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Abstract

Several recent works on self-supervised learning are trained by mapping different1

augmentations of the same image to the same feature representation. The data2

augmentations used are of crucial importance to the quality of learned feature3

representations. In this paper, we analyze how the color jitter traditionally used in4

data augmentation negatively impacts the quality of the color features in learned5

feature representations. To address this problem, we propose a more realistic,6

physics-based color data augmentation – which we call Planckian Jitter – that7

creates realistic variations in chromaticity and produces a model robust to illumi-8

nation changes that can be commonly observed in real life, while maintaining the9

ability to discriminate image content based on color information. Experiments10

confirm that such a representation is complementary to the representations learned11

with the currently-used color jitter augmentation and that a simple concatenation12

leads to significant performance gains on a wide range of downstream datasets.13

In addition, we present a color sensitivity analysis that documents the impact of14

different training methods on model neurons and shows that the performance of15

the learned features is robust with respect to illuminant variations.16

1 Introduction17

Self-supervised learning enables the learning of representations without the need for labeled data [8, 9].18

Several recent works learn representations that are invariant with respect to a set of data augmentations19

and have obtained spectacular results [12, 6, 3], significantly narrowing the gap with supervised20

learned representations. These works vary in their architectures, learning objectives, and optimization21

strategies, however they are similar in applying a common set of data augmentations to generate22

different image views. These algorithms, while learning to map these different views to the same23

latent representation, learn rich semantic representations for visual data. The set of transformations24

(data augmentations) used induces invariances that characterizes the learned visual representation.25

Before deep learning revolutionized the way visual representations are learned, features were hand-26

crafted to represent various properties, leading to research on shape [15], texture [16], and color27

features [10, 11]. Color features were typically designed to be invariant to a set of scene-accidental28

events such as shadows, shading, and illuminant and viewpoint changes. With the rise of deep29

learning, feature representations that simultaneously exploit color, shape, and texture are learned30

implicitly and the invariances are a byproduct of end-to-end training [14]. Current approaches to31

self-supervised learning learn a set of invariances implicitly related to the applied data augmentations.32

In this work, we focus on the currently de facto choice for color augmentations. We argue that33

they seriously cripple the color quality of learned representations and we propose an alternative,34

physics-based color augmentation. Figure 1 (left) illustrates the currently used color augmentation on35

a sample image. It is clear that the applied color transformation significantly alters the colors of the36
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Figure 1: Default color jitter (left) and Planckian Jitter (right). Augmentations based on default
color jitter lead to unrealistic images, while Planckian Jitter leads to a set of realistic ones. The
ARC chromaticity diagrams for each type of jitter are computed by sampling initial RGB values and
mapping them into the range of possible outputs given by each augmentation. These diagrams show
that Planckian Jitter transforms colors along chromaticity lines occurring in nature when changing
the illuminant, whereas default color jitter transfers colors throughout the whole chromaticity plane.

original image, both in terms of hue and saturation. This augmentation results in a representation37

that is invariant with respect to surface reflectance – an invariance beneficial for recognizing classes38

whose surface reflectance varies signficantly, for example many man-made objects such as cars and39

chairs. However, such invariance is expected to hurt performance on downstream tasks for which40

color is an important feature, like natural classes such as birds or food. One of the justifications for41

such strong color augmentations is that without large color changes, mapping images to the same42

latent representation can be purely done based on color and no complex shape features are learned.43

However, as a result the quality of the color representation learned with such algorithms is inferior44

and important information on surface reflectance might be absent.45

In this paper we propose an alternative color augmentation (Figure 1, right). We draw on the existing46

color imaging literature on designing features invariant to illuminant changes commonly encountered47

in real-world scenes [10]. Our augmentation, which we called Planckian Jitter, applies physically48

realistic illuminant variation to images. We consider the illuminants described by Planck’s Law for49

black-body radiation and that are known to be similar to illuminants encountered in real-life [21].50

