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Abstract

While the AI-code assistant tools become001
widespread, automatic assessment of the cor-002
rectness of the generated code becomes a sig-003
nificant challenge. Code-generating LLMs are004
prone to hallucinations, which may lead to code005
that doesn’t solve a required problem or even to006
code with severe security vulnerabilities. In this007
paper, we propose a new approach to assess-008
ment of code correctness. Our solution is based009
on topological data analysis (TDA) of attention010
maps of code LLMs. We carry out experiments011
with two benchmarks – HumanEval, MBPP012
and 5 code LLMs: StarCoder2-7B, CodeLlama-013
7B, DeepSeek-Coder-6.7B, Qwen2.5-Coder-014
7B, Magicoder-S-DS-6.7B. Experimental re-015
sults show that the proposed method is bet-016
ter than several baselines. Moreover, the017
trained classifiers are transferable between cod-018
ing benchmarks.019

1 Introduction020

Large Language Models (LLMs) are now021

widespread and have a great potential to transform022

natural language processing and artificial intelli-023

gence. As far as code generation is concerned,024

LLMs which are trained on large amounts of code,025

are capable to generate human-level code for a026

plethora of simple problems and are expected to027

revolutionize software engineering. At the same028

time, code generating LLMs are prone to halluci-029

nations. These hallucination are of various types.030

Sometimes generated code has syntactic or logical031

errors, sometimes it is correct but do not solve a re-032

quired problem. In some cases, the generated code033

might contain security issues or robustness issues,034

like a memory leak. While many definitions of hal-035

lucinations exist, in this paper we assume that code036

hallucination is a code which do not pass tests. For037

a wide adoption of code generating LLMs, there038

is a high need of automatic assessment of code039

quality. As for the current state of technologies, a040

significant time is spent to debugging and rewriting 041

automatically generated code (Liang et al., 2024). 042

We hypothesize that code quality can be inferred 043

before its execution from an internal state of LLM, 044

in particular its attention maps. Previous studies 045

have shown that attention maps of transformers are 046

useful for artificial text detection (Kushnareva et al., 047

2021), acceptability judgments (Cherniavskii et al., 048

2022) and speech classification (Tulchinskii et al., 049

2022). 050

Attention maps of LLMs are shown to capture 051

semantically meaningful information and might be 052

a illustration to model’s “thought process”. The 053

research community actively studies approaches to 054

mitigate hallucinations of LLMs by extenral knowl- 055

edge bases (Peng et al., 2023) or reduce them to 056

some degree (Elaraby et al., 2023). It is a highly 057

desirable to evaluate to code quality before its exe- 058

cution and a running of tests since the code might 059

contain security vulnerabilities. 060

The study of hallucinations in LLMs is intrinsi- 061

cally tied to generalization in NLP models. Both 062

challenges stem from how models learn, repre- 063

sent, and apply knowledge. Improving generaliza- 064

tion—through robust training, diverse data, and bet- 065

ter uncertainty handling—reduces hallucinations 066

by ensuring models produce contextually appropri- 067

ate, factually grounded outputs. Conversely, ana- 068

lyzing hallucinations provides insights into gener- 069

alization failures, guiding the development of more 070

reliable NLP systems. This symbiotic relationship 071

underscores the importance of addressing both is- 072

sues holistically in AI research. 073

Out contributions are the following: 074

• We propose a new approach to detection of 075

hallucinations in LLM generated code based 076

on analysing a topology of attention maps; 077

• We carry out computational experiments with 078

CodeLlama, StarCoder2, DeepSeek-Coder 079

and Qwen2.5-Coder and two benchmarks – 080
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HumanEval and MBPP, and show that the pro-081

