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Abstract

Existing KG-augmented models for question001
answering primarily focus on designing elabo-002
rate Graph Neural Networks (GNNs) to model003
knowledge graphs (KGs). However, they ig-004
nore (i) the effectively fusing and reasoning005
over question context representations and the006
KG representations, and (ii) automatically se-007
lecting relevant nodes from the noisy KGs dur-008
ing reasoning. In this paper, we propose a novel009
model, JointLK, which solves the above limi-010
tations through the joint reasoning of LMs and011
GNNs and the dynamic KGs pruning mecha-012
nism. Specifically, JointLK performs joint rea-013
soning between the LMs and the GNNs through014
a novel dense bidirectional attention module,015
in which each question token attends on KG016
nodes and each KG node attends on question017
tokens, and the two modal representations fuse018
and update mutually by multi-step interactions.019
Then, the dynamic pruning module uses the020
attention weights generated by joint reasoning021
to prune irrelevant KG nodes recursively. We022
evaluate JointLK on the CommonsenseQA and023
OpenBookQA datasets, and demonstrate its im-024
provements to the existing LM and LM+KG025
models, as well as its capability to perform in-026
terpretable reasoning.027

1 Introduction028

Commonsense question answering (CSQA) re-029

quires systems to acquire different types of com-030

monsense knowledge and reasoning skills, which031

is normal for humans, but challenging for machines032

(Talmor et al., 2019). Recently, large pre-trained033

language models (LMs) have achieved remarkable034

success in many QA tasks and appear to use im-035

plicit (factual) knowledge encoded in their model036

parameters during fine-tuning(Liu et al., 2019;037

Raffel et al., 2020). Nevertheless, commonsense038

knowledge is self-evident to humans and is rarely039

expressed clearly in natural language (Gunning,040

2018), which makes it difficult for LMs to learn041
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Figure 1: Our knowledge-enhanced joint reasoning
model framework with an example from Common-
senseQA. The subgraph is retrieved from ConceptNet.

commonsense knowledge from the pre-training text 042

corpus alone. 043

An extensive research path is to elaborately de- 044

sign graph neural networks (GNNs) (Scarselli et al., 045

2008) to perform reasoning over explicit structural 046

common sense knowledge from external knowl- 047

edge bases(Vrandečić and Krötzsch, 2014; Speer 048

et al., 2017). Related methods usually follow a 049

retrieval-and-modeling paradigm. First, the knowl- 050

edge subgraphs or paths related to a given question 051

are retrieved by string matching or semantic similar- 052

ity; such retrieved structured information indicates 053

the relation between concepts or implies the pro- 054

cess of multi-hop reasoning. Second, the retrieved 055

subgraphs are modeled by a well-designed graph 056

neural network module(Lin et al., 2019; Feng et al., 057

2020; Yasunaga et al., 2021) to perform reasoning 058

over knowledge graphs. 059

However, these approaches have two main issues. 060

First, the retrieved knowledge subgraph contains 061

many noisy nodes. Whether through simple string 062

matching or semantic matching, in order to retrieve 063

sufficient relevant knowledge, noise knowledge 064

graph nodes will inevitably be included. Especially 065
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with the increase of hop count, the number of irrele-066

