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ABSTRACT
Although deep salient object detection (SOD) has achieved remark-
able progress, deep SOD models are extremely data-hungry, requir-
ing large-scale pixel-wise annotations to deliver such promising re-
sults. In this paper, we propose a novel yet effective method for SOD,
coined SODGAN, which can generate infinite high-quality image-
mask pairs requiring only a few labeled data, and these synthesized
pairs can replace the human-labeled DUTS-TR to train any off-the-
shelf SOD model. Its contribution is three-fold. 1) Our proposed
diffusion embedding network can address the manifold mismatch
and is tractable for the latent code generation, better matching
with the ImageNet latent space. 2) For the first time, our proposed
few-shot saliency mask generator can synthesize infinite accurate
image synchronized saliency masks with a few labeled data. 3) Our
proposed quality-aware discriminator can select highquality synthe-
sized image-mask pairs from noisy synthetic data pool, improving
the quality of synthetic data. For the first time, our SODGAN tackles
SOD with synthetic data directly generated from the generative
model, which opens up a new research paradigm for SOD. Exten-
sive experimental results show that the saliency model trained on
synthetic data can achieve 98.4% F-measure of the saliency model
trained on the DUTS-TR. Moreover, our approach achieves a new
SOTA performance in semi/weakly-supervised methods, and even
outperforms several fully-supervised SOTA methods. Code is avail-
able at https://github.com/wuzhenyubuaa/SODGAN
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1 INTRODUCTION
Salient object detection (SOD) aims to segment interesting objects
that attract human attention in an image. As a fundamental tool,
it can be leveraged to various applications including scene under-
standing [60], semantic segmentation [59] and image editing [5, 15].
Recently, SOD has achieved significant progress [12, 19, 33, 36, 42,
53, 57] due to the development of deep model. However, deep net-
works are extremely data-hungry, typically requiring pixel-level
humanannotated datasets to achieve high performance (see Fig.
1.a). Labeling large-scale datasets with pixel-level annotations for
SOD is very time-consuming, e.g., generally more than five peo-
ple were asked to annotate the same image to guarantee the label
consistency and another ten viewers were asked to cross-check the
quality of annotations in the SOC dataset [10].

To alleviate the dependency on pixel-wise annotation, many
weakly-supervised SOD methods [17, 37, 49] have been devised.
Typically, image-level labels (see Fig. 1.c) are utilized in [17, 37] for
saliency localization, and then iteratively finetune their models with
predicted saliency maps. Additionally, scribble annotations (see Fig.
1.b) has been proposed recently in [52] to reduce the uncertainty of
image-level labels. Although these methods are free of pixel-level
annotations, they suffer from various disadvantages, including low
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(a) PFSN [22] (b) SCWS [48] (c) MWS [49] (d) Ours

Figure 1: The saliency model trained on synthetic data out-
performs SOTAweakly-supervisedmethods, and is even com-
petitive with fully-supervised models.

prediction accuracy, complex training strategy, dedicated network
architecture, and extra data information (e.g., edge) to obtain high-
quality saliency maps.

In this paper, we propose a new paradigm SODGAN (see Fig. 1.d)
for SOD, which can generate infinite high-quality image-mask pairs
with a few labeled data to replace the human-labeled DUTS-TR
[37] dataset. Concretely, our SODGAN has three stages: Stage 1.
Learning a few-shot saliency mask generator to synthesize image-
synchronous mask, while utilizing the existing generative adver-
sarial networks (BigGAN [3]) to generate realistic images. Stage 2.
Selecting high-quality image-mask pairs from the synthetic data
pool. Stage 3. Training a saliency network on these filtered image-
mask pairs. However, there are three main challenges with this
approach: 1) Lacking pixel-wise labeled data as the training
dataset to learn a segmentor because BigGAN was trained on the
ImageNet that was designed to classification tasks without the
pixel-level label. 2) Discovering a meaningful direction in GAN
latent space to disentangle foreground saliency objects from back-
grounds is nontrivial, which often requires domain knowledge and
laborious engineering. 3) Low-quality image-mask pairs exist
in the synthesized datasets.

To tackle these three challenges, first, we present a diffusion
embedding network (DEN) (see Sec. 3.2) to utilize the existing well-
annotated dataset (i.e., DUTS-TR), which can infer the image’s latent
code that match with the ImageNet latent code space; thus, the
existing labeled DUTS-TR dataset can provide the pixel-wise label
for ImageNet. Second, in contrast to the existing works [13, 26, 31]
focusing on latent space, we propose a few-shot saliency mask
generator to automatically discover meaningful directions in the
GANs feature space (see Sec. 3.3), which can synthesize infinite
high-quality image synchronized saliency masks with a few labeled
data. Third, we propose a quality-aware discriminator (see Sec. 3.4)
to select high-quality synthesized image-mask pairs from the noisy
synthetic data pool, improving the quality of synthetic data.

