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Abstract

The challenges facing speech recognition sys-
tems, such as variations in pronunciations, ad-
verse audio conditions, and the scarcity of la-
beled data, emphasize the necessity for a post-
processing step that corrects recurring errors.
Previous research has shown the advantages of
employing dedicated error correction models,
yet training such models requires large amounts
of labeled data which is not easily obtained. To
overcome this limitation, synthetic transcribed-
like data is often utilized, however, bridging the
distribution gap between transcribed errors and
synthetic noise is not trivial. In this paper, we
demonstrate that the performance of correction
models can be significantly increased by train-
ing solely using synthetic data. Specifically, we
empirically show that: (1) synthetic data gener-
ated using the error distribution derived from a
set of transcribed data outperforms the common
approach of applying random perturbations; (2)
applying language-specific adjustments to the
vocabulary of a BPE tokenizer strike a balance
between adapting to unseen distributions and
retaining knowledge of transcribed errors. We
showcase the benefits of these key observations,
and evaluate our approach using multiple lan-
guages, speech recognition systems and promi-
nent speech recognition datasets.

1 Introduction

Speech Recognition systems has undergone re-
markable progress in the last several years, largely
due to the growing adoption of the self-supervision
paradigm. (Baevski et al., 2020; Hsu et al., 2021;
Radford et al., 2022; Balestriero et al., 2023).
These systems can attain low error rates given suf-
ficient model capacity and quality labeled data,
yet they are susceptible to errors caused by au-
dio and speech factors, such as speakers pronun-
ciation, background noise, recording quality and
orthographic errors which occurs mostly in non-
phonetic languages.

Figure 1: The best performing BPE hyperparameters for
seven European correction models. Phonetic (isolating,
low morpheme-word ratio) languages tend to use short
tokens with small vocabularies. Morphological-rich
(bundles several morphemes in each word, inflectional
patterns) requires longer tokens and larger vocabularies
to memorize inflected words and complex structures.

To this end, researchers suggested text-to-text
error correction methods specifically designed to
correct transcribed errors (Mani et al., 2020; Leng
et al., 2021a; Hrinchuk et al., 2020). These
transformer-based methods typically requires a
massive and diverse training data (i.e., transcribed
audio segments and their corresponding human-
authored transcriptions) which is rarely at reach.

To bridge that gap, synthetic data is frequently
incorporated to ensure a sufficient amount of train-
ing examples. A common approach is to introduce
random perturbations or use predefined confusion
sets (Ji et al., 2021; Karpukhin et al., 2019; Be-
linkov and Bisk, 2017). Nevertheless, this approach
might result with perturbations that are unrelated
to transcribed errors, thereby failing to accurately
replicate the distribution of such errors.

A promising solution would involve generating
a set of synthetic examples that follows the error
distribution of transcribed data, and utilize it to



train a correction model. Such model needs to find
a balance between memorizing the transcribe-like
patterns by fitting the synthetic training data, and
generalizing to unseen distributions.

Transformer-based correction models mostly use
subword tokenizers such as BPE (Sennrich et al.,
2015), which merges tokens based on a learned set
of rules proportional to the tokenizer’s vocabulary
size. Prior research showed that small vocabularies
consisting of short tokens, such as individual char-
acters, may assist with spelling errors, natural noise
and generalize to unseen distributions (Ma et al.,
2020; Kann et al., 2020). However, it may also lead
to degraded performance in some settings (Gowda
and May, 2020; Clark et al., 2022).

Alternatively, it has been shown that large vo-
cabularies can affect the model’s memorization ca-
pabilities (Kharitonov et al., 2021), which can be
significant for recurring transcribed error patterns.

To address these shortcomings, we generate ex-
amples that mimic the error distribution of tran-
scribed texts by incorporating information derived
from transcribed errors.We then balance between
memorizing erroneous patterns and generalizing to
unseen distributions using language-specific adjust-
ments to the vocabulary of BPE tokenizers. These
adjustments limit the vocabulary size and the maxi-
mum length of vocabulary tokens.

Interestingly, we find that the optimal vocabulary
limitations differs between languages (Figure 1).
Our experiments reveal a correlation between the
vocabulary size and the phonetic complexity of the
languages. Phonetically simpler languages tend
to perform better with smaller BPE vocabularies.
Furthermore, we have noticed that languages with
rich morphological structures benefit from a longer
token length limitation. One possible explanation
is that non-phonetic languages with extensive mor-
phology structures require memorizing error pat-
terns that consist of longer sequences. The field of
research concerning the maximum length of indi-
vidual vocabulary tokens, irrespective of vocabu-
lary size, is currently lacking in extensive study.

