion of matrices satisfying the conditions i), ii) and iii) at different system dimensions
n and sparsity levels p. All three conditions exhibit a sharp increase in frequency with higher sparsity,
consistent with the threshold p = 1− ln(n)/n.

the initial condition lies closer to an invariant subspace or when competing matrices A and A′

differ only slightly. While lemma 4 holds for general matrices, it is particularly relevant for sparse
matrices as these are more likely to have large invariant subspaces and are consequently more likely
unidentifiable in practice.

5 EMPIRICAL RESULTS

Our empirical validation experiments include three distinct viewpoints: firstly, we assume the true
system matrix to be available in order to confirm our theoretical results on unidentifiability in sparse
matrices in principle. Secondly, we assume that we only have observed trajectories at hand and
evaluate trajectory-level identifiability criteria. While these results assess whether a system is (or is
not) identifiable, we finally also empirically assess the performance of two widely used estimators
that attempt to learn the underlying system from data directly, hence zooming in on identifiability
challenges in practice.

Data generation. We focus on systems of dimensions n ∈ D := {3, 5, 10, 20, 30, 40, 50} and
sparsity levels p ∈ P = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1.0}.3 For each (n, p) ∈
D × P , we generate 100 matrices according to the sparse-continuous model in Definition 3 and
take a standard normal for the continuous distribution PX = N (0, 1). For each matrix, we sample
100 initial conditions uniformly from the unit circle in Rn and solve the corresponding trajectories
numerically over the interval t ∈ [0, 1] using a standard explicit RK45 solver with 512 homogeneous
time steps. Results for different random matrix models, for example disallowing zero rows/columns,
can be found in Section C.

5.1 SYSTEM-LEVEL UNIDENTIFIABILITY

In this section, we perform an exploratory analysis of global unidentifiability conditions by examining
properties at the system level. The contour map in Fig. 2 illustrates, for varying values of sparsity
p and dimension n, the empirical frequency with which the generated system matrices A violate at
least one of three structural criteria: (i) rank(A) < n− 1; (ii) there exists an eigenvalue λ for which
rank(A − λI) < n − 1; or (iii) the spectrum contains the zero eigenvalue. As matrices become
sparser (i.e., as p increases), the proportion of globally unidentifiable matrices sharply increases.
Notably, the nearly identical contour plots for conditions (i) and (ii) strongly support our theoretical
result stated in Lemma 1. Moreover, the condition regarding the existence of zero eigenvalues aligns
closely with the theoretical threshold p = 1− ln(n)

n (depicted by the red curve).

Discussion on realistic sparsity levels. Although global (system-level) unidentifiability becomes
less critical as the dimension increases (consistent with the threshold p = 1 − ln(n)

n ), seemingly
only leaving systems of negligibly high sparsity-levels unidentifiable, we emphasize that such high
sparsity regimes are not merely theoretical but are indeed realistic and frequently encountered in
real-world scenarios. For instance, the P. trichocarpa PEN gold standard network (Walker et al.,

3Recall that higher p for us corresponds to “more zeros.”
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p-value <

nn

Figure 3: Box-plots of smoothed condition numbers (SCN) and distance-to-unidentifiability dA for
the least and most identifiable groups of systems at different dimensions n.

2022), introduced earlier, has a sparsity level of approximately 0.997 for a graph comprising 1690

nodes (genes), exceeding the theoretical threshold p∗ = 1 − ln(n)
n ≈ 0.996. Similarly, the E. coli

gene regulatory network (Walker et al., 2022), consisting of 1222 genes, exhibits a sparsity of about
0.999, surpassing its corresponding threshold of p∗ = 0.995.

5.2 TRAJECTORY-LEVEL UNIDENTIFIABILITY

Following the argument in Section 3, the second-smallest singular value σ2 of a system relates to its
global unidentifiability. Here, we ask whether systems with worse global unidentifiability metrics
also give rise to trajectories that are statistically less identifiable. To address this question, we rank
the generated system matrices by their second-smallest singular value σ2 for each combination of
dimension n and sparsity p. Matrices with σ2 falling into the top-10% of ranked singular values
are subsequently referred to as Aσ2,max, similarly matrices at the bottom-10% are referred to as
Aσ2,min.

