Topology of Attention: Detecting Hallucinations in Code Generation
Models

Anonymous ACL submission

Abstract

While the Al-code assistant tools become
widespread, automatic assessment of the cor-
rectness of the generated code becomes a sig-
nificant challenge. Code-generating LL.Ms are
prone to hallucinations, which may lead to code
that doesn’t solve a required problem or even to
code with severe security vulnerabilities. In this
paper, we propose a new approach to assess-
ment of code correctness. Our solution is based
on topological data analysis (TDA) of attention
maps of code LLMs. We carry out experiments
with two benchmarks — HumanEval, MBPP
and 5 code LLMs: StarCoder2-7B, CodeLlama-
7B, DeepSeek-Coder-6.7B, Qwen2.5-Coder-
7B, Magicoder-S-DS-6.7B. Experimental re-
sults show that the proposed method is bet-
ter than several baselines. Moreover, the
trained classifiers are transferable between cod-
ing benchmarks.

1 Introduction

Large Language Models (LLMs) are now
widespread and have a great potential to transform
natural language processing and artificial intelli-
gence. As far as code generation is concerned,
LLMs which are trained on large amounts of code,
are capable to generate human-level code for a
plethora of simple problems and are expected to
revolutionize software engineering. At the same
time, code generating LLMs are prone to halluci-
nations. These hallucination are of various types.
Sometimes generated code has syntactic or logical
errors, sometimes it is correct but do not solve a re-
quired problem. In some cases, the generated code
might contain security issues or robustness issues,
like a memory leak. While many definitions of hal-
Iucinations exist, in this paper we assume that code
hallucination is a code which do not pass tests. For
a wide adoption of code generating LLMs, there
is a high need of automatic assessment of code
quality. As for the current state of technologies, a

significant time is spent to debugging and rewriting
automatically generated code (Liang et al., 2024).

We hypothesize that code quality can be inferred
before its execution from an internal state of LLM,
in particular its attention maps. Previous studies
have shown that attention maps of transformers are
useful for artificial text detection (Kushnareva et al.,
2021), acceptability judgments (Cherniavskii et al.,
2022) and speech classification (Tulchinskii et al.,
2022).

Attention maps of LLMs are shown to capture
semantically meaningful information and might be
a illustration to model’s “thought process”. The
research community actively studies approaches to
mitigate hallucinations of LLMs by extenral knowl-
edge bases (Peng et al., 2023) or reduce them to
some degree (Elaraby et al., 2023). It is a highly
desirable to evaluate to code quality before its exe-
cution and a running of tests since the code might
contain security vulnerabilities.

The study of hallucinations in LLMs is intrinsi-
cally tied to generalization in NLP models. Both
challenges stem from how models learn, repre-
sent, and apply knowledge. Improving generaliza-
tion—through robust training, diverse data, and bet-
ter uncertainty handling—reduces hallucinations
by ensuring models produce contextually appropri-
ate, factually grounded outputs. Conversely, ana-
lyzing hallucinations provides insights into gener-
alization failures, guiding the development of more
reliable NLP systems. This symbiotic relationship
underscores the importance of addressing both is-
sues holistically in Al research.

Out contributions are the following:

* We propose a new approach to detection of
hallucinations in LLLM generated code based
on analysing a topology of attention maps;

* We carry out computational experiments with
CodeLlama, StarCoder2, DeepSeek-Coder
and Qwen2.5-Coder and two benchmarks —

HumanEval and MBPP, and show that the pro-
posed method outperforms baselines;

* We empirically show that proposed classifier
of hallucinations is transferable between code
benchmarks.

2 Related work

Code generation via Large Language Models
(LLMs) is the topic of active research. The popular
projects are: CodeLlama (Roziere et al., 2023),
StarCoder2 (Lozhkov et al., 2024), DeepSeek-
Coder (Guo et al., 2024), Qwen2.5-Coder (Hui
et al., 2024), to name a few. Code LLMs differ by
data were used for training, by their training and
fine-tuning protocols, including RLHF, tokenizers,
variants of attention mechanism, etc.

Several works studied attention maps in
transformer-based LLMs. (Clark, 2019) studied
BERT’s attention patterns: attending to delimiter
tokens, specific positional offsets, or broadly at-
tending over the whole sentence, with heads in
the same layer often exhibiting similar behaviors.
(Clark, 2019) further showed that certain attention
heads correspond well to linguistic notions of syn-
tax and coreference. (Htut et al., 2019) found that
for some universal dependency tree relation types,
there exist heads that can recover the dependency
type significantly better than baselines on parsed
English text, suggesting that some self-attention
heads act as a proxy for syntactic structure. (Michel
et al., 2019) showed that for downstream tasks, a
large proportion of attention heads can be removed
at test time without significantly impacting perfor-
mance, and that some layers can even be reduced
to a single head.