posed method outperforms baselines;082

• We empirically show that proposed classifier083

of hallucinations is transferable between code084

benchmarks.085

2 Related work086

Code generation via Large Language Models087

(LLMs) is the topic of active research. The popular088

projects are: CodeLlama (Roziere et al., 2023),089

StarCoder2 (Lozhkov et al., 2024), DeepSeek-090

Coder (Guo et al., 2024), Qwen2.5-Coder (Hui091

et al., 2024), to name a few. Code LLMs differ by092

data were used for training, by their training and093

fine-tuning protocols, including RLHF, tokenizers,094

variants of attention mechanism, etc.095

Several works studied attention maps in096

transformer-based LLMs. (Clark, 2019) studied097

BERT’s attention patterns: attending to delimiter098

tokens, specific positional offsets, or broadly at-099

tending over the whole sentence, with heads in100

the same layer often exhibiting similar behaviors.101

(Clark, 2019) further showed that certain attention102

heads correspond well to linguistic notions of syn-103

tax and coreference. (Htut et al., 2019) found that104

for some universal dependency tree relation types,105

there exist heads that can recover the dependency106

type significantly better than baselines on parsed107

English text, suggesting that some self-attention108

heads act as a proxy for syntactic structure. (Michel109

et al., 2019) showed that for downstream tasks, a110

large proportion of attention heads can be removed111

at test time without significantly impacting perfor-112

mance, and that some layers can even be reduced113

to a single head.114

The phenomenon of code hallucinations is stud-115

ied and categorized several papers. (Tian et al.,116

2024) introduces a categorization of code halluci-117

nations into four main types: mapping, naming,118

resource, and logic hallucinations, with each cat-119

egory further divided into different subcategories.120

(Tian et al., 2024) proposed a CodeHalu dataset121

and studied frequencies of different types of hallu-122

cinations in popular code LLMs. (Liu et al., 2024)123

categorized hallucinations into: intent conflicting,124

inconsistency, repetition, knowledge conflicting,125

dead code. (Liu et al., 2024) released a HaluCode126

benchmark with labeled code hallucinations. (Jiang127

et al., 2024) proposed Collu-Bench, the benchnark128

with localization of code hallucinations. (Jiang129

et al., 2024) found that code LLMs are less confi-130

dent when hallucinating, as the hallucinated tokens 131

have lower probability and hallucinated generation 132

steps have higher entropy. 133

In the broader context of NLP, several works in- 134

troduced methods to hallucination preventing and 135

detection. (Peng et al., 2023) proposed to miti- 136

gate hallucination by an LLM-AUGMENTER, a 137

system which makes the LLM generate responses 138

grounded in external knowledge, e.g., stored in 139

task-specific databases. (Zhang et al., 2024b) pro- 140

posed Self-Eval, a self-evaluation component, to 141

prompt an LLM to validate the factuality of its 142

own generated responses solely based on its in- 143

ternal knowledge. (Feng et al., 2024) proposed 144

two novel approaches for hallucination detection 145

that are based on model collaboration, i.e., LLMs 146

probing other LLMs for knowledge gaps, either co- 147

operatively or competitively. (Zhang et al., 2024a) 148

proposed to improve truthfulness of LLMs by edit- 149

ing their internal representation during inference 150

in the “truthful” space. (Yehuda et al., 2024) intro- 151

duced InterrogateLLM, a method which prompts 152

the model multiple times to reconstruct the input 153

query using the generated answer. Subsequently, 154

InterrogateLLM quantifies the inconsistency level 155

between the original query and the reconstructed 156

queries. 157

3 Background 158

3.1 Transformer-based LLMs 159

All of the state-of-the art LLMs for code genera- 160

tion networks are based on different variants of the 161

transformer architecture (Vaswani, 2017). A trans- 162

former architecture comprises L layers of multi- 163

head self-attention blocks each of them having H 164

heads. Each attention head takes X ∈ Rn×d ma- 165

trix as an input, and an output of attention head in 166

Xout: 167

Xout = A(XW v), 168

A = softmax
(
(XWQ)(XWK)T√

d

)
, 169

where WQ,WK ,W V ∈ Rd×d are projection 170

matrices and A ∈ [0, 1]n×n is an attention map. 171

In self-attention block, the attention map shows 172

how each token in the input sequence “interacts” to 173

every other token in the same sequence. A token 174

might attend more to other tokens that are contex- 175

tually related. We interpret each element ai,j of 176
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Figure 1: A pipeline of the proposed method for hallucination detection.