To determine whether the trajectories produced by these two matrix groups differ in identifiability,
we compared the sample means of two complementary trajectory-level identifiability metrics: our
closeness-to-unidentifiability distance dA,0(x0) from Section 4 (larger implies more likely identifi-
able) as well as the smoothed condition number (SCN) as established by Qiu et al. (2022) (smaller
implies more likely identifiable). Specifically, we approximate dA(x0) by the normalized distance of
the initial state to ker(A), using the metric

dA(x0) ≈ dA,0(x0) :=
1

∥x0∥
dist(x0, ker(A)) ∈ [0, 1]. (4)

Compared to dA(x0), dA,0(x0) allows us to estimate “distance-to-unidentifiability” without analyzing
all proper A-invariant subspaces. As a second criterion, we evaluate the invertibility of the pairwise
inner product matrix, as established by Qiu et al. (2022), who showed that a trajectory x(t | A,x0) is
identifiable if and only if the pairwise inner product matrix Σxx = ⟨x(t),x(t)⟩i,j =

∫ T

0
xi(t)xj(t)dt

is invertible. Qiu et al. (2022) offer a straightforward method for approximating Σxx, and introduce
the Smoothed Condition Number (SCN) k(Σxx) as the condition number of Σxx.

Results. Boxplots of SCN and dA values are depicted in Fig. 3 at different dimensions n. For each
n we focus on the sparsity parameter p∗ closest to the threshold 1 − ln(n)/n, which corresponds
to the critical sparsity value at which a system becomes unidentifiable. We use Welch’s t-test with
one-sided alternatives that reflect the expected direction of the difference:

SCN: H0 : µSCN
Aσ2,max

≥ µSCN
Aσ2,min

H1 : µSCN
Aσ2,max

< µSCN
Aσ2,min

dA,0(x0) : H0 : µdA

Aσ2,min
≥ µdA

Aσ2,max
H1 : µdA

Aσ2,min
< µdA

Aσ2,max

Here µAσ2,max
and µAσ2,min

denote the population means in the two subgroups. The goal of the
statistical test is to establish whether the two subgroups truly differ in trajectory-identifiability
performance. We find that systems or subgroup Aσ2,min are significantly less probable to identify
(p ≪ 0.01) for all system dimensions and both criteria. These results are consistent with our
theoretical derivations and also in line with the previously analyzed systems-level criteria

8
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Figure 4: Normalized Hamming distance of reconstructed systems using SINDy (left) and NODE
(right) across varying dimensions and sparsity levels. Reconstruction accuracy declines noticeably
with increasing dimensionality and sparsity.

5.3 EMPIRICAL UNIDENTIFIABILITY

We evaluate the performance of two state-of-the-art models for identifying dynamical systems: Neural
ODEs (NODEs) (Chen et al., 2018), which approximate dynamics through a neural-network-based
function fθ(x(t)), as well as the Sparse Identification of Nonlinear Dynamics algorithm (SINDy)
(Brunton et al., 2016), which employs L2-regularized linear regression on a predefined set of basis
functions. To effectively model sparse linear systems, we utilize an L1–regularized neural network
without activation functions for NODEs, and linear basis functions for SINDy. Hyper-parameters for
both models are tuned per system. More details on the methods can be found in Section C.3.

Since we are less interested in the question of whether the model can fit the observed data overall,
but rather in the question of whether the models correctly identify the underlying system matrices
A in cases where they do fit the data well, we filter out estimates for which the corresponding
reconstruction of the observed trajectory does not satisfy prescribed R2 and MSE thresholds, where
these metrics compare observed and reconstructed trajectories. This best-case filtering ensures that
subsequent empirical results can be tied to identifiability properties rather than potential issues with
model optimization or architecture.