The phenomenon of code hallucinations is stud-
ied and categorized several papers. (Tian et al.,
2024) introduces a categorization of code halluci-
nations into four main types: mapping, naming,
resource, and logic hallucinations, with each cat-
egory further divided into different subcategories.
(Tian et al., 2024) proposed a CodeHalu dataset
and studied frequencies of different types of hallu-
cinations in popular code LLMs. (Liu et al., 2024)
categorized hallucinations into: intent conflicting,
inconsistency, repetition, knowledge conflicting,
dead code. (Liu et al., 2024) released a HaluCode
benchmark with labeled code hallucinations. (Jiang
et al., 2024) proposed Collu-Bench, the benchnark
with localization of code hallucinations. (Jiang
et al., 2024) found that code LLMs are less confi-

dent when hallucinating, as the hallucinated tokens
have lower probability and hallucinated generation
steps have higher entropy.

In the broader context of NLP, several works in-
troduced methods to hallucination preventing and
detection. (Peng et al., 2023) proposed to miti-
gate hallucination by an LLM-AUGMENTER, a
system which makes the LLM generate responses
grounded in external knowledge, e.g., stored in
task-specific databases. (Zhang et al., 2024b) pro-
posed Self-Eval, a self-evaluation component, to
prompt an LLM to validate the factuality of its
own generated responses solely based on its in-
ternal knowledge. (Feng et al., 2024) proposed
two novel approaches for hallucination detection
that are based on model collaboration, i.e., LLMs
probing other LLMs for knowledge gaps, either co-
operatively or competitively. (Zhang et al., 2024a)
proposed to improve truthfulness of LLMs by edit-
ing their internal representation during inference
in the “truthful” space. (Yehuda et al., 2024) intro-
duced InterrogateLLLM, a method which prompts
the model multiple times to reconstruct the input
query using the generated answer. Subsequently,
InterrogateLLLM quantifies the inconsistency level
between the original query and the reconstructed
queries.

3 Background

3.1 Transformer-based LLMs

All of the state-of-the art LLMs for code genera-
tion networks are based on different variants of the
transformer architecture (Vaswani, 2017). A trans-
former architecture comprises L layers of multi-
head self-attention blocks each of them having H
heads. Each attention head takes X € R™*? ma-
trix as an input, and an output of attention head in
Xout:

Xout — A(XWU),
(XWQ)(XWK)T>
\/g)

where WO WE WV e R¥? are projection
matrices and A € [0,1]"" is an attention map.
In self-attention block, the attention map shows
how each token in the input sequence “interacts” to
every other token in the same sequence. A token
might attend more to other tokens that are contex-
tually related. We interpret each element a; ; of

A = softmax <

lrl-:r

Attention maps

Code LLM

— (Gt

Cross-Barcodes, MTD

Weighted gfaphs

Figure 1: A pipeline of the proposed method for hallucination detection.

an attention map as an “interaction force” between
tokens ¢ and j.

3.2 Representing attention map by a weighted
graph

While attention map is typically presented as a
matrix, we treat it as a weighted graph. For n to-
kens in a sequence, we consider a fully-connected
weighted graph with n vertices, where weights
of edges are related to the “interaction force” be-
tween tokens (vertices). The natural idea is to leave
only the most interacting tokens, that is, attending
to each other higher than some threshold. How-
ever, the optimal threshold is not known in ad-
vance. Moreover, topology of such graph changes
discontinuously with the change of a threshold
(or weights). Topological Data Analysis (TDA)
(Chazal and Michel, 2017) introduces a principled
way to access topology of such graphs for all thresh-
olds simultaneously.

3.3 Manifold Topology Divergence

MTD (Manifold Topology Divergence) (Baran-
nikov et al., 2021) is a tool of TDA which can
be used to evaluate the “dissimilarity” between two
sets of vertices in a weighted graph G = (V, E, W)
or, in other words, to which degree one set of ver-
tices is covered by another set.

Let a set of vertices V' = P U G, be split into
disjoint sets P, G. We consider a nested sequence
of graphs Go C ... C G; C G411 C ... C Gin
the following way. Gy has all the vertices P, G and
all the edges connecting vertices from P. The se-
quence G; is obtained by adding the rest of edges
one by one in an ascending order by their weights,
see Figure 2. During this process, graphs’ topol-
ogy naturally changes: connected components are
merged, cycles appear and disappear, etc. This
process is rigorously described by the persistence
barcodes theory (Barannikov, 1994; Chazal and
Michel, 2017). Each topological feature like con-
nected component or cycle has “birth time” and
“death time”, by a corresponding edge weight. The
multi-set of these birth-death pairs (intervals) al-

together is called a Cross-Barcodey, see Figure
3. Here k is an index of a persistence homology,
each of them reflects a kind of topological feature:
0 - connected components, 1 - cycles, 2 - voids,
etc. MTDy, is an integral characteristic of a Cross-
Barcodey, and it is defined as a sum of birth-death
intervals’ lengths. The higher MTDy, is, the bigger
is a “dissimilarity” between sets of tokens. Note,
that according to a definition, MTDy, is not sym-
metric. Also, MTDy, as a kind of persistence bar-
code, enjoys stability w.r.t. small perturbations of
weights (Cohen-Steiner et al., 2005).