an attention map as an “interaction force” between177

tokens i and j.178

3.2 Representing attention map by a weighted179

graph180

While attention map is typically presented as a181

matrix, we treat it as a weighted graph. For n to-182

kens in a sequence, we consider a fully-connected183

weighted graph with n vertices, where weights184

of edges are related to the “interaction force” be-185

tween tokens (vertices). The natural idea is to leave186

only the most interacting tokens, that is, attending187

to each other higher than some threshold. How-188

ever, the optimal threshold is not known in ad-189

vance. Moreover, topology of such graph changes190

discontinuously with the change of a threshold191

(or weights). Topological Data Analysis (TDA)192

(Chazal and Michel, 2017) introduces a principled193

way to access topology of such graphs for all thresh-194

olds simultaneously.195

3.3 Manifold Topology Divergence196

MTD (Manifold Topology Divergence) (Baran-197

nikov et al., 2021) is a tool of TDA which can198

be used to evaluate the “dissimilarity” between two199

sets of vertices in a weighted graph G = (V,E,W )200

or, in other words, to which degree one set of ver-201

tices is covered by another set.202

Let a set of vertices V = P ⊔ G, be split into203

disjoint sets P,G. We consider a nested sequence204

of graphs G0 ⊂ . . . ⊂ Gi ⊂ Gi+1 ⊂ . . . ⊂ G in205

the following way. G0 has all the vertices P,G and206

all the edges connecting vertices from P . The se-207

quence Gi is obtained by adding the rest of edges208

one by one in an ascending order by their weights,209

see Figure 2. During this process, graphs’ topol-210

ogy naturally changes: connected components are211

merged, cycles appear and disappear, etc. This212

process is rigorously described by the persistence213

barcodes theory (Barannikov, 1994; Chazal and214

Michel, 2017). Each topological feature like con-215

nected component or cycle has “birth time” and216

“death time”, by a corresponding edge weight. The217

multi-set of these birth-death pairs (intervals) al-218

together is called a Cross-Barcodek, see Figure 219

3. Here k is an index of a persistence homology, 220

each of them reflects a kind of topological feature: 221

0 - connected components, 1 - cycles, 2 - voids, 222

etc. MTDk is an integral characteristic of a Cross- 223

Barcodek and it is defined as a sum of birth-death 224

intervals’ lengths. The higher MTDk is, the bigger 225

is a “dissimilarity” between sets of tokens. Note, 226

that according to a definition, MTDk is not sym- 227

metric. Also, MTDk, as a kind of persistence bar- 228

code, enjoys stability w.r.t. small perturbations of 229

weights (Cohen-Steiner et al., 2005). 230

4 Methods 231

In the context or code generation, we naturally have 232

two sets of tokens – a prompt and a generation. In- 233

tuitively, hallucination happens when code LLM 234

doesn’t pay much attention to the prompt. As was 235

pointed in Section 3.2, attention matrices can be 236

analyzed as weighted graphs. Specifically, for n to- 237

kens in a sequence, we consider a fully-connected 238

weighted graph with n vertices, where weights of 239

edges are obtained by a symmetrization of an at- 240

tention map: wi,j = 1−max(ai,j , aj,i), for i ̸= j. 241

Then, Cross-Barcode and MTD for a weighted “at- 242

tention graph” can be calculated. To predict code 243

hallucinations, we use the following set of features: 244

• MTD0(P,G)/|P |, MTD0(G,P )/|G| 245

• MTD1(P,G)/|P |, MTD1(G,P )/|G| 246

•
∑

i∈P ai,i/|P |,
∑

i∈G ai,i/|G| 247

Here all the features are normalized by a size of 248

corresponding vertices set for better transferability. 249

Additionally, sums of diagonal values of attention 250

matrices which are not directly present in edge 251

weights are included. These features are calculated 252

for every layer and head of a code LLM. At the top 253

of the proposed topological features, we applied 254

XGBoost (Chen and Guestrin, 2016) for a classi- 255

fication. The high-level pipeline of the proposed 256

method is shown in Figure 1. 257
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Figure 2: An example of MTD evaluation for a graph having two groups of vertices – red and blue. (0): initially,
only edges connecting red vertices are present. (1)-(6): the rest of edges are added sequentially in an ascending
order by their weights. While adding edges, connected components merge with each other. These moments are
depicted by H0 bars in Fig. 3. At moment (4) a cycle appears, at moment (6) this cycle disappears. These moments
are depicted by the H1 bar in Fig. 3.

Figure 3: Cross-Barcode for a filtration from Fig. 2.