The aim of our color augmentation is to allow the representation to contain valuable information51

about the surface reflectance of objects – a feature that is expected to be important for a wide52

range of downstream tasks. Combining such a representation with the already high-quality shape53

representation learned with standard data augmentation leads to a more complete visual descriptor54

that describes both shape and color.55

Our experiments show that self-supervised representations learned with Planckian Jitter are robust56

to illuminant changes. In addition, depending on the importance of color in the dataset, the pro-57

posed Planckian jitter outperforms the default color jitter. Moreover, for all evaluated datasets the58

combination of features of our new data augmentation with standard color jitter leads to significant59

performance gains of over 5% on several downstream classification tasks. Finally, we show that60

Planckian Jitter can be applied to several state-of-the-art self-supervised learning methods.61

2 Background and related work62

Self-supervised learning and contrastive learning. Recent improvements in self-supervision learn63

semantically rich feature representations without the need for labelled data. In SimCLR [4] similar64

samples are created by augmenting an input image, while dissimilar are chosen by random [4]. To65

make contrastive training more efficient, MoCo [13] and its improved version [5] use a memory bank66

for learned embeddings which makes sampling efficient. This memory is kept in sync with the rest67

of the network during training via a momentum encoder. Several methods do not rely on explicit68

contrastive pairs. BYOL uses an asymmetric network incorporating an additional MLP predictor69

between the outputs of the two branches [12]. One of the branches is kept “offline” and is updated by70

a momentum encoder. SimSiam goes even further with a simplified solution without a momentum71

encoder [6]. It obtains similar high-quality results and does not require a large minibatch size, in72

contrast to other methods.73
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Figure 2: SimSiam training procedure exploiting Planckian-based data augmentation (left), and
fine-tuning the linear classifier using the trained encoder (right).

We use the SimSiam method to verify our proposed color augmentation (we also apply it to Sim-74

CLR [4] and Barlow Twins [26] in the experiments). The main component of the network is75

CNN-based image encoder, learned end-to-end in an asymmetric Siamese architecture. One branch76

has an additional MLP predictor whose output aims to be as close as possible to other (see Figure 2).77

The second branch is not updated during backpropagation. A negative cosine loss function is used:78

L =
1

2
[D(p1, stopgrad(z2)) +D(p2, stopgrad(z1))] (1)

D(pA, zB) = − pA
∥pA∥2

· zB
∥zB∥2

, (2)

where z1, z2 are representations for two different augmented versions, x1 and x2, of the same image79

x. An additional predictor applied on z1 and z2 produces p1 and p2, respectively. The stopgrad(·)80

operation blocks the gradient during the backpropagation. In SimSiam no contrastive term is used81

and only similarity is enforced during learning.82

Data augmentation. Data augmentation plays an central role in the self-supervised learning83

process described above. The authors of [4] and [26] discuss the importance of the different data84

augmentations. A set of well-defined transformations was proposed for SimCLR [4]. This set is85

commonly accepted and used in several later works. The augmentations include: rotation, cutout,86

flip, color jitter, blur and Grayscale. These operations are randomly applied to an image to generate87

the different views x1, x2 used in the self-supervision loss in Eq. 2. Applied to the same image,88

contrastive-like self-supervised methods learn representations invariant to such distortions.89

This multiple view creation is task-related [20], however color jittering operating on hue, saturation,90

brightness and contrast, is one of the most important ones in terms of overall usefulness of the91

learned representation for downstream tasks [4, 26]. Color jitter induces a certain level of color92

invariance (invariance to hue, saturation, brightnesss and contrast) which are consequently transferred93

to the downstream task. As a consequence, we expect these learned features to underperform on94

downstream tasks for which color is crucial. Xiao et al. [25] were the first point out that the imposed95

invariances might not be beneficial for downstream tasks. As a solution, they propose to learn96

different embedding spaces in parallel that capture each of the invariances. Differently than them, we97

focus on the color distortion and propose a physics-based color augmentation that allows learning98

invariance to physically realistic color variations.99

The color imaging literature has a long tradition in research on color features invariant to scene-100

accidental events such as shading, shadows, and illuminant changes [11, 10]. Invariant features were101

found to be extremely beneficial for object recognition. The invariance to hue and saturation changes,102

induced by the color jitter operation, however, it detrimental to object recognition for those classes103

in which color characteristics are fundamentally discriminative. Therefore, in this work we revisit104

early theory on illuminant invariance [10] to design an improved color augmentation that induces105

invariances common in the real world and that, when used during self-supervised learning, does not106

damage the color quality of the learned features.107
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3 Methodology108

