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ABSTRACT

Aligning single-cell samples across different datasets and modalities is an im-
portant task with the rise of high-throughput single-cell technologies. Currently,
collecting multi-modality datasets with paired samples is difficult, expensive, and
impossible in some cases, motivating methods to align unpaired samples from
distinct uni-modality datasets. While dataset alignment problems have been ad-
dressed in various domains, single-cell data introduce additional complexity in-
cluding high levels of noise, dropout, and non-isometry between data spaces.
In response to these unique challenges, we propose Wavelet Optimal Transport
(WOT), a multi-resolution optimal transport method that aligns samples by mini-
mizing the spectral graph wavelet discrepancies across datasets. Filters are in-
corporated into the optimization process to eliminate non-essential scales and
wavelets, enhancing the quality of correspondences. We demonstrate the capac-
ity of WOT in highly noisy and non-isometric conditions, outperforming previ-
ous state-of-the-art methods by significant margins, especially on real single-cell
datasets.

1 INTRODUCTION

Single-cell technologies have revolutionized biological research by offering a detailed understanding
of individual cell behaviors within heterogeneous populations. However, most single-cell technol-
ogy is only capable of capturing a single description of the cell state (Trapnell, 2015); experiments
such as single-cell proteomics or Western blot can even be destructive, meaning they either alter or
destroy the cell being analyzed, preventing further analysis in the same cell (Tang, 2022). Thus, an
increasingly essential but difficult problem within this field is aligning the data produced by each of
these technologies in which no paired samples are available.

The problem of data or manifold alignment is not unique to biology and has been extensively studied
elsewhere. Works in natural language processing have aligned the data spaces of different languages
(Alvarez-Melis & Jaakkola, 2018; Schuster et al., 2019; Vulić et al., 2019), and the field of computer
vision has translated images between different domains (Zhu et al., 2017; Grover et al., 2020; Su
et al., 2022). In addition to the strict absence of paired data, the alignment of single-cell data poses
additional unique issues that are often not present in other fields. For single-cell data, identifying
correspondences between datasets requires navigating the inherent modality-specific variability and
noise they present. Although such variability can be attributed to biological variabilities like cell
cycle stages, spatial heterogeneity, and cellular differentiation, it can also be caused by technical
variabilities like dropout, batch effect, and library preparation (Arzalluz-Luque et al., 2017). Thus,
proposed methods in this field must be able to identify correspondences based on the important
biological variability while filtering out the unimportant, technical variability—all in a completely
unpaired setting.

To address the challenges of unpaired single-cell alignment, we propose Wavelet Optimal Trans-
port (WOT), a framework that finds a transport plan that agrees with multiple views of a dataset
while filtering out uninformative or noisy components. Specifically, our framework considers the
relationships of samples in a dataset as the coefficients of spectral graph wavelets, allowing us to
decompose the dataset’s signals into both scale and individual sample resolution. WOT aligns points
between datasets such that it minimizes the discrepancy between the wavelets of each dataset across
all views. We incorporate a filter in the optimization of the transport plan that removes uninfor-
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Figure 1: Overview of the Wavelet Optimal Transport (WOT) Framework. Given two graphs X
and Y , the intra-graph relationships of nodes are defined by their spectral graph wavelet coefficients
(ψ) such that we view the graph under multiple scales or frequencies S. WOT finds a transport plan
T that minimizes the total cost C, which aggregates across all scales. One component of this cost is
CC→3,D→7, representing the aggregated cost when nodes C and D inX are mapped to the respective
nodes 3 and 7 in Y . The filter F removes uninformative scales and wavelets.

mative frequencies or regions of the data, providing more robust matches across datasets. Figure 1
summarizes each of these components in the WOT framework.

We provide two implementations of WOT, entropy-based WOT (E-WOT) and learned WOT (L-
WOT), each with its own specification of the filter. E-WOT uses the entropy of each scale as the
filter. L-WOT, on the other hand, jointly learns the filter with the transport plan in an alternat-
ing minimization-maximization strategy. Empirically, we demonstrate the effectiveness of E-WOT
and L-WOT in aligning highly noisy datasets, aligning points between non-isometric shapes, and
ultimately aligning samples in two real single-cell multi-omics datasets.

To summarize, our core contributions are:

1. We formulate the relationships of points in each dataset in terms of spectral graph wavelet
coefficients, and develop a multi-scale optimal transport framework that finds a transport
plan between points in each dataset with respect to these wavelets.

2. We provide two implementations of our framework, E-WOT and L-WOT, that allow us to
filter out unimportant scales and wavelets, elucidating the important structures to match
between datasets.

3. We demonstrate that WOT is more robust to noise, dropout, and non-isometry—advantages
that enable us to consistently outperform previous state-of-the-art methods in aligning
single-cell multi-omics datasets, scGEM and SNARE-seq, in an entirely unpaired setting.

2 BACKGROUND

2.1 SINGLE-CELL DATASET ALIGNMENT

Several methods have been proposed to align single-cell datasets. SCOT (Demetci et al., 2022b) and
its updated version, SCOTv2 (Demetci et al., 2022a), use the Gromov-Wasserstein distance and its
unbalanced formulations to align distributions across different domains. Another approach, Pamona
(Cao et al., 2022), leverages a combination of manifold learning and partial Gromov-Wasserstein
distance. UnionCom (Cao et al., 2020) integrates datasets by preserving both individual and shared
structures through a shared low-dimensional embedding. MMD-MA (Liu et al., 2019) is based on
maximum mean discrepancy, offering a non-parametric way to integrate single-cell data. Lastly,
cross autoencoders (Yang et al., 2021) utilize autoencoders to learn common embeddings that can
bridge the gap between different modalities. While these works have shown success in finding high-
quality correspondences given prior knowledge of cell types or a subset of paired samples, they
(1) still often underperform when aligning datasets in a completely unpaired setting and (2) do not
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explicitly reduce dataset-intrinsic noise or signal (which is later shown in Section 4.3 to be important
for accurate alignment across single-cell datasets).

2.2 OPTIMAL TRANSPORT AND GROMOV-WASSERSTEIN DISTANCE

Optimal transport (OT) (Villani et al., 2009) is an appealing solution to the data alignment problem.
The goal of OT is to find the best way to transform one distribution into another. However, when
dealing with different spaces (e.g. ATAC-seq space vs nuclei imaging space), a direct comparison
becomes challenging. Using the Gromov-Wasserstein (GW) distance (Mémoli, 2011) provides a
framework that bypasses this issue and has become a popular choice for many data alignment tasks
(Gong et al., 2022; Thual et al., 2022; Li et al., 2022). Instead of comparing points directly by their
positions across datasets, OT based on the Gromov-Wasserstein distance compares how the distance
matrices of points are mapped across different domains.

Formally, given two datasets A = {ai}ni=1 and B = {bi}mi=1, consider two discrete metric spaces
(A, dA) and (B, dB) with probability measures p and q, respectively. In this setting, the Gromov-
Wasserstein distance identifies a transport plan (or coupling) T∗ among the set of joint distributions
between A and B with marginals p and q. Namely, T∗ ∈ Π(p,q) = {T ∈ Rn×m

≥0 : T1m =

p,T⊤1n = q}minimizes a loss function L : R×R→ R measuring the discrepancy between pairs
of points in each dataset (Alvarez-Melis & Jaakkola, 2018; Mémoli, 2011):

GW(p,q) = inf
T∈Π(p,q)

n∑
i,k=1

m∑
j,l=1

L(dA(ai,ak), dB(bj ,bl))TijTkl (1)

This formulation allows for a comparison of the structural (metric) differences between the two
spaces without explicitly comparing individual points.