Model Pass@1 #Pos. #Neg.
HumanEval

StarCoder2-7B 28.9 1186 2914
CodeLlama-7B 25.9 1064 3036
DeepSeek-Coder-6.7B 40.3 1653 2447
Qwen2.5-Coder-7B 47.8 1961 2139
Magicoder-S-DS-6.7B 65.5 2689 1411

MBPP
StarCoder2-7B 42.8 1071 1429
CodeLlama-7B 35.2 879 1621
DeepSeek-Coder-6.7B 52.6 1315 1185
Qwen2.5-Coder-7B 52.1 1302 1198
Magicoder-S-DS-6.7B 61.3 1533 967

Table 1: Characteristics of generated data: Pass@1,
number of correct (#Pos.) and incorrect (#Neg.) solu-
tions for each of the selected code LLMs.

5 Experiments258

5.1 Generation of datasets259

To assess the efficacy of the proposed method260

for hallucination prediction, we carry out a set of261

computational experiments. We use the follow-262

ing popular code LLMs: StarCoder2-7B (Lozhkov263

et al., 2024), CodeLlama-7B (Roziere et al.,264

2023), DeepSeek-Coder-6.7B (Guo et al., 2024),265

Qwen2.5-Coder-7B (Hui et al., 2024), Magicoder-266

S-DS-6.7B (Wei et al., 2024). We adapted two267

public benchmarks for evaluation of code genera-268

tion: HumanEval (Chen et al., 2021) and MBPP 269

(Austin et al., 2021)1. In order to account for vari- 270

ous possible code generations, for each of the cod- 271

ing problems several solutions were generated by 272

each of the selected code LLMs: we obtained 25 273

generations per task for HumanEval and 5 genera- 274

tions per task for MBPP. To address the quality of 275

the proposed approach in different LLM prompting 276

regimes, we used 0-shot prompt for the HumanEval 277

dataset and 1-shot prompt for the MBPP dataset. 278

To enable diversity of generated solutions, a sam- 279

pling with non-zero temperature of was done. Thus, 280

we obtain 4100 samples for HumanEval and 2500 281

samples for MBPP for each code LLM. See Ap- 282

pendix A for further details. Table 1 presents a 283

summary of generated code solutions. The correct- 284

ness of code is evaluated via tests provided together 285

with the coding benchmarks. Incorrect code is con- 286

sidered a “hallucination”; prediction of code’s cor- 287

rectness is a binary classification problem. The 288

pass@1 metric is slightly lower that reported in 289

original papers, mostly because we have used sam- 290

pling with non-zero temperature instead of greedy 291

search. Before moving further, note that there is a 292

strong negative dependency between prompt and 293

generation lengths and code quality, see Figure 5, 294

9. The longer the prompt (i.e. task description) and 295

generation (i.e. task solution) are, the lower is the 296

probability of code’s correctness. This dependency 297

is more pronounced for HumanEval than MBPP, 298

because MBPP employed more complicated 1-shot 299

prompts. These attributes are natural baselines for 300

hallucination’s prediction. 301

5.2 Analyzing method’s classification quality 302

Using the generated data, we estimated the classi- 303

fication quality of the proposed approach. We ap- 304

plied 5-fold stratified group cross-validation where 305

different solutions of the same coding problem 306

1Licenses of pretrained models and benchmarks permit
use for research purposes.
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Method ROC-AUC F1-Score
StarCoder2-7B

Prompt Len. 54.5± 6.6 24.6± 11.2
Gen. Len. 57.7± 5.6 13.5± 4.8
Mean Log. Prob. 70.9± 1.3 32.4± 4.8
CodeT5-base ft. 70.1± 7.1 33.3± 10.1
Attn. Feat. (ours) 82.9± 2.7 54.2± 6.9

CodeLlama-7B
Prompt Len. 61.6± 4.4 25.7± 15.0
Gen. Len. 60.1± 5.3 10.6± 7.0
Mean Log. Prob. 64.1± 2.0 25.4± 6.2
CodeT5-base ft. 74.5± 6.3 43.6± 13.2
Attn. Feat. (ours) 85.6± 3.9 56.4± 7.2

DeepSeek-Coder-6.7B
Prompt Len. 56.2± 4.6 44.4± 4.3
Gen. Len. 57.9± 2.4 34.4± 4.9
Mean Log. Prob. 69.8± 2.5 51.1± 3.4
CodeT5-base ft. 69.1± 4.2 52.6± 6.5
Attn. Feat. (ours) 85.6± 2.8 68.9± 5.5