Our contributions can be summarized as follows:

1. We demonstrate the advantages of training er-
ror correction models with synthetic data de-
rived from transcribed errors and an adjusted
BPE vocabulary.

2. Our approach generalizes across diverse
datasets and outputs from various speech

recognition models, despite being trained ex-
clusively using synthetic data.

3. We provide thorough experiments and abla-
tion, demonstrating the trade-offs in adjusting
language-specific BPE vocabulary sizes.

2 Related Work

Transcribed Errors Correction. Correction
methods are commonly applied as a post-
processing step, aiming to map transcribed errors to
their correct form. Recent works demonstrated the
merits of utilizing transformer-based architectures,
stretching from auto-regressive (Mani et al., 2020;
Shen et al., 2022) to non auto-regressive (Leng
et al., 2021b,a) approaches.

One of the concerns in using these approaches is
the alignment problem, which includes determining
the correspondence between source tokens and tar-
get tokens. Various methods have been explored to
address this issue. For example, some approaches
utilize a token duration predictor (Leng et al.,
2021b,a), while others leverage the speech recog-
nition system’s Connectionist Temporal Classifica-
tion (CTC) (Graves et al., 2006) predictions (Leng
et al., 2022). Moreover, some studies focus on de-
tecting transcribed errors, allowing the correction
model to copy tokens identified as correct (Leng
et al., 2022; Gekhman et al., 2022).

However, these methods require a significant
amount of training data, consisting of pairs of tran-
scribed segments and their corresponding ground-
truth transcriptions. Unfortunately, publicly avail-
able resources are often insufficient, and obtaining
labeled data can be expensive and time-consuming.

To overcome this challenge, a commonly used
approach involves generating synthetic training ex-
amples. These examples are intentionally noised to
resemble transcribed sequences and are then com-
bined with the labeled examples for training the
correction model. The perturbations can be intro-
duced through random noise (Shen et al., 2022;
Leng et al., 2021b; Ji et al., 2021), predefined con-
fusion sets like homophone dictionaries (Shen et al.,
2022), or by using predictions from a pre-trained
model (Leng et al., 2022).

We hypothesize that simply incorporating ran-
dom perturbations or aiming for a similar overall
error rate as a labeled example set is insufficient.
Instead, it is crucial to closely align with the dis-
tribution of transcribed errors. Throughout this



study, we provide empirical evidence to support
the validity of this hypothesis.

Robustness to Perturbations. Speech recogni-
tion systems commonly include a language model
in their post-processing stage. The likelihood score
produced by the language model allows prioritiz-
ing multiple transcribed candidates (Baevski et al.,
2020; Hsu et al., 2021; Babu et al., 2021; Chen
et al., 2022), and act as a correction mechanism
to potentially corrupt transcriptions. However, the
transcribed examples may contain character-level
errors such as insertions, deletions, and substitu-
tions, which can undermine the effectiveness of the
language model (Moradi and Samwald, 2021; Sun
et al., 2020; Belinkov and Bisk, 2017).

Previous studies have demonstrated the benefits
of employing small vocabularies, such as character-
level representations, when dealing with noisy or
misspelled texts (Ma et al., 2020; Belinkov and
Bisk, 2017; Boukkouri et al., 2020). Inspired by
this line of research, we conduct experiments with
low-granularity representations to correct errors.

Our research is also related to a body of work
that focuses on creating robust representations
through the regularization of the tokenization pro-
cess (Provilkov et al., 2019; Kudo, 2018). Our
work stands out in that our objective is to discover
an optimal segmentation that is specifically tailored
for transcribed errors in a particular language.

3 Methodology

In this work, we create transcribed errors correction
models that acts as a post-processing step, correct-
ing the outputs of a speech recognition model.

We derive the error distribution from transcribed
labeled data and leverage it to create synthetic ex-
amples. To capture an informative error distribu-
tion rather than random one, we transcribe audio
segments using fine-tuned XLS-R models and com-
pare the transcribed outputs with ground-truth tran-
scriptions. Based on the extracted distribution, we
introduce perturbations to a large set of text se-
quence, resulting in synthetic examples that resem-
ble transcribed data. These synthetic examples are
subsequently utilized to train our error correction
models, as well as BPE tokenizers.