vant nodes will expand dramatically, raising the bur-067

den of the model. As the example in Figure 1, some068

graph nodes such as “wood", “burn", and “gas",069

although related to some entities in the questions070

and choice, can mislead the global understanding071

of the question. Second, there are limited inter-072

actions between language representation and073

knowledge graph representation. Specifically,074

existing LM+KG methods (Lin et al., 2019; Feng075

et al., 2020) model question context and knowledge076

subgraphs in isolation by LMs and GNNs, and per-077

form only one interaction in a shallow manner to078

fuse their representations at the output for predic-079

tion. We argue that the limited interaction between080

the two modalities is the main bottleneck that may081

prevent the model from understanding the complex082

question-knowledge relations necessary to answer083

the question correctly.084

Based on the above consideration, we propose085

JointLK, a model that performs the fine-grained086

modal fusion and multi-layer joint reasoning be-087

tween the language model and the knowledge088

graph. (see Figure 2). Specifically, given a question089

and retrieved subgraphs, JointLK first obtain the090

representations of the two modalities by using an091

LM encoder and a GNN encoder respectively. Then092

we design a joint reasoning module to generate093

fine-grained bidirectional attention maps between094

each question token and each KG node to fuse095

the information from each modality to the other.096

Guided by the attention generated in the interac-097

tion process, the dynamic pruning module deletes098

irrelevant nodes to make the model reason along099

the correct knowledge path. Multiple JointLK lay-100

ers are stacked to form a hierarchy that supports101

multi-step interactions and recursive pruning. In102

summary, our contributions are three-fold:103

• We propose JointLK, a novel model that sup-104

ports multi-step joint reasoning between LM105

and KG. It uses dense bidirectional attention106

to simultaneously update query-aware knowl-107

edge graph representation and knowledge-108

aware query representation, bridging the gap109

between the two information modalities.110

• We design a dynamic graph pruning mod-111

ule that recursively removes irrelevant graph112

nodes at each JointLK layer to ensure that the113

model reasons correctly with complete and114

appropriate evidence.115

• Experimental results show that JointLK is su- 116

perior to current LM+KG methods, and the 117

refined evidence is interpretable. Furthermore, 118

through the multi-layer fusion of these two 119

modalities, JointLK exhibits strong perfor- 120

mance over previous state-of-the-art LM+KG 121

methods in performing complex reasoning, 122

such as solving questions with negation and 123

complex questions with more entities. 124

2 Related Work 125

Commonsense question answering is challenging 126

because the required commonsense knowledge is 127

rarely given in the context of questions and an- 128

swer choices or encoded in the parameters of pre- 129

trained LMs. Therefore, many works obtain the 130

required knowledge from external sources (e.g., 131

KGs, corpus) to augment CSQA models. Due to 132

the heterogeneity between structured knowledge 133

and unstructured text questions, there are currently 134

two main research methods. Some works(Bian 135

et al., 2021; Lv et al., 2020; Xu et al., 2021) unify 136

the two modalities during model input, such as 137

transforming structured knowledge into plain text 138

through templates or transforming question con- 139

text into structured graphs. However, the original 140

structural/textual information will inevitably be lost 141

during the conversion process. Other works(Lin 142

et al., 2019; Feng et al., 2020) use LM and GNN to 143

model the two modalities separately, and perform 144

shallow interactions in the latter model stage, such 145

as attentive pooling or simple concatenation of the 146

two modal representations. Although this method 147

can retain the original information of question con- 148

text and KGs, the limited interaction will affect the 149

flow of information between the two modalities, so 150

we mainly improve on this point. 151

Recently, QA-GNN(Yasunaga et al., 2021) ex- 152

plicitly views the QA context as an additional node, 153

connects it and KG to form a joint graph, and mu- 154

tually updates their representations through graph- 155

based message passing. However, it pools the rep- 156

resentation of the question context into a single 157

node, which limits the updating of the text repre- 158

sentation and fine-grained interaction between the 159

LM and the GNN. Compared with prior works, 160

we retain the individual structure of both modali- 161

ties, consider fine-grained interaction between any 162

token in question and any entity in KG through 163

dense bidirectional attention, and perform multi- 164

step joint reasoning by stacking several interaction 165
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Figure 2: Overall architecture of our proposed JointLK model, which takes a query (question-choice) and a retrieved
knowledge subgraph as input, and outputs a scalar that represents the plausibility score of this query. JointLK
mainly consists of four modules the Query Encoder, the Graph Layer, the Joint Reasoning Module and the Dynamic
Pruning Module, of which the latter three form a stack of N identical layers.

layers. Furthermore, we gradually prune the KG166

size in each stacked model layer under the guidance167

of attention weights generated in the interactions,168

making the reasoning path transparent and inter-169

pretable.170

3 Methodology171

In this section, we introduce the task definition172

(§ 3.1) and our JointLK model. The model frame-173

work is shown in Figure 2. JointLK takes the query174

and the retrieved knowledge subgraph as input, and175

outputs a real value as the correctness score of the176

answer. The model is mainly composed of four177

parts: query encoder, GNN layer, joint reasoning178

module and dynamic pruning module, of which the179

latter three form a stack of N identical layers. We180

use a pre-trained language model to learn the query181

representation (§ 3.2), and use the GNN layer to182

learn the graph representation (§ 3.3). The Joint183

Reasoning Module receives these two modalities’184

representations and then apply dense bidirectional185

attention to make information fusion and represen-186

tation update for each token and node (§ 3.4). The187

LM-to-KG attention weight generated in reasoning188

represents the global importance of each node in189

the graph, so the dynamic pruning module prunes190

the graph layer by layer according to this weight191

and finally retains the most relevant nodes (§ 3.5).192

After N layers of iteration, the query representation193

and the trimmed graph representation are used to194

predict the answer (§ 3.6). 195

3.1 Task Definition 196

The CSQA task in this paper is a multiple-choice 197

problem with five answer choices. Given a question 198

q and a set of answer choices {a1, a2, ..., an}, our 199

task is to measure the plausibility score between 200

q and each answer choice a then select the an- 201

swer with the highest plausibility score. In general, 202

questions do not contain any reference to answer 203

choices, so the external knowledge graph provides 204

the necessary background knowledge. We extract 205

from the external KG a subgraph g = (V,R) with 206

the guidance of question and choice. Here V is 207

a subset of entity nodes retrieved from the exter- 208

nal KG. E ∈ V ×R× V is the set of edges that 209

connect nodes in V , where R is a set of relations 210

types. We describe the detailed extraction process 211

in Appendix A. 212

3.2 Query Encoder 213

We follow baselines to use pre-trained language 214

models to encode the query {wi}Mi=1 (question and 215

choice) into a sequence of vectors {q0i }Mi=1: 216

{q̃01, ..., q̃0M} = EncoderLM({w1, ..., wM})
(1) 217

Here {q̃0i }Mi=1 ∈ RT is the last hidden layer vector 218

of each token in the query. Then we feed the repre- 219

sentation of tokens into a non-linear layer so that 220
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the text representation space is aligned to the entity221