Qwen2.5-Coder-7B
Prompt Len. 54.3± 8.7 51.0± 5.7
Gen. Len. 57.6± 3.6 48.9± 5.1
Mean Log. Prob. 63.1± 2.4 55.6± 5.5
CodeT5-base ft. 65.9± 3.7 58.2± 4.5
Attn. Feat. (ours) 81.7± 2.8 70.2± 4.2

Magicoder-S-DS-6.7B
Prompt Len. 57.3± 5.4 70.4± 7.0
Gen. Len. 52.5± 2.1 76.3± 2.6
Mean Log. Prob. 71.0± 5.3 78.4± 2.9
CodeT5-base ft. 64.7± 2.7 77.5± 2.7
Attn. Feat. (ours) 82.3± 4.9 80.7± 3.6

Table 2: Code hallucination detection for HumanEval
dataset.

belonged to the same group. In this way, train-307

ing and testing were performed always at non-308

overlapping coding problems (prompts). The re-309

ported results are the mean and standard deviation310

estimated over the 5 folds. As baselines for compar-311

ison, we used XGBoost classifier trained on simple312

features: tokenized prompt length, tokenized gener-313

ation length, and mean log-probability of generated314

tokens (Chen et al., 2021). Also, we trained a linear315

classification head on top of a frozen CodeT5-base316

(Wang et al., 2021) encoder. Training details are317

provided in Appendix B. Tables 2, 3 present re-318

sults. In the majority of cases, the proposed classi-319

fier based on features of attention maps performed320

significantly better than the baselines and demon-321

strated stable results for all models and datasets as322

measured by ROC-AUC score. Further analysis re-323

vealed that some features made a high contribution324

Method ROC-AUC F1-Score
StarCoder2-7B

Prompt Len. 51.2± 2.3 40.0± 3.8
Gen. Len. 57.7± 0.9 45.4± 3.5
Mean Log. Prob. 62.0± 2.0 47.5± 3.4
CodeT5-base ft. 58.5± 3.5 43.3± 9.0
Attn. Feat. (ours) 81.9± 2.4 68.4± 5.3

CodeLlama-7B
Prompt. Len. 59.1± 4.2 35.4± 2.9
Gen. Len. 60.8± 2.5 24.2± 5.3
Mean Log. Prob. 61.0± 3.7 27.2± 1.5
CodeT5-base ft. 61.7± 3.0 19.1± 7.1
Attn. Feat. (ours) 83.4± 3.3 64.0± 4.4

DeepSeek-Coder-6.7B
Prompt Len. 52.5± 2.5 56.4± 3.6
Gen. Len. 54.6± 1.9 59.4± 1.3
Mean Log. Prob. 61.0± 1.9 62.3± 1.6
CodeT5-base ft. 55.7± 3.0 64.8± 2.7
Attn. Feat. (ours) 82.6± 1.9 76.5± 2.7

Qwen2.5-Coder-7B
Prompt Len. 51.8± 3.6 56.2± 4.4
Gen. Len. 55.6± 2.1 59.7± 4.8
Mean Log. Prob. 61.5± 1.3 60.4± 1.8
CodeT5-base ft. 56.0± 1.3 65.2± 2.0
Attn. Feat. (ours) 82.2± 2.2 75.4± 1.7

Magicoder-S-DS-6.7B
Prompt Len. 52.5± 2.5 56.4± 3.6
Gen. Len. 58.7± 1.1 60.7± 2.1
Mean Log. Prob. 60.6± 3.7 72.1± 1.4
CodeT5-base ft. 61.0± 3.7 74.8± 1.4
Attn. Feat. (ours) 77.8± 2.5 73.4± 3.4

Table 3: Code hallucination detection for MBPP dataset.

to the classification quality, see Figure 4. 325

5.3 Analyzing method’s ranking quality 326

Next, we assess the usefulness of the proposed code 327

hallucination classifier for ranking of code gener- 328

ations. For each problem, all generations were 329

ranked via probability of correctness predicted by 330

the classifier and one with the highest probability 331

was selected. A baseline was random picking of a 332

code generation. The usage of a classifier is always 333

significantly better by a pass@1 score, see Table 4. 334

5.4 Method’s transferability between 335

benchmarks 336

We study further the transferability of the classi- 337

fiers, based on topological features. In this setting, 338

hallucination classifiers for a fixed code LLM are 339

trained on data for one benchmark (HumanEval, 340

MBPP) and evaluated on another, then repeated 341
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Model Random Clf. Prob.
HumanEval

