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Abstract—Accurate blood glucose forecasting enables proactive
management of metabolic health, particularly when leveraging
data from wearable sensors that capture data about physiological
and behavioral health. However, existing models struggle with
integrating multimodal time-series data with inconsistent sam-
pling rates. This paper proposes a novel forecasting framework
that incorporates a time-aware cross-attention mechanism with
an LSTM architecture to predict blood glucose levels using con-
tinuous glucose monitoring (CGM) data alongside physiological
and behavioral signals, such as heart rate (HR), electrodermal
activity, accelerometry, and dietary intake. The proposed method
dynamically encodes temporal features without the need for pre-
processing and employs gated multi-head cross-attention layers to
fuse sensor modalities effectively. We evaluate our approach on a
newly constructed dataset involving 12 participants. Our method
outperforms the baseline and state-of-the-art GlySim models
across multiple prediction horizons ranging from 5 minutes to
90 minutes, achieving up to 17.8% improvement in Root Mean
Squared Error (RMSE) values.

Index Terms—Prediabetes, attention mechanism, wearable sen-
sors, digital health, deep learning, metabolic health

I. INTRODUCTION

Maintaining normal blood glucose levels (BGL) and min-
imizing out-of-range excursions are critical to overall health,
and a substantial body of prior research has demonstrated the
health benefits of glucose control in healthy individuals, in
people with prediabetes, and in those with diabetes. Wear-
able body sensors such as activity trackers and Continuous
Glucose Monitor (CGM) devices are commercially available
technologies employed in diabetes care to measure physiolog-
ical, behavioral, and glucose level signals [1]. CGM devices
provide contemporaneous glucose values every 5 minutes,
capturing glucose variability over time. The high temporal
resolution of CGM data enables the identification of trends
in glucose levels, and support informed therapeutic decision-
making by patients and healthcare providers. Traditionally,
CGMs were primarily prescribed for individuals with diabetes;
however, the recent availability of this technology over the
counter has made it accessible to the broader population. This
widespread availability presents a valuable opportunity for the
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early detection, prevention, and management of diabetes by
tracking trends in BGL [2]. Moreover, since physiological
and behavioral factors, such as physical activity, meal intake,
heart rate, and stress levels, influence fluctuations in blood
glucose levels, there is the opportunity to develop analytical
tools capable of processing CGM and other sensor data in real-
time and delivering actionable feedback to support effective
glucose regulation [3].

In recent years, deep learning (DL) models have been
increasingly employed for time-series forecasting tasks, in-
cluding the prediction of BGL. Modern DL architectures, such
as Convolutional and LSTM networks, have been proposed to
overcome the limitations of traditional BGL forecasting meth-
ods. GlySim [4] proposed a stacked multimodal Convolutional
and LSTM to predict BGL. However, this model struggles
to capture the long-term dependencies present in time-series
data, which limits their effectiveness for long-term forecasting.
Moreover, DL-based BGL forecasting models such as Glu-
former [5] leverage a multi-head attention mechanism that
effectively models both short-term and long-term temporal
dependencies. Nevertheless, Gluformer demonstrates limited
performance when integrating irregularly sampled time-series
data. Despite the advantages offered by the multi-head atten-
tion architecture [6] and its improved studies, these models
still face challenges in capturing the relative importance of
heterogeneous time-series features, particularly those with
irregular sampling rates.

Key Limitations and Associated Challenges: The primary
limitations of current state-of-the-art methods and major chal-
lenges in accurate blood glucose prediction include:(1) limited
ability to deliver accurate long-term blood glucose forecasts;
(2) data sensor sources such as CGM readings, physiological
signals, and behavioral variables exhibit mismatched temporal
resolutions, known as irregular sampling rates; and (3) scarcity
of real-world datasets, particularly for healthy populations.

Novel Contributions: To address these limitations, we
propose a novel glucose forecasting model based on multi-
modal attention and LSTM architectures. This model inte-
grates CGM data and macronutrient data, such as information
about fat, carbohydrates, and protein, with various body sensor
measurements, including accelerometer, heart rate (HR), and
electrodermal activity (EDA), using a cross-attention mecha-
nism without requiring a preprocessing step. To enhance the
long-term forecasting accuracy of the model, we propose a
time-aware cross-attention mechanism capable of capturing
temporal characteristics of different signals and their impact
on blood glucose levels. The key contributions of our work
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Fig. 1. Overview of our proposed framework.
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Fig. 2. Proposed Multimodal Time-aware Cross-Attention Model Architec-
ture. It consists of (1) Inputs, (2) Time-aware Embedding, (3) Cross-Attention
& Gating, and (4) Prediction steps.

are summarized as follows.
• We developed a cross-attention mechanism to integrate

multimodal body sensor data, including heart rate, meal
intake, EDA, and accelerometer signals, which often have
irregular sampling rates.