Results. As perfect point estimates of all coefficients of system matrix A are unreasonable to expect
(e.g. due to numerical issues), we instead use the Hamming distance to compare binarized ground
truth A and estimate Â, which we additionally normalize by n for comparability across dimensions.
The Hamming distance corresponds to the number of matching symbols (here: zero or one) and thus
captures the overlap of the predicted and true sparsity patterns. The heatmaps in Fig. 4 show for both
SINDy and NODE a clear left-right gradient, indicating that sparse systems lead to a larger Hamming
distances - consistent with our theoretical finding that higher sparsity increases the probability of
unidentifiability. Examplary model estimates and corresponding trajectory fits are displayed for a
selected dense and sparse system in Fig. 1 which further illustrate the phenomenon.

6 CONCLUSION

In this work, we focus on identifiability of sparse linear ODEs A from a single observed trajectory x.
We first partition the probability of unidentifiability of A from x into “system level unidentifiability”
(A ∈ U) and “trajectory level unidentifiability”, i.e., hitting an “unlucky” initial condition. After
showing that the latter scenario almost surely does not happen, we show that in sparse systems the
probability of unidentifiability can be lower bounded by a positive quantity and exhibits a sharp
asymptotic threshold at p = 1− ln(n)/n for global unidentifiability. This puts an important asterisk
on the celebrated result that “almost all linear ODEs are identifiable,” which ceases to hold under
sparsity, which is often a core underlying assumption in dynamical system modeling. We go on
to empirically verify that theoretical unidentifiability is a serious practical challenge and extend
our analysis to near-unidentifiability on the “trajectory level,” demonstrating that the theoretically
negligible case of unlucky initial conditions further exacerbates the problem. Important directions
for future work include extending our results to affine and post-nonlinear models, discrete, noisy
or partially observed systems, multiple observed trajectories, and deriving computable metrics for
practical unidentifiability from data alone.
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REPRODUCIBILITY STATEMENT

Significant effort was made to ensure reproducibility, both for the theoretical and experimental results.
The complete proofs of Lemma 2, Lemma 3, Lemma 4 can be found in Section A.1, Section A.2,
Section A.3 respectively. Additionally, we add a discussion on the assumptions and limitations in
Section 2. Details regarding implementation and metrics can be found in Section C, specifically
software resources in Section C.1, metrics details in Section C.2 and methods implementation details
in Section C.3. The data generating mechanism is described in Section 5.

THE USE OF LARGE LANGUAGE MODELS

In this work, Large Language Models (LLMs) were used as a writing assistant to polish the text and
improve clarity of exposition.
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A THEORETICAL RESULTS

A.1 PROOF OF LEMMA 2

Lemma 2. A sparse-continuous random matrix with sparsity p is globally not identifiable with
probability at least 1− (1− pn)n − npn(1− pn)n−1 for n ≥ 2 (and p for n = 1).

Proof. Following Theorem 1, the model Eq. (1) is globally unidentifiable if and only if A has
more than one Jordan normal block for one of its eigenvalues, say λi, which then has geometric
multiplicity g(λi) > 1, i.e., rank(A−λiI) < n−1. According to Lemma 1, it follows that PA(U) =
PA({A ∈ Rn×n | rank(A) < n− 1}). Hence, we are looking for the probability of dependencies
among columns in A that drop the rank. For a fixed zero structure B := (bi,j)i,j∈[n] ∈ {0, 1}n×n

the set on which X := (xi,j)i,j∈[n] ∈ Rn×n introduces additional linear dependencies among
the rows/columns of A has Lebesgue measure zero and thus zero probability under A. Therefore,
P (rank(A) < n− 1) = P (rank(B) < n− 1). We focus on the sufficient event that B has multiple
zero columns. Since the entries of B are independent, P (B:,i = 0) = pn for all i ∈ [n] where
B:,i represents the i-th column, it follows that the random variable Z representing the count of zero
columns follows a Binomial distribution Z ∼ Bin(n, q) with q := pn. With the probability mass
function P (Z = k) =

(
n
k

)
qk(1− q)n−k we find

P (rank(A) < n− 1) ≥ P (Z ≥ 2) = 1− P (Z ∈ {0, 1}) = 1− (1− pn)n − npn(1− pn)n−1 .