Our SODGAN has several desirable properties. a) Fewer la-
bels. Our approach eliminates large-scale pixel-level supervision
requiring only a few labeled data, which reduces the annotation
costs. b) High performance. We demonstrate that the saliency
model trained on synthetic data directly generated from GANs
achieves an average 98.4% F-measure of the saliency model trained
on the DUTS-TR dataset. Moreover, our SODGAN achieves new
SOTA performance in semi/weakly-supervised methods, and even
outperforms some fully supervised methods. c) Generality. The

synthetic data can be used to train any off-the-shelf SOD model
without the need of special architectures, showing strong general-
ization capabilities on the real test datasets. We summarize the key
contributions as follows:

• For the first time, our SODGAN tackles SOD with synthetic
data directly generated from the generative model, which
opens up a new research paradigm for semi-supervised SOD
and significantly reduces the annotation costs.

• Our proposed the DEN can address manifold mismatch and
is tractable for the latent code generation, better matching
with the ImageNet latent space.

• Our lightweight few-shot saliency mask generator can syn-
thesize infinite accurate image-synchronous saliency masks
with a few labeled data.

• Our proposed quality-aware discriminator can select high-
quality synthesized image-mask pairs from the noisy syn-
thetic data pool, improving the quality of synthetic data.

2 RELATEDWORK
Semi/Weakly-supervised SOD Approaches. With recent ad-
vances in semi/weakly-supervised learning, a few existing works ex-
ploit the potential of training saliency detectors on image-level [17,
37, 49], region-level [48, 51, 52], and limited pixel-level [41, 44, 50,
58] labeled data to relax the dependency of manually annotated
pixel-level saliency masks. For image-level supervision, these ap-
proaches [17, 37, 49] follow the same technical route, i.e., producing
initial saliency maps with image-level labels and then further re-
fining it via iterative training. Recently, scribble annotation was
proposed in [48, 52], but it requires large-scale scribble annotations
(10553 images) and extra data information (e.g., edge) to recover in-
tegral object structure. Differences. Distinct from all these works,
our approach provides a new paradigm for semi-supervised SOD. In
particular, we introduce SODGAN, a generative model, which can
generate infinite high-quality image-mask pairs requiring minimal
manual intervention. These generated pairs can then be used for
training any existing SOD approaches.
Latent Interpretability ofGANs.The previousworks have shown
that the GANs latent spaces are endowed with human-interpretable
semantic arithmetic. A line of recent works [6, 13, 26, 31, 32, 47] em-
ploy explicit human-provided supervision to identify interpretable
directions in the latent space. For instance, [13, 31] use the classi-
fiers pretrained on the CelebA [21] dataset to produce pseudo labels
for the generated images and their latent codes. Another active line
of study on GANs [1, 2, 4, 23, 34, 35, 55] targets the object segmen-
tation task. [1] and [4] are based on the idea of decomposing the
generative process in a layer-wise fashion. Other works [2, 23, 35]
exploit the idea that the object’s location or appearance can be
perturbed without affecting image realism. Differences. In con-
trast to existing works manipulating the latent space, our approach
is able to discover interpretable directions in the GANs features
space, which allows complete control over the diversity of object
categories and can automatically find the expected directions.
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Figure 2: Overview of the proposed SODGAN. Given a latent code 𝑧 ∼ N(0, 1) and a class label 𝑐, we collect hidden semantic
feature {𝑓0, 𝑓1, ..., 𝑓12} from 𝐺𝑖𝑚𝑎𝑔𝑒 (·) to disentangle foregrounds from backgrounds. After that, we upsample these collected
feature maps to 256 × 256 resolution and then concatenate these upsampled features together, constructing pixel-wise feature
maps for all pixels of the synthesized image. Finally, these pixel-wise features are fed into the proposed saliency mask generator
branch to produce image-synchronized saliency mask.

3 METHOD
3.1 Overview
As shown in Fig. 2, our SODGAN is composed of the diffusion
embedding network𝐷𝐸𝑁 (·), the mask synthesis network𝐺𝑚𝑎𝑠𝑘 (·),
the quality-aware discriminator𝐷𝑞 (·), the image synthesis network
𝐺𝑖𝑚𝑎𝑔𝑒 (·), and the image reconstruction discriminator 𝐷𝑟 (·). (1)
The proposed 𝐷𝐸𝑁 (·) aims to address the lacking of pixel-wise
labels in ImageNet, which is designed for recognition tasks without
segmentation groundtruth. Our 𝐷𝐸𝑁 (·) can utilize existing labeled
datasets DUTS-TR [37], and gradually turn it into a unique latent
space 𝑍+ that matches with the ImageNet latent code space. (2)
The proposed𝐺𝑚𝑎𝑠𝑘 (·) is to discover meaningful directions in the
GANs feature space, synthesizing image synchronized saliency
mask. Our 𝐺𝑚𝑎𝑠𝑘 (·) is build on top of the 𝐺𝑖𝑚𝑎𝑔𝑒 (·) architecture
augmented with a few-shot saliency mask generation branch, (3)
Our 𝐷𝑞 (·) is designed to select high-quality synthesized image-
mask pairs from noisy synthetic data pool. The 𝐺𝑖𝑚𝑎𝑔𝑒 (·) can be
any off-the-shelf GANs models, and the 𝐷𝑟 (·) is the corresponding
real/fake discriminator. Here, we demonstrate our approach using
BigGAN [3], a class-conditional GANs trained on ImageNet [8].
In our SODGAN, the proposed 𝐷𝐸𝑁 (·), 𝐺𝑚𝑎𝑠𝑘 (·) and 𝐷𝑞 (·) are
trainable while the other components remain fixed.