The image transformations introduced by default color jitter creates variability in training data that109

indiscriminately explores all hues at various levels of saturation. The resulting invariance is useful110

for downstream tasks where chromatic variations are indeed irrelevant (e.g. car color in vehicle111

recognition), but is detrimental to downstream tasks where color information is critical (e.g. natural112

classes like birds and vegetables). The main motivation for applying strong color augmentations is113

that this it leads to very strong shape representations. Indiscriminately augmenting color information114

in the image requires that the representation solve the matching problem using shape [4]1.115

As an alternative to color jitter, we propose a physics-based color augmentation that mimics color116

variations due to illuminant changes commonly encountered in the real world. The aim is to arrive at a117

representation that does not have the color crippling effects of color jitter and that can therefore better118

describe classes for which surface reflectance is a determining feature. The aim learn a representation119

that, when combined with default color jitter, provides a high-quality shape and color representation.120

3.1 Planckian Jitter121

We call our color data augmentation procedure Planckian Jitter because it exploits the physical122

description of a black-body radiator to re-illuminate training images within a realistic illuminant123

distribution [10, 21]. The resulting augmentations are more realistic than those of the default color124

jitter (see Fig. 1). The resulting learned, self-supervised feature representation is thus expected to125

be robust to illumination changes commonly observed in real-world images, while simultaneously126

maintaining the ability to discriminate the image content based on color information.127

Given an input RGB training image I , our Planckian Jitter procedure applies a chromatic adaptation128

transform that simulates realistic variations in the illumination conditions. The data augmentation129

procedure is as follows:130

1. we sample a new illuminant spectrum σT (λ) from the distribution of a black-body radiator;131

2. we transform the sampled spectrum σT (λ) into its sRGB representation ρT ∈ R3;132

3. we create a jittered image I ′ by reilluminating I with the sampled illuminant ρT ; and133

4. We introduce brightness and contrast variation, producing a Planckian-jittered image I ′′.134

A radiating black body at temperature T can be synthesized using Planck’s Law [1]:135

σT (λ) =
2πhc2

λ5(e
hc

kTλ − 1)
W/m3, (3)

where c = 2.99792458×108 m/s is the speed of light, h = 6.626176×10−34 Js is Planck’s constant,136

and k = 1.380662 × 10−23 J/K is Boltzmann’s constant. For our experiments we sampled T in137

the interval between 3000K and 15000K which is known to result in a set of illuminants that can138

be encountered in real life [21]. Then, we discretized wavelength λ in 10nm steps (∆λ) in the139

interval between 400nm and 700nm. The resulting spectra are visualized in Figure 4 (left) in the140

Supplementary Material.141

The conversion from spectrum into sRGB is obtained through a series of intermediate steps [24]:142

1. we first map the spectrum into the corresponding XYZ stimuli, using the 1931 CIE standard143

observer color matching functions c{X,Y,Z}(λ), in order to bring the illuminant into a144

standard color space that represents a person with average eyesight;145

2. We normalize this tristimulus by its Y component, convert it into the CIE 1976 L*a*b146

color space, and fix its L component to 50 in a 0-to-100 scale, allowing us to constrain the147

intensity of the represented illuminant in a controlled manner as a separate task; and148

3. we then convert the resulting values to sRGB, obtaining ρT = {R,G,B}; the resulting149

distribution of illuminants is visualized with the Angle-Retaining Chromaticity diagram [2]150

in Figure 4 (right) in the Supplementary Material.151

1This is pointed out in the discussion of Figure 5 in [4]
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All color space conversions assume a D65 reference white, which means that a neutral surface152

illuminated by average daylight conditions would appear achromatic. Once the new illuminant153

has been converted in sRGB, it is applied to the input image I by resorting to a Von-Kries-like154

transform [22] given by the following channel-wise scalar multiplication:155

I ′{R,G,B} = I{R,G,B} · {R,G,B}/{1, 1, 1}, (4)

where we assume the original scene illuminant to be white (1,1,1). Finally, brightness and contrast156

perturbations are introduced to simulate variations in the intensity of the scene illumination:157