A.2 PROOF OF LEMMA 3

Lemma 3 (sharp threshold for global unidentifiablity). Let A be a sparse-continuous matrix with
n-dependent sparsity level p(n). Then, for pc(n) = 1− ln(n)

n and any function ω(n) → ∞ we have
that if p(n) = pc(n)+

ω(n)
n , then P (rank(A) ≤ n−2) → 1 for n → ∞ and if p(n) = pc(n)− ω(n)

n ,
then P (rank(A) ≤ n− 2) → 0 for n → ∞. That is, there is a threshold at p = ln(n)/n decisive
for whether A is asymptotically globally unidentifiable with high probability or not.

Proof. From A form the random bipartite graph Gn,n,s with A as the corresponding adjacency matrix.
Edges are present independently with probability s = s(n) = 1− p(n).

For every bipartite graph Gn,n,s let

m(G) = max{|M | : M is a matching}, d(G) = max
S⊆[n]

(
|S| − |N(S)|

)
(5)

(Hall deficiency). From Hall-König’s theory for graph matching, the rank of the adjacency matrix A

m(G) ≤ rankA ≤ n− d(G). (6)

Given

s(n) =
lnn+ α(n)

n
,

we have that (Frieze & Karoński, 2015) P (m(G) = n) → 1 if α(n) → ∞ and P (m(G) = n) → 0
if α(n) → −∞.

Case α(n) → −∞. Let Z be the number of isolated vertices in Gn,n,s. Without loss of generalization,
we will consider isolated vertices from rows. Any fixed vertex is isolated with probability (1− s)n so

Z ∼ Bin
(
n, (1− s)n

)
, E[Z] = n(1− s)n = e−α(n)(1 + o(1)), Var[Z] = O(E[Z]).

Chebyshev’s inequality therefore yields P (Z ≥ 2) → 1 for n → ∞. Two isolated vertices form a set
S with |N(S)| ≤ |S| − 2, so d(G) ≥ 2 and consequently Pr[rankA ≤ n− 2] → 1.

Case α(n) → +∞. Then P (m(G) = n) → 1, hence P (rank(A) ≤ n − 2) → 0. Substituting
s = 1− p concludes the proof.
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A.3 PROOF OF LEMMA 4

Lemma 4. Let A,A′ ∈ Rn×n and assume there is an A-invariant subspace V ∗ such that (A −
A′)V ∗ = {0}. Then, for every t ≥ 0 and x0 ∈ Rn, we have that

∥eAtx0 − eA
′tx0∥2 ≤ C(t, A,A′)∥A−A′∥2 dA(x0)

with C(t, A,A′) :=
∫ t

0
∥eA(t−s)∥2∥eA

′s∥2ds. Further, for any ε > 0, the condition

∥(eAt − eA
′t)x0∥ ≤ ε for all 0 ≤ t ≤ T

holds whenever
T ≤ 1

α
W

(
α

ε

∥A−A′∥M2 dA(x0)

)
,

where W (·) denotes the Lambert function and constants α ∈ R,M ≥ 1 such that ∥eAt∥, ∥eA′t∥ ≤
Meαt for all t ≥ 0.

Proof. Let us assume without loss of generality (otherwise we simply get a loser bound) that V ∗ is
the closest proper A-invariant subspace to x0. We can then decompose x0 as x0 = ΠV ∗x0 +w with
∥w∥ = dA(x0) (by definition, all norms are 2-norms). Given the assumption on A and A′, we have

(eAt − eA
′t)x0 = (eAt − eA

′t)(ΠV ∗x0 +w) = (eAt − eA
′t)w .

From a variation of constants approach and the triangle inequality, we have

∥eAt − eA
′t∥ =

∥∥∥ ∫ t

0

eA(t−s)(A−A′)eA
′sds

∥∥∥ ≤
∫ t

0

∥eA(t−s)∥∥eA
′s∥∥A−A′∥ds ,

which ultimately gives the result

∥eAtx0 − eA
′tx0∥ ≤ ∥eAt − eA

′t∥ ∥w∥ ≤ ∥A−A′∥ dA(x0)

∫ t

0

∥eA(t−s)∥∥eA
′s∥ ds .