StarCoder2-7B 28.6± 5.5 43.3± 9.0
CodeLlama-7B 26.0± 5.1 39.7± 7.2
DeepSeek-Coder-6.7B 39.1± 4.9 56.7± 7.4
Qwen2.5-Coder-7B 51.8± 8.0 64.0± 7.3
Magicoder-S-DS-6.7B 72.5± 10.0 74.3± 6.1

MBPP
StarCoder2-7B 43.0± 3.6 49.6± 4.6
CodeLlama-7B 35.2± 3.3 43.6± 3.4
DeepSeek-Coder-6.7B 53.0± 2.5 61.4± 2.3
Qwen2.5-Coder-7B 52.6± 3.6 62.0± 2.4
Magicoder-S-DS-6.7B 61.4± 3.4 63.8± 2.0

Table 4: pass@1 for random choice vs argmax of classi-
fier probability

vise versa. Tables 5, 6 shows results: the proposed342

classifiers are transferable, albeit the performance343

is lower when training and testing is done on the344

same benchmark.345

5.5 Ablation study346

The proposed approach is based on the two types347

of attention features: the diagonal elements of at-348

tention maps corresponding to the prompt and gen-349

eration and topological features computed for the350

corresponding “attention graph” (see Section 4 for351

details). In this Section, we provide an ablation352

study to estimate the contribution of each type of353

attention features. For this purpose, we trained354

the XGBoost classifier using only MTD features355

(i.e. without the diagonal elements of attention356

maps) or using only diagonal attention values (i.e.357

without MTD features) and compared its perfor-358

mance with the initial setup where both types of359

attention features were used. As demonstrated360

with Tables 7, 8, the DeepSeek-Coder-6.7B and361

Qwen2.5-Coder-7B achieved the best performance362

when both types of attention features were used363

for both HumanEval and MBPP datasets. In con-364

trast, the best performance of StarCoder2-7B and365

Magicoder-S-DS-6.7B was achieved with different366

sets of attention features dependent on dataset and367

metric choices. In order to account for various in-368

formation available via attention maps, we propose369

to use both types of features as the most universal370

choice. Nevertheless, we note that for some code371

LLM one certain type of attention features may372

result in better performance than combination of373

both types.374

Model ROC-AUC F1-Score
StarCoder2-7B

Prompt Len. 48.6 0.0
Gen. Len. 56.0 14.6
Mean Log. Prob. 63.7 36.2
CodeT5-base ft. 53.7 0.0
Attn. Features 67.5 0.14

CodeLlama-7B
Prompt Len. 51.7 0.0
Gen. Len. 61.5 4.2
Mean Log. Prob. 57.7 15.2
CodeT5-base ft. 54.9 0.0
Attn. Features 69.5 0.2

DeepSeek-Coder-6.7B
Prompt Len. 48.0 15.6
Gen. Len. 55.3 41.4
Mean Log. Prob. 62.5 56.3
CodeT5-base ft. 53.4 0.0
Attn. Features 67.7 70.4

Qwen2.5-Coder-7B
Prompt Len. 49.9 34.1
Gen. Len. 51.6 46.1
Mean Log. Prob. 60.3 60.4
CodeT5-base ft. 49.1 52.3
Attn. Features 70.6 63.3

Magicoder-S-DS-6.7B
Prompt Len. 48.1 56.3
Gen. Len. 54.8 75.2
Mean Log. Prob. 63.7 74.9
CodeT5-base ft. 49.3 76.0
Attn. Features 73.5 78.4

Table 5: Transferability of code hallucination detectors.
Each classifier was trained on HumanEval (HE) dataset
and tested on MBPP dataset.
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(a) HumanEval (b) MBPP

Figure 4: Distribution of classes (0-code is not correct, hallucination, 1-code is correct) vs. features from attention
maps. Some of the most discriminative features are presented. Features are normalized with MinMaxScaler.
CodeLlama.