I ′′ = cB · cC · I ′ + (1− cC) · µ (cB · I ′) , (5)

where cB = 0.8 and cC = 0.8 represent, respectively, brightness and contrast coefficients, and µ is a158

spatial average function.159

3.2 Complimentarity of shape and color representations160

The self-supervised learning paradigm involves a pretraining phase that relies on data augmentation161

to produce a set of features with certain invariance properties. These features are then used as the162

representation for a second phase, where we learn a given supervised downstream task. The default163

color jitter augmentation generates features that are strongly invariant to color information, resulting164

in high-quality representations of shape and texture, but that is an inferior descriptor of surface165

reflectances (i.e. the color of objects). Our augmentation based on Planckian Jitter (see Figure 1) is166

based on transformations mimicking the physical color variations in the real world due to illuminant167

changes. As a result, the learned representation yields a high-quality color description of scene168

objects. However, it likely leads to a drop in the quality of the shape representation (since color can169

be used to solve cases where previously shape was required). To exploit the complimentarity of the170

two representations, we propose to learn both – one with color jitter and one with Planckian Jitter –171

and to then concatenate the results in a single representation vector (of 1024 dimensions, i.e. twice172

the original size of 512). We call this Latent space combination (LSC).173

4 Experimental results174

In this section, we analyze the color sensitivity of the learned backbone networks, verify the superiority175

of the proposed color data augmentation method compared to the default color jitter on color176

datasets, and evaluate the impact on downstream classification tasks. We report additional results on177

computational time of the proposed Planckian augmentation in the Supplementary Material.178

4.1 Training and evaluation setup179

We perform unsupervised training on two datasets: CIFAR-100 [14] (32 × 32) and ImageNet180

(224× 224). We slightly modify the ResNet18 architecture to accommodate 32× 32 images: the181

kernel size of the first convolutional was reduced from 7× 7 to 3× 3 and the first max pooling layer182

was removed. SimSiam training was performed using Stochastic Gradient Descent with a starting183

learning rate of 0.03, a cosine annealing learning rate scheduler, and mini-batch size of 512 (as in184

original SimSiam work [6]). For the training on the 1000-class ImageNet training set, we follow the185

same procedure as [6] with ResNet50.186

The linear classifier training at resolution 32 × 32 was performed on CIFAR-100 and FLOWERS-187

102 [17]. CIFAR-100 is used as a baseline for the classification task. The linear classifier training for188

CIFAR-100 is done with Stochastic Gradient Descent for 500 epochs with a starting learning rate 0.1,189

a cosine annealing learning rate scheduler, and mini-batch size of 512. The FLOWERS-102 dataset190

with 102 classes was selected to assess the quality of the features extracted in scenarios where color191

information plays an important role. Images from FLOWERS-102 are resized to 32× 32 pixels to192

match the input dimensions of the pretrained model. Here we used the Adam optimizer with initial193

learning rate of 0.03.194

For training linear classifiers at resolution 224× 224 for downstream tasks we follow the evaluation195

protocol of [6]. We use five different datasets: IMAGENET, FLOWERS-102, VEGFRU [19], CUB-196

200 [23], and T1K+ [7]. These five datasets were resized to 224× 224 pixels. More details about197

these datasets are provided in the Supplementary Material. In the case of CUB-200, each image was198
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Figure 3: Color sensitivity analysis. (a) Robustness to illuminant change: we report the accuracies by
differently-trained backbones as a function of illuminant. (b) The color sensitivity indexes computed
for the different configurations used for training the backbone.

cropped using the bounding boxes given in the dataset annotations. For T1K+, we use the 266 class199

labeling to train and test the linear classifier.200

To assess the impact of color data augmentations we define six different configurations:201