representation space:222

q0i = σ(fs(q̃
0
i )) (2)223

where fs : RT → RD is a linear transformation,224

and σ is the activation function. The represen-225

tations of tokens Q0 = {q0i }Mi=1 ∈ RD will be226

provided to the joint reasoning module for further227

interaction with the graph entities representations.228

3.3 GNN Layer229

After we obtain token representations by the query230

encoder, we further model the subgraph structure231

to obtain entity representations. First, We use the232

BERT model with average pooling to get the initial233

representation for each entity X0 = {x0i }
|V |
i=0 ∈234

RD. Then, we apply GNN Layer to update node235

representation through iterative message passing236

between neighbors on the graph, while GNN is237

built on the RGAT (Wang et al., 2020a) and is238

a simplification of Yasunaga et al. (2021). For239

brevity, we formulate the entire computation in one240

layer as:241

{x̃l1, ..., x̃l|V |} = GNN− Layer({xl−1
1 , ..., xl−1

|V | })
(3)242

The output representation xli is computed by243

α̂ji = (xl−1
i Wq)(x

l−1
j Wk + rji)

T , (4)244

αji = softmax(α̂ji/
√
D), (5)245

x̂l−1
i =

∑
j∈Ni∪{i}

αji(x
l−1
j Wv + rji), (6)246

x̃li = LayerNorm(xl−1
i + x̂l−1

i Wo) (7)247

where matrices Wq,Wk,Wv,Wo ∈ RD×D are248

trainable parameters, Ni is the neighbor of node i.249

rji = ψ(eji, uj , ui) is the relation feature vector,250

where eji is a one-hot vector denoting the rela-251

tion type of the edge (j, i) and uj , ui are one-hot252

vectors denoting the node types of j and i. The253

following joint reasoning module will further fuse254

x̃li and ql−1
i to obtain their updated representations.255

3.4 Joint Reasoning Module256

To reduce the gap of query and knowledge graph257

features, we fuse them in the joint reasoning mod-258

ule by the dense bidirectional attention mechanism259

that connects two encoding layers of query and260

knowledge graph and captures the fine-grained in-261

terplay between them.262

The module takes the query and KG representa- 263

tions Q and X as inputs and then outputs their 264

updated versions. We denote the inputs to the 265

joint reasoning module in the l-st Fusion layer by 266

Ql−1 = {ql−1
i }Mi=1 and X̃l = {x̃li}

|V |
i=1. Given ql−1

i 267

and x̃li, an affinity matrix is first constructed via: 268

Sl
ij =W T

S [ql−1
i ; x̃lj ; q

l−1
i ◦ x̃lj ] (8) 269

where W T
S is a learnable weight matrix. We nor- 270

malize Sl
ij in row-wise to derive KG-to-LM at- 271

tention maps on query tokens conditioned by each 272

entity in KG as 273

Sl
qi = softmax(Sij) (9) 274

and also normalize Sl
ij in column-wise to derive 275

LM-to-KG attention maps on entities conditioned 276

by each query token as 277

Sl
xj

= softmax(ST
ij) (10) 278

The attended representations are computed as fol- 279

lows: 280

q̂ij = ql−1
i ⊗ Sl

qi , x̂ij = x̃lj ⊗ Sl
xj

(11) 281

where ⊗ represents matrix multiplication. The at- 282

tended features are fused with the original features 283

of the other modality by concatenation and then 284

compressed to low-dimensional space by: 285

qli =WQ[q
l−1
i ; x̂ij ; q

l−1
i ◦ x̂ij ; ql−1

i ◦ q̂ij ], (12) 286

x̄lj =WX [x̃lj ; q̂ij ; x̃
l
j ◦ q̂ij ; x̃lj ◦ x̂ij ] (13) 287

where WQ,WX are learnable weights. Then the 288

updated query representation Ql = {qli}Mi=1 will 289

be input to the next l-th stacked JointLK layer of 290

to continue participating in joint reasoning, and the 291

updated KG representation X̄l = {x̄li}
|V |
i=1 will be 292

input to the next module of the current JointLK 293

layer for pruning. 294

3.5 Dynamic Pruning Module 295

In Equation 10, the LM-to-KG attention value im- 296

plies the importance of different nodes in the sub- 297

graph for question answering. Inspired by SAG- 298

Pool (Lee et al., 2019), under the guidance of query, 299

we retain relevant nodes and cut out irrelevant 300

nodes according to the LM-to-KG attention. Then, 301

We define a hyperparameter, the Retention ratio 302

K ∈ (0, 1], which determines the number of nodes 303
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to be retained. We choose the top ⌈K · |V |⌉ nodes304