Model ROC-AUC F1-Score
StarCoder2-7B

Prompt Len. 52.1 45.0
Gen. Len. 52.4 38.3
Mean Log. Prob. 71.8 45.4
CodeT5-base ft. 59.1 0.0
Attn. Features 67.2 25.5

CodeLlama-7B
Prompt Len. 53.4 42.9
Gen. Len. 50.0 41.0
Mean Log. Prob. 65.0 34.9
CodeT5-base ft. 62.4 0.0
Attn. Features 80.3 34.1

DeepSeek-Coder-6.7B
Prompt Len. 52.2 58.2
Gen. Len. 54.0 51.3
Mean Log. Prob. 69.1 58.3
CodeT5-base ft. 55.9 57.4
Attn. Features 72.4 20.4

Qwen2.5-Coder-7B
Prompt Len. 51.1 64.1
Gen. Len. 54.5 54.3
Mean Log. Prob. 64.7 60.8
CodeT5-base ft. 51.6 65.6
Attn. Features 64.2 54.3

Magicoder-S-DS-6.7B
Prompt Len. 54.5 79.5
Gen. Len. 56.1 74.6
Mean Log. Prob. 69.8 76.5
CodeT5-base ft. 45.9 79.2
Attn. Features 56.9 37.6

Table 6: Transferability of code hallucination detectors.
Each classifier was trained on MBPP dataset and tested
on HumanEval (HE) dataset.

(a) Prompt length, tokens. HumanEval

(b) Generation length, tokens. HumanEval

Figure 5: The individual conditional expectations for
prompt and generation lengths, CodeLlama.
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Method ROC-AUC F1-Score
StarCoder2-7B

Attn. Feat. (ours) 82.9± 2.7 54.2± 6.9
- w/o Diag. Feat. 82.2± 4.5 56.1± 9.7
- w/o MTD Feat. 83.8± 2.7 52.5± 8.4

CodeLlama-7B
Attn. Feat. (ours) 85.6± 3.9 56.4± 7.2
- w/o Diag. Feat. 83.5± 4.8 50.0± 6.5
- w/o MTD Feat. 85.5± 4.4 58.3± 10.1

DeepSeek-Coder-6.7B
Attn. Feat. (ours) 85.6± 2.8 68.9± 5.5
- w/o Diag. Feat. 85.1± 2.2 67.0± 5.9
- w/o MTD Feat. 84.4± 2.2 67.1± 3.8

Qwen2.5-Coder-7B
Attn. Feat. (ours) 81.7± 2.8 70.2± 4.2
- w/o Diag. Feat. 80.6± 2.3 68.9± 3.9
- w/o MTD Feat. 78.9± 1.9 66.4± 1.4

Magicoder-S-DS-6.7B
Attn. Feat. (ours) 82.3± 4.9 80.7± 3.6
- w/o Diag. Feat. 79.8± 2.7 81.1± 1.8
- w/o MTD Feat. 82.1± 3.4 81.6± 2.6

Table 7: HumanEval features ablation

5.6 Analyzing method’s pruning ability375

In its base setup, the proposed approach requires376

computation of attention features from attention377

maps for all layers and heads. However, we ex-378

plored that the trained XGBoost classifier experi-379

enced a natural sparsity with only about 25% of380

meaningful features as measured by classifiers’ fea-381

ture importance. To explore further the pruning382

ability of our approach, we followed the two-stage383

pipeline. First, for a given sparsity level, we se-384

lected the most important features as measured385

by feature importance of the classifier trained on386

all attention features simultaneously. Second, we387

(a) ROC-AUC vs. percentage of retained features, MBPP.

Figure 6: Pruning ability of the proposed method.

Method ROC-AUC F1-Score
StarCoder2-7B

Attn. Feat. (ours) 81.9± 2.4 68.4± 5.3
- w/o Diag. Feat. 80.5± 2.8 66.3± 5.3
- w/o MTD Feat. 81.1± 2.6 67.7± 5.0

CodeLlama-7B
Attn. Feat. (ours) 83.4± 2.2 64.0± 4.4
- w/o Diag. Feat. 81.5± 2.6 60.2± 4.2
- w/o MTD Feat. 83.5± 1.8 63.9± 4.3

DeepSeek-Coder-6.7B
Attn. Feat. (ours) 82.6± 1.9 76.5± 2.7
- w/o Diag. Feat. 81.3± 2.6 74.9± 3.2
- w/o MTD Feat. 82.2± 1.7 75.9± 1.7