4 Methods

In the context or code generation, we naturally have
two sets of tokens — a prompt and a generation. In-
tuitively, hallucination happens when code LLM
doesn’t pay much attention to the prompt. As was
pointed in Section 3.2, attention matrices can be
analyzed as weighted graphs. Specifically, for n to-
kens in a sequence, we consider a fully-connected
weighted graph with n vertices, where weights of
edges are obtained by a symmetrization of an at-
tention map: w; ; = 1 — max(a; ;,a;;), for i # j.
Then, Cross-Barcode and MTD for a weighted “at-
tention graph” can be calculated. To predict code
hallucinations, we use the following set of features:

* MTDy(P, G)/|P|, MTDo(G, P)/|G|
« MTD: (P, G)/|P|, MTDy(G, P)/|G|

* > iep @ii/IPls Y icq aii/ |G|

Here all the features are normalized by a size of
corresponding vertices set for better transferability.
Additionally, sums of diagonal values of attention
matrices which are not directly present in edge
weights are included. These features are calculated
for every layer and head of a code LLM. At the top
of the proposed topological features, we applied
XGBoost (Chen and Guestrin, 2016) for a classi-
fication. The high-level pipeline of the proposed
method is shown in Figure 1.

© (M @) 3

4) ®) ®)

Figure 2: An example of MTD evaluation for a graph having two groups of vertices — red and blue. (0): initially,
only edges connecting red vertices are present. (1)-(6): the rest of edges are added sequentially in an ascending
order by their weights. While adding edges, connected components merge with each other. These moments are
depicted by Hj bars in Fig. 3. At moment (4) a cycle appears, at moment (6) this cycle disappears. These moments

are depicted by the H; bar in Fig. 3.

H4_
c
£
?2' HO
H1
0_
T T T T T T T
0 1 2 3 4 5 6

£ (time)

Figure 3: Cross-Barcode for a filtration from Fig. 2.

Model Pass@1 #Pos. #Neg.
HumanEval
StarCoder2-7B 28.9 1186 2914
CodeLlama-7B 25.9 1064 3036
DeepSeek-Coder-6.7B 40.3 1653 2447
Qwen2.5-Coder-7B 47.8 1961 2139
Magicoder-S-DS-6.7B 65.5 2689 1411
MBPP

StarCoder2-7B 42.8 1071 1429
CodeLlama-7B 35.2 879 1621
DeepSeek-Coder-6.7B 52.6 1315 1185
Qwen2.5-Coder-7B 52.1 1302 1198
Magicoder-S-DS-6.7B 61.3 1533 967

Table 1: Characteristics of generated data: Pass@]1,
number of correct (#Pos.) and incorrect (#Neg.) solu-
tions for each of the selected code LLMs.

S Experiments

5.1 Generation of datasets

To assess the efficacy of the proposed method
for hallucination prediction, we carry out a set of
computational experiments. We use the follow-
ing popular code LLMs: StarCoder2-7B (Lozhkov
et al., 2024), CodelLlama-7B (Roziere et al.,
2023), DeepSeek-Coder-6.7B (Guo et al., 2024),
Qwen2.5-Coder-7B (Hui et al., 2024), Magicoder-
S-DS-6.7B (Wei et al., 2024). We adapted two
public benchmarks for evaluation of code genera-

tion: HumanEval (Chen et al., 2021) and MBPP
(Austin et al., 2021)!. In order to account for vari-
ous possible code generations, for each of the cod-
ing problems several solutions were generated by
each of the selected code LLMs: we obtained 25
generations per task for HumanEval and 5 genera-
tions per task for MBPP. To address the quality of
the proposed approach in different LLM prompting
regimes, we used 0-shot prompt for the HumanEval
dataset and 1-shot prompt for the MBPP dataset.
To enable diversity of generated solutions, a sam-
pling with non-zero temperature of was done. Thus,
we obtain 4100 samples for HumanEval and 2500
samples for MBPP for each code LLM. See Ap-
pendix A for further details. Table 1 presents a
summary of generated code solutions. The correct-
ness of code is evaluated via tests provided together
with the coding benchmarks. Incorrect code is con-
sidered a “hallucination”; prediction of code’s cor-
rectness is a binary classification problem. The
pass@1 metric is slightly lower that reported in
original papers, mostly because we have used sam-
pling with non-zero temperature instead of greedy
search. Before moving further, note that there is a
strong negative dependency between prompt and
generation lengths and code quality, see Figure 5,
9. The longer the prompt (i.e. task description) and
generation (i.e. task solution) are, the lower is the
probability of code’s correctness. This dependency
is more pronounced for HumanEval than MBPP,
because MBPP employed more complicated 1-shot
prompts. These attributes are natural baselines for
hallucination’s prediction.

5.2 Analyzing method’s classification quality

Using the generated data, we estimated the classi-
fication quality of the proposed approach. We ap-
plied 5-fold stratified group cross-validation where
different solutions of the same coding problem

"Licenses of pretrained models and benchmarks permit
use for research purposes.