• We introduce a time-aware cross-attention mechanism to
model temporal dependencies across different physiolog-
ical and behavioral signals.

• We evaluate our forecasting model on a new dataset
collected from healthy individuals.

II. PROPOSED MODEL

An overview of our proposed framework is shown in Fig. 2.
Our proposed framework consists of the following main mod-
ules. 1. Body Sensor Measurements: This module measures
physiological and behavioral signals from wearable sensors
from healthy individuals. 2. Integrating data & Forecasting
model: This module integrates irregularly sampled body sen-
sor data using a time-aware cross-attention mechanism and
performs long-term BGL prediction using a 1D CNN stacked
with LSTM layers. 3. Blood Glucose Prediction metric: This
module generates BGL predictions and evaluates performance
using established error metrics.

Fig. 3. An example of a CGM signal from a subject as a response to the
standardized food items fed at different times.

Our forecasting model is specifically designed for predicting
BGL of healthy individuals and incorporates CGM data along
with various physiological and behavioral signals, including
physical activity, HR, and EDA. The attention mechanism
within the Transformer architecture enables the effective fu-
sion of multi-modal time-series signals recorded at varying
sampling rates and supports the modeling of long-term tempo-
ral dependencies. To evaluate the effectiveness of the proposed
model, we conduct experiments using multimodal data from
12 subjects. The following sections provide further details on
the forecasting problem formulation and the Integrating Data
& Forecasting Model module. The dataset description and
Blood Glucose Prediction Metrics module are presented in
Section III.

A. Problem Formulation

The multimodal BGL forecasting task is mathematically
formulated as a multivariate time-series sequential prediction
downstream task. Let X = [x1,x2, . . . ,xn] represent a set
of n body sensor measurements module. Each sensor’s data
stream is represented by xk = [xk,1, . . . , xk,t]

⊤, where t
indicates the duration of the observed time. Given that xcgm
corresponds to the CGM signal. Thus, the objective is to
predict the future values of CGM over a defined horizon can
be mathematically formulated by Eq. 1.

x̂cgm = [xcgm,t+1, . . . , xcgm,t+ph]
⊤ = F(X;Θ) (1)

where F represents the forecasting model, which is developed
using a time-aware cross attention and LSTM architecture in
this paper, parameterized by Θ, which is learned during the
training process.

B. Multimodal Time-aware Cross-Attention Model

The proposed forecasting model employs a multimodal
time-aware cross-attention LSTM-based architecture, as shown
in Fig.2. This architecture integrates a cross-attention mech-
anism that enables the effective fusion of multivariate time-
series inputs with heterogeneous sampling rates [7]. The
attention mechanism contributes to improved performance in
predicting blood glucose levels. The model receives as input
the historical target data (e.g., CGM measurements), denoted
as xcgm = [xcgm,ST , . . . , xcgm,ET ] ∈ RTh , along with
other body sensor measurement signals [x1, . . . ,xn] ∈ RTh .
Here, Th represents the size of the historical input window,
while ST and ET indicate the start and end times of this
historical period in the target signal (CGM), respectively. The



same start and end times (ST and ET ) are applied to the
historical windows of the other body sensor measurements.
The proposed architecture consists of four main steps: (1)
Inputs, (2) Time-aware Embedding, (3) Cross-Attention &
Gating, and (4) Prediction.

In the Inputs step, we extract two feature vectors from
each body sensor and CGM signal without applying any
preprocessing, such as down-sampling or up-sampling. For
each body sensor signal, the time difference between each
sample point and the start time of the historical window is
then computed. Therefore, for each body sensor signal k,
two feature vectors are generated: (1) a signal value vector
containing sample points between ST and ET , denoted as
xk = [xk,1, . . . , xk,l]

⊤) where, l is the number of sample
points for the kth body sensor measurement, (2) a temporal
feature vector ∆Tk = [∆tk,1, . . . ,∆tk,l]

⊤), where each ∆tk,1
is calculated as the time difference between the ith sample
point and ST , i.e. ∆tk,1 = Time(xk,1) − ST . Note that the
CGM data is fed into a 1D CNN to extract informative fea-
tures, which are also used as residual connections to mitigate
the issue of exploding gradients.