For the second statement, we note that

∥(eAt − eA
′t)w∥ ≤ ∥A−A′∥M2 ∥w∥

(∫ t

0

eαt ds

)
= ∥A−A′∥M2 dA(x0) t e

αt ,

which is bounded by ε for t ∈ [0, T ] with

TeαT =
ε

∥A−A′∥M2 dA(x0)
.

Using the definition of the Lambert W function W (·) we obtain

T =
1

α
W
(
α

ε

∥A−A′∥M2 dA(x0)

)
.

B EMPIRICAL EVIDENCE OF NON-IDENTIFIABILITY IN GRNS

We elaborate on the practical relevance of non-identifiability by discussing real-world gene reg-
ulatory networks (GRNs) that may exhibit structural features leading to non-identifiable dynam-
ics. To illustrate this, we examined the gold-standard E. coli network from Marbach et al. (2012)
(Supplementary Data 1). The adjacency matrix derived from this network contains several zero
columns, indicating genes with no outgoing regulatory edges. This can be checked by analysing the
DREAM5_NetworkInference_GoldStandard_Network3.tsv data. As discussed in our
main text, zero columns in the adjacency matrix are a key source of non-identifiability. A second
example provided by Marbach et al. (2012), the S. cerevisiae network (Network 4), also contains zero
columns and thus similar issues.

For some other networks, such as P. trichocarpa and A. thaliana, we were not able to obtain the
full gold-standard network, and so a definitive identifiability analysis is not possible. However, we
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Table 1: Summary of real-world gene regulatory networks and their sparsity levels. The sparsity
threshold corresponds to 1− logn

n from Lemma 3.

Name # Nodes (n) # Edges Sparsity (p) Threshold (1− logn
n )

A. thaliana 2,864 18,663 0.9977 0.9972
P. trichocarpa 1,690 9,268 0.9968 0.9957

summarize in Section B the available statistics from Walker et al. (2022), including the number of
nodes, number of edges, sparsity level, and the theoretical sparsity threshold from Lemma 2 of our
work.

In both cases, the sparsity level lies below the identifiability threshold, suggesting a high probability
of non-identifiability. More broadly, the key point is that identifiability cannot be assessed purely
from data. For any given system, even if it is theoretically identifiable, one cannot determine from
observed data alone whether the inferred model corresponds to the ground truth. When fitting a
linear ODE model to data from a sparse system, we may recover a model that exactly reproduces
observations, yet it may be structurally incorrect. Thus, regardless of whether the true system is
globally identifiable, it remains unidentifiable from data alone.

Moreover, the datasets discussed above should not be viewed as perfect ground truths. As noted
by Walker et al. (2022, see §2.5), these “gold standard” networks are incomplete and potentially
inaccurate. As such, both the exact sparsity patterns (E. coli) and sparsity levels (P. trichocarpa) may
be unreliable, and conclusions about identifiability must be treated cautiously.

C EXPERIMENTAL DETAILS

C.1 SOFTWARE

We provide the resources with the corresponding licenses used in this work in Table 2.

Table 2: Overview of resources used in our work.

Name Reference License
Python (van Rossum & Drake, 2009) PSF License
PyTorch (Paszke et al., 2019) BSD-style license
Numpy (Harris et al., 2020) BSD-style license
Pandas (pandas development team, 2020; Wes McKinney, 2010) BSD-style license
Matplotlib (Hunter, 2007) modified PSF (BSD compatible)
Scikit-learn (Pedregosa et al., 2011) BSD 3-Clause
SciPy (Virtanen et al., 2020) BSD 3-Clause
SLURM (Yoo et al., 2003) modified GNU GPL v2
networkx (Hagberg et al., 2008) BSD 3-Clause
JAX (Bradbury et al., 2018) Apache-2.0

C.2 METRICS

System-level identifiability metrics. To compute system level identificatbility metrics, we perform a
batched singular-value decomposition on every system matrix A using jax.numpy.linalg.svd.
Subsequently, any singular value σ with |σ| < 10−6 is treated as numerically zero. Eigenval-
ues are computed with jax.numpy.linalg.eigvals and the matrix rank is computed via
jax.numpy.linalg.matrix_rank with tolerance level set to 10−6.