As the field has expanded, variants of Gromov-Wasserstein OT have emerged. The entropy-
regularized version, for example, includes an entropy term for smoother, more computationally
feasible solutions (Peyré et al., 2016). Unbalanced (Séjourné et al., 2021) and partial formula-
tions (Chapel et al., 2020) have also been introduced. Many new works have leveraged Gromov-
Wasserstein OT in applications including domain adaptation (Yan et al., 2018), generative modeling
(Bunne et al., 2019), and shape matching (Mémoli, 2011). However, we later show that Gromov-
Wasserstein OT often fails in high noise regimes or when the two spaces are significantly different
in structure.

2.3 SPECTRAL GRAPH WAVELETS

Wavelets can be viewed as augmentations of the Fourier bases, providing resolution in both time
(or space) and frequency. Hammond et al. (2011) extended wavelets to the domain of graphs with
Spectral Graph Wavelets (SGWs), allowing localized signal representation on both the vertex and
frequency domain. Utilizing the spectral characteristics of the graph Laplacian to analyze and pro-
cess signals on graphs, SGWs have been applied widely in machine learning. In the context of
networks, Donnat et al. (2018) demonstrated the application of SGWs for node embeddings, lever-
aging their ability to encapsulate structural network information. Another work (Mémoli, 2009)
proposed a heat kernel-based Gromov-Wasserstein distance, drawing parallels to geodesic and dif-
fusion distances. We build on SGWs to develop a flexible optimal transport framework that not only
generalizes to other wavelets (outside of the heat kernel) but also provides systematic approaches to
filtering out uninformative wavelets and frequency bands.

3 WAVELET OPTIMAL TRANSPORT

3.1 PRELIMINARIES

Given datasets A = {ai}ni=1 and B = {bi}mi=1, we frame dataset alignment as an optimal transport
task that aims to find the coupling T ∈ Π(p,q) between samples in each dataset. Π(p,q) denotes
the set of all joint distributions (transport plans) with empirical marginals p ∈ [0, 1]n and q ∈ [0, 1]m

defined over samples {ai}ni=1 and {bi}mi=1 such that
∑n

i pi = 1 and
∑m

i qi = 1.
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To obtain the spectral graph wavelets for dataset X ∈ {A,B}, assume X has a fully connected
weighted graph with weighted adjacency matrix W ∈ R|X|×|X|

+ . Different choices of metrics can
be used to compute the affinity Wij between nodes i and j (particular implementations based on the
RBF-kernel and geodesic distance are detailed in Appendix A.1). Second, the normalized1 graph
Laplacian of X is computed as L = I|X| − D− 1

2WD− 1
2 (with D as the diagonal degree matrix

and I|X| as the identity matrix) and eigendecomposed as L = UΛU−1. Finally, the eigenvectors
Ui and the eigenvalues λi = Λii are combined with a wavelet generating function g : R+ → R+,
satisfying g(0) = 0 and limx→∞ g(x) = 0, to obtain the wavelet coefficients at scale s > 0:

ψ
(s)
ij =

∑
k

g(sλk)U
⊤
ikUjk (2)

In practice, to avoid the cost of diagonalizing the graph Laplacian to compute Equation (2), we
leverage the Chebyshev polynomial approximation proposed in Hammond et al. (2011).

Intuitively, the j-th column of the matrix ψ(s,X) ∈ R|X|×|X| corresponds to the wavelet of node j
whereas the coefficient ψ(s)

ij ∈ R can be interpreted as the impact that the signal on node i has on
node j. The kernel g modulates the spectral bands of the signals: depending on s, g may emphasize
the eigenvectors corresponding to larger eigenvalues (i.e. ones that carry high-frequency signals)
versus the eigenvectors corresponding to smaller eigenvalues (i.e. ones that carry low-frequency
signals). Wavelets at higher scales capture more local structures of the graph, while wavelets at
lower scales capture higher-level patterns of the graph.

3.2 THE FRAMEWORK

Gromov-Wasserstein OT incorporates the underlying geometry of each space as induced by their
metric. Here, we interpret the spectral graph wavelet coefficients, ψ(s,A) and ψ(s,B), as our intra-
space similarity metric, allowing us to view the relationship between samples on multiple scales.
Our framework leverages this multi-scale approach to find matches between A and B that are more
robust to noise and non-isometry, notably by either highlighting or suppressing wavelet coefficients
at specific scales and by aggregating the loss function over various scales.

Concretely, consider a discrete set of chosen scales S = {si ∈ R+}|S|
i=1 and the associated sets of

spectral graph wavelet coefficients ψA = {ψ(s,A)}s∈S and ψB = {ψ(s,B)}s∈S for datasets A and
B, respectively. We define the Wavelet Optimal Transport distance as

WOT(ψA, ψB ,p,q,FA,FB , S) = inf
T∈

∏
(p,q)

C(ψA, ψB ,FA,FB , S,T) (3)

where C =

n∑
i,k=1

m∑
j,l=1

aggs∈S

[
L
(
F

(s,A)
ik ψ

(s,A)
ik ,F

(s,B)
jl ψ

(s,B)
jl

)
TijTkl

]
(4)

with agg : R|S| → R as an aggregation operation over scales, L : R × R → R as the discrepancy
measure between pairs of points, and FA ∈ R|S|×n×n

+ and FB ∈ R|S|×m×m
+ as scale-specific filters

that highlights or suppresses wavelet coefficients.

We provide details on optimizing this objective in Sections 3.2 and 3.3. Now, we discuss the three
primary components of our framework: (1) the filter, (2) the wavelet coefficients, and (3) the aggre-
gation scheme.

Filter. The goal of the filters, FA and FB , is to emphasize salient scales and coefficients while
discounting noisy scales and coefficients between the two graphs. While the filters can be continuous
(i.e. FX ∈ R|S|×|X|×|X|

≥0 ), they can also be a binary mask (i.e. FX ∈ {0, 1}|S|×|X|×|X|) to sparsity
the set of coefficients—our proceeding implementations in Section 3.3 and Section 3.4 only refer to
the continuous version.

In its most basic formulation, all scales and wavelets can be weighted equivalently by setting FA =
Jn = 1n⊗1⊤

n and FB = Jm = 1m⊗1⊤
m; we refer to this formulation as vanilla-WOT. Depending

1Here, the normalized graph Laplacian is preferred since we construct a fully connected weighted graph,
but the unnormalized graph Laplacian (L = D − W ) can also be used given a different graph construction
from the dataset.
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on the application, if there exists prior knowledge about (i) specific scales or (ii) specific coefficients
that are known to be important or noisy, this prior can be easily integrated into the WOT framework
using FA and FB . For example, if there is a dataset with similar assumptions to Deutsch et al.
(2016) where high-frequency scale s is considered noise, we can set F(s,X) = 0. However, if there
is no prior knowledge, we resort to heuristic filters (Section 3.3) and learned filters (Section 3.4).

Spectral Graph Wavelet Kernels. Different choices of g allow for different scaling behaviors.
Low-pass kernels allow frequencies below a certain cutoff threshold, effectively smoothing out the
high-frequency components. This particularly preserves the gross features of a graph signal. While
low-pass kernels do not satisfy the original properties of wavelet generating functions (since g(0) ̸=
0, violating the conditions specified in Section 3.1), they are still included in our analysis because of
their effectiveness. Band-pass kernels are designed to allow a specific band or range of frequencies
to pass through, thus providing a lens to discern localized features in the graph signal. Tight frame
kernels (Chan et al., 2004) are a subset of band-pass kernels that conserve the energy of the signal
during the wavelet transformation (and its inverse), allowing for more accurate signal representation.