Method ROC-AUC F1-Score Method ROC-AUC F1-Score
StarCoder2-7B StarCoder2-7B
Prompt Len. 04.5£6.6 24.6+11.2 Prompt Len. 51.2£23 40.0+3.8
Gen. Len. 57.7+5.6 13.5+4.8 Gen. Len. 57.7+09 454435
Mean Log. Prob. 709+£13 324+4.8 Mean Log. Prob. 62.0+2.0 475+3.4
CodeT5-base ft. 70.1+7.1 33.3+10.1 CodeT5-base ft. 585+3.5 43.3+9.0
Attn. Feat. (ours) 829+ 2.7 54.24+6.9 Attn. Feat. (ours) 81.9+2.4 684+5.3
CodeLlama-7B CodeLlama-7B
Prompt Len. 61.6+44 25.7£15.0 Prompt. Len. 59.1£4.2 354+29
Gen. Len. 60.1£53 106=+7.0 Gen. Len. 60.8+2.5 242453
Mean Log. Prob. 64.1£2.0 254+6.2 Mean Log. Prob. 61.0£3.7 27.2+1.5
CodeT5-base ft. 745+6.3 43.6+13.2 CodeT5-base ft. 61.7+3.0 191+7.1
Attn. Feat. (ours) 85.6+3.9 564+7.2 Attn. Feat. (ours) 83.4+3.3 64.0+4.4
DeepSeek-Coder-6.7B DeepSeek-Coder-6.7B
Prompt Len. 56.2+46 444443 Prompt Len. 52.5£25 56.4+3.6
Gen. Len. 57.9+24 344449 Gen. Len. 54.6+19 594+1.3
Mean Log. Prob. 69.8+£2.5 51.1+34 Mean Log. Prob. 61.0£19 62.3+1.6
CodeT5-base ft. 69.1+£42 526+6.5 CodeT5-base ft. 55.7+ 3.0 64.8+2.7
Attn. Feat. (ours) 85.6+2.8 689+5.5 Attn. Feat. (ours) 82.6+1.9 76.5+2.7
Qwen2.5-Coder-7B Qwen2.5-Coder-7B
Prompt Len. 04.3£87 51.0+5.7 Prompt Len. 51.8£3.6 562+44
Gen. Len. 97.6£3.6 489+5.1 Gen. Len. 55.6 £2.1 59.7+ 4.8
Mean Log. Prob. 63.1£24 55.6 +5.5 Mean Log. Prob. 61.5+£13 60.4+1.8
CodeT5-base ft. 65.9+£3.7 582445 CodeT5-base ft. 56.0+ 1.3 65.2+2.0
Attn. Feat. (ours) 81.7+2.8 70.2+4.2 Attn. Feat. (ours) 82.24+2.2 754+1.7
Magicoder-S-DS-6.7B Magicoder-S-DS-6.7B

Prompt Len. 57.3£54 704+7.0 Prompt Len. 52.5£25 56.4+3.6
Gen. Len. 52.5+2.1 76.3+£2.6 Gen. Len. 58.7+1.1 60.7+2.1
Mean Log. Prob. 71.0£5.3 784+29 Mean Log. Prob. 60.6£3.7 721+14
CodeT5-base ft. 64.7T£2.7 77527 CodeT5-base ft. 61.0+3.7 748+14
Attn. Feat. (ours) 82.3+4.9 80.7+3.6 Attn. Feat. (ours) 77.8+2.5 73.4+34

Table 2: Code hallucination detection for HumanEval
dataset.

belonged to the same group. In this way, train-
ing and testing were performed always at non-
overlapping coding problems (prompts). The re-
ported results are the mean and standard deviation
estimated over the 5 folds. As baselines for compar-
ison, we used XGBoost classifier trained on simple
features: tokenized prompt length, tokenized gener-
ation length, and mean log-probability of generated
tokens (Chen et al., 2021). Also, we trained a linear
classification head on top of a frozen CodeT5-base
(Wang et al., 2021) encoder. Training details are
provided in Appendix B. Tables 2, 3 present re-
sults. In the majority of cases, the proposed classi-
fier based on features of attention maps performed
significantly better than the baselines and demon-
strated stable results for all models and datasets as
measured by ROC-AUC score. Further analysis re-
vealed that some features made a high contribution

Table 3: Code hallucination detection for MBPP dataset.

to the classification quality, see Figure 4.

5.3 Analyzing method’s ranking quality

Next, we assess the usefulness of the proposed code
hallucination classifier for ranking of code gener-
ations. For each problem, all generations were
ranked via probability of correctness predicted by
the classifier and one with the highest probability
was selected. A baseline was random picking of a
code generation. The usage of a classifier is always
significantly better by a pass@1 score, see Table 4.

5.4 Method’s transferability between
benchmarks

We study further the transferability of the classi-
fiers, based on topological features. In this setting,
hallucination classifiers for a fixed code LLM are
trained on data for one benchmark (HumanEval,
MBPP) and evaluated on another, then repeated

Model Random CIf. Prob.
HumanEval
StarCoder2-7B 28.6+5.5 43.3+9.0
CodeLlama-7B 26.0+5.1 39.7+7.2
DeepSeek-Coder-6.7B 39.1£4.9 56.7 7.4
Qwen2.5-Coder-7B 51.8+8.0 64.0+7.3
Magicoder-S-DS-6.7B 72.5 £10.0 74.3+6.1
MBPP
StarCoder2-7B 43.0£3.6 49.6+4.6
CodeLlama-7B 352433 43.6+34
DeepSeek-Coder-6.7B 53.0£2.5 61.4+2.3
Qwen2.5-Coder-7B 52.6 £3.6 62.0£24
Magicoder-S-DS-6.7B 61.4+3.4 63.8+2.0

Table 4: pass@1 for random choice vs argmax of classi-
fier probability

vise versa. Tables 5, 6 shows results: the proposed
classifiers are transferable, albeit the performance
is lower when training and testing is done on the
same benchmark.