We aim to control the model’s ability to gener-
alize to unseen distributions and memorize tran-
scribed error patterns by adjusting the BPE vocab-
ulary. Concretely, we experiment with the vocabu-
lary size and the maximum length of each token.

3.1 Simulating Transcribed Data.
Let G be a model trained to transcribe audio seg-
ments of language X , and D be a set of labeled ex-
amples, i.e., audio segments and their correspond-
ing transcriptions. We transcribe samples of D
using G and extract the error distribution. We then
generate synthetic examples by applying the error
distribution extracted by using G to transcribe D.

The transcribed error distribution is extracted
by quantifying the operations required to trans-
form a sentence di ∈ D into d̃i, its transcribed
form predicted using G. Specifically, we define
del(d̃i, di, c) as the number of times a character
c ∈ di was deleted while transforming to d̃i,
insert(d̃i, di, c, x, y) as the number of times c
was inserted between characters x, y ∈ di, and
subs(d̃i, di, c, x) as the number of times a charac-
ter c ∈ di was replaced with a character x ∈ d̃i.

We then compute the error probability for each
character c ∈ D by summing over each error type,
normalized by the frequency of c’ in D (|c|). The
probability for deleting, inserting and substituting
each character is detailed in equations 1a-1c.

Pdel(c) =

∑
d∈D

del(d̃i, di, c) + γ

|c|
, (1a)

Pinsert(c, x, y) =

∑
d∈D

insert(d̃i, di, c, x, y)

|c|
,

(1b)

Psubs(c, x) =

∑
d∈D

subs(d̃i, di, c, x) + γ

|c|
, (1c)

We observed that performance can be improved
by including a smoothing factor γ = α · |c|, where
α is a hyperparameter and |c| is the frequency of
the character c in the dataset D. We posit that it can
be attributed to the underrepresentation of specific
errors when comparing different datasets.

Next, we utilize a raw corpora Dr to generate
synthetic examples. To apply the error distribution
to a raw sentence dr ∈ Dr, we split the sentence
into words based on spaces, and then iterate over
each character c ∈ dr and delete it with Pdel(c)
probability or substitute it with character x with
Psubs(c,x) probability. Then, we take each two con-
secutive characters x, y ∈ dr and insert a character
c between them with probability Pinsert(c, x, y).



Figure 2: Error correction performance (WER) on MLS (Pratap et al., 2020) validation sets using varying levels of
vocabulary size and maximum token length limitations. The results were obtained by employing XLS-R models
fine-tuned for each specific language. The "char" horizontal lines indicates the performance using a vocabulary
consisting of individual characters found in the training data.

To prevent excessively noisy synthetic exam-
ples, we restrict the number of changes made to
each word in dr to a maximum of one. We utilize
these synthetic examples to train an error correc-
tion model that converts the noisy and corrupted
sentences into their correct counterparts.

3.2 BPE Vocabulary Adjustments.

BPE vocabulary size has a significant impact on
the processing of input sequences, as it directly af-
fects the number of segmented tokens (Gowda and
May, 2020). Using a smaller vocabulary leads to a
coarser segmentation, which can be beneficial for
generalizing to unseen distributions and handling
transcribed errors effectively.

On the other hand, a larger vocabulary enhances
the model’s ability to memorize patterns and less
frequent words. Prior studies have shown that vo-
cabulary size is correlated with the memorization
of the training data (Kharitonov et al., 2021).

We make a significant observation that lan-
guages with rich morphology, where words are
often composed of multiple morphemes and inflec-

tions, require additional support for memorizing
non-phonetic phrases. To address this challenge,
we conducted experiments by providing segmented
tokens with additional context in the form of maxi-
mum token length.

Therefore, our goal is to strike a balance between
a smaller vocabulary that promotes generalization
and a larger vocabulary that facilitates memoriza-
tion. For each language included in our experi-
ments, we explore different vocabulary hyperpa-
rameters, such as vocabulary size and maximal
token length, to determine the best performance for
a correction model.

4 Experimental Setup

Transcribed Error Correction. We conduct ex-
periments with seven European languages and uti-
lize correction models trained on synthetically gen-
erated examples. Our experiments includes correct-
ing texts transcribed using several speech recog-
nition models. We employ BPE tokenizers with
vocabulary sizes ranging from 500 to 25K tokens,
and a token length limitation varying from 4 to



16 characters. For a coarse-grained segmentation
comparison, we utilize a character-based tokenizer
consisting of the characters found in the training
sets. Additionally, we compare our approach to
randomly generated synthetic noise at the charac-
ter level. We follow the procedure described in
Leng et al. (2021b) to create randomly noised sen-
tences along with their corresponding ground truth
counterparts.