• Default Color Jitter (CJ): the default configuration, as used in SimSiam and SimCLR, uses202

both Random Color Jitter and Random Grayscale operations.203

• Default Color Jitter w/o Grayscale (CJ-): same as Default without the Random Grayscale204

operation.205

• Planckian Jitter (PJ): uses the complete proposed Planckian Jitter operation operating on206

chromaticy, brightness, and contrast aspects of the images. No Random Grayscale is applied.207

• LSC Default Color Jitter + Planckian Jitter ([CJ,PJ]: This latent space combination (simple208

concatenation of representations) combines the default color jitter with our Planckian jitter.209

It allows evaluation of the complimentary nature of the representations.210

• LSC Default Color Jitter + Default Color Jitter w/o Grayscale ([CJ,CJ-]): We combine the211

default color jitter with a version without the Grayscale augmentation, since this representa-212

tion is also expected to result in a better color representation.213

• LSC of two Default Color Jitter Models ([CJ,CJ]): We also show results of simply concate-214

nating two independently trained models (trained from different seeds) with default color215

jitter (an ensemble of two models).216

In all experiments these augmentations are combined with the other default augmentations (crop,217

horizontal flip, and blur).218

4.2 Color sensitivity analysis219

To verify if our Planckian data augmentation actually leads to illuminant invariance, we performed220

a robustness analysis on the CUB-200 dataset with realistic illuminant variations and analyzed221

sensitivity to color information. We assume as reference point the D65 illuminant, which for the222

purpose of this test is considered the default illuminant in every image. Given the different backbones223

pretrained on IMAGENET, we then train a linear classifier on this dataset (assumed to be under white224

illumination). For testing we create different versions of CUB-200, each illuminated by illuminants225

of differing color temperature. This allows us to evaluate the robustness of the learned representations226

with respect to these illuminant changes. A similar experiment is performed on VEGFRU.227

Results are given in Figure 3(a) (more results are provided in the Supplementary Material). Planckian228

Jitter obtains a remarkably stable performance from around 4000-14000K, while Default Color Jitter229

is more sensitive to the illumination color and the classification accuracy decreases when the scene230

illuminant moves away from white. We also see that the combination of default and Planckian Jitter231

obtains the best results for all illuminants and manages to maintain a high-level of invariance with232

respect to the illuminant color.233
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Table 1: Ablation on color augmentations. Self-supervised training is performed on CIFAR-100 and
the learned features are evaluated at (32× 32) on CIFAR-100 and FLOWERS-102. Augmentation
techniques include variations in hue and saturation (H&S), brightness and contrast (B&C), Planckian-
based chromaticity (P), and random Grayscale conversions (G). Accuracy refers to the results of the
linear classifiers trained with features extracted from the different backbones.

AUGMENTATION H&S B&C G P ACCURACY

C
IF

A
R

-1
00

None 41.93%
Default Color Jitter ✓ ✓ ✓ 59.93%

✓ ✓ 41.96%
✓ 32.46%

✓ 36.10%
✓ 31.78%

Planckian Jitter ✓ ✓ 47.31%

F
L

O
W

E
R

S
-1

02 None 36.47%
Default Color Jitter ✓ ✓ ✓ 30.00%

✓ ✓ 36.96%
✓ 39.11%

✓ 39.51%
✓ 41.96%

Planckian Jitter ✓ ✓ 42.75%

Table 2: Results for self-supervised training on CIFAR-100 and evaluated at 32× 32 on CIFAR-100
and FLOWERS-102. Accuracy refers to the results of the linear classifiers trained with features
extracted from the different trained backbones.

AUGMENTATION ACCURACY

C
IF

A
R

-1
00

Default Color Jitter (CJ) 59.93%
Default Color Jitter w/o Grayscale (CJ-) 41.96%
Planckian Jitter (PJ) 47.31%

LSC [CJ,CJ-] 62.27%
LSC: [CJ,PJ] 63.54%

F
L

O
W

E
R

S
-1

02 Default Color Jitter (CJ) 30.00%
Default Color Jitter w/o Random Grayscale (CJ-) 36.96%
Planckian Jitter (PJ) 42.75%

LSC: [CJ,CJ-] 47.65%
LSC: [CJ,PJ] 51.66%

In order to understand the impact of the color information on each neuron in trained models, we234

conducted an analysis using the color selectivity index described in [18]. This index measures neuron235

activation when color is present or absent in input images. We computed the index for the last layer236

of different backbones, and high values indicate color-sensitive neurons. See the Supplementary237