according to the value of LM-to-KG attention:305

idx = top− rank (Z, ⌈K · |V |⌉) , (14)306

Zmask = Zidx (15)307

where top-rank is a function that returns the index308

of top ⌈K · |V |⌉ value, ·idx is an indexing opera-309

tion, and Zmask is corresponding attention mask.310

Next, the subgraph is formed by pooling out the311

less essential entity nodes as:312

Xl = X̄l
idx,: ⊙ Zmask,

Al = Āl
idx,idx

(16)313

where X̄l
idx,: is the row-wise indexed representa-314

tion matrix of X̄l, ⊙ is the broadcasted elemen-315

twise product, and Āl
idx,idx is the row-wise and316

col-wise of indexed adjacency matrix. Xl =317

(xl1, x
l
2, . . . , x

l
⌈k|V |⌉), A

l and ⌈K · |V |⌉ are the rep-318

resentation matrix, the adjacency matrix and the319

number of graph nodes in the next JointLK layer.320

3.6 Answer Prediction321

After N layers of iteration, we finally obtain the322

query representation QN that fuses knowledge in-323

formation and the graph representation XN that324

fuses question information. We compute the score325

of a being the correct answer as:326

p = (a|q) = MLP ([s; g]) (17)327

where s is the mean pooling of QN , and g is the328

attention-based pooling of XN . We get the final329

probability by normalize all question-choice pairs330

with softmax.331

4 Experimental Setup332

4.1 Datasets333

We evaluate our model on two typical com-334

monsense question answering datasets Com-335

monsenseQA(Talmor et al., 2019) and Open-336

BookQA(Mihaylov et al., 2018). Common-337

senseQA is a 5-way multiple-choice QA task that338

requires commonsense for reasoning and contains339

12,102 questions. The test set of CommonsenseQA340

is not publicly available, and model predictions can341

only be evaluated every two weeks via the official342

leaderboard. Hence, we experiment and report the343

accuracy on the in-house dev (IHdev) and test (IHt-344

est) splits used by Lin et al. (2019), and report the345

accuracy of our final system on the official test set.346

OpenBookQA is a 4-way multiple choice QA task 347

that requires reasoning with elementary science 348

knowledge, containing 5,957 questions. We use the 349

official data split. 350

4.2 Implementation Details 351

We use ConceptNet (Speer et al., 2017), a common- 352

sense knowledge graph, as our structured knowl- 353

edge source for both of the above tasks. Given 354

each query, we follow the preprocessing steps de- 355

scribed in Feng et al. (2020) to retrieve the sub- 356

graph from ConceptNet, and the max hop size is 3 357

(see Appendix A for the detail). We use ROBERTA- 358

LARGE (Liu et al., 2019) as the backbone. We use 359

cross-entropy loss and RAdam (Liu et al., 2019a) 360

optimizer. In training, we set the maximum input 361

sequence length to text encoders to 100, batch size 362

to 128, and perform early stopping. We set the 363

dimension (D = 200) and number of layers (N = 364

5) of our GNN module, with dropout rate 0.2 ap- 365

plied to each layer (Srivastava et al., 2014). We use 366

separate learning rates for the LM encoder and the 367

graph encoder. We choose the LM encoder learn- 368

ing rate from{1×10−5, 2×10−5, 3×10−5}, and 369

choose the graph encoder learning rate from{1× 370

10−3, 2 × 10−3}. Each model is trained using 371

one GPU (Tesla_v100-sxm2-16gb), which takes 20 372

hours on average. 373

4.3 Compared Method 374

Although text corpus can provide complementary 375

knowledge except for knowledge graphs, our model 376

focuses on improving the use of KG and the joint 377

reasoning between LM and KG, so we choose LM 378

and LM+KG as the comparison methods. 379

To investigate the role of KG, we compare with 380

the benchmark model ROBERTA-LARGE, which 381

does not use KG. For LM+KG methods, they share 382

a similar high-level framework with our methods, 383

that is, LM is used as a text encoder, GNN or RN 384

is used as an external KG encoder, but the way of 385

using knowledge or reasoning is different:(1) Re- 386

lationship network (RN) (Santoro et al., 2017), (2) 387

RGCN (Schlichtkrull et al., 2018), (3) GconAttn 388

(Wang et al., 2019), (4)KagNet (Lin et al., 2019) 389

and (5)MHGRN (Feng et al., 2020), (6) QA-GNN 390

(Yasunaga et al., 2021). (1), (2) and (3) are the 391

relational perception GNNs for KGs, and (4), (5) 392

and (6) are further model paths in KGs. To be fair, 393

we use the same LM for all comparison methods. 394
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Methods IHdev-Acc.(%) IHtest-Acc.(%)
RoBERTa-large(w/o KG) 73.07 (±0.45) 68.69 (±0.56)
+ RGCN 72.69 (±0.19) 68.41 (±0.66)
+ GconAttn 71.61 (±0.39) 68.59 (±0.96)
+ KagNet 73.47 (±0.22) 69.01 (±0.76)
+ RN 74.57 (±0.91) 69.08 (±0.21)
+ MHGRN 74.45 (±0.10) 71.11 (±0.81)
+ QA-GNN 76.54 (±0.21) 73.41 (±0.92)