In the Time-aware Embedding step, each body sensor
measurement’s temporal feature is then passed through an
embedding layer (fT embed(∆Tk)), and a positional encod-
ing layer (fT pos(∆Tk)). The outputs of these two layers
are added together to obtain the transformed representation
of the temporal feature vector. Furthermore, body sensor
measurement’s signal value vector is just passed through an
embedding layer (fembed(xk)) to produce the transformed
signal values feature representations. The outputs of the
transformed temporal and signal values are added and fed
to the Cross-Attention and gating step. The vanilla multi-
head attention mechanism [6] operates by weighting the value
matrix (V ∈ Rt×dmodel) according to the relationships between
the query (Q ∈ Rt×dmodel) and key (K ∈ Rt×dmodel) matrices.
The mathematical formulation of the attention mechanism is
provided in Eq. 2.

Atten(Q,K,V) = Softmax
(

QKT

√
dmodel

)
V (2)

In the Cross-Attention and Gating step, we incorporate a
cross-attention mechanism, which has demonstrated notable
success in integrating information from multiple modalities
across a range of domains for downstream tasks [8]. This
mechanism enables different sensor-derived signals with var-
ious sample rates to exchange information and compute cor-
relations between various body sensor measurements and the
CGM data. Thus, we design an n-branch cross-attention layer
in which all branches share Xcgm as the query input. In the
i-the branch, the key and value matrices are obtained from
Xi. The cross-attention (CA) of the i-th branch is computed
using Eqs. 3 and 4.

CA (Xcgm,Xi,Xi) = [H1, . . . ,HmH
]WCA

H (3)

Hh = Atten(XcgmW
CA
Q ,XiW

CA
K ,XiW

CA
V ) (4)

Here, WCA
Q , WCA

K , and WCA
V are weight matrices specific

to the attention head and belong to Rdmodel×dmodel . Moreover,

TABLE I
MODEL-LEVEL PERFORMANCE. POSITIVE ∆ INDICATES LOWER ERROR

(RMSE/MAE) OR HIGHER CORRELATION (CORR).∆B : ∆ VS BASELINE,
∆G VS GLYSIM. THE BEST IMPROVEMENTS ARE HIGHLIGHTED IN BOLD.

Horizon Metric Baseline GlySim Proposed ∆B ∆G

5 min RMSE 7.60 ± 2.85 9.92 ± 2.75 7.99 ± 2.37 −5.2% +19.4%
MAE 5.58 ± 2.07 6.91 ± 2.31 5.90 ± 2.00 −5.7% +14.5%
Corr 0.84 ± 0.18 0.83 ± 0.13 0.85 ± 0.11 +1.7% +3.2%

30 min RMSE 14.46 ± 3.88 13.81 ± 4.66 12.64 ± 3.88 +12.6% +8.5%
MAE 10.75 ± 3.41 10.40 ± 3.76 9.86 ± 3.55 +8.3% +5.2%
Corr 0.56 ± 0.19 0.61 ± 0.18 0.59 ± 0.18 +5.3% −3.4%

60 min RMSE 18.17 ± 5.02 16.09 ± 5.05 15.00 ± 4.52 +17.5% +6.8%
MAE 13.78 ± 4.65 11.78 ± 3.99 11.67 ± 4.11 +15.4% +1.0%
Corr 0.44 ± 0.19 0.51 ± 0.16 0.49 ± 0.19 +11.6% −3.7%

90 min RMSE 20.13 ± 5.69 17.53 ± 5.54 16.54 ± 5.08 +17.8% +5.6%
MAE 14.81 ± 4.75 12.82 ± 4.24 12.59 ± 4.37 +15.0% +1.8%
Corr 0.30 ± 0.21 0.40 ± 0.18 0.45 ± 0.21 +50.3% +11.2%

WCA
H ∈ R(mH ·dmodel)×dmodel is the final projection matrix that

maps the concatenated outputs from all attention heads back
to the original model dimension. The attention mechanisms
for the remaining n− 1 branches are computed independently
using the same procedure. The attention outputs are filtered
using Gated Linear Units (GLUs), which selectively retain
relevant information. These are then processed by a feedfor-
ward network and an Add & Norm layer. The outputs are
summed with a residual connection from the 1D-CNN and
passed to a prediction module, where an LSTM followed by
a fully connected layer forecasts BGLs over the prediction
horizon.

III. RESULT

In this section, we first introduce the dataset and perform
experiments on this dataset. We then present the effectiveness
of our proposed model by comparing to baseline and to state-
of-the-art forecasting models such as GlySim [4]. The com-
parison is carried out using standard evaluation metrics such
as Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), correlation analysis, and accuracy of hyperglycemia
event detection. In this study, we consider 160 mg/dl as the
threshold for a hyperglycemia event. The experimental details
will be discussed in Section III-B.