3.2 Diffusion Embedding Network
Our 𝐷𝐸𝑁 (·) is to address the lacking of pixel-wise label in Ima-
geNet, which is designed for recognition tasks without segmenta-
tion groundtruth, better matching with ImageNet latent code space.
Previous work [55] addresses this issue by manually labeling a

handful of sampled images, which is labor-consuming. An alterna-
tive idea is to utilize the existing labeled datasets (e.g., DUTS-TR)
by using variational autoencoder (VAEs). However, the standard
VAEs, with a Euclidean latent space, is structurally incapable of
capturing topological properties of certain datasets, which is called
manifold mismatch [9].

To address these challenges, we developed the diffusion embed-
ding network 𝐷𝐸𝑁 (·) to utilize the existing labeled datasets with
pixel-wise annotation (e.g., DUTS-TR), which allows for an arbitrar-
ily closed manifold as a latent space and captures the underlying
geometrical structure. The proposed 𝐷𝐸𝑁 (·) can gradually turn
an image into a unique latent code 𝑧+ that better matches with
ImageNet latent code space. Concretely, our 𝐷𝐸𝑁 (·) are latent vari-
able models of the forms 𝑝𝜃 (𝑥0) =

∫
𝑝𝜃 (𝑥0:𝑇 )𝑑𝑥1:𝑇 , where 𝑥1, ..., 𝑥𝑇

are intermediate latent codes and 𝑥0 ∼ 𝑞(𝑥0) is the initial image.
The joint distribution 𝑝𝜃 (𝑥0:𝑇 ) is the embedding process, and it
is defined as the Markov chain with learned Gaussian transitions
𝑝 (𝑥𝑇 ) = N(𝑥𝑇 ; 0, 1):

𝑝𝜃 (𝑥0:𝑇 ) = 𝑝 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡 ) ,

𝑝𝜃 (𝑥𝑡−1 | 𝑥𝑡 ) = N
(
𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡) ,

∑︁
𝜃

(𝑥𝑡 , 𝑡)
) (1)

The difference between our 𝐷𝐸𝑁 (·) and VAEs is that the approxi-
mate posterior 𝑞(𝑥1:𝑇 |𝑥0), which is called the diffusion process, is
fixed to a Markov chain that progressively adds Gaussian noise to
the image in line with variance schedule 𝛽1, ..., 𝛽𝑇 :
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Figure 3: Visualizing the omni-attention maps of hidden
features, which can locate the salient object masks coarsely.

𝑞 (𝑥1:𝑇 | 𝑥0) =
𝑇∏
𝑡=1

𝑞 (𝑥𝑡 | 𝑥𝑡−1)

𝑞 (𝑥𝑡 | 𝑥𝑡−1) = N
(
𝑥𝑡 ;𝑥𝑡−1

√︁
1 − 𝛽𝑡 , 𝛽𝑡

) (2)

A desirable property of the diffusion process is that it admits sam-
pling 𝑥𝑡 at a arbitrary timestep 𝑡 in closed form:

𝑞 (𝑥𝑡 | 𝑥0) = N
(
𝑥𝑡 ;𝑥0

√
𝛼, 1 − 𝛼

)
(3)

where 𝛼 = 1 − 𝛽𝑡 and 𝛼 =
∏𝑡
𝑠=1 𝛼𝑠 . The reconstruction loss is to

optimize the variational bound on negative log likelihood:

L𝑈 = E [− log𝑝𝜃 (𝑥0)] ≤ E
[
− log

𝑝𝜃 (𝑥0:𝑇 )
𝑞(𝑥1:𝑇 | 𝑥0)

]
= E

[∑︁
𝑡>1

𝐷𝐾𝐿 (𝑞(𝑥𝑡−1 | 𝑥𝑡 , 𝑥0)∥𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 )) − log𝜃 (𝑥0 | 𝑥1) .

+ 𝐷𝐾𝐿 (𝑞(𝑥𝑇 | 𝑥0)∥𝑝 (𝑥𝑇 )
]

(4)
where 𝐷𝐾𝐿 (·) is the KL divergence. The adversarial loss can be
defined as:

L𝐷𝑟
= E𝑥∼D𝑑𝑢𝑡

[log (𝐷𝑟 (𝑥))]

+ E𝑥∼D𝑑𝑢𝑡

[
log

(
1 − 𝐷𝑟

(
𝐺image (𝐸 (𝑥))

))] (5)

where D𝑑𝑢𝑡 is the DUTS-TR dataset. Note that our 𝐷𝐸𝑁 (·) doesn’t
need special architectures. Here we adopt the MobileNetV3 [14]
architecture for the diffusionmodel. In this way, given an image, our
𝐷𝐸𝑁 (·) can infer its latent code 𝑧+ that matches with the ImageNet
latent code space, and find its groundtruth 𝑦 in the DUTS-TR.
Summarized Advantages: 1) Gaussian noise has the effect of
filling low density regions in the original data distribution; thus,
our 𝐷𝐸𝑁 (·) can obtain more training signal to improve latent dis-
tributions that faster converge to the true data distribution. 2) Our
𝐷𝐸𝑁 (·) is capable of capturing topological properties of certain
datasets that better match with ImageNet latent code space.