In this work, our evaluation is limited to the following set of wavelet kernels: the low-pass heat
kernel (Davies, 1989), a tight frame Meyer kernel (Leonardi & Van De Ville, 2011), and a simple
tight frame kernel provided by Defferrard et al.. We provide a performance analysis of different
kernels in Section 4 and the details of constructing spectral graph wavelets in Appendix A.

Scale Aggregation. We consider a general class of operations such as sum, max, and mean in our
framework to aggregate the costs from multiple scales. Selecting an optimal aggregator will depend
on the selected wavelet kernel, the selected set of scales, and the operation’s discrimination abilities.
The chosen operation is taken elementwise across all scales S.

Remark 1 (Relating WOT to Geodesic-Based Gromov-Wasserstein OT). Let the wavelet function
be the heat kernel at a single scale S = {s}. For filters FA = Jn and FB = Jm, in the limit
s→ 0+, the WOT distance reduces to the Gromov-Wasserstein distance with a geodesic-RBF kernel
discrepancy. A proof is included in Appendix B. This highlights that under certain conditions, the
Gromov-Wassertein OT framework is a subset of the WOT framework.

We now propose two specific WOT implementations with particular choices for filters and optimiza-
tion techniques.

3.3 ENTROPY-BASED WOT

E-WOT is an entropy-based heuristic for the filters FA and FB . Intuitively, higher entropy scales
may provide greater information and thereby should be emphasized by the filters. For each dataset
X ∈ {A,B} with corresponding wavelets ψX , the entropy is estimated at each scale s using kernel
density estimation (KDE). The entropy value for each scale is then employed as the respective filter
for that scale:

F(s,X) = H(s,X)J|X| with H(s,X) = Ei

− ln
1

|X|

|X|∑
j=1

Kh

(
ψ
(s,X)
ij

) (5)

where H(s,X) ∈ R and Kh is a kernel (not to be confused with the wavelet kernel) with smoothing
parameter (or bandwidth) h > 0. In what follows, our attention is restricted to the Gaussian kernel
for Kh.

We proceed to optimize E-WOT in the same spirit as Peyré et al. (2016) using projected gradient
descent. If we augment our objective with an entropic regularizationH(T) = −

∑n,m
i,j=1 Tij(lnTij−

1) (not to be confused with H(s,X)) with a weight ε, Proposition 2 in Peyré et al. (2016) has shown
that the projection step reduces to solving the Sinkhorn distance (Cuturi, 2013). Therefore, we have

E-WOT(ψA, ψB ,p,q, S) = inf
T∈

∏
(p,q)

C(ψA, ψB ,FA,FB , S,T)− εH(T)

with each projected gradient descent step as

T← T (aggs∈S

[
L(F(s,A)ψ(s,A),F(s,B)ψ(s,B))⊗ T

]
, ε,p,q) (6)
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where T is a Sinkhorn projection. Note that E-WOT can be similarly defined in an unbalanced
formulation (where there are different masses of p and q) by replacing the Sinkhorn algorithm
with the unbalanced counterpart proposed by Chizat et al. (2018). In Section 4 and Appendix D,
we demonstrate the advantages of WOT over competing works in both balanced and unbalanced
settings.

3.4 LEARNED WOT

Unlike the static and uniform filters of E-WOT, we introduce here an implementation of WOT called
L-WOT such that the filters FA and FB are learned. In a minimization-maximization fashion, we
alternate between minimizing the WOT objective with respect to the transport plan T and maximiz-
ing the WOT objective with respect to the filters FA and FB . We hence augment the existing WOT
objective, Equation (3), with an inner optimization step:

L-WOT(ψA, ψB ,p,q, S) = inf
T∈

∏
(p,q)

sup
FA,FB

C(ψA, ψB ,FA,FB , S,T)− εH(T) (7)

s.t. ||FA − Jn||2+||FB − Jm||2< δ

Algorithm 1 L-WOT Optimization
1: Input: SGWs ψA, SGWs ψB , marginal p,

marginal q, scales S, BCD steps N, inner
steps K

2: Output: Transport plan T
3: Initialize FA = Jn, FB = Jm, λA, λB , ε
4: for N loops do
5: for K loops do
6: F̃A, F̃B = H̃A ◦ FA, H̃B ◦ FB

7: L = L(F(s,A)ψ(s,A),F(s,B)ψ(s,B))
8: Update T = T (aggs∈S [L⊗ T] , ε,p,q)
9: end for

10: for K loops do
11: F̃A, F̃B = H̃A ◦ FA, H̃B ◦ FB

12: Cost = C(ψA, ψB ,p,q, F̃A, F̃B , S,T)
13: regA = ||FA − Jn||2, regB = ||FB −

Jm||2
14: FA = FA +∇FA(Cost− λAregA)
15: FB = FB +∇FB (Cost− λBregB)
16: end for
17: end for

Intuitively, filters that maximize the objective
reveal portions of each space that the current
transport plan does not match well, thus forc-
ing the next transport optimization step to bet-
ter match these regions. However, to restrict
the optimization from finding trivial solutions
(e.g. filters that noise the wavelets and scale
the magnitude of the noise to∞), an additional
constraint is added that keeps the discrepancy
between the filters and J below a threshold δ.
In practice, it is often beneficial to revise Equa-
tion (7) with FX weighted by the squared root
of the entropy H̃X =

√
HX .

L-WOT is optimized such that at each iteration,
(1) we fix the filters and minimize C(·) with re-
spect to the transport plan T using Sinkhorn it-
erations in the same way as Section 3.3 (note
that the filter constraints do not need to be en-
forced here) and at another step (2) we fix T and
maximize C(·) with respect to the filters FA

and FB using gradient ascent. For step (2), we
formulate the constrained objective in its dual
form by taking the Lagrangian with multiplier
λ. The optimization details are outlined in Algorithm 1.

4 EXPERIMENTS

With the primary goal of aligning unpaired single-cell data, we begin by evaluating the effectiveness
of WOT in simpler cases that exhibit some challenges of single-cell data. WOT is first assessed
on a point cloud matching experiment with increasing levels of noise and dropout. Afterward, we
demonstrate WOT’s ability to match points sampled from low-dimensional, highly non-isometric
manifolds (i.e. animal shapes). We finally test WOT to align two real single-cell datasets with gene
expression, chromatin accessibility, and DNA methylation profiles.

Note that since we are operating in a completely unpaired setting, we assume that we do not have
access to a validation set. Hence, most hyperparameters are fixed to default values. However, for
a small set of sensitive hyperparameters, we employ an unsupervised tuning procedure outlined in
Algorithm 2. We provide the full set of relevant hyperparameters for WOT and the specific fixed val-
ues used within the experiments in Appendix C). We also have further guidance on hyperparameter
selection including the wavelet filter g and implementation of WOT (i.e. E-WOT versus L-WOT) in
Appendix C.1
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Figure 2: Matching two bifurcations of three classes (denoted by colors) with and without heavy
noise. For each graph, we plot the first two principal components of each bifurcation dataset and add
the z dimension to separate the two bifurcation datasets for illustration purposes. Green lines signify
correct matches while red lines signify incorrect matches. (Left) with minimal noise, vanilla-WOT
and GW perform similarly (Right) with heavy Gaussian noise (variance=0.1 of average pointwise
distance), WOT still maintains high-quality matches while GW does not.