Trajectory-level identifiability metrics. Smoothed condition number (SCN) analysis begins by
constructing the empirical Gram matrix Σ̂xx = Y SY T ∈ Rd×d, where Y = [x(t1) . . . x(tn)]
collects one simulated trajectory and where the diagonal “smoothing” matrix S contains the numerical
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quadrature weights (trapezoidal rule by default jax.numpy.trapz). The condition number is
estimated with jax.numpy.linalg.cond.

Normalized Hamming distance. We use the normalized Hamming distance computed on binary
input matrices to compare the true system matrix A with the empirically estimated matrix Â. To this
end we first binarize A and Â via B = Iτ (A) and B̂ = Iτ (Â) with threshold τ = 10−5 and where
Iτ is the indicator function that acts elementwise on matrix entries as

Iτ (aij) =
{
1 if aij > τ ;

0 else

The normalized Hamming distance between two matrices B, B̂ ∈ Rn×n is then defined as
dHMD(B, B̂) = 1

n2

∑
i,j I0.5(Bij ̸= B̂ij) where Bij ̸= B̂ij has to be understood as a boolean

comparison which evaluates to one under equality and zero otherwise.

C.3 EMPIRICAL ESTIMATORS

SINDy. SINDy, short for Sparse Identification of Nonlinear Dynamics (Brunton et al., 2016), is a
widely adopted algorithm for system identification. It leverages a user-defined set of basis functions
to execute L2-regularized linear regression, mapping observations of the solution trajectory x(ti) to
their corresponding temporal derivatives ẋ(ti). In practical applications, temporal derivatives are
often unobservable, and SINDy estimates them through numerical finite difference approximations.
We adopt the implementation available in PySINDy (de Silva et al., 2020), restrict the basis set to
linear functions, and use the default optimization algorithm (sequentially thresholded least squares)
which sets any coefficient whose magnitude falls below the user-defined threshold λ to zero. Model
and optimizer come with several hyper-parameters out of which we tune the L2-regularization
strength (α), coefficient threshold (λ), finite difference approximation order and maximum number
of iterations separately for each sample.

Regularization of SINDy. For each trajectory we select the pruning threshold λ ∈
{10−6, . . . , 10−1} that enforces the sparsity gate: after every ridge-regression step any coefficient
whose magnitude falls below λ is hard-set to zero, so increasing λ enforces progressively sparser
candidate systems. Complementing this, the ridge weight α ∈ {0.001, 0.05, 0.1} continuously
shrinks the surviving coefficients toward the origin; larger values thus promote numerical stability
without directly changing the zero pattern. For every trajectory, we select the optimal parameters
(λ, α) = argmaxR2 where the R2 score is measured between the observed trajectory and the trajec-
tory obtained by numerically solving the system estimate Â for the observed initial value. Finally,
the identifiability analysis is based on systems with well-fitted trajectories only, which we define as
trajectories for which the estimate achieves R2 > 0.99 and MSE < 10−4. This regularization sets
any coefficient that falls below λ threshold to zero-hence aggressively promoting sparsity, which
might lead to problems in low dimensional settings, see Fig. 4. In cases of very high sparsity and
low system dimensionality, most coefficients of the true system matrix will be zero. In this case
thresholding coefficients to zero biases the model towards a smaller Hamming distance. As the
dimensionality increases or the sparsity reduces, this effect vanishes as there are multiple non-zero
coefficients.

Neural ODEs. Neural ODEs (NODEs) (Chen et al., 2018) use a parameterized function fθ(x(t))
to approximate the dynamics underlying the observed trajectories. Instead of using finite difference
schemes to estimate temporal derivatives, NODEs numerically integrate fθ to obtain a solution
that can be directly compared to the observed trajectory. In practice fθ is implemented as a neural
network; since we focus on linear systems, we use a model with multiple linear layers and no
activation functions. To promote sparsity, we incorporate an L1 regularization term into the loss
function. The total loss consists of the mean squared error (MSE) of the trajectories, augmented by the
regularization parameter λ multiplied by the L1 norm of the network’s weights. To optimize the model
we use the ode solvers implemented in torchode (Lienen & Günnemann, 2022), specifically the
Dopri5 solver in combination with the IntegralController for adaptive step size selection,
with relative and absolute tolerances set to 1e-3 and 1e-6, respectively. Neural network parameters
θ are optimized with PyTorch’s RMSprop optimizer with a learning rate of 1e-3 to minimize the
mean absolute error between the observed and predicted solution trajectory as in Chen et al. (2018).
Optimization proceeds for 10000 iterations or until the loss falls below 10−5.
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Figure 5: Proportion of trajectories that have been well-reconstructed by Sparse Neural ODEs for
different regularization parameters λ and different dimensions n and sparsity levels p. For sparse
systems, the model recovers only a smaller fraction of the trajectories.