3.3 Few-shot Saliency Mask Generator
Our 𝐺𝑚𝑎𝑠𝑘 (·) is a lightweight few-shot generator trained on a
few labeled data, which can synthesize infinite image synchro-
nized accurate saliency masks. The 𝐺𝑚𝑎𝑠𝑘 (·) consists of the om-
niattentive feature fusion module (OAFF), and the classification
head, sharing the same feature extractor with the 𝐺𝑖𝑚𝑎𝑔𝑒 (·). Let
the 𝑓𝑖 ∈ R𝑊𝑖×𝐻𝑖×𝐶𝑖 denote the hidden representation of 𝐺𝑖𝑚𝑎𝑔𝑒 (·).

Omni-Attentive Feature Fusion. Previous work [47] has demon-
strated that in GANs feature space, low-level features contain local
information like texture and color while high-level features capture
global information, such as the style and layout of objects. To fully
take advantage of the multi-level features, we proposed a novel
omni-attentive feature fusion module, as depicted in Fig. 2 (bottom-
left). To ensure the spatial alignment, we first upsample all feature
maps {𝑓0, 𝑓1, ..., 𝑓𝑙 } to the highest output resolution 256 × 256, and
then concatenate them along the channel dimension to obtain an
aggregated feature 𝑓 ∗:

𝑓 ∗ = Cat
(
Conv1×1 (𝑈 (𝑓0)),Conv1×1 (𝑈 (𝑓1)), ...,Conv1×1 (𝑈 (𝑓𝑙 ))

)
(6)

where 𝑈 (·) denotes upsample operation, Conv1×1 (·) is 1 × 1 con-
volutional operation for reducing channel dimension, and Cat(·)
stands for concatenation. To better fusion the global and local con-
texts, we introduce the omni-attention 𝑂𝐴(·) module, including
local attention 𝐿𝐴(·) and global attention 𝐺𝐴(·):

𝑂𝐴
(
𝑓 ∗

)
= 𝐿𝐴

(
𝑓 ∗

)
+𝐺𝐴

(
𝑓 ∗

)
𝐿𝐴

(
𝑓 ∗

)
= 𝑃𝑊𝐶

(
ReLU

(
𝐵𝑁

(
𝑃𝑊𝐶

(
𝑓 ∗

) ) ) )
𝐺𝐴

(
𝑓 ∗

)
= 𝑃𝑊𝐶

(
ReLU

(
𝐵𝑁

(
𝑃𝑊𝐶

(
𝐺𝐴𝑃

(
𝑓 ∗

) ) ) ) ) (7)

where the𝐺𝐴𝑃 (·) is global average pooling, and 𝑃𝑊𝐶 (·) is the 1×1
point-wise convolution for reducing the parameters. Fig. 3 shows
the visualized omni-attention maps. The aggregated feature 𝑓 ′ can
be obtained by multipling with the 𝑂𝐴(𝑓 ∗):

𝑓 ′ = 𝑓 ∗ ⊗ 𝑂𝐴
(
𝑓 ∗

)
(8)

where the ⊗ is the element-wise multiplication operator.
Classification Head. After that, the 𝑓 ′ ∈ R256×256×𝐶 are flattened
into vectors 𝑋 ∈ R65536×𝐶 , constructing pixel-wise feature vectors
for all pixels on the synthesized image. Finally, we feed it into the
proposed classification head network to produce pixel-wise saliency
mask, where the detailed network structure discussed in Sec. 4.1.

To train 𝐺𝑚𝑎𝑠𝑘 (·), we need to collect a small training set D𝑚 =

{(𝑧+1 , 𝑦1), ..., ((𝑧
+
𝑘
, 𝑦𝑘 ))}, where 𝑦𝑖 is selected from the DUTS-TR.

Specifically, we use the state-of-the-art (SOTA) image classification
model CoAtNet [7] to classify the DUTS-TR, which can be divided
into 522 categories. We then randomly select a pair of (𝑧+, 𝑦) for
each class, forming a small training set with 522 images. We then
train the proposed 𝐺𝑚𝑎𝑠𝑘 (·) by using activation features 𝑧+ and
the corresponding pixel-wise annotations. The training objective is

L𝐺mask = L𝑆 + L𝐷𝑞
(9)

L𝑆 is the supervised loss on labeled images with a combination of
cross entropy and dice loss, defined as:

L𝑆 =
1

𝐻𝑊

𝐻∑︁
𝑖

𝑊∑︁
𝑗

𝑦𝑖 𝑗 log
(
𝑦𝑖 𝑗

)
+

(
1 −

2
∑𝐻
𝑖

∑𝑊
𝑗 𝑦𝑖 𝑗𝑦𝑖 𝑗∑𝐻

𝑖

∑𝑊
𝑗

[
𝑦𝑖 𝑗 + 𝑦𝑖 𝑗

] )
(10)

where the 𝐻 and𝑊 are the height and width of the image respec-
tively, and 𝑦𝑖 𝑗 is the prediction probability at position (𝑖, 𝑗). The
quality-aware discriminator loss L𝐷𝑞

is:
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Figure 4: With a few labeled data, our SODGAN can generate infinite realistic and diverse (1,000 categories) image-mask pair.