Material for more details on color selectivity. The results are shown in Figure 3(b) and indicate the238

number of color-sensitive neurons for each of the considered models. It is clear that the default color239

jitter has far fewer neurons dedicated to color description. This result confirms the hypothesis that240

models trained in this way are color invariant, a property that negatively affects the model in scenarios241

where color information has an important role as seen in our experiments. We have also analyzed242

the results for the default color jitter without Grayscale augmentation (CJ-). These results show that243

removing the Grayscale augmentation improves color sensitivity significantly. We therefore also244

consider this augmentation in future experiments.245

4.3 Ablation study246

Six different models were trained and evaluated with a linear classification for image classification.247

For resolution 32 × 32 the model is evaluated on CIFAR-100 and FLOWERS-102. The results in248
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terms of accuracy are reported in Table 2. We identify two different trends when interpreting these249

results. On CIFAR-100, removing color augmentations makes the model less powerful, due to the250

loss of color invariance in the features extracted by the encoder. This behaviour is consistent with251

what was reported in [4]. We see in Table 1 that if color augmentations (i.e. brightness/contrast and252

Random Grayscale) are removed completely (the None configuration), the accuracy drops by 18%.253

On FLOWERS-102 the behavior is the opposite however: removing color augmentations helps the254

model to better classify images, obtaining an improvement of 12.75% of accuracy with respect to the255

default color jitter. This behavior confirms that color invariance negatively impacts downstream tasks256

where color information plays an important role.257

Taking a closer look at the various augmentation on FLOWERS-102, we see that introducing more258

realistic color augmentations positively impacts contrastive training and produces models that achieve259

even better results with respect to the configuration without any kind of image color manipulation.260

Removing all color augmentations (None) improves results already by over 6%. Then, by simply261

reducing the jittering operation to influence brightness and contrast, leaving hue and saturation un-262

changed, yields another boost in accuracy of 5.49% (to 41.96). When we start modifying chromaticity263

using a more realistic transformation (i.e Planckian Jitter), the final result is a boost of 6.28% in264

accuracy with respect to the None configuration. Also, on CIFAR-100 we see an improvement of265

5.38% from Planckian Jitter with respect no color augmentation. Despite this improvement, in this266

scenario the contrastive training with the realistic augmentation does not yield better results with267

respect to the Default configuration because color only plays a minor role on this dataset.268

Given the results obtained using the data augmentations reported in Table 1, and given the con-269

siderations made in Section 3.2, we evaluate the complementarity of the learned representation by270

combining latent spaces from different backbones. Results for two different latent space combinations271

are given in Table 4. On both datasets the Latent space combination of Default and Planckian Jitter272

configurations achieves the best results. On the original CIFAR-100 task, this combination achieves a273

total accuracy of 63.54%, a 3.61% improvement over the Default configuration and 16.23% more274

compared to Planckian Jitter alone. Comparing to the LSC using the Default ColorJitter w/o275

Grayscale, the version with Planckian Jitter achieves a small improvement of 1.27% in classification276

accuracy.277

On the downstream FLOWERS-102 task, the Latent space combination reaches an accuracy value of278

51.66%: an improvement of 21.66% and 8.91% in accuracy respectively compared to the two original279

configurations. Compared to the LSC using Default ColorJitter w/o Grayscale, the combination with280

Planckian Jitter achieves a higher result, with a bigger gap in terms of accuracy with respect to the281

CIFAR-100 scenario. Here the use of Planckian Jitter brings in an improvement of 4.01%, confirming282

the impact of using realistic augmentation on classification tasks for which color is important.283

4.4 Evaluation on downstream tasks284

Given the results obtained from the ablation study, we performed the analysis of the proposed285

configurations on other downstream tasks using the backbone trained on higher resolution images286