Sparsity-regularization of Neural ODEs. For the LinearNODE experiments we first identify well-
fitted trajectories which we define as trajectories for which the empirical estimate (after numerical
integration from the ground truth initial value) achieves R2 > 0.99 or MSE < 10−4. The proportion
of well-fitted trajectories (among all trajectories) for different system dimensionalities n and sparsity
levels p is displayed for different values of regularization weight λ ∈ {0, 10−1, 10−2} in Fig. 5.
Among the λ-values that yield well-fitted trajectories, we then select the one that most faithfully
reproduces the sparsity pattern of the ground-truth system matrix A. Specifically, for every trajectory
we count the zero entries in the matrix estimate Â and in the true A, compute the absolute difference
in these counts, and use this sparsity-mismatch score as our selection metric. The optimal λ for a
given p is selected as the value that minimizes the average sparsity-mismatch across all well-fitted
trajectories. The effect of regularization weight λ, system dimensionality n and sparsity p on the
sparsity-mismatch between model estimate Â and ground truth system matrix A is illustrated in Fig. 6.
Our arguably very permissive model selection strategy reflects the idea that we are only interested in
well-fitted models (as measured on the trajectory-level) in order to draw conclusions about (empirical)
system identifiability rather than about optimization, model architecture or numerical issues.

C.4 ADDITIONAL RESULTS ON TRAJECTORY-LEVEL IDENTIFIABILITY METRICS

We extend the results on trajectory-level identifiability metrics dA and SCN to a broad range of system
dimensions n and sparsity levels p. Box-plots for the two subgroups Aσ2,min and Aσ2,max introduced in
Section 5.3 are displayed in Fig. 7 and Fig. 8. We observe the consistent trend that subgroup Aσ2,min ,
i.e., the subgroup with smaller second smallest singular value σ2, leads to lower identifiability scores
for both metrics (lower value for dA and higher value for SCN) in line with our theoretical results.
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Figure 6: Relative difference in sparsity count (lower the better) between the true and reconstructed
system matrices using Sparse Neural ODEs for different regularization parameters λ and different
dimensions n and sparsity levels p. Lower regularization recovers dense matrices better, while higher
values suit sparse ones.
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Figure 7: Box-plots of distance-to-unidentifiability dA for the least and most identifiable groups of
systems for different p and n values. Trajectories generated with Aσ2,min lead to smaller dA than those
produced with Aσ2,max .

On the distance of a subspace of dimension n from a random vector on the unit sphere. We now
empirically validate the close-to-unidentifiability metric dA, which measures the distance between
an initial condition x0 and the kernel of the corresponding matrix A. Since we sample the initial
conditions uniformly from the unit sphere, we can compare the empirical distribution of dA to the
theoretical expected distance between a random unit vector and a d0-dimensional subspace of Rn.
We partition the trajectories by the null-space dimension d0 = dim(ker(A)) of their corresponding
generating matrix A and display the resulting distance-to-unidentifiability dA in Fig. 9. As expected,
the (mean) empirical measure closely matches the theoretical expected distance between a random
unit vector x0 and a d0-dimensional subspace of Rn (Vershynin, 2018), given by

E[dA(x0) | n, d0] =
Γ(n/2)Γ((n− d0 + 1)/2)

Γ((n− d0)/2)Γ((n+ 1)/2)
,

hence (in expectation) validating the computation of our distance-to-unidentifiability dA.
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Figure 8: Box-plots of smoothed condition numbers (SCN) in log-scale for the least and most
identifiable groups of systems for different p and n values. Trajectories generated with Aσ2,min lead to
higher SCN than those produced with Aσ2,max .
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Figure 9: Box-plots of distance-to-unidentifiability dA different n and different dimensions of ker(A)
(d0 = dim(ker(A))) together with the expected distance E[dA(x0) | n, d0] (black line).