L𝐷𝑞
= argmin𝐺mask

E(𝑥𝑟𝑒𝑎𝑙 ,𝑦𝑟𝑒𝑎𝑙 )∼D𝑚
[log(𝐷𝑞 (𝑥𝑟𝑒𝑎𝑙 , 𝑦𝑟𝑒𝑎𝑙 ))]

+ E𝑧+∼𝑍+ [log(1 − 𝐷𝑞 (𝐺image (𝐸 (𝑧+)),𝐺mask (𝐸 (𝑧+))))]
(11)

Summarized Advantages: 1) Lightweight. Our𝐺𝑚𝑎𝑠𝑘 (·) is ex-
tremely lightweight yet powerful, which consists of a OAFF and
classification head with total 90K parameters and 3.6MB model size.
2) Fewer labels. We only need 522 images to train the 𝐺𝑚𝑎𝑠𝑘 (·)
because our 𝐺𝑚𝑎𝑠𝑘 (·) is lightweight with only 90K parameters.

3.4 Quality-aware Discriminator
Our 𝐷𝑞 (·) can select high-quality synthesized image-mask pairs
from noisy synthetic data pool, providing high-quality synthetic
data to train the saliency network. We noticed that the synthetic
data fails occasionally for non-rigid objects (e.g., dogs) due to their
various poses, resulting in low-quality image-mask pairs. To allevi-
ate this issue, we proposed a quality discriminator 𝐷𝑞 (·) adopting
the lightweight MobileNetV3 [14] as backbone, which aims to se-
lect high-quality synthesized image-mask pair. During training, we
feed two pairs to the quality discriminator 𝐷𝑞 (·), i.e., (𝑥𝑟𝑒𝑎𝑙 , 𝑦𝑟𝑒𝑎𝑙 )
and (𝑥𝑠𝑦𝑛, 𝑦𝑠𝑦𝑛). Accordingly, the adversarial training loss for the
𝐷𝑞 (·) can be formulated as:

L𝐷𝑞
= argmax𝐷𝑞E(𝑥𝑟𝑒𝑎𝑙 ,𝑦𝑟𝑒𝑎𝑙 )∼D𝑚

[log(𝐷𝑞 (𝑥𝑟𝑒𝑎𝑙 , 𝑦𝑟𝑒𝑎𝑙 ))]
+ E𝑧+∼𝑍+ [log(1 − 𝐷𝑞 (𝐺image (𝐸 (𝑧+)),𝐺𝑚𝑎𝑠𝑘 (𝐸 (𝑧+))))]

(12)

Note that our 𝐷𝑞 (·) is different from the typical discriminator,
where the discriminator is designed for discriminating real or fake
images, while our 𝐷𝑞 (·) performs image-mask quality control.
Summarized Advantages: 1) High-quality image-mask pairs.
Our SODGAN can generate any desired number of high-quality
image-mask pairs, which forms our synthetic dataset. The gener-
ated image-mask pairs can then be used to train any off-the-shelf
SOD architecture just like real datasets are. 2) Strong generaliza-
tion capabilities. Unlike previous works [16, 29, 30, 38], which
usually arises significant domain gap between the synthetic (from
computer games) and real-world domains, the presented SODGAN
can generate realistic images (see Fig. 4) and show strong general-
ization capabilities on the real test datasets (see Table 3).

4 RESULTS AND ANALYSIS
4.1 Classification Head Architecture
In this section, we provide the detailed implementation regarding
two aspects: convolutional neural networks and MLP.
CNNArchitecture.We first use a linear embedding layer to reduce
the input dimension from 𝐶 to 128, followed by 3 convolutional
layers with kernel size of 3. The corresponding dimensions of the
output channels are 128, 32, and 2 (the number of classes). All the
layers are followed by a leaky ReLU activation function except for
the last output layer. We call this standard version CNN-S. We also
introduce CNN-M and CNN-L, where M/L denotes medium/large
model size, and the architecture hyper-parameters of these model
variants can be seen in the first 2 rows of Table 1.
MLP Architecture.We build our base model, called MLP-S, which
consists of 3 fully-connected layers with 128, 32, and 2 hidden nodes,
respectively. All layers except the output layer are followed by the
BatchNorm layer and ReLU activation function. Similar to CNN-S,
we also introduce its variants version MLP-M and MLP-L, and their
hyper-parameters can be seen in the last 2 rows of Table 1.

Layers Channels
CNN-M 5 {128, 64, 64, 32, 2}
CNN-L 7 {128, 64, 64, 64, 64, 32, 2}
MLP-M 4 {128, 64, 32, 2}
MLP-L 5 {128, 64, 64, 32, 2}

Table 1: Architecture details for the adopted CNN/MLP.