Figure 3: Comparing the robustness of vanilla-WOT and Gromov-Wasserstein OT to increasing
levels of dropout and noise. Each dropout (left) level and additive noise (right) is performed ten
times; the top, middle, and bottom of the error bars represent the 75th, 50th, and 25th percentile,
respectively.

For all experiments, WOT uses the barycentric projection (Bonneel et al., 2016) based on the trans-
port plan T to project points from one domain to another (results from other projection techniques
are in Appendix D.2.1). Throughout all experiments, the discrepancy measure L is the squared loss
L(a, b) := 1

2 (a − b)
2. Additionally, we primarily show results for the balanced datasets by com-

puting E-WOT and L-WOT based on balanced Sinkhorn iterations. However, it is important to note
that WOT can also handle unbalanced datasets; we provide additional results based on unbalanced
Sinkhorn iterations in Appendix D. All experiments were conducted on one NVIDIA RTX A6000
machine.

4.1 BIFURCATION MATCHING

Cellular differentiation is a common biological process that single-cell instruments aim to capture.
We start by demonstrating the effectiveness of WOT on a toy dataset from Liu et al. (2019) providing
a bifurcation simulation that resembles the divergence of cell states. This dataset contains two setsA
and B of n = 300 samples each. Each set aims to represent a distinct modality where A has points
with 1000 dimensions and B has points with 2000 dimensions. Although the true pairing between
points in A and B is known and used to assess the accuracy of OT methods, this information is not
used when learning the transport plans.

For our first experiment, we add isotropic noise to A and B sampled from the Gaussian
N (0, σ2I|X|). We compare the performance of WOT and GW-OT along various levels of noise
σ2 using the fraction of samples closer than the true match (FOSCTTM) (Liu et al., 2019). In prac-
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SHREC20 TEST SET 1 TEST SET 2 TEST SET 3 TEST SET 4

E-WOT (HEAT KERNEL) 0.786/0.172 0.551/0.422 0.533/0.294 0.639/0.253
E-WOT (SIMPLE TIGHT) 0.669/0.215 0.542/0.424 0.575/0.268 0.578/0.282
E-WOT (MEYER) 0.641/0.219 0.530/0.431 0.575/0.270 0.582/0.287
L-WOT (HEAT KERNEL) 0.790/0.171 0.729/0.209 0.500/0.388 0.623/0.264

SCOT (GW) 0.710/0.208 0.335/0.600 0.458/0.298 0.635/0.251
SCOTV2 (UNBALANCED GW) 0.572/0.258 0.631/0.375 0.479/0.311 0.545/0.272
UNIONCOM 0.536/0.274 0.127/0.787 0.329/0.416 0.553/0.281
PAMONA 0.383/0.362 0.110/1.384 0.204/0.665 0.221/0.440

Table 1: Relative Geodesic Error on SHREC20 dataset reported as (% matches < 0.25 ↑) / (Mean
↓). Each test set holds shapes of decreasing isometry from test set 1 with the highest isometry to test
set 4 with the lowest isometry. The best performing method for each test set is bolded.

tice, we add noise to each point relative to the average distance between samples in each dataset:
σ2 ∈ [0.0, 0.15]× (avg dist). As shown in the bottom graph of Figure 3, WOT and GW-OT perform
similarly in low noise levels (0.00− 0.065), but WOT maintains significantly better performance in
medium and high noise levels (0.065 − 0.15). The same trend is clear in another experiment (top
graph of Figure 3) where we introduce dropout in the bifurcation dataset and evaluate the methods’
ability to find accurate matches. We revise the conventional definitions of dropout to a more diffi-
cult scenario: rather than removing a point entirely, we instead add a large amount of noise to that
point such that it loses its meaning and muddles the rest of the dataset. Specifically, we randomly
select a fraction of samples where noise is added with a variance that is equal to the average dis-
tance between samples while keeping the unselected fraction of samples the same. This dropout is
applied independently in both datasetsA andB. Similarly to the additive noise experiment, GW-OT
and WOT perform approximately the same in lower regimes of dropout, while WOT outperforms
GW-OT in higher regimes of dropout.

Although WOT achieves better performance overall, it is important to note that the variance
of WOT’s mean FOSCTTM in the additive noise experiment is significantly greater than GW;
this result could imply that our method may require further hyperparameter tuning. Interest-
ingly, we do not see this high variance in WOT’s performance in the dropout experiment.

Figure 4: Quality of correspondences on SHREC20’s test
set 2 as measured by cumulative relative geodesic error. We
plot the percentage of projected samples from one animal to
another that are within x relative geodesic distance from the
ground truth.

4.2 SHAPE CORRESPONDENCE

Cell states are believed to lie on
a low-dimensional manifold (Moon
et al., 2018) in the data space. How-
ever, each data modality (i.e. single-
cell profiling technology) carries its
own variabilities such as the color of
nuclei images or the read depth of
scRNA-seq that may respectively dis-
tort the common manifold that the
cells share. In other words, the struc-
tures of each modality’s data man-
ifold will have similarities yet be
highly different. We analogize this
with the problem of point matching
of highly non-isometric shapes (low-
dimensional manifolds). SHREC20
(Dyke et al., 2020) provides four sets
of increasingly different pairs of an-
imals with ground truth correspon-
dences between key landmarks on
each shape (e.g. ears, tails, and legs).
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For each animal, we sample 1000 points and combine these points with the ground truth points
as input to the evaluation methods. We then calculate the relative geodesic error ϵ(ai) =

dY (ai,bi) / area(B)
1
2 of projecting ai from animal A onto animal B compared with the ground

truth point bi on animal B.

Table 1 records the mean relative geodesic error and the percent of matches that are less than 0.25
relative geodesic error of WOT and competing works. Particularly for test set 2, WOT provides a
very large improvement in performance compared to previous methods, as shown in Figure 4. Ad-
ditionally, L-WOT obtains substantially better quality of correspondences than E-WOT while the
performance between different filters for E-WOT remains approximately the same. This difference
between L-WOT and E-WOT highlights that applications may find it more useful to leverage one
particular implementation of WOT. We also see that WOT and GW-OT roughly have a logarithmic
pattern in Figure 4; the sharper ”elbow” of WOT demonstrates that WOT is able to achieve corre-
spondences with a smaller error margin more quickly than GW-OT. As the relative geodesic error
increases, the curves of both methods tend to level off. However, our method maintains a consistent
lead, indicating that even as the error tolerance increases, WOT continues to match more samples
within the error threshold.

The performance comparisons on the other test sets are included in the Appendix D. We omit com-
parisons with shape-specific matching methods since they cannot be scaled to higher dimensions
than 3D and would therefore not be useful for single-cell modality alignment.

4.3 ALIGNING SINGLE CELL DATASETS

LABEL TRANSFER ACCURACY SNARE-SEQ SCGEM

E-WOT (HEAT KERNEL) 0.961 0.472
E-WOT (SIMPLE TIGHT) 0.881 0.492
L-WOT (HEAT KERNEL) 0.774 0.528
L-WOT (SIMPLE TIGHT) 0.803 0.616

SCOT 0.852 0.423
SCOTV2 0.826 0.509
UNIONCOM 0.411 0.332
PAMONA 0.554 0.385
MMD-MA 0.523 0.360
PAMONA 0.554 0.385
CROSS AE 0.511 0.363
BINDSC 0.713 0.387
SEURAT 0.423 0.408

Table 2: Label transfer accuracy of WOT and competing
methods on single-cell multi-omic datasets. We use the re-
sults reported by Demetci et al. (2022a) for competing meth-
ods. The best performing method is bolded.