+ JointLK (Ours) 77.88 (±0.25) 74.43 (±0.83)

Table 1: Performance comparison on CommonsenseQA
in-house split. We follow the data division method of
Lin et al. (2019) and report the in-house Dev (IHdev)
and Test (IHtest) accuracy(mean and standard deviation
of four runs).

Methods Test
RoBERTa (Liu et al., 2019) 72.1
Albert (Lan et al., 2019) (ensemble) 76.5
RoBERTa + FreeLB (Zhu et al., 2019) (ensemble) 73.1
RoBERTa + HyKAS (Ma et al., 2019) 73.2
RoBERTa + KE (ensemble) 73.3
RoBERTa + KEDGN (ensemble) 74.4
XLNet + GraphReason (Lv et al., 2020) 75.3
RoBERTa + MHGRN (Feng et al., 2020) 75.4
Albert + PG (Wang et al., 2020b) 75.6
RoBERTa + QA-GNN (Yasunaga et al., 2021) 76.1

Roberta + JointLK (Ours) 76.6

Table 2: Performance comparison on the Common-
senseQA official leaderboard. Our model has achieved
state-of-the-art under the setting of ROBERTA-LARGE
encoder.

5 Results and Analysis395

5.1 Main Results396

The results on CommonsenseQA in-house split397

dataset and official test dataset are shown in Table398

1 and Table 2. The results on OpenBookQA test399

dataset and leaderboard are shown in Table 3 and400

Table 4. We can observe that JointLK performs best401

among all fine-tuned LMs and existing LM+KG402

models. On CommonsenseQA, our model’s test403

performance improves by 5.74% over fine-tuned404

LMs and 1.02% over the prior best LM+KG model,405

QA-GNN. On OpenbookQA, our model’s test per-406

formance improves by 6.52% over fine-tuned Aris-407

toRoBERTa, and 2.15% over QA-GNN. Addition-408

ally, we also submit our best model to the leader-409

boards, and our JointLK (with the text encoder410

being ROBERTA-LARGE) ranks first among com-411

parable approaches. Compared with the previous412

best model MHGRN and QA-GNN, the boost over413

them suggests the effectiveness of our proposed414

Methods RoBERTa-Large AristoRoBERTa
Fine-tuned LMs (w/o KG) 64.80 (±2.37) 78.40 (±1.64)
+ RGCN 62.45 (±1.57) 74.60 (±2.53)
+ GconAttn 64.75 (±1.48) 71.80 (±1.21)
+ RN 65.20 (±1.18) 75.35 (±1.39)
+ MHGRN 66.85 (±1.19) 80.6
+ QA-GNN 67.80 (±2.75) 82.77 (±1.56)

+ JointLK (Ours) 70.34 (±0.75) 84.92 (±1.07)

Table 3: Test accuracy on OpenBookQA. Methods with
AristoRoBERTa use the textual evidence by Clark et al.
(2019) as an additional input to the QA context.

Methods Test
Careful Selection (Banerjee et al., 2019) 72.0
AristoRoBERTa 77.8
KF + SIR (Banerjee and Baral, 2020) 80.0
AristoRoBERTa + PG (Wang et al., 2020c) 80.2
AristoRoBERTa + MHGRN (Feng et al., 2020) 80.6
ALBERT + KB 81.0
AristoRoBERTa + QA-GNN (Yasunaga et al., 2021) 82.8
T5* (Raffel et al., 2020) 83.2
UnifiedQA(11B)* (Khashabi et al., 2020) 87.2

AristoRoBERTa + JointLK (Ours) 85.6

Table 4: Test accuracy on OpenBookQA leaderboard.
All listed methods use the provided science facts as an
additional input to the language context. The previous
top 2 systems, UnifiedQA (11B params) and T5 (3B
params) are 30x and 8x larger than our model.

joint reasoning between LM and KG and the dy- 415

namic pruning mechanism. 416

In particular, we do not compare with the higher 417

ranking models on the leaderboard, such as unified 418

QA(Khashabi et al., 2020), Albert + DESC-KCR 419

(Xu et al., 2021), because they either use a stronger 420

text encoder or use additional data resources, while 421

our model focuses on improving the joint reasoning 422

between LM and KG. 423

5.2 Ablation Studies 424

We further conduct in-depth analyses to investigate 425

the effectiveness of different components in our 426

model. We show the accuracy of JointLK on the 427

CommonsenseQA IHdev set. 428

Impact of JointLK components We assess the im- 429

pact of the joint reasoning module (§ 3.4) and the 430

dynamic pruning module (§ 3.5), shown in Table 431

5. Disabling the dynamic pruning module results 432

in 0.5% drop in performance, showing that some 433

nodes in subgraph are not conducive to reasoning. 434

Especially, when we disable the joint reasoning 435

module, the corresponding dynamic pruning mod- 436

ule will also be removed, because the latter depends 437
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Methods IHdev-Acc. (%)
JointLK (N=5) 77.88
- Dynamic Pruning Module 77.38
- Joint Reasoning Module 76.61