4.2 Synthetic Data VS. Real DUTS-TR
As shown in Fig. 5, we provide analyses of our synthesized datasets
compared to the real DUTS-TR datasets in terms of center bias,
category distribution, color contrast, and salient object size.
Center bias. We visualize the salient object locations for the syn-
thetic data and the DUTS-TR datasets in Fig. 5.a. Most objects are
biased towards the image center for both datasets. Compared to the
DUTS-TR, the synthetic data show lower center distributions. Cate-
gory distribution.We use the SOTA classification model CoAtNet
[7] to classify the filtered synthetic data and the DUTS-TR, which
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Figure 5: Extensive analysis of synthetic data and the real DUTS-TR dataset show that the synthetic data have many advantages
over the DUTS-TR in terms of center bias, category distribution, color contrast, and salient object size. Besides, the synthetic
data can control the samples complexity and diversity.

DUTS-TE ECSSD
max𝐹𝛽 ↑ S-m↑ MAE↓ max𝐹𝛽 ↑ S-m↑ MAE↓

VAEs .8375 .8331 .0644 .9241 .8945 .0466
𝐷𝐸𝑁 (·) .8557 .8507 .0530 .9377 .9129 .0389
w/o OAFF .8333 .8320 .0622 .9187 .8945 .0476
w/ 𝐺𝐴(·) .8437 .8413 .0594 9285 .9024 .0429
w/ OAFF .8557 .8507 .0530 .9377 .9129 .0389
CNN-S .8416 .8400 .0562 .9229 .8995 .0464
CNN-M .8424 .8478 .0479 .9274 .9025 .0432
CNN-L .8208 .8098 .0787 .9206 .8905 .0529
MLP-S .8557 .8507 .0530 .9377 .9129 .0389
MLP-M .8382 .8327 .0625 .9349 .9118 .0399
MLP-L .8510 .8476 .0551 .9375 .9114 .0394
w/o 𝐷𝑞 .8406 .8370 .0603 .9306 .9038 .0437
w/ 𝐷𝑞 .8557 .8507 .0530 .9377 .9129 .0389

Table 2: Comparisons of different network structures for
mask generator on DUTS-TE and ECSSD datasets.

can be divided into 764 and 522 categories, respectively. As shown
in Fig. 5.c, our synthetic data contains more object categories than
the DUTS-TR. Color contrast & Object size. Since the DUTS-TR
was designed for SOD tasks, the DUTS-TR’s images containing at
least one salient object are higher color contrast than randomly
generated synthetic data (see Fig. 5.d). Besides, we also statistics
the object size of the DUTS-TR and our synthetic data in Fig. 5.e.
As we can see, the synthetic data also contains smaller objects than
the DUTS-TR. Additionally, BigGAN introduced the “truncation
coefficient” 𝜆, allowing explicit, fine-grained control of the trade-off
between sample variety and complexity (see Fig. 5.b).

4.3 Ablation Study of Our Innovations
Eeffects of the proposed 𝐷𝐸𝑁 (·). To demonstrate the effects of
our 𝐷𝐸𝑁 (·), we compared the proposed 𝐷𝐸𝑁 (·) with commonly
used VAEs. As shown in Table 2, the proposed 𝐷𝐸𝑁 (·) improved
by 1.8% compared to the VAEs in terms of S-measure, which shows
the effectiveness of the proposed diffusion model.
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Figure 6: Left: Results on varying amount of synthesized data.
Right: The effects of different truncation 𝜆.

Eeffects of the proposed OAFF. In Table 2, we evaluate 3 settings
of OAFF: 1) 𝐺𝑚𝑎𝑠𝑘 (·) without using the OAFF; 2) 𝐺𝑚𝑎𝑠𝑘 (·) only
using the global attention 𝐺𝐴(·); 3) the 𝐺𝑚𝑎𝑠𝑘 (·) with the OAFF.
As we can see, the 𝐺𝑚𝑎𝑠𝑘 (·) with the 𝐺𝐴(·) achieves better perfor-
mance than the plain version, and the performance can be further
improved by using OAFF, demonstrating the contribution of the
OAFF to the final results.
The choice of classification head architecture. We evaluate
2 architectures on the proposed classification head network, i.e.,
CNN and MLP, with small (S), medium (M), and large (L) networks
described in Sec. 4.1. As shown in Table 2, we notice that the MLP-S
outperforms all the three CNN networks. Besides, we also notice
that smaller networks obtain better performance due to the limited
training data. Therefore, we take theMLP-Swith channel dimension
{128, 32, 2} as our classification head.
Eeffects of the proposed 𝐷𝑞 (·). To illustrate the effectiveness
of the proposed 𝐷𝑞 (·), we implement 2 different settings, i.e., our
SODGAN with/without using the 𝐷𝑞 (·). As shown in Table 2, the
performance can be improved by 1.5% in terms of F-measure on the
DUTS-TE dataset by using the 𝐷𝑞 (·), verifying the contribution of
our 𝐷𝑞 (·) to the final results.
Impacts of the amount of synthesized data. We further ex-
plore the number of synthesized data how to influence the saliency
performance. As shown in left of Fig. 6, when the number of synthe-
sized images is insufficient (< 12k), model performance can benefit
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Fully-Supervised Models Semi/Weakly-Supervised Models
Metric DGRL PAGR BAS CPD MINet F3Net SAMN PFSN MWS ENDS WS3A SCWS FCS MFNet Ours[39] [54] [27] [43] [24] [40] [20] [22] [49] [51] [52] [48] [50] [25]