We now evaluate WOT on two
real single-cell multi-omic datasets,
scGEM and SNARE-seq. scGEM
charts the trajectory of human so-
matic cells during reprogramming
to induced pluripotent stem cells
(iPSCs); the data is produced us-
ing the scGEM co-assay, concur-
rently capturing both the scRNA-
seq and DNA methylation profiles
of the cells. SNARE-seq is col-
lected from human fibroblast cells
(BJ), human embryonic cells (H1),
human erythroleukemia cells (K562),
and human lymphoblastoid cells
(GM12878) using the SNARE-seq
co-assay, profiling both scRNA-seq
and chromatin accessibility simulta-
neously. Unlike scGEM which is
undergoing cellular reprogramming,
the SNARE-seq dataset exhibits more
distinct clusters between the different cell types.

We follow the same preprocessing steps as Demetci et al. (2022b) for the two datasets and use label
transfer accuracy (Cao et al., 2020) as our evaluation metric. The resulting scGEM dataset after pre-
processing has 177 samples with 34 dimensions for the gene expression data and 27 dimensions for
the methylation data. For SNARE-seq, the resulting dataset has 1047 samples with 19 dimensions
for the chromatin accessibility data and 10 dimensions for the gene expression data.

Table 2 reflects a significant improvement in accuracy by WOT in both datasets. We also observe that
while there is significant variability in the performance between E-WOT and L-WOT as well as the
specific wavelet kernel used, they all exceed or are on par with the current state-of-the-art methods.
Additionally, L-WOT performs much better than E-WOT and existing methods on the scGEM while
the inverse is seen in SNARE-seq. A potential reason for this difference is that scGEM profiles cells
in dedifferentiation, so the boundaries of cell types are not as clear as those of SNARE-seq where cell

9
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type clusters are distinct—this could imply that L-WOT is better equipped for single-cell datasets
with experiment setups like scGEM while E-WOT is better for single-cell datasets like SNARE-seq.

5 CONCLUSION

We presented Wavelet Optimal Transport, a framework that leverages spectral graph wavelets to
better align unpaired datasets. Through initial experiments, we demonstrated that WOT is able
to maintain high-quality matches across datasets even in the presence of high noise, dropout, and
non-isometry. Finally, we showed the effectiveness of WOT on two real single-cell datasets, outper-
forming the previously most accurate methods.

A fruitful direction for future research is to incorporate the WOT objective in machine learning
pipelines as a loss function such that we can match data distributions at specific bands of scales or
space. WOT could also be applied in linking cross-section time series data where cross-sections may
be collected with different modalities; this problem is common in trajectory analysis or modeling
perturbation response in cells. Another direction that warrants more investigation is the design of
more effective filters that could be used in our framework.

REFERENCES

David Alvarez-Melis and Tommi S Jaakkola. Gromov-wasserstein alignment of word embedding
spaces. arXiv preprint arXiv:1809.00013, 2018.
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A SPECTRAL GRAPH WAVELET CONSTRUCTION

For a dataset X = {xi}ni=1, we compute the spectral graph wavelets (SGWs) as follows: (1) build
a fully connected weighted adjacency matrix W , (2) calculate the normalized graph Laplacian L,
and (3) compute the spectral graph wavelets of L using Chebyshev’s polynomial approximation
(Hammond et al., 2011) implemented in Python by PyGSP (Defferrard et al.) .

A.1 FULLY CONNECTED WEIGHTED ADJACENCY MATRIX

We construct W with weights between nodes i and j given by the RBF-kernel:

Wij = RBF(xi,xj) = exp

(
− d̃X(xi,xj)

2

2σ2

)
(8)

where d̃X is chosen to be the approximate geodesic distance calculated by finding the shortest path
between pairs of nodes on the kNN graph of X (where k is a hyperparameter given in Appendix C).
The value of σ is set as the median of this distance between all pairs of points in X .

B PROOFS

Remark 1 (Relating GW using Geodesic Distance and WOT). Let the wavelet function be the heat
kernel at a single scale S = {s}. For filters FA = Jn and FB = Jm, in the limit s→ 0+, the WOT
distance reduces to the Gromov-Wasserstein distance with a geodesic-RBF kernel discrepancy.

Proof. Recall the GW discrepancy as

GW(p,q) = inf
T∈Π(p,q)

n∑
i,k=1

m∑
j,l=1

L(dA(ai,ak), dB(bj ,bl))TijTkl . (9)

where we have two metric spaces (A, dA) and (B, dB) with probability measures p and q, respec-
tively. dA and dB are the respective geodesic distances between the points in A and the points in B.
Now, since Fs,A = Jn and Fs,B = Jm at a single scale S = {s}, WOT reduces to

WOT = inf
T∈Π(p,q)

n∑
i,k=1

m∑
j,l=1

L(ψ(s,A)
ik , ψ

(s,B)
jl )TijTkl (10)

where ψ is the heat kernel. Recall Varadhan’s Lemma which relates the heat kernel and geodesic
distance as −4s log(ψ(s)

x,y) ≃ d2X(x, y) for t ≃ 0+. We can rewrite the heat kernel with respect to
the squared geodesic distance as

ψ(s)
xy ≃ exp(−d

2
X(x, y)

4t
) . (11)

Thus, we have the WOT formulation in terms of the geodesic distance as

WOT ≃ inf
T∈Π(p,q)

n∑
i,k=1

m∑
j,l=1

L(exp(−d
2
A(ai,ak)

4t
), exp(−d

2
B(bj ,bl)

4t
))TijTkl (12)

which is equivalent to the GW discrepancy if the metric for space A is redefined as the RBF ker-
nel := exp(−d2

A(ai,ak))
4t ) and space B is redefined as the RBF kernel := exp(−d2

B(bj ,bl)
4t ). Proof

completed.

C HYPERPARAMETERS

We provide the set of hyperparameter values used in each experiment. Note that most values were
fixed during experiments since we did not have validation data to conduct hyperparameter tuning.
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Algorithm 2 Unsupervised Hyperparameter Selection Procedure
Require: Source and target datasets X , Y
Ensure: Hyperparameters ε, agg, norm
ε← 10−4, agg← sum, norm← RBF, η ← 10−6

while true do
T← COMPUTETRANSPORT(X,Y, ε, agg, norm)
Uij ← 1

mn ,∀i, j where m,n are dimensions of T
if ¬∃i,j isNaN(Tij) ∧ ∥T− U∥F> η then

return ε, agg, norm
end if
if ε < 1.0 then
ε← ε+ 0.5 · 10⌊log10(ε)⌋

else if agg = sum then
agg← mean, ε← 10−4

else if agg = mean then
agg← max, ε← 10−4

else if norm = RBF then
norm← L2, ε← 10−4

else
raise Error

end if
end while

However, in some instances, improper hyperparameters can lead to an invalid uniform or NaN trans-
port plan. In such cases, we adjust the entropic regularization parameter ε, aggregation scheme agg,
and the weight normalization according to Algorithm 2

ALL EXPERIMENTS HYPERPARAMETER VALUES

ε REGULARIZATION (PEYRÉ ET AL., 2016) 0.001
AGGREGATION OPERATION SUM
WEIGHT NORMALIZATION RBF
WOT OUTER ITERATIONS (N) 100
SINKHORN INNER ITERATIONS (K) 100
GAUSSIAN KDE BANDWIDTH (H) 0.4
NUMBER OF SCALES 20
ρ1 (UNBALANCED) 1.0
ρ2 (UNBALANCED) 1.0
LANGRANGE MULTIPLER λA , λB 2.0

Table 3: Default hyperparameters for WOT.