C.5 EXTENSION TO FURTHER MATRIX MODELS

We focus on further random matrix models and present here the results.

Fixed number of zeros per row ensemble. In this random matrix model we fix the number of zeros
per row such that each row contains exactly d(n) = ⌊np⌋ zeros. The remaining non-zero coefficients
are sampled i.i.d. as aij

iid∼ N(0, 1). We generate 100 system matrices and solve each of the for 100
initial values which are sampled uniformly at random from the unit circle in Rn. Subsequently, we
carry out the system-level identifiability and empirical identifiability analyses, following the same
procedures described in the main text.

Results for both analyses are in line with the results reported in the main paper: system-level
unidentifiability shows are sharp increase as sparsity increases (Fig. 10) and empirical identifiability
shows a clear left-right gradient in Hamming distance for both SINDy (Fig. 13) and NODE (Fig. 14),
confirming the expected rise in unidentifiability as sparsity increases.
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Sparse-Continuous ensemble with no zero rows or columns. In this random matrix model we
explicitly exclude matrices with zero rows or zero columns. For this, matrix entries are generated
as aij = gijbij , where bij

iid∼ Ber(p) and gij
iid∼ N(0, 1). We again attempt to generate 100 system

matrices, however, not all dimensionality n and sparsity p combinations permit any system matrices
with no zero rows or columns. (E.g. a 3× 3 matrix with sparsity level 0.9 will have ≈ 8 zeros and
hence always multiple zero rows and/or columns.) We hence cap the number of attempts to generate
a single matrix that fulfills the zero-rows / zero-columns constraints at 100 attempts. For every valid
generated system matrix, we sample 100 initial values randomly from the unit circle in R⋉ and
numerically solve the initial value problem to obtain 100 trajectories per system.

We perform system-level identifiability analysis as well as an empirical identifiability analysis.
System-level metrics are provided in Fig. 11. Hamming-distances for different system dimensions n
and sparsity levels p are reported in Fig. 13 for SINDy and in Fig. 14 for NODEs. For both estimators
the average Hamming distance increases as sparsity rises, confirming the trends observed for other
matrix models as well as the theoretical underpinnings.

Figure 10: Proportion of matrices satisfying the conditions conditions rank(A− λI) < n− 1 (left),
∃λ ∈ R : rank(A − λI) < n − 1 (center), and presence of zero eigenvalues (right) at different
system dimensions n and sparsity levels p for fixed number of zeros per row ensemble.

Figure 11: Proportion of matrices satisfying the conditions conditions rank(A− λI) < n− 1 (left),
∃λ ∈ R : rank(A − λI) < n − 1 (center), and presence of zero eigenvalues (right) at different
system dimensions n and sparsity levels p for sparse-continuous ensemble with no zero rows.
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Figure 12: Proportion of matrices satisfying the conditions conditions rank(A− λI) < n− 1 (left),
∃λ ∈ R : rank(A − λI) < n − 1 (center), and presence of zero eigenvalues (right) at different
system dimensions n and sparsity levels p for sparse-continuous ensemble with no zero columns.

sparsity p sparsity p sparsity p

n

no zero columns no zero rows fixed number zeros

Figure 13: Hamming distance for different generating settings for SINDy on trajectories generated
from fixed number of zeros per row ensemble (left), sparse-continuous ensemble with no zero
columns (center), sparse-continuous ensemble with no zero rows (right).

sparsity p sparsity p sparsity p

n

no zero columns no zero rows fixed number zeros

Figure 14: Hamming distance for different generating settings for NODE on trajectories generated
from fixed number of zeros per row ensemble (left), sparse-continuous ensemble with no zero
columns (center), sparse-continuous ensemble with no zero rows (right).
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