5.5 Ablation study

The proposed approach is based on the two types
of attention features: the diagonal elements of at-
tention maps corresponding to the prompt and gen-
eration and topological features computed for the
corresponding “attention graph” (see Section 4 for
details). In this Section, we provide an ablation
study to estimate the contribution of each type of
attention features. For this purpose, we trained
the XGBoost classifier using only MTD features
(i.e. without the diagonal elements of attention
maps) or using only diagonal attention values (i.e.
without MTD features) and compared its perfor-
mance with the initial setup where both types of
attention features were used. As demonstrated
with Tables 7, 8, the DeepSeek-Coder-6.7B and
Qwen2.5-Coder-7B achieved the best performance
when both types of attention features were used
for both HumanEval and MBPP datasets. In con-
trast, the best performance of StarCoder2-7B and
Magicoder-S-DS-6.7B was achieved with different
sets of attention features dependent on dataset and
metric choices. In order to account for various in-
formation available via attention maps, we propose
to use both types of features as the most universal
choice. Nevertheless, we note that for some code
LLM one certain type of attention features may
result in better performance than combination of
both types.

Model ROC-AUC Fl1-Score
StarCoder2-7B
Prompt Len. 48.6 0.0
Gen. Len. 56.0 14.6
Mean Log. Prob. 63.7 36.2
CodeT5-base ft. 53.7 0.0
Attn. Features 67.5 0.14
CodeLlama-7B
Prompt Len. 51.7 0.0
Gen. Len. 61.5 4.2
Mean Log. Prob. 57.7 15.2
CodeT5-base ft. 54.9 0.0
Attn. Features 69.5 0.2
DeepSeek-Coder-6.7B
Prompt Len. 48.0 15.6
Gen. Len. 55.3 41.4
Mean Log. Prob. 62.5 56.3
CodeT5-base ft. 53.4 0.0
Attn. Features 67.7 70.4
Qwen2.5-Coder-7B
Prompt Len. 49.9 34.1
Gen. Len. 51.6 46.1
Mean Log. Prob. 60.3 60.4
CodeT5-base ft. 49.1 52.3
Attn. Features 70.6 63.3
Magicoder-S-DS-6.7B
Prompt Len. 48.1 56.3
Gen. Len. 54.8 75.2
Mean Log. Prob. 63.7 74.9
CodeT5-base ft. 49.3 76.0
Attn. Features 73.5 78.4

Table 5: Transferability of code hallucination detectors.
Each classifier was trained on HumanEval (HE) dataset
and tested on MBPP dataset.

515 3.5
70 A 1 1 1 1
0| 3.04 0 3.0 A 0 3.0 1
60 1
J 2.5 2.5 1
50 1 e
40 1 2.0 2.0 1 2.0 1
30 4 1.5 1 1.5 A 1.5 A
20 - 1.0 4 1.0 1.0 1
10 0.5 0.5 A 0.5 A
0 T 0.0 * T 0.0 T 0.0 T
0.0 0.1 0.2 0.0 0.5 0.0 0.5 0.0 0.5
MTD1(G,P) layer=7,head=24 sum_diag(G) layer=0,head=28 MTD1(G,P) layer=17,head=29 MTDy(G,P) layer=31,head=31
(a) HumanEval (b) MBPP

Figure 4: Distribution of classes (0-code is not correct, hallucination, 1-code is correct) vs. features from attention
maps. Some of the most discriminative features are presented. Features are normalized with MinMaxScaler.
CodeLlama.

Model ROC-AUC F1-Score
StarCoder2-7B
Prompt Len. 52.1 45.0
Gen. Len. 52.4 38.3
Mean Log. Prob. 71.8 45.4
CodeT5-base ft. 59.1 0.0
Attn. Features 67.2 25.5
CodelLlama-7B —— Probability of correctness
Prompt Len. 534 42.9 0.4
Gen. Len. 50.0 41.0
Mean Log. Prob. 65.0 349
CodeT5-base ft. 62.4 0.0 027
Attn. Features 80.3 34.1
DeepSeek-Coder-6.7B o0 0000000000009
Prompt Len. 52.2 5R.2 67 105 144 182 221 259 298 336 375 413
Gen. Len. 54.0 51.3 (a) Prompt length, tokens. HumanEval
Mean Log. Prob. 69.1 58.3 —
CodeT5-base ft. 55.9 57.4 0 =—— Probability of correctness
Attn. Features 72.4 20.4
Qwen2.5-Coder-7B 0.2 1
Prompt Len. 51.1 64.1
Gen. Len. 54.5 54.3 0.1
Mean Log. Prob. 64.7 60.8
CodeT5-base ft. 51.6 65.6 ¢ _ . - - - vy 3
Attn. Features 64.2 54.3 26 72 118 164 210 256 302 348 394 440
Magicoder-S-DS-6.7B (b) Generation length, tokens. HumanEval
Prompt Len. 54.5 79.5 Figure 5: The individual conditional expectations for
Gen. Len. 56.1 74.6 prompt and generation lengths, CodeLlama.
Mean Log. Prob. 69.8 76.5
CodeT5-base ft. 45.9 79.2
Attn. Features 56.9 37.6

Table 6: Transferability of code hallucination detectors.
Each classifier was trained on MBPP dataset and tested
on HumanEval (HE) dataset.