Hyperparameter Specification
kNN Fixed from Demetci et al. (2022b) Fig. S4
σRBF median({dij}) heuristic
Number of Scales Fixed from prelim. development
ε Algorithm 2 determined
agg Algorithm 2 determined
g(x) Experiment 1: defaulted to simplest wavelet; Ex-

periment 2,3: multiple wavelets tested
Wavelet hyperpa-
rameters

PyGSP defaults Defferrard et al.

δL-WOT Fixed from prelim. development
hKDE Fixed from prelim. development

Table 4: Hyperparameter Selection Process
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TOY DATASET HYPERPARAMETER VALUES

ε REGULARIZATION (NOISE) 0.001
ε REGULARIZATION (DROPOUT) 0.0005(0.0− 0.5%), 0.0001(0.6− 0.9%)
AGGREGATION OPERATION MEAN
WAVELET KERNEL SIMPLE TIGHT
METRIC EUCLIDEAN DISTANCE
WEIGHT NORMALIZATION RBF

SHREC20 DATASET HYPERPARAMETER VALUES

ε REGULARIZATION 0.1
AGGREGATION OPERATION SUM
WAVELET KERNEL MULTIPLE
METRIC APPROXIMATE GEODESIC
k IN kNN FOR GEODESIC 30
UNBALANCED ρ (SÉJOURNÉ ET AL., 2021) 1.0
WEIGHT NORMALIZATION RBF

SNARE-SEQ HYPERPARAMETER VALUES

ε REGULARIZATION 0.01 (HEAT-EWOT)
0.1 (SIMPLE TIGHT-LWOT), 0.05 (ELSE)

AGGREGATION OPERATION SUM
WAVELET KERNEL MULTIPLE
METRIC APPROXIMATE GEODESIC
k IN kNN FOR GEODESIC 30
WEIGHT NORMALIZATION L2

SCGEM HYPERPARAMETER VALUES

ε REGULARIZATION 0.05 (SIMPLE TIGHT-EWOT), 0.01 (ELSE)
AGGREGATION OPERATION SUM
WAVELET KERNEL MULTIPLE
METRIC APPROXIMATE GEODESIC
k IN kNN FOR GEODESIC 30
WEIGHT NORMALIZATION RBF

Table 5: Hyperparameter values in all reported experiments. While experiments using unbalanced
Sinkhorn are not reported in the main paper, and therefore do not utilize the unbalanced hyperpa-
rameter ρ, additional experiments were conducted on SHREC20 using unbalanced Sinkhorn, whose
results are reported in Appendix D. For the toy dataset, recall that we use vanilla-WOT where the
filters F = J. Also, note that λ hyperparameter value is only relevant in the experiments evaluating
L-WOT, and thus not all the experiments include that hyperparameter. ”Multiple” refers to evalu-
ating multiple wavelet kernels for a given experiment. Lastly, ”BOTH” refers to both L-WOT and
E-WOT.
C.1 GUIDANCE ON CHOOSING HYPERPARAMETERS

In practice, most of the hyperparameters in WOT can be fixed to default values, leaving only two
key components that may require more careful consideration:

1. The choice between L-WOT and E-WOT implementations: This decision can be made
based on the characteristics of the dataset and the desired balance between adaptivity and
computational efficiency. In many cases, users can start with a default implementation
(e.g., E-WOT) and explore the alternative if the results are not satisfactory.

2. The choice of wavelet kernel g: In many practical scenarios, users can rely on prior knowl-
edge or default choices like the heat kernel. Our experiments have shown that WOT con-
sistently improves performance over existing methods, regardless of the specific kernel
choice.

Additionally, we only primarily used the sum aggregation scheme within the WOT framework and
have not observed other aggregation schemes being more effective. All other hyperparameters, such
as the entropic regularization parameter, are common to any GW method. These hyperparameters
can be selected using our proposed heuristic or other established heuristics in the literature, such as
those presented in (Demetci et al., 2022b).
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C.2 HYPERPARAMETER TUNING FOR BASELINES

Experiment 1. For Gromov-Wasserstein, we adjust ϵ using the same strategy provided in Algo-
rithm 2. All other relevant hyperparameters match Table 3.

Experiment 2. For Gromov-Wasserstein, UnionCom, and Pamona, they all share ϵ as a common
hyperparmater. Thus, we adjust ϵ using Algorithm 2 but fix all other hyperparameters to their default
values provided by the methods.

Experiment 3. Baseline results are taken from Demetci et al. (2022a), so we refer readers to this
work for further details on hyperparameter selection.

D ADDITIONAL EXPERIMENTAL RESULTS & FIGURES

D.1 SHREC20 SHAPE CORRESPONDENCE

Figure 5: Cumulative Relative Geodesic Error of Correspondences on SHREC20’s four test sets of
increasing non-isometry using balanced formulation (top left) test set 1, lowest non-isometry (top
right) test set 2, low non-isometry (bottom left) test set 3, high non-isometry (bottom right) test
set 4, highest non-isometry.
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Figure 6: Cumulative Relative Geodesic Error of Correspondences on SHREC20’s four test sets
of increasing non-isometry using unbalanced formulation (top left) test set 1, lowest non-isometry
(top right) test set 2, low non-isometry (bottom left) test set 3, high non-isometry (bottom right)
test set 4, highest non-isometry.

D.2 SCGEM & SNARE-SEQ

Figure 7: scGEM dataset alignment visualizations (left) we project gene profiling data into the
DNA methylation data space and plot the first two principal components with their corresponding
cell identity (right) after projection, we plot the first principal component of the ground truth point
versus the first principal component of the corresponding projected point.

Additionally, for Section 4.3, we calculate FOSCTTM (introduced by (Liu et al., 2019)), which is a
measure of the alignment error between two datasets. It quantifies the proportion of samples in one

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 8: SNARE-seq dataset alignment visualizations where gene profiling data is projected into
the ATAC-seq data space and plot the first two principal components with their corresponding cell
identity.

dataset that are closer to a given sample in the other dataset than its true match, averaged across all
samples in both datasets. The results are shown in the table below:

FOSCTTM scGEM SNARE-seq

E-WOT (heat kernel) 0.197 0.216
E-WOT (simple tight) 0.210 0.243
L-WOT (heat kernel) 0.202 0.262
L-WOT (simple ticht) 0.217 0.272

SCOT (Demetci et al., 2022b) 0.209 0.218
MMD-MA 0.437 0.473
UnionCom 0.691 0.510

Note that the results for the baseline methods are taken directly from (Demetci et al., 2022b). To
ensure a fair comparison, we have followed the same hyperparameter settings that were used to
obtain the results in Table 2 of our manuscript when computing LTA for WOT. It is worth noting
that FOSCTTM is just one of the evaluation metrics, and our primary focus has been on label transfer
accuracy (LTA) as reported in Table 2 of our manuscript since it is more representative of the metrics
that are used in true unpaired alignment.