D
U
TS

-O
M
. maxF↑ .7742 .7709 .8053 .7966 .8098 .8133 .8026 .8233 .7176 .7581 .7532 .7827 .7170 .7062 .7930

S-m↑ .8059 .7751 .8362 .8248 .8329 .8385 .8299 .8425 .7559 .7832 .7848 .8019 .7448 .7418 .8022
MAE↓ .0618 .0709 .0565 .0560 .0555 .0526 .0652 .0545 .1086 .0759 .0684 .0602 .0656 .0867 .0768
AUC↑ .8821 .8983 .9262 .9378 .9396 .9413 .9573 .9496 .9413 .9506 .9182 .8822 .8381 .9090 .9565
avgF↑ .7656 .7354 .7875 .7770 .7907 .7957 .7655 .8069 .6777 .7246 .7386 .7602 .7073 .6816 .7689

D
U
TS

-T
E maxF↑ .8287 .8545 .8591 .8654 .8835 .8905 .8360 .8949 .7686 .8173 .7889 .8448 .8296 .7707 .8557

S-m↑ .8410 .8369 .8649 .8684 .8834 .8881 .8479 .8916 .7573 .8190 .8021 .8391 .8206 .7728 .8507
MAE↓ .0500 .0562 .0480 .0438 .0375 .0358 .0582 .0359 .0920 .0657 .0628 .0493 .0459 .0772 .0530
AUC↑ .9137 .9540 .9451 .9627 .9714 .9726 .9708 .9739 .9539 .9645 .9312 .8967 .9000 .9343 .9720
avgF↑ .8209 .8108 .8261 .8357 .8566 .8647 .7920 .8714 .7311 .7743 .7715 .8326 .8085 .7415 .8374

EC
SS
D

maxF↑ .9224 .9268 .9424 .9392 .9475 .9453 .9279 .9523 .8778 .9002 .8880 .9145 .9108 .8796 .9377
S-m↑ .9028 .8892 .9162 .9181 .9249 .9242 .9071 .9298 .8275 .8707 .8655 .8818 .8787 .8345 .9129
MAE↓ .0407 .0609 .0370 .0371 .0334 .0333 .0501 .0309 .0963 .0676 .0590 .0489 .0471 .0843 .0389
AUC↑ .9505 .9685 .9666 .9812 .9845 .9846 .9857 .9860 .9771 .9776 .9531 .9268 .9478 .9497 .9868
avgF↑ .9122 .8944 .8970 .9216 .9295 .9272 .8985 .9346 .8430 .8730 .8733 .9003 .8951 .8490 .9137

H
K
U
-IS

maxF↑ .9105 .9176 .9285 .9251 .9351 .9368 .9147 .9428 .8560 .9041 .8805 .9085 .8992 .8766 .9320
S-m↑ .8945 .8873 .9090 .9055 .9190 .9173 .8983 .9244 .8182 .8838 .8649 .8820 .8718 .8465 .9092
MAE↓ .0356 .0475 .0322 .0342 .0285 .0280 .0449 .0259 .0843 .0461 .0470 .0375 .0389 .0585 .0324
AUC↑ .9475 .9704 .9650 .9765 .9833 .9817 .9852 .9834 .9774 .9826 .9564 .9282 .9401 .9671 .9861
avgF↑ .8968 .8904 .9046 .9004 .9172 .9177 .8856 .9256 .8291 .8801 .8677 .8945 .8836 .8535 .9054

PA
SC

A
L-
S maxF↑ .8808 .8691 .8757 .8841 .8894 .8948 .8568 .8986 .8140 .8706 .8374 .8660 .8742 .8202 .8924

S-m↑ .8278 .7925 .8194 .8277 .8333 .8404 .8027 .8431 .7532 .8025 .7805 .7936 .8102 .7489 .8422
MAE↓ .0823 .1149 .0924 .0890 .0828 .0799 .1130 .0790 .1509 .1144 .1106 .1000 .0849 .1379 .0743
AUC↑ .8988 .9162 .9113 .9316 .9339 .9428 .9348 .9438 .9494 .9588 .9062 .8643 .9071 .9032 .9497
avgF↑ .8528 .8148 .8100 .8439 .8512 .8580 .8054 .8614 .7566 .8222 .8054 .8321 .8387 .7739 .8542

Table 3: Extensive experiments demonstrate that our approach achieves a new SOTA performance in terms of semi/weakly
supervised methods, and even outperforms several fully-supervised SOTA methods. The top 2 results are highlighted in red
and blue respectively. The “DUTS-OM.” denotes DUT-OMRON dataset. The detailed training data setting can be found in Table 4
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Figure 7: The performance on PR and F-measure curves also show the superiority of our method comparison with 6 SOTA
weakly/semmi-supervised methods over 5 datasets.