Method ROC-AUC F1-Score Method ROC-AUC F1-Score
StarCoder2-7B StarCoder2-7B
Attn. Feat. (ours) 82.9+ 2.7 54.24+6.9 Attn. Feat. (ours) 81.9+24 684+5.3
- w/o Diag. Feat. 82.2+4.5 56.1+9.7 - w/o Diag. Feat. 80.5+2.8 66.3+5.3
-w/o MTD Feat. 83.84+2.7 52.5+84 -w/o MTD Feat. 81.1+2.6 67.7+5.0
CodeLlama-7B CodeLlama-7B
Attn. Feat. (ours) 85.6 +3.9 56.44+7.2 Attn. Feat. (ours) 83.4+2.2 64.0+44
- w/o Diag. Feat. 83.5+4.8 50.0+6.5 -w/o Diag. Feat. 81.5+£2.6 60.2+4.2
-w/o MTD Feat. 85.5+4.4 583+10.1 -w/o MTD Feat. 83.5+1.8 63.9+4.3
DeepSeek-Coder-6.7B DeepSeek-Coder-6.7B
Attn. Feat. (ours) 85.6 +2.8 68.9+5.5 Attn. Feat. (ours) 82.6+1.9 76.5+2.7
- w/o Diag. Feat. 85.1+2.2 67.0+5.9 -w/o Diag. Feat. 81.3+£26 74.9+3.2
-w/o MTD Feat. 84.4+2.2 67.1 £3.8 -w/o MTD Feat. 82.2+1.7 759£1.7
Qwen2.5-Coder-7B Qwen2.5-Coder-7B
Attn. Feat. (ours) 81.7+2.8 70.2+4.2 Attn. Feat. (ours) 82.2+2.2 754+4+1.7
- w/o Diag. Feat. 80.6 £2.3 68.9£3.9 - w/o Diag. Feat. 80.8+2.1 754+04
-w/o MTD Feat. 78.9+£1.9 66.4+14 -w/o MTD Feat. 76.9+22 71.6£1.7
Magicoder-S-DS-6.7B Magicoder-S-DS-6.7B

Attn. Feat. (ours) 82.3+4.9 80.74+3.6 Attn. Feat. (ours) 77.8+25 73.4+34
- w/o Diag. Feat. 79.8+2.7 81.1+1.8 - w/o Diag. Feat. 77.8+£3.2 724429
-w/o MTD Feat. 82.1+£34 81.6+2.6 -w/o MTD Feat. 784+26 73.2+2.1

Table 7: HumanEval features ablation
5.6 Analyzing method’s pruning ability

In its base setup, the proposed approach requires
computation of attention features from attention
maps for all layers and heads. However, we ex-
plored that the trained XGBoost classifier experi-
enced a natural sparsity with only about 25% of
meaningful features as measured by classifiers’ fea-
ture importance. To explore further the pruning
ability of our approach, we followed the two-stage
pipeline. First, for a given sparsity level, we se-
lected the most important features as measured
by feature importance of the classifier trained on
all attention features simultaneously. Second, we

0.80

0751

0.70 77

0.65 7

—— StarCoder2-78
CodelLama-7B

—— DeepSeek-Coder-6.7B

—— Qwen2.5-Coder-7B

—— Magicoder-5-DS-6.7B

0.60

0.55 1

6 2‘0 4‘0 6‘0 8‘0].CIDU
(a) ROC-AUC vs. percentage of retained features, MBPP.

Figure 6: Pruning ability of the proposed method.

Table 8: MBPP features ablation

trained a new XGBoost classifier on the selected
set of attention features. As indicated by Figure
6, the proposed feature selection procedure could
retain only 5% of all attention features without sig-
nificant loss of classification quality highlighting
that only a limited number of all attention heads is
relevant hallucination detection.

6 Conclusions

In this paper, we have proposed a new approach to
hallucination detection is code generating LLMs.
Our approach is based on the introspection of a
LLM: we get attention maps for a prompt and gen-
eration and study their topology after transforming
to weighed graphs. The proposed topological fea-
tures of these graphs are empirically shown to be
relevant to detection of code hallucinations. A clas-
sifier built on top of these features outperformed
several baselines. These classifiers are transferable
across coding benchmarks. The natural extension
of our research is detection of specific places of
code with bugs, we leave it for a further research.
We believe that our work may lead to a wider appli-
cation of code generating LLMs by making them
more reliable. In a wider context, our work con-
tributes to study of interpretation and generaliza-
tion in NLP models since hallucinations and gener-
alization ability are intrinsically tied.