Table 5: Ablation study on model components using
ROBERTA-LARGE as the text encoder. We report the
IHdev accuracy on CommonsenseQA.
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Figure 3: Ablation study on stacked of JointLK layers
(a) and the retention ratio in pruning (b).

on the attention value in the former. Then the re-438

sults have a significant drop: 77.88% → 76.61%,439

suggesting that the joint reasoning between LM440

and KG is critical.441

Impact of stacked of JointLK Layers We inves-442

tigate the impact of the number of JointLK layers443

(shown in Figure 3 (a)). The increase of layers con-444

tinues to bring benefits until layers N = 5. How-445

ever, performance begins to drop when N > 5. As446

the number of layers increases, the model changes447

from underfitting to overfitting.448

Impact of the Retention Ratio in Pruning The re-449

tention ratio K is a hyperparameter of the dynamic450

pruning module. Since it is recursively pruning451

in each stacked layer of JointLK, the percentage452

of graph nodes that the model ultimately retains453

is also related to the number of layers of JointLK,454

that is, KN , where N = 5. Experiments show455

that if the retention ratio is too high, there may456

be almost no pruning effect (for example, K=0.98,457

90% of the nodes are retained in the last layer);458

otherwise, useful nodes may be deleted. As shown459

in Figure 3 (b), when the number of JointLK lay-460

ers N = 5, K = 0.92 (about 66% of the original461

nodes remain in the last layer) works the best on462

the CommonsenseQA dev set.463

5.3 Quantitative Analysis464

Considering the overall performance improvement465

of our model on these two datasets, we analyze466

whether the improvement is reflected in questions467

that require more complex reasoning, such as ques-468

Methods IHdev-Acc
(Overall)

IHdev-Acc
(Questions

w/ negation)

IHdev-Acc
(Questions w/
≤7 entities)

IHdev-Acc
(Questions w/

>7 entities)
Number 1221 133 723 498

QA-GNN 76.99 72.18 76.63 77.51

JointLK(Ours) 78.38 75.18 (↑3.00) 77.59 (↑0.96) 79.52 (↑2.01)

Table 6: Performance on the CommonsenseQA IHdev
set on questions with negation terms and fewer/more
entities.

tions with negation and complex questions with 469

more entities. We compare our model with the 470

prior best LM+KG model, QA-GNN in Table 6. 471

Questions with negation Large LMs do well due 472

to memorizing subject and filler co-occurrences 473

but are easily distracted by elements like nega- 474

tion(Zagoury et al., 2021). To investigate the rea- 475

soning ability of the model on negation, we re- 476

trieved 133 questions with negation terms (e.g., no, 477

not, nothing, never, unlikely, don’t, doesn’t, didn’t, 478

can’t, couldn’t) from the CommonsenseQA IHdev 479

set. JointLK exhibits a big boost (↑3.00%) over 480

QA-GNN, suggesting its strength in negation rea- 481

soning. The fine-grained joint inference of LM 482

and GNN allows the model to pay attention to the 483

semantic nuances of language expressions. 484

Questions with fewer/more entities When the 485

question contains many entities, the size and noise 486

of the retrieved KG may limit the model’s perfor- 487

mance because the model needs to understand the 488

complex relationship between entities. According 489

to statistics (see Appendix A), questions contain 490

an average of 7 entities, so we divide the question 491

into two categories: containing fewer entities (≤7) 492

and more entities(>7). Compared with QA-GNN, 493

JointLK has a bigger boost on questions with more 494

entities (↑2.01%) than those with fewer entities 495

(↑0.96%), suggesting that our model can reduce 496

the reasoning difficulty of complex questions be- 497

cause it can remove irrelevant nodes in reasoning. 498

5.4 Interpretability: A Case Study 499

We aim to interpret JointLK’s reasoning process by 500

analyzing the pruning of the knowledge subgraph. 501

Figure 4 shows an example from CommonsenseQA 502

where our model correctly answers the question 503

and finally retains reasonable reasoning paths by 504

pruning the subgraph. The flow from (a) to (b) 505

to (c) represents the recursive pruning of the sub- 506

graph according to the LM-to-KG attention weight 507

at each GNN update layer. From (a) to (b), al- 508

though the nodes wood and burn bridge the reason- 509
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…
action singer

wood burn

dancetake_lessons

fun gas

singing

play_guitar

guitar

play

(a)

singe

…
action singer

dancetake_lessons

fun gas

singing

play_guitar

guitar

play

(b)

singe

…
action singer

dancetake_lessons

fun

singing

play_guitar

guitar

play

(c)