D.2.1 ALTERNATIVE PROJECTION TECHNIQUES

We conducted additional experiments on the SNARE-seq and scGEM datasets where we replace
the barycentric projection with the shared embedding projection approach proposed by (Cao et al.,
2020). The results of these experiments are as follows:

Label Transfer Accuracy SNARE ScGEM

E-WOT (Heat Kernel) w/ Shared Embedding (Cao et al., 2020) 0.942 0.565
E-WOT (Simple Tight) w/ Shared Embedding (Cao et al., 2020) 0.941 0.616
L-WOT (Heat Kernel) w/ Shared Embedding (Cao et al., 2020) 0.939 0.627
L-WOT (Simple Tight) w/ Shared Embedding (Cao et al., 2020) 0.916 0.706

Comparing the label transfer accuracy (LTA) values in the above table to those reported in Table 2 of
our manuscript, we observe a significant increase in LTA across both datasets and across the WOT
implementations when using the shared embedding projection. For instance, on the SNARE-seq
dataset, we see consistent LTA values of above 0.9 with the shared embedding projection, compared
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to only a single implementation (E-WOT using heat kernel) achieving above 0.9 LTA with barycen-
tric projection. On the scGEM dataset, L-WOT (Simple Tight) attains an LTA of 0.706 with the
shared embedding projection, surpassing the 0.616 LTA obtained with barycentric projection.

The improvement in LTA suggests that while obtaining an informative transport plan is crucial for
accurate alignment, the projection technique used to map the samples between the datasets also
plays an important role. It is possible that even with an optimal transport plan, there may be an
upper limit to the alignment quality achievable without an equally effective projection method.

D.2.2 ANALYZING WAVELET SCALES AND FILTER WEIGHTS

To better understand why and when different implementations of WOT (EWOT vs LWOT) perform
better, we empirically analyze (1) the wavelets corresponding to each scale of the single-cell datasets
and (2) the weights of the filters in EWOT and LWOT and its impact on the wavelets.

Wavelet Scales. For each single-cell dataset and modality, we separate the spectral graph wavelets
into their specific scale ranging from 1 to 20. Intuitively, larger valued scales (i.e. 20) represent
high-frequency or local information while smaller valued scales (i.e. 1) represent low-frequency or
global information. Since we only have the pairwise affinity matrix provided by the wavelets, we
take the inverse and apply multidimensional scaling (MDS) in two dimensions. The resulting plots
are shown below:

The color of each point represents the paired samples between each dataset. Ideally, we would want
points of the same color to be in the same position in different plots. On the leftmost column, we
visualize the 2D MDS embeddings of the original datasets where the pairwise distance matrix is
given by Euclidean distance. Then, for every column to the right, we get progressively larger in
scale value (i.e. the more right columns represent higher frequency scales). For instance, in scGEM,
it is clear that the smaller-scale wavelets better reveal the samples that should be aligned while the
larger-scaled wavelets are noised together.

Likewise, for SNARE-seq, the smaller scales better reveal the samples that should be paired while
the larger scales muddle all the points, making alignment more ambiguous. Ideally, the filters should
remove the wavelet scales that muddle the alignment while emphasizing the scales that provide a
coherent structure for easier alignment.
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Filter Scales. Since filters control which wavelet scales are used to align the datasets, it is necessary
to interrogate which scales are filtered away or emphasized. We begin by plotting the distribution
of filter values with respect to scales. For each scale, we take the maximum filter value. With
the ground truth pairings, we learn an ideal filter (aka given this filter in WOT, we would have
completely accurate alignment) that we use to compare with EWOT and LWOT.

As shown in the figure above, the ideal filter has higher values concentrated at lower scale values
for both datasets, which means that lower-valued wavelet scales are more important than higher-
valued wavelet scales for perfect alignment. This emphasis on lower-valued wavelet scales makes
sense based on our observations in the previous ”Wavelet Scales” section where we established that
lower-valued scales have more informative structures for accurate alignment.

Both E-WOT and L-WOT reflect similar trends of emphasizing lower-valued wavelet scales, ex-
plaining the performance improvement compared to baseline methods in Section 4.3.

We further explore the impact of filters on wavelets and ultimate alignment by visualizing the ag-
gregated wavelets of each modality after the filters have been applied. In contrast to the previous
section (”Wavelet Scales”) which visualized each unfiltered wavelet scale individually, the below
figures are both filtered and summed according to Equation (3). Each figure shows the 2D MDS
embeddings of the filtered and aggregated pairwise distance matrix given by the inverse wavelet
matrices.

Since both EWOT and LWOT have been shown to emphasize lower-valued wavelet scales in the
scGEM, it is unsurprising that the aggregated and filtered wavelets have similar structure to the
lower-valued wavelet scales in the previous section (”Wavelet Scales”). Compared to the Euclidean
case, the separation of points for the filtered wavelets (in both EWOT and LWOT) that correspond
to each other is much clearer (e.g. points at one end of the DNA methylation modality corresponds
to the same point at the end of the RNA-seq modality).
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For SNARE-seq, the separation is not as clear as scGEM, but we still see that the filtered and
aggregated wavelets have similar patterns to the lower-valued wavelet scales in the previous section.

While it is not clear how to quantify or predict when EWOT or LWOT would perform better, we
now have intuition on why they perform better in specific datasets: the filters obtained by the im-
plementation more closely match the ideal filters, which would provide better alignment. From this
analysis, we can also observe why WOT performs better than GW and baselines that do not lever-
age multiple scales and filters: different scales of the dataset better reflect the geometric structure
for accurate alignment while filters prune the scales that muddle the geometric structure. Baselines
like GW only view the dataset at a single scale, disregarding the significant scale-specific geometric
structures.

E TIME COMPLEXITY ANALYSIS

The runtime of our method is dominated by two steps: (1) the construction of the spectral graph
wavelets and (2) optimizing E-WOT or L-WOT. We provide further analysis of WOT’s complexity
and how our method scales with respect to different input databases and parameterizations of WOT.

As is common with optimal transport frameworks, the efficiency of WOT can diminish as the volume
of the dataset increases. Gromov-Wasserstein OT with entropic regularization (Peyré et al., 2016)
scales O(n3) with n as the number of samples. Since our objective for vanilla-WOT and E-WOT
is optimized similarly to GW-OT, we inherit the cubic complexity with an additional factor of |S|
because we recalculate Proposition 1 in (Peyré et al., 2016) s ∈ S times, resulting in O(|S|n3) time
complexity. We further need to consider the O(n2 + |S|n) computational complexity of calculating
ψ for S scales using Cheyshev’s polynomial approximation (Hammond et al., 2011). L-WOT would
inherent greater complexity due to the nested loop with an inner subroutine that requires running
E-WOT and automatic differentiation.

Specifically, we have

Runtime Scaling w.r.t
feature dim.

Scaling w.r.t
# of samples

Scaling w.r.t
# of scales

Scaling w.r.t
choices of
wavelet kernels

Wavelet Construction O(n2 + |S|n) Constant Quadratic Linear
E-WOT O(|S|n3) Constant Cubic Linear
L-WOT O(|S|n3m) Constant Polynomial Linear
GW-OT (Peyré et al., 2016) O(n3) Constant Cubic N/A
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where m is the complexity of running E-WOT and automatic differentiation.

• Wavelet Construction: Since the spectral graph wavelets leverage the pairwise distances of
samples, constructing the spectral graph wavelets scales quadratically with the number of
samples, but does not scale with feature dimensions (pairwise distances are a preprocessing
step). When n is large, the effects of the number of samples dominate the effects of the
number of scales, so the overall runtime of constructing the spectral graph wavelets scales
comparably to GW-OT.

• E-WOT: In practice, we often fix the number of scales used to construct the spectral graph
wavelets to a small constant (|S|= 20), so the overall runtime of E-WOT scales comparably
to GW-OT.

• L-WOT: The runtime of constructing wavelets becomes negligible with E-WOT
• L-WOT: The high-order polynomial runtime of L-WOT limits this implementation to

smaller datasets. However, we see that even in experiments with 1000 samples, we are
still able to run L-WOT in a reasonable time (for specifics, see experimental below).