Qwen2.5-Coder-7B
Attn. Feat. (ours) 82.2± 2.2 75.4± 1.7
- w/o Diag. Feat. 80.8± 2.1 75.4± 0.4
- w/o MTD Feat. 76.9± 2.2 71.6± 1.7

Magicoder-S-DS-6.7B
Attn. Feat. (ours) 77.8± 2.5 73.4± 3.4
- w/o Diag. Feat. 77.8± 3.2 72.4± 2.9
- w/o MTD Feat. 78.4± 2.6 73.2± 2.1

Table 8: MBPP features ablation

trained a new XGBoost classifier on the selected 388

set of attention features. As indicated by Figure 389

6, the proposed feature selection procedure could 390

retain only 5% of all attention features without sig- 391

nificant loss of classification quality highlighting 392

that only a limited number of all attention heads is 393

relevant hallucination detection. 394

6 Conclusions 395

In this paper, we have proposed a new approach to 396

hallucination detection is code generating LLMs. 397

Our approach is based on the introspection of a 398

LLM: we get attention maps for a prompt and gen- 399

eration and study their topology after transforming 400

to weighed graphs. The proposed topological fea- 401

tures of these graphs are empirically shown to be 402

relevant to detection of code hallucinations. A clas- 403

sifier built on top of these features outperformed 404

several baselines. These classifiers are transferable 405

across coding benchmarks. The natural extension 406

of our research is detection of specific places of 407

code with bugs, we leave it for a further research. 408

We believe that our work may lead to a wider appli- 409

cation of code generating LLMs by making them 410

more reliable. In a wider context, our work con- 411

tributes to study of interpretation and generaliza- 412

tion in NLP models since hallucinations and gener- 413

alization ability are intrinsically tied. 414

8



7 Limitations415

Although we have achieved good experimental re-416

sults, we realize that our research have several417

limitations. First of all, we explored only code418

LLMs having no more than 7B parameters. In-419

formation in larger models are more distributed420

in attention heads and results might differ. Also,421

processing more attention heads is computationally422

costly. Next, the proposed classifiers of hallucina-423

tions are based on the attention maps of the same424

code LLMs as for code generations. We leave more425

general setting to a further research. Finally, our426

approach can predict whether a code is correct as a427

whole but can’t point to a specific place with a bug.428
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Figure 7: Example of prompt (problem description) and
model generation for the HumanEval dataset.

Figure 8: Example of prompt (one-shot example and
problem description) and model generation for the
MBPP dataset.

A Details on generation procedure 575

We generated solutions for the coding problems 576

with temperature of 0.8. For the HumanEval 577

dataset, the maximum length of model output (i.e. 578

input prompt + generation) was limited to 512 to- 579

kens. For the MBPP dataset, the maximum number 580

of new tokens to generate was set to 256. Figures 581

7, 8 provide examples of prompt and generation 582

for HumanEval and MBPP datasets. We followed 583

the guidelines2 to post process the model output 584

and extract the valid problem solution. To com- 585

pute attention features according to the proposed 586

method in Section 4, we used the attention sub- 587

matrix corresponding to input prompt and valid 588

problem solution. For computational experiments 589

we used NVIDIA TITAN RTX. 590

B Details on training procedure 591

For the code hallucination detectors, based on the 592

XGBoost classifier training, we utilized the XG- 593

BClassifier with an approximation tree method 594

“hist” from the XGBoost library 3. For the code 595

hallucination detector based on the embeddings 596

2https://github.com/bigcode-project/bigcode-evaluation-
harness

3https://xgboost.readthedocs.io/en/latest/index.html
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from CodeT5-base, we used the pretrained frozen597

CodeT5-base encoder with trainable classification598

head consisting of 2 linear layers with hidden di-599

mensionality 768. The classification head was600

trained for 100 epochs with batch size 32 and learn-601

ing rate 3e− 5.602
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(a) Prompt length, tokens. MBPP (b) Generation length, tokens. MBPP

Figure 9: The individual conditional expectations for prompt and generation lengths, CodeLlama.

(a) ROC-AUC vs. percentage of retained features, HumanEval.

(b) F1, HumanEval

(c) F1, MBPP

Figure 10: Pruning ability of the proposed method.
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