Figure 4: Case study of our model reasoning and pruning process. The question and answer choices corresponding
to this case are: "What do people typically do while playing guitar? A.cry B. hear sounds C. singing D. arthritis E.
making music".

ing gap between question entity and answer entity,510

their semantics are very different from the ques-511

tion. From (b) to (c), “play_guitar
usedfor−→ fun"512

and “fun relatedto−→ gas
relatedto−→ sing" are both513

reasonable, but the former is related to the seman-514

tics of the question, and the latter is not. Two515

paths are reserved in (c), “play_guitar hassubevent−→516

take_lessons hassubevent−→ dance
relatedto−→ sing”517

and “play_guitar relatedto−→ action
relatedto−→518

singer
relatedto−→ sing". These two paths describe519

two possible scenarios that support answering the520

question.521

5.5 Error Analysis522

In order to understand why our model fails in some523

cases, we randomly select 100 error cases and524

group them into several categories. There are three525

main types of errors, and we show some examples526

in the Appendix C.527

Miss important evidence (39/100) Although we528

can retrieve many nodes related to questions and529

choices from ConceptNet, due to the incomplete-530

ness of the knowledge graph, there may be missing531

essential evidence nodes in the reasoning paths532

to answer the question. For example, although533

“eating_dinner" will cause “sleepiness" or “indi-534

gestion", knowledge such as “lactose intolerance535

causes indigestion" is essential to answer the ques-536

tion (Wikipedia: Lactose intolerance is a common537

condition caused by a decreased ability to digest538

lactose, a sugar found in dairy products.). How-539

ever, ConceptNet does not cover such knowledge540

or not is retrieved.541

Indistinguishable knowledge (25/100) Several542

choices of the question may be correct, difficult543

to distinguish, and which one is correct may vary544

from person to person. For example, “human" 545

and “cat" may be at location “bed" or “comfort- 546

able chair", and the knowledge provided by Con- 547

ceptNet is also the same. The model may choose 548

bed because the bed appears more frequently in the 549

pre-trained corpus. 550

Incomprehensible questions (23/100) This type of 551

error often occurs when the question is particularly 552

long, involving various events and changes in the 553

characters’ emotions. The model is difficult to 554

understand the scene described by the question. 555

Some questions may require reasoning based on 556

events, but the knowledge in ConceptNet is more 557

based on entities and attributes. 558

The above three types of errors show that se- 559

lecting complete, accurate, and context-sensitive 560

knowledge is vital for more effective KG-enhanced 561

models. 562

6 Conclusion 563

In this work, we propose JointLK and provide a 564

set of experiments to prove that (i) LM and KG 565

interactive fusion can reduce the semantic gap be- 566

tween the two information modalities and make 567

better use of KG for joint reasoning with LM. (ii) 568

Dynamic pruning module can recursively delete 569

irrelevant subgraph nodes at each layer of JointLK 570

to provide fine appropriate evidence. Our results on 571

CommonsenseQA and OpenBookQA demonstrate 572

the superiority of JointLK over other methods us- 573

ing external knowledge and the strong performance 574

in performing complex reasoning. In addition, our 575

research results can be broadly extended to other 576

tasks that require KGs as additional background 577

knowledge to augment LMs, such as entity linking, 578

KG completion and the recommendation system. 579
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Ethical Impact580

This paper proposes a general approach to fuse581

language models and external knowledge graphs582

for commonsense reasoning. We worked within583

the purview of acceptable privacy practices and584

strictly followed the data usage policy. In all the585

experiments, we use public datasets and consist586

of their intended use. We neither introduce any587

social/ethical bias to the model nor amplify any588

bias in the data, so we do not foresee any direct589

social consequences or ethical issues.590
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A Extracting subgraph from External 754