7 Limitations

Although we have achieved good experimental re-
sults, we realize that our research have several
limitations. First of all, we explored only code
LLMs having no more than 7B parameters. In-
formation in larger models are more distributed
in attention heads and results might differ. Also,
processing more attention heads is computationally
costly. Next, the proposed classifiers of hallucina-
tions are based on the attention maps of the same
code LLMs as for code generations. We leave more
general setting to a further research. Finally, our
approach can predict whether a code is correct as a
whole but can’t point to a specific place with a bug.

References

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

S. Barannikov. 1994. Framed Morse complexes and its
invariants. Adv. Soviet Math., 22:93—-115.

Serguei Barannikov, Ilya Trofimov, Grigorii Sotnikov,
Ekaterina Trimbach, Alexander Korotin, Alexander
Filippov, and Evgeny Burnaev. 2021. Manifold topol-
ogy divergence: a framework for comparing data
manifolds. In Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 7294-7305.

Frédéric Chazal and Bertrand Michel. 2017. An in-
troduction to topological data analysis: fundamen-
tal and practical aspects for data scientists. CoRR,
abs/1710.04019.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on

knowledge discovery and data mining, pages 785—
794.

Daniil Cherniavskii, Eduard Tulchinskii, Vladislav
Mikhailov, Irina Proskurina, Laida Kushnareva, Eka-
terina Artemova, Serguei Barannikov, Irina Pio-
ntkovskaya, Dmitri Piontkovski, and Evgeny Bur-
naev. 2022. Acceptability judgements via examin-
ing the topology of attention maps. arXiv preprint
arXiv:2205.09630.

Kevin Clark. 2019. What does bert look at? an analysis
of bert’s attention. arXiv preprint arXiv:1906.04341.

David Cohen-Steiner, Herbert Edelsbrunner, and John
Harer. 2005. Stability of persistence diagrams. In
Proceedings of the twenty-first annual symposium on
Computational geometry, pages 263-271.

Mohamed Elaraby, Mengyin Lu, Jacob Dunn, Xuey-
ing Zhang, Yu Wang, Shizhu Liu, Pingchuan Tian,
Yuping Wang, and Yuxuan Wang. 2023. Halo: Es-
timation and reduction of hallucinations in open-
source weak large language models. arXiv preprint
arXiv:2308.11764.

Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding,
Vidhisha Balachandran, and Yulia Tsvetkov. 2024.
Don’t hallucinate, abstain: Identifying llm knowl-
edge gaps via multi-llm collaboration. arXiv preprint
arXiv:2402.00367.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—

the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Phu Mon Htut, Jason Phang, Shikha Bordia, and
Samuel R Bowman. 2019. Do attention heads in

bert track syntactic dependencies? arXiv preprint
arXiv:1911.12246.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Nan Jiang, Qi Li, Lin Tan, and Tianyi Zhang. 2024.
Collu-bench: A benchmark for predicting lan-
guage model hallucinations in code. arXiv preprint
arXiv:2410.09997.

Laida Kushnareva, Daniil Cherniavskii, Vladislav
Mikhailov, Ekaterina Artemova, Serguei Barannikov,
Alexander Bernstein, Irina Piontkovskaya, Dmitri
Piontkovski, and Evgeny Burnaev. 2021. Artificial
text detection via examining the topology of attention
maps. arXiv preprint arXiv:2109.04825.

Jenny T Liang, Chenyang Yang, and Brad A Myers.
2024. A large-scale survey on the usability of ai
programming assistants: Successes and challenges.
In Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, pages 1-13.

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng
Wang, Zhen Yang, Li Zhang, Zhongqi Li, and Yuchi
Ma. 2024. Exploring and evaluating hallucinations
in llm-powered code generation. arXiv preprint
arXiv:2404.00971.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

https://proceedings.neurips.cc/paper/2021/hash/3bc31a430954d8326605fc690ed22f4d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/3bc31a430954d8326605fc690ed22f4d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/3bc31a430954d8326605fc690ed22f4d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/3bc31a430954d8326605fc690ed22f4d-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/3bc31a430954d8326605fc690ed22f4d-Abstract.html

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in neural information processing systems, 32.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, et al. 2023. Check your facts and
try again: Improving large language models with
external knowledge and automated feedback. arXiv
preprint arXiv:2302.12813.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Yuchen Tian, Weixiang Yan, Qian Yang, Qian Chen,
Wen Wang, Ziyang Luo, and Lei Ma. 2024. Code-
halu: Code hallucinations in llms driven by execution-
based verification. arXiv preprint arXiv:2405.00253.

Eduard Tulchinskii, Kristian Kuznetsov, Laida
Kushnareva, Daniil Cherniavskii, Serguei Baran-
nikov, Irina Piontkovskaya, Sergey Nikolenko,
and Evgeny Burnaev. 2022. Topological data
analysis for speech processing. arXiv preprint
arXiv:2211.17223.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H.
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. Preprint, arXiv:2109.00859.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2024. Magicoder: Empowering
code generation with OSS-instruct. In Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learning
Research, pages 52632-52657. PMLR.

Yakir Yehuda, Itzik Malkiel, Oren Barkan, Jonathan
Weill, Royi Ronen, and Noam Koenigstein. 2024.
Interrogatellm: Zero-resource hallucination detection
in llm-generated answers. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9333—
9347.