Generalizing to Unseen Distributions. We con-
duct two experimental settings to evaluate the gen-
eralization abilities of our approach. Firstly, we
perform a cross-dataset evaluation to test the per-
formance on datasets not included in the training
process. Secondly, we evaluate our approach on
samples transcribed using a different speech recog-
nition model, Whisper (Radford et al., 2022), to
assess its ability to capture unique patterns specific
to speech recognition. This evaluation is particu-
larly important since our approach is trained using
errors obtained by XLS-R models, which have dif-
ferent training objectives than Whisper and may
yield different error distributions.

4.1 Models.

Speech Recognition Models. We utilize pre-
trained Whisper (Radford et al., 2022) and XLS-
R (Babu et al., 2021) models from the HuggingFace
platform1, with varying number of model parame-
ters, ranging from 39M to 1B.

XLS-R is a speech processing model composed
of feature extracting convolution layers followed
by multiple transformer encoder layers. It was pre-
trained using a contrastive objective to map masked
audio spans to latent representations. The model
was then fine-tuned using Connectionist Temporal
Classification (CTC) (Graves et al., 2006) loss to
project contextualized speech representations to the
vocabulary space. We utilize a 4-gram language
model when reporting the XLS-R models results.

Whisper, a transformer encoder-decoder model,
has gained renown for its exceptional speech recog-
nition performance. It was trained using weak su-
pervision on diverse tasks and languages. A key
advantage lies in its ability to achieve outstanding
results without fine-tuning for specific languages
or domains, relying solely on its pre-training.

Error Correction Model. We employ a standard
transformer encoder-decoder (Vaswani et al., 2017)

1https://huggingface.co/

architecture, comprised of 6 encoder and decoder
layers. We use 8 attention heads in each layer, and
the dimension of the feed-forward layers and the
embedding layers are set to 2048 and 512, respec-
tively. The input sequences, i.e., the transcribed
texts produced by the speech recognition models,
are tokenized using a BPE tokenizer.

4.2 Data.

Our experiments covers seven languages: Polish
(pl), Portuguese (pt), French (fr), German (de),
Dutch (nl), Italian (it) and Spanish (es). This blend
allows us to explore languages with both phonetic
and non-phonetic charasteristics, as well as differ-
ent degrees of morphological complexity.

Multilingual Librispeech Multilingual Lib-
rispeech (MLS) (Pratap et al., 2020) consists of
a total of 50K hours of read audiobooks in eight
european languages. We follow Pratap et al. (2020)
and segment the MLS dataset into training, devel-
opment and test partitions.

We further divide the training partition into two
parts: 90% and 10%. The 90% portion is used for
fine-tuning XLS-R models, while the remaining
10% is utilized to extract the transcribed error dis-
tribution. Except for the Polish language, where we
fine-tune the XLS-R models using approximately
98 hours, we utilize the remaining training data to
extract the error distribution.

CommonVoice CommonVoice (Ardila et al.,
2019), a crowed-sourced collection of multilingual
human voices, collected through volunteer contri-
butions. We employ CommonVoice to evaluate the
ability of our approach to adapt to diverse distribu-
tions that were not encountered during training.

mC4. We generate synthetic transcribed texts by
utilizing the mC4 (Xue et al., 2020) data set, a
variant of the Common Crawl dataset that consists
of 101 languages. For each language, we randomly
select a set of 20M sentences that ranges from 3 to
15 words long. We use lowercase synthetic texts,
remove punctuation marks and eliminate digits.

Synthetic Data Generation. We utilize fine-
tuned XLS-R models to transcribe a dedicated set
of examples for extracting error distributions. We
then calculate the probabilities of character inser-
tions, deletions, and substitutions, as described in
Section 3. Subsequently, we generate pairs of syn-
thetic sentences that resemble transcriptions, ac-



Model de nl es it pt pl fr

XLS-R (0.3B)
Baseline 9.0 13.5 8.1 13.1 17.0 13.9 12.4
Correction 9.2 11.8 7.5 12.4 16.1 12.8 12.4

XLS-R (1B)
Baseline 7.4 11.6 7.1 12.0 15.8 10.5 10.2
Correction 7.4 10.5 5.6 10.7 13.2 9.3 9.8

Whisper tiny
Baseline 24.9 39.4 19.2 41.7 31.3 34.2 36.8
Correction 24.2 36.6 16.8 37.5 28.7 33.7 36.4