KG 755

We choose ConceptNet as the external knowledge 756

base, and we follow the process of Feng et al. 757

(2020) and Yasunaga et al. (2021) to retrieve the 758

knowledge subgraph. 759

Given the question and choice, we use spaCy to 760

identify the entities that appear in ConceptNet in 761

question and choice, respectively, and get the initial 762

node set Vq and Va, which form the initial node set 763

Vq,a. For example, in the question “What do peo- 764

ple typically do while playing guitar?" and choice 765

“singing", Vq = {guitar, people, play, play_guitar, 766

playing, playing_guitar, typically}, Va = {singe, 767

singing}. Then, in order to extract the subgraph 768

related to question and choice, we add the bridge 769

entities on the 1 and 2 hop paths between any pair 770

of entities in Vq,a, thus obtaining the retrieved en- 771

tity set V . 772

There may be many nodes in V , especially long 773

questions contain many concepts. We follow the 774

preprocessing method of Yasunaga et al. (2021), 775

connect the nodes with question + choice, and cal- 776

culate the relevant scores of the nodes through a 777

pre-trained LM. We only retain the top 200 scoring 778

nodes (It is worth noting that this is the preprocess- 779

ing of the retrieval process, which is different from 780

the dynamic pruning in section 3.5. The former is 781

to score only one node and separate from the whole 782

subgraph where the node is located, while the latter 783

is recursive pruning in the updating process of the 784

modeling subgraph). 785

Finally, we get the relation set R by merging the 786

relation types in ConceptNet and adding reverse 787

relation. We retrieve all the edges in R of any two 788

nodes in V . In addition, we add question as a node 789

q to V , and add the bidirectional edges of q to Vq 790

and q to Va. The relation types are shown in Table 791

7, and the statistics of the retrieved nodes are shown 792

in Table 8. 793
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Relation Merged Relation
AtLocation

AtLocation
LocatedNear

Causes
CausesCausesDesire

*MotivatedByGoal
Antonym

Antonym
DistinctFrom
HasSubevent

HasSubevent

HasFirstSubevent
HasLastSubevent
HasPrerequisite

Entails
MannerOf

IsA
IsAInstanceOf

DefinedAs
PartOf

PartOf
*HasA

RelatedTo
RelatedToSimilarTo

Synonym
CapableOf CapableOf
CreatedBy CreatedBy

Desires Desires
UsedFor UsedFor

HasContext HasContext
HasProperty HasProperty

MadeOf MadeOf
NotCapableOf NotCapableOf

NotDesires NotDesires
ReceivesAction ReceivesAction

q → Vq q → Vq
q → Va q → Va

Table 7: Relation types after preprocessing. *RelationX
indicates the reverse relation of RelationX. There are 19
kinds of merged relations. We consider the reverse edge
of each relation during training and testing, so there are
38 relation types in total.

B Node Initialization 794

For each entity in the subgraph, we need to ob- 795

tain its feature representation. Following (Feng 796

et al., 2020), we first use the template to convert 797

the knowledge triples in ConceptNet into sentences, 798

and feed them into the pre-trained BERT-LARGE, 799

obtaining a sequence of tokens embeddings from 800

the last layer. For each entity, we perform mean 801

pooling over the tokens of the entity’s occurrences 802

across all the sentences to form the initial embed- 803

dings x0i . 804

C Error Types and Examples 805

In Table 9, we present examples for each error 806

type in the Commonsense IHdev set. Because the 807

average number of knowledge subgraph nodes cor- 808

responding to each case is about 100, we cannot list 809

them all, so only some important nodes are shown 810

here. 811
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Datesets Split Average |Vq| Average |Va| Average |V |

CommomsenseQA
Train set 7.43 2.07 107.96
Dev set 7.20 2.05 106.55
Test set 7.38 2.05 106.22

OpenBookQA
Train set 6.59 2.85 100.14
Dev set 6.48 3.41 108.15
Test set 6.42 3.08 101.60

Table 8: Statistics on the number of retrieved subgraph nodes corresponding to each piece of data. Vq is the set of
entities included in a question. Va is the set of entities included in a choice. V contains Vq, Va, and any bridging
entity with no more than two hops between any pair of entities in Vq and Va.

Error type Example
Missing
important
evidence
(39/100)

Question He has lactose intolerant, but was eating dinner made of cheese,
what followed for him?

Answer choices digestive×| feel better ×| sleepiness×| indigestion ✓| illness×
Subgraph for correct answer eating_dinner causes−→ indigestion, intolerant

relatedto−→
pain

isa−→ symptom
isa←− indigestion, ...

Subgraph for predicted answer lactose
relatedto−→ food

hassubevent−→ eating_dinner causes−→
sleepiness, intolerant relatedto−→ bear

relatedto−→ sleep, ...

Indistinguishable
knowledge
(25/100)

Question Where would a cat snuggle up with their human?
Answer choices floor×| humane society×| bed×| comfortable chair✓| window

sill×
Subgraph for correct answer cat

atlocation−→ chair, human atlocation−→ chair, ...

Subgraph for predicted answer cat
atlocation−→ bed, human atlocation−→ bed, ...

Incomprehensible
questions
(23/100)

Question The man tried to break the glass in order to make his escape in
time, but he could not. The person in the car, trying to kill him,
did what?

Answer choices accelerate✓| putting together×| working×| construct×| train×
Subgraph for correct answer escape

isa←− break
antonym−→ accelerate, kill

relatedto−→
attack

relatedto−→ accelerate, man
relatedto−→ break

relatedto−→
falling

hassubevent−→ accelerate, ...

Subgraph for predicted answer break
isa−→ action

relatedto−→ work, escape isa←− break
hassubevent←−

work, kill causes−→ die
hassubevent←− work, ...

Table 9: Several error cases of JointLK model on CommonsenseQA dev dataset. Because there are many nodes in
the subgraph, we represent some nodes and relationships in the subgraph in the form of links.
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