A. Dataset

Data were collected as part of an ongoing study involving
12 healthy college students, aged 23 to 31 years, with BMIs
ranging from 20.08 to 31.84. Participants were monitored
for device-recorded responses following the consumption of
standardized meals, which contained 19 − 126 grams of
carbohydrates, 1−54 grams of protein, and 0−30.2 grams of
fat. Individuals recruited in the study had no diagnosed chronic
metabolic or thyroid disorders, did not use recreational drugs,
consumed no more than two servings of alcohol per day, and
were not engaged in competitive sports or resistance training.
All participants provided written informed consent. The study
was approved by the Institutional Review Board at Arizona
State University (IRB #15102).

The study included three non-consecutive 10-hour in-house
laboratory sessions (8:00 AM–6:00 PM). Upon enrollment,
participants were fitted with a Dexcom G6 CGM and an



Empatica E4 wristband worn on the dominant arm. The CGM
recorded blood glucose every 5 minutes, while the E4 captured
acceleration (Acc), EDA, HR, blood volume pulse (BVP), and
skin temperature (TEMP) at sampling rates between 4–64 Hz.
A trained staff instructed participants on proper device use.

Each session began after a 12-hour fast. Participants re-
ceived meals tailored to their energy needs, calculated using
the Mifflin-St Jeor equation [9], and classified as hyper-,
eu-, or hypocaloric. Meals followed standard macronutrient
ratios (20% protein, 55% carbs, 25% fat) and were served
at 8:30 AM, 12:30 PM, and 4:30 PM, with snacks at 10:30
AM and 2:30 PM. Mealtimes were recorded, and participants
responded to smartphone prompts every 30 minutes to monitor
activity. Figure 3 shows the meal events and the resulting
glycemic response of a subject from a random study day.

B. Baseline and Experimental Details

R
M

SE
 (

m
g

/d
L)

Subject Number

(a) (b)

Fig. 4. Comparison of our proposed method with baseline and GlySim for
90 minutes PH in terms of (a) RMSE for each subject (b) Hyperglycemia
Detection Accuracy mean across 12 subjects.

The baseline model consists of stacked 1D CNN and FC
layers. It begins with a Conv1D layer projecting the input to
64 channels, followed by MaxPooling and a second Conv1D
layer with 128 channels. The output is passed through two FC
layers with a size of 64, and the second maps it to the desired
number of outputs for prediction horizons (PH). The desired
PHs in this study are 5, 30, 60, and 90 minutes. Moreover, we
consider 6 hours (72 samples) as historical data for feeding to
the forecasting model.

Table I presents the mean ± SD of evaluation metrics across
the 12 test participants, along with the percentage change
of the proposed model relative to the baseline and GlySim
models. The proposed forecasting model consistently achieves
the lowest RMSE and MAE, as well as higher correlation
coefficients at all PHs, with the most substantial improvements
observed at longer PH times. For instance, at the 90-minute
PH, our forecasting model demonstrates a 17.8% improvement
over the baseline and a 6.8% improvement over GlySim.

Furthermore, Figure 4a presents a comparison of 90-minute
BGL forecasting for each subject using our proposed model,
the baseline, and GlySim models in terms of RMSE, to high-
light subject-to-subject consistency. While the absolute error
varies widely across individuals, the proposed model remains
lower than both baselines for nearly all twelve subjects. In
fact, our forecasting model achieves the lowest RMSE for
every subject when compared to the other models. In addition,
we assessed each model’s hyperglycemia-detection accuracy,
a clinically important metric for early warning. Figure 4b
shows the mean hyperglycemia-detection accuracy across all
participants. The proposed model achieves the highest score

(0.94), outperforming GlySim by one percentage point and
the 1-D CNN baseline by three. These improved RMSE and
MAE values, as reported in Table I, contribute to a reduced
number of missed hyperglycemic events. Overall, the results
indicate that incorporating time-aware cross-attention plays a
significant role in enhancing model performance.

IV. CONCLUSION & DISCUSSION

In this study, we proposed a novel glucose forecasting model
utilizing a time-aware cross-attention mechanism integrated
with LSTM layers, effectively addressing key limitations of
combining various body sensor measurements and CGM data
with different sample rates. By integrating multimodal physi-
ological and behavioral data streams with irregular sampling
rates, such as CGM readings, dietary information, heart rate,
accelerometer, and EDA signals, the proposed architecture
significantly improves long-term blood glucose forecasting.
The cross-attention mechanism facilitates efficient fusion of
heterogeneous data sources without preprocessing, while the
temporal embeddings adeptly capture intricate temporal de-
pendencies among diverse signals. Our experimental evalu-
ation on a newly collected dataset from healthy individuals
demonstrates the model’s superiority over baseline methods
and existing state-of-the-art frameworks in a longer prediction
horizons.
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