Importantly, with a fixed small number of scales S, the runtime of E-WOT is the same as GW-OT
as n tends to infinity.

To demonstrate that E-WOT and GW-OT (Peyré et al., 2016) have comparable runtimes in practice,
we added a new experiment that records the runtimes of our implementations (E-WOT and L-WOT)
and GW-OT as we increase the number of samples in a dataset (we set the same following hyper-
parameters for all baselines in our implementations: |S|= 20, entropic regularization epsilon=1e-2,
# sinkhorn iterations=100, distance matrix=euclidean) in seconds. In wall time in seconds/CPU
time in seconds, we ran GW-OT and E-WOT on any given set of hyperparameters that run more
than 20,000 seconds in wall time, we stop and replace its value with OOT (out of time). These
times include the distance matrix calculation + spectral graph wavelet construction (if applicable) +
optimizing the transport plan and were all run on the same NVIDIA RTX A6000 machine.

n=100 n=200 n=500 n=1,000 n=5,000 n=10,000

GW-OT 46.468 / 0.933 86.899 / 3.476 277.421 / 4.401 425.596 / 6.737 3369.758 / 314.841 8928.406 / 917.152
E-WOT 150.134 / 3.031 189.133 / 4.622 267.743 / 5.397 462.553 / 10.340 5626.629 / 485.166 13510.435 / 1079.166
L-WOT 210.732 / 7.092 281.102 / 8.677 369.654 / 7.529 650.366 / 30.059 16220.132 / 1165.671 OOT

From these runtime benchmarks, we can see that GW-OT and E-WOT scale similarly in time with
the number of samples in a dataset; the negligible time gap between GW-OT and E-WOT arises
from the additional |S| scales, but we expect that lowering the |S| will likewise shrink the time
gap. However, L-WOT explodes in runtime and may not be appropriate for aligning datasets with
n > 5000.

We have shown that both E-WOT and L-WOT surpass the alignment quality of GW-OT in many
experimental cases. Particularly since E-WOT and GW-OT have similar runtimes, we believe that it
is compelling to use E-WOT over GW-OT in most cases. Even in the case of L-WOT, the increased
quality of alignment may be worth the tradeoff in increased runtime. It is up to the user to select the
most appropriate method for their alignment task.

Lastly, we would like to emphasize that the WOT framework itself does not inherit any runtime
constraints, but rather it is the implementations and optimization methods like E-WOT and L-WOT
that provide the explicit runtime complexity. Much like how GW-OT started with a naive implemen-
tation (Mémoli, 2011), but now has more efficient implementations based on entropic regularization
(Peyré et al., 2016), WOT similarly aims to introduce a flexible framework for ML practitioners
to align noisy and non-isometric datasets that are not explicitly tied to a specific implementation.
We hope that our work opens up an exciting direction for future implementations and optimization
techniques of WOT that are more efficient than E-WOT and L-WOT.

F METRICS

We include brief descriptions of the metrics used in each experiment for completeness.
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FOSCTTM (Experiment 1). Fraction of Samples Closer Than the True Match, introduced by Liu
et al. (2019), is a measure of alignment error between two datasets. It quantifies the proportion of
samples in one dataset that are closer to a given sample in the other dataset than its true match,
averaged across all samples in both datasets.

To compute the FOSCTTM score for dataset A and B, we follow these steps:

1. For each sample point in dataset A, calculate the Euclidean distances between that point
and all the data points in dataset B that have been projected into the dataspace of A (i.e.
using barycentric projection).

2. Using these calculated distances, determine the fraction of projected samples in dataset B
that are closer to the fixed sample point than its true match (i.e., the corresponding point in
the second dataset that should be aligned with the fixed sample point).

3. Repeat steps 1 and 2 for all sample points in dataset A and take the average; the final value
is the FOSCTTM score between A and B when B is projected into dataset A (note that this
score is not equivalent to when A is projected into dataset B)

4. Perform steps 1-3 for each sample point in dataset B, calculating the distances to all points
in dataset A projected into dataset B and determining the fraction of samples closer than
the true match.

5. Finally, compute the average of the fractions obtained in steps 3 and 4 across all samples
in both datasets to obtain the final FOSCTTM score.

The FOSCTTM score ranges from 0 to 1, with a perfect alignment resulting in a score of 0. In
other words, when all samples are closest to their true matches, the average FOSCTTM will be zero.
As the alignment quality decreases, the FOSCTTM score increases, indicating a higher fraction of
samples that are closer to other points than their true matches.

Relative Geodesic Error (Experiment 2). This metric is calculated as

ϵ(ai) = dY (ai,bi)/area(B)
1
2

where ai is the projected sample from animal A onto animal B. This projected sample is then
compared with the ground truth sample bi from animal B. dY represents the geodesic distance on
the animal which is calculated using a KNN approximation. The area over the animal is calculated
using Delaunay triangulation as the surfaces.

Label Transfer Accuracy (Experiment 3). Introduced in Cao et al. (2020), Label Transfer Ac-
curacy (LTA) is used when ground truth pairings are not available, and it evaluates how well cell
types cluster together after alignment. It works by splitting the aligned data in half, training a kNN
classifier on one half, and testing its accuracy on the other half. The classifier tries to predict cell
types based on their proximity in the aligned space. Higher scores mean the alignment has grouped
similar cell types closer together, allowing for more accurate predictions. This indicates a better
quality alignment, where cells of the same type are consistently found near each other.

G LIMITATIONS

While the Wavelet Optimal Transport (WOT) framework has demonstrated notable strengths in the
domain of unpaired single-cell alignment and other noisy and non-isometric matching experiments,
there are some limitations worth addressing:

Scalability. It is unclear whether WOT and its implementations can be applied directly to very
large-scale datasets without some computation reduction strategies like mini-batch OT (Nguyen
et al., 2022) as shown in Appendix E. Specifically, as the field of single-cell biology continues to
expand and produce larger datasets, it will be crucial for future implementations of WOT to consider
strategies for scalable alignment without compromising accuracy.

Hyperparameters. The wavelet kernel, scale aggregation operation, and entropic regularization are
deeply coupled. Having some prior knowledge or validation set to select the optimal values for these
hyperparameters would be ideal. However, in unpaired settings like ours, the key hyperparameter
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that requires tuning is entropic regularization ϵ (this issue was similarly seen in Gromov-Wasserstein
OT). Either by using a heuristic like the one proposed in Section 4 or another approach like Demetci
et al. (2022a), readers must ensure that the selected ϵ does not result in a uniform transport plan (i.e.
failed to converge to an informative plan).

Furthermore, we see a high variance in the experimental results between the two implementations,
E-WOT and L-WOT. While these different instantiations of WOT offer unique filtering methods, the
discrepancy in results suggests that there might be inherent complexities or nuances in the datasets
that one method captures better than the other. This variability highlights the need for a deeper ex-
ploration into which filtering method (entropy-based or learned) and which types of wavelet kernels
are more suited for specific types of datasets

Performance in Low Noise Settings. Our experiment results indicate that while WOT exhibits su-
perior performance in scenarios with high noise, dropout, and non-isometry, it does not consistently
outperform Gromov-Wasserstein OT in low-noise settings. This suggests that the benefits of using
WOT will be more clear in situations with substantial technical variability, rather than in cleaner
datasets. Readers should be aware of this trade-off when choosing the alignment technique best
suited to their dataset’s characteristics.
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