Whisper base
Baseline 17.7 28.4 12.8 31.1 21.9 22.8 26.6
Correction 16.9 26.1 10.3 27.6 18.8 22.4 25.9

Whisper small
Baseline 10.5 17.2 7.8 21.4 13.0 11.2 16.2
Correction 9.8 15.7 6.6 18.4 12.2 11.0 15.8

Whisper medium
Baseline 7.4 11.7 5.3 16.0 9.0 6.5 8.9
Correction 7.1 10.5 5.3 15.3 8.8 6.5 8.9

Whisper large
Baseline 6.6 10.2 5.4 14.3 9.2 6.6 8.9
Correction 6.7 10.0 5.4 14.0 8.4 6.1 8.5

Table 1: Speech recognition performance (WER) on MLS test sets. The results of the XLS-R models were obtained
using a 4-gram language model.

companied by their unmodified counterparts serv-
ing as the ground truth. These parallel sentences
are then used to train our correction models.

Furthermore, we explore the impact of the
amount of labeled data on the quality of synthetic
data. We train correction models using synthetic
examples that were generated based on the errors
extracted from varying amounts of labeled data.

4.3 Training Details.

We follow the training settings of Babu et al. (2021)
and fine-tune the XLS-R models 20K updates. We
employ the Adam optimizer with 10% warm-up
updates, followed by a constant learning rate for
the next 40% of updates, which gradually decays
to zero in the remaining steps. As for the Whisper
model, we do not apply any additional training and
report the results solely based on the predictions
provided by the pre-trained models.

The correction models are trained using 4
NVDIA V100 GPUs for 300K updates. We use
a batch size of 256 samples per device, and ac-
cumulate the gradients for every 4 updates. The
model’s parameters are optimized using the Adam
optimizer with a learning rate of 3e-5 and use the
first 1000 updates as warm-up. We set a dropout
probability to 0.1. We use SentencePiece2 (Kudo
and Richardson, 2018) to train our BPE tokenizers.
The tokenizers were trained using the generated
synthetic data, while controling the vocabulary size
and the maximum token length parameters.

2https://github.com/google/sentencepiece

5 Results

5.1 Transcribed Errors Correction.

The results of our approach on the MLS and Com-
monVoice datasets are reported in Table 1 and Ta-
ble 2, respectively. We observe that our approach is
particularly effective for the smaller models (e.g.,
Whisper tiny, base and small). The results demon-
strate consistent improvement across multiple lan-
guages and showcase the strong generalization per-
formance of our approach on unseen distributions,
including different datasets such as CommonVoice
and speech recognition models like Whisper.

We also observe significant perplexity reductions
when comparing our correction models to a 4-gram
language models utilized for post-processing. This
provides further motivation regarding the advan-
tages of correction models. That is, they make an
auto-regressive prediction for each source token,
while a language model maximizes the sentence-
level likelihood score which could deviate from the
source sequence and cause hallucinations.

Table 3 shows a comparison of different meth-
ods for handling perturbations. Our suggested ap-
proach outperforms correction models with similar
architectures but different training methodologies.
Specifically, we trained the models on random per-
turbations, as well as models trained using the pop-
ular method for learning robust representations,
BPE dropout (Provilkov et al., 2019).



Model de nl es it pt pl fr

XLS-R (0.3B)
Baseline 8.8 12.3 8.6 13.7 11.0 14.8 24.5
Correction 8.3 11.5 8.2 12.9 10.9 14.9 23.2

XLS-R (1B)
Baseline 8.5 11.5 8.1 13.2 9.4 12.7 18.2
Correction 8.5 11.2 7.7 12.7 8.8 12.6 17.1

Whisper tiny
Baseline 34.5 43.6 30.3 44.5 35.2 45.3 49.7
Correction 31.3 37.1 27.2 40.3 31.3 43.1 45.4

Whisper base
Baseline 24.5 29.5 19.6 30.5 23.7 32.8 37.3
Correction 22.8 25.1 17.0 27.4 22.1 30.3 32.3

Whisper small
Baseline 13.0 14.2 10.3 16.0 12.5 16.9 22.7
Correction 12.1 13.3 8.1 13.0 12.0 15.8 21.5

Whisper medium
Baseline 8.5 8.0 6.9 9.4 8.1 10.1 16.0
Correction 8.3 7.4 6.7 8.8 8.1 10.0 15.7

Whisper large
Baseline 7.7 7.1 6.4 8.1 7.1 9.0 14.7
Correction 7.9 7.0 6.0 7.8 6.9 8.6 14.7

Table 2: Speech recognition performance (WER) on CommonVoice Speech test sets. The results of the XLS-R
models were obtained using a 4-gram language model.