substantially from the increased synthesized data. However, when
the training set is large enough (> 12k), the application of more
synthesized data does not necessarily lead to better performance.
In this paper, unless otherwise specified, the reported SOD results
were obtained by training on 12k synthetic image-mask pairs. Be-
sides, to study the effects of 𝜆, we vary the truncation coefficient
𝜆 ∈ {0.2, 0.4, 0.6, 0.8, 1}. The results are shown in the right of Fig. 6.
We observed that the saliency performance is inversely proportional
to 𝜆 when 𝜆 > 0.4, and the optimal setting is 𝜆 = 0.4.

4.4 Synthetic Data for SOD
Setup. In this work, we do not focus on SOD network architecture
design, so in our experiments, we adopt F3Net [40] as our saliency
network by considering effectiveness and computational cost. Dif-
ferent from the previous works trained on the humanwellannotated
DUTS-TR [37] dataset (the detailed training data setting can be
found in Table 4), we train our model on the SODGAN’s generated
images-mask pairs (12k).
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Figure 8: The visual comparison of the proposed model and existing SOTAmethods also show that our model can generate more
complete and accurate saliency maps than other semi/weakly-supervised, even outperforms fully-supervised SOD models.

Method Sup. Training dataset Annotations Number
All-S F DUTS-TR Pixel-wise 10,553

MWS [49] W ImageNet+COCO Image-level 1.3M
MFNet [25] W ImageNet+DUTS-TR Image-level 1.01M
EDNS [51] W DUTS-TR Pseudo 10,553
WS3A [52] W DUTS-TR Scribble 10,553
SCWS [48] W DUTS-TR Scribble 10,553
FCS [50] S DUTS-TR Pixel-wise 1,000
Ours S DUTS-TR Pixel-wise 522

Table 4: Statistics of popular SOD training dataset. “ALL-S”
denotes all supervised models in Tabel 3. “Sup.” stands for
level of supervision. “F, W and S” denote the fully-, weakly-
and semi- supervised learning respectively.

Datasets. We evaluate the performance of the proposed method
on 5 commonly used benchmark datasets, including DUTS-TE [37],
DUT-OMRON [46], ECSSD [45], HKU-IS [56], and PASCAL-S [18].
Evaluation metrics. We adopt several widely-used metrics to
evaluate our method, including the Precision-Recall (PR) curves,
the F-measure curves, Mean Absolute Error (MAE), max and mean
F-measure [28], S-measure [11] and Area Under Curve (AUC).
Competitors.We compare the proposed approach with 13 SOTA
SOD models, including MWS [49], EDNS [51], WS3A [52], SCWS
[48], FCS [50], MFNet [25], DGRL [39], PAGR [54], BAS [27], CPD
[43], MINet [24], F3Net [40], PFSN [22], and SAMN [20]. For fair
comparison, we evaluate these SOTA models by using the same
metric code with the authors provided saliency maps.
Quantitative comparison. In Table 3, we compare our results
with SOTA saliency methods. As indicated in Table 3, our method
consistently achieves significant improvement compared with semi-
and weakly- supervised methods in terms of 5 evaluation metrics.
Concretely, our method improved by 1.13%, 1.09%, 2.32%, 2.35%,
and 1.82% on average compared to the second-best method in max
F-measure on 5 datasets. Moreover, our saliency model even out-
performs fully-supervised saliency models, such as CPD [43], BAS
[27] and SAMN [20], on ECSSD, HKU-IS and PASCAL-S datasets.
Our approach trained on synthetic data achieves comparable or
superior to the fully supervised F3Net (0.8422 vs. 0.8404 in terms

of S-measure on the PASCAL-S) trained on more than 10k well-
annotated image-label pairs. Besides, we also provide the PR and
F-measure curves in Fig. 7, which also demonstrate the effective-
ness of the synthesized high-quality image-mask pairs for saliency
detection.
Qualitative comparison. As demonstrated in Fig. 8, our synthetic
data supervised saliency model has better visual superiority than
other SOTA models. Concretely, our model excels in dealing with
various challenging scenarios, including cluttered backgrounds (the
1st row), low contrast objects (the 2nd row), inverted reflection in
the water (the 3rd row), and small objects (the 4th row).

4.5 Conclusion
In this paper, we present a simple but powerful approach, namely
SODGAN, to explore the potential of synthetic data for SOD. It
opens up a new research paradigm for semi-supervised SOD, and
shows that promising segmentation accuracy can be achieved by
using controllable synthesized data. Ourmajor novelty is to discover
the interpretable direction that can disentangle the foreground
object from the background in GANs feature space with only a
few annotated images. Our work expands the application of the
generative model to salient object detection tasks. We believe this is
only the first step by utilizing synthetic data to train saliency deep
networks. In the future, we plan to extend SODGAN to handle other
tasks such as medical image segmentation, semantic segmentation,
and object detection.
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