(224× 224 pixels). We report in Table 3 the results for: Default Color Jitter, Planckian Jitter, and287

several latent space combinations.288

Looking at the results, we see that the Planckian Jitter augmentation outperforms default color jitter289

on two datasets (CUB-200 and T1K). Comparing the results on FLOWERS-102 with those reported290

above at (32×32) pixels, we see that default color jitter actually obtains good results. We hypothesize291

that for high-resolution images the shape information is very discriminative, and the additional color292

information yields little gain.293

Table 3 also contains results for latent space combination. The results confirm that the two learned294

representation are complimentary and that their combination leads to significant performance gains295

of up to 9% on T1K when compared to default color jitter. As a sanity check, we have also included296

the latent space combination of two networks separately trained with color jitter. This provides a297

small ensemble performance gain on some datasets but yields significantly inferior results compared298

to our proposed LSC.299
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Table 3: Evaluation on downstream tasks. Self-supervised training was performed on IMAGENET at
(224× 224) and testing performed on the downstream datasets resized to (224× 224).

AUGMENTATION CUB-200 VEGFRU T1K+ FLOWERS-102
Default Color Jitter (CJ) 54.52% 67.63% 71.44% 93.16%
Planckian Jitter (PJ) 56.28% 65.84% 77.42% 90.29%
LSC [CJ,PJ] 60.70% 74.73% 80.49% 93.99%
LSC [CJ,CJ] 56.16% 70.59% 73.47% 93.13%
LSC [CJ,CJ-] 53.14% 70.54% 78.32% 93.47%

Table 4: Effect of Plackian Jitter on different contrastive learning models. Self-supervised training
was performed on CIFAR-100 and the learned features are evaluated at (32 × 32) on CIFAR-100
and FLOWERS-102. We report the best configurations obtained on SimSiam model and retrained
SimCLR and Barlow Twins with those selected configurations.

FRAMEWORK AUGMENTATION CIFAR-100 FLOWERS-102

SimSiam
Default Color Jitter 59.93% 30.00%
Planckian Jitter 47.31% 42.75%
LSC [CJ,PJ] 63.54% 51.66%

SimCLR
Default Color Jitter 56.99% 35.29%
Planckian Jitter 47.75% 45.00%
LSC [CJ,PJ] 61.07% 55.78%

Barlow Twins
Default Color Jitter 56.60% 40.78%
Planckian Jitter 52.71% 54.50%
LSC [CJ,PJ] 62.85% 62.55%

4.5 Generality of Planckian Jitter300

To show that our approach is generally applicable to self-supervised methods which exploit color301

augmentations, we also performed experiments using SimCLR and Barlow Twins. This comparison302

is given in Table 4. Independently of the model used, the Default Color Jitter configuration of data303

augmentation gives the worst results on the FLOWERS-102 dataset. The Latent space combination304

configuration consistently achieves better results on both datasets.305

5 Limitations306

Firstly, A drawback of Planckian jitter is that it reduces the quality of the shape representation,307

because the extreme color transformation of the standard color jitter force the network to solve308

the contrastive learning problem mainly using shape information. As shown in this article, this309

problem can be addressed by exploiting their complimentary nature. Secondly, our current latent310

space combination requires the training of two separate backbones, which certainly will also learn311

partially overlapping features. A training scenario, with both augmentations simultaneously in a312

single network while reserving part of the latent space for each augmentation, could be pursued to313

address this limitation.314

6 Conclusion315

Existing research on self-supervised learning mainly focuses on tasks where color is not a decisive316

feature, and subsequently exploits data augmentation procedures that negatively affect color-sensitive317

tasks. We propose an alternative color data augmentation technique, called Planckian Jitter, that318

is based on the physical properties of light. Our experiments demonstrate its positive effects on a319

wide variety of tasks where the intrinsic color of the objects (related to their reflectance) is crucial320

for discrimination, while the illumination source is not. We also proposed a solution that exploits321

both color and shape information by concatenating features learned with different modalities of self-322

supervision, leading to significant overall improvements in learned representations. Planckian Jitter323

can be easily incorporated into any self-supervised learning pipeline based on data augmentations, as324

shown by our results demonstrating improved performance for three self-supervised learning models.325
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