Method\Model de nl es it pt pl fr
Whisper small 10.5 17.2 7.8 21.4 13.0 11.2 16.2
Random noise (Leng et al., 2021b) 10.9 18.1 7.2 18.3 13.0 11.5 16.2
BPE dropout (Provilkov et al., 2019) 11.1 15.5 7.9 22.2 12.5 11.8 16.8
Extracted error dist. + Adjusted BPE (this work) 9.8 15.7 6.6 18.4 12.2 11.0 15.8

Table 3: The performance (WER) of different methods for handling transcribed errors. The results were obtained by
employing transformer-based correction models, as well as Whisper small on the CommonVoice dataset.

Figure 3: The performance (WER) of correction models
using information extracted from varying amounts of
transcribed examples. Languages which are considered
phonetic (es, it, pt) achieve good performance with as
little as 25 hours of labeled data. However, languages
that are less phonetic (pl, de, nl) require significantly
more data to perform well.

5.2 The Effect of Vocabulary Limitations.

A key observation is that the best performing vo-
cabulary size and maximal token differs between

languages, as depicted in Figure 2. For instance,
an Italian correction model favors shorter tokens
and requires a vocabulary of 500 tokens, while a
Polish correction model which benefits from longer
tokens and a larger vocabulary. In General, the re-
sults indicates that the vocabulary limitations are
shared between languages with similar attributes.
Figure 1 shows that phonetic languages tend to
benefit from small vocabularies and short tokens,
while morphological rich languages typically re-
quires larger vocabularies and longer tokens. A
possible explanation is that the words of phonetic
(isolating) languages are widely composed of one
to very few morphemes.

5.3 Does Additional Labeled Data Affects The
Distribution of Errors?

Figure 3 shows the effect of information extracted
from varying amounts of labeled data on correction
models. We transcribed the audio samples using 1B
parameters XLS-R models, fine-tuned using MLS
for each of the languages.

The results indicates that correction models of
phonetic languages (it, es, pt) are able to perform



well with as few as 25 hours of transcribed audio,
while languages considered as less phonetic (de,
pl, fr, nl) requires larger amounts in order to show
increased performance.

We also observe that the amount of pre-training
data is not necessarily correlated with the effec-
tiveness of the extracted error distribution. That
is, we expected that languages with higher pres-
ence during pre-training would require less data
in order to yield a quality transcribed error distri-
bution, yet it is the phonetic attributes which has
the most influence (e.g., pre-training consists of
∼25K hours of fr data and ∼17K hours of pt, yet
pt correction model performs well with only ∼25
hours for extracting the error distribution, while fr
requires much more).

6 Conclusions.

In this paper, we propose a transcribed errors cor-
rection models trained on synthetic data generated
using the errors derived from transcribed examples.
We introduce a noise protocol that leverages the
error distribution extracted from transcribed sam-
ples, and demonstrate the importance of adjusting
the vocabulary size and the maximum token length
of the models’ BPE tokenizer. Moreover, we show
that such vocabulary adjustments varies between
languages, as they are correlated with their levels
of phonetic and morphological properties.

We highlight the concerns and emphasize the
limitations associated with training error correction
models using synthetic data generated by apply-
ing random noise. We showcase the generalization
abilities and the performance gains of our proposed
approach using several datasets and speech recog-
nition models. The claims made in the paper are
supported by a comprehensive experimental study.
We hope that this research will inspire further explo-
ration of language-specific adjustments in various
natural language processing tasks and domains.

Limitations

Our proposed method utilizes error distributions
derived from transcribed data and employs a
language-specific tokenizer to segment the data.
Our experiments primarily focused on European
languages, specifically those belonging to the Ro-
mance, Slavic, and Germanic language families.
However, we have not thoroughly validated our
approach on languages from other language fam-
ilies, including those commonly spoken in Asian,

African, and Middle Eastern regions.
Additionally, our experiments involved using a

fixed set of BPE vocabulary size levels for each
language we investigated. Nevertheless, further
improvements could be achieved by conducting
experiments with additional levels of vocabulary
sizes. To generate synthetic examples, we utilized
the mC4 dataset. However, it would be beneficial
to explore matching the raw dataset to the specific
domain of the speech data in future studies.
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