Shaolei Zhang, Tian Yu, and Yang Feng. 2024a.
Truthx: Alleviating hallucinations by editing large
language models in truthful space. arXiv preprint
arXiv:2402.17811.

Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou,
Lifeng Jin, Linfeng Song, Haitao Mi, and Helen
Meng. 2024b. Self-alignment for factuality: Mitigat-
ing hallucinations in llms via self-evaluation. arXiv
preprint arXiv:2402.09267.

10

1 from typing import List
H

def has_close_elements(numbers: List[float], threshold: float) —> bool: '
""" “Check if in given list of numbers, are any two numbers closer to each other than |
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)

H False

>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)

True

problem description 1

for i in range(len(numbers) - 1):
for j in range(i+1, len(numbers)):
if abs(numbers[i] - numbers[j]) <= threshold:
return True
return False

generation |

Figure 7: Example of prompt (problem description) and
model generation for the HumanEval dataset.

! You are an expert Python programmer, and here is your task: Write a function to find the
1 similar elements from the given two tuple lists. Your code should pass these tests:

\ assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
' assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)
:assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)

1 [BEGIN]

) def similar_elements(test_tupl, test_tup2):

1 res = tuple(set(test_tupl) & set(test_tup2))
y return (res) 3
+ IDONE] one-shot }
--

* You are an expert Python programmer, and here is your task: Write a python function to
1 remove first and last occurrence of a given character from the string. Your code should
1 pass these tests:

'

\ assert remove_Occ("hello"
! assert remove_Occ("abc
1 assert remove_Occ("PHP
+_ [BEGIN]

) == "heo"
cd"

problem description ’:

1 def remove_0Occ(s,c):
return s.replace(c,'",s.count(c)-1)
% [DONE]

Figure 8: Example of prompt (one-shot example and
problem description) and model generation for the
MBPP dataset.

A Details on generation procedure

We generated solutions for the coding problems
with temperature of 0.8. For the HumanEval
dataset, the maximum length of model output (i.e.
input prompt + generation) was limited to 512 to-
kens. For the MBPP dataset, the maximum number
of new tokens to generate was set to 256. Figures
7, 8 provide examples of prompt and generation
for HumanEval and MBPP datasets. We followed
the guidelines® to post process the model output
and extract the valid problem solution. To com-
pute attention features according to the proposed
method in Section 4, we used the attention sub-
matrix corresponding to input prompt and valid
problem solution. For computational experiments
we used NVIDIA TITAN RTX.

B Details on training procedure

For the code hallucination detectors, based on the
XGBoost classifier training, we utilized the XG-
BClassifier with an approximation tree method
“hist” from the XGBoost library 3. For the code
hallucination detector based on the embeddings

Zhttps://github.com/bigcode-project/bigcode-evaluation-
harness

3https://xgboost.readthedocs.io/en/latest/index.html

https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html
https://proceedings.mlr.press/v235/wei24h.html

from CodeT5-base, we used the pretrained frozen
CodeT5-base encoder with trainable classification
head consisting of 2 linear layers with hidden di-
mensionality 768. The classification head was
trained for 100 epochs with batch size 32 and learn-
ing rate 3e — 5.

11

—— Probability of correctness

0.0

T T T T T T T T T T
305 349 394 438 483 527 572 616 661 705

(a) Prompt length, tokens. MBPP

0.4 4

0.3

0.2

0.1 A

—— Probability of correctness

T T T T T T T T
26 50 74 98 122 147 171 195 219 243

(b) Generation length, tokens. MBPP

Figure 9: The individual conditional expectations for prompt and generation lengths, CodeLlama.

0.85 °'.Z
—
0.80 7
0.75
0.70 1
—— StarCoder2-7B
06517 —— Codelama-7B
b —— DeepSeek-Coder-6.7B
—— Qwen2.5-Coder-7B
0607 & —— Magicoder-S-DS-6.7B

0 20 40 60

(a) ROC-AUC vs. percentage of retained features, HumanEval.

80 100

0.8
0.7 A 4
0.6
—2
0.5 1 —— StarCoder2-7B
—— CodelLama-7B
—— DeepSeek-Coder-6.7B
0.4 —— Qwen2.5-Coder-7B
—— Magicoder-5-DS-6.7B
a0 60 80 100
(b) F1, HumanEval
&
0.75 §
0.70 §
0.65 4
0.60 1
0.55 1
—— StarCoder2-78
0.50 4 —— Codelama-7B
—— DeepSeek-Coder-6.7B
0.45 4 —— Qwen2.5-Coder-7B
—— Magicoder-5-D5-6.7B

0 20 40 60

(c) F1, MBPP

T
80 100

Figure 10: Pruning ability of the proposed method.

12

	Introduction
	Related work
	Background
	Transformer-based LLMs
	Representing attention map by a weighted graph
	Manifold Topology Divergence

	Methods
	Experiments
	Generation of datasets
	Analyzing method's classification quality
	Analyzing method's ranking quality
	Method's transferability between benchmarks
	Ablation study
	Analyzing method's pruning ability

	Conclusions
	Limitations
	Details on generation procedure
	Details on training procedure

