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Figure 1: Generated 512×512 and 256×256 samples from our M-VAR trained on ImageNet.

ABSTRACT

There exists recent work in computer vision, named VAR, that proposes a new
autoregressive paradigm for image generation. Diverging from the vanilla next-
token prediction, VAR structurally reformulates the image generation into a coarse
to fine next-scale prediction. In this paper, we show that this scale-wise autore-
gressive framework can be effectively decoupled into intra-scale modeling, which
captures local spatial dependencies within each scale, and inter-scale modeling,
which models cross-scale relationships progressively from coarse-to-fine scales.
This decoupling structure allows to rebuild VAR in a more computationally effi-
cient manner. Specifically, for intra-scale modeling — crucial for generating high-
fidelity images — we retain the original bidirectional self-attention design to en-
sure comprehensive modeling; for inter-scale modeling, which semantically con-
nects different scales but is computationally intensive, we apply linear-complexity
mechanisms like Mamba to substantially reduce computational overhead. We term
this new framework M-VAR. Extensive experiments demonstrate that our method
outperforms existing models in both image quality and generation speed. For
example, our 1.5B model, with fewer parameters and faster inference speed, out-
performs the largest VAR-d30-2B. Moreover, our largest model M-VAR-d32 im-
pressively registers 1.78 FID on ImageNet 256×256 and outperforms the prior-art
autoregressive models LlamaGen/VAR by 0.4/0.19 and popular diffusion models
LDM/DiT by 1.82/0.49, respectively.
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Figure 2: Fréchet inception distance (FID) on 256×256 image generation. Our M-VAR-1.5B model
outperforms the largest 2B VAR-d30 with fewer parameters and faster inference speed. Our largest
M-VAR-3B achieves 1.78 FID.

1 INTRODUCTION

Autoregressive models (Radford et al., 2018; Brown et al., 2020) have been instrumental in ad-
vancing the field of natural language processing (NLP). By modeling the probability distribution
of a token given the preceding ones, these models can generate coherent and contextually relevant
text. Prominent examples like GPT-3 (Brown et al., 2020) and its successors (OpenAI, 2022; 2023)
have demonstrated remarkable capabilities in language understanding and generation, setting new
benchmarks across various NLP applications.

Building upon the success in NLP, the autoregressive modeling paradigm (Yu et al., 2022; Sun et al.,
2024; Van den Oord et al., 2016) has also been extended to computer vision for image generation
tasks, aiming to generate high-fidelity images by predicting visual content in a sequential manner.
Recently, VAR (Tian et al., 2024) has further enhanced this image autoregressive pipeline by struc-
turally reformulating the learning target into a coarse-to-fine “next-scale prediction”, which innately
introduces strong semantics to interconnecting tokens along scales. As demonstrated in the VAR
paper, this pipeline exhibits much stronger scalability and can achieve competitive, sometimes even
superior, performance compared to advanced diffusion models.

This paper aims to further optimize VAR’s computation structure. Our key insight lies in decou-
pling VAR’s cross-scale autoregressive modeling into two distinct parts: intra-scale modeling and
inter-scale modeling. Specifically, intra-scale modeling involves bidirectionally modeling multiple
tokens within each scale, capturing intricate spatial dependencies and preserving the 2D structure
of images. In contrast, inter-scale modeling focuses on unidirectional causality between scales by
sequentially progressing from coarse to fine resolutions — each finer scale is generated conditioned
on all preceding coarser scales, ensuring that global structures guide the refinement of local details.
Notably, the sequence length involved in inter-scale modeling is much longer than that of intra-
scale modeling, resulting in significantly higher computational costs. But meanwhile, our analysis
of attention scores for both intra-scale and inter-scale interactions (as discussed in Sec. 3.2) sug-
gests a contrasting reality: intra-scale interactions dominate the model’s attention distribution, while
inter-scale interactions contribute significantly less.

Motivated by the observations above, we propose to develop a more customized computation config-
uration for VAR. For the intra-scale component, given the much shorter sequence lengths within each

2
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scale and its significant contribution to the model’s attention distribution, we retain the bidirectional
attention mechanism to fully capture comprehensive spatial dependencies. This ensures that local
spatial relationships and fine-grained details are effectively modeled at a reasonable computational
overhead. Conversely, for the inter-scale component, which involves much longer sequences but
demands relatively less comprehensiveness in modeling global relationships, we adopt Mamba (Gu
& Dao, 2023; Dao & Gu, 2024), a linear-complexity mechanism, to handle such inter-scale depen-
dencies efficiently.

By segregating these two modeling modules and applying appropriate mechanisms to each, our
approach significantly reduces computational complexity while preserving the model’s ability to
maintain 2D spatial coherence and unidirectional coarse-to-fine consistency, making it well-suited
for high-quality image generation. As shown in Figure 2, our proposed framework, which we term
M-VAR, outperforms existing models in both image quality and inference speed. For instance, our
1.5B parameter M-VAR model achieves an FID score of 1.93 with fewer parameters and 1.2× faster
inference speed, outperforming the largest VAR model, which uses 2B parameters and attains an
FID score of 1.97. Moreover, our largest model, M-VAR-d32, achieves an impressive FID score of
1.78 on ImageNet at 256 × 256 resolution, outperforming the previous best autoregressive models
LlamaGen by 0.4 and VAR by 0.19, respectively, and well-known diffusion models LDM by 1.82
and DiT by 0.49, respectively.

2 RELATED WORK

2.1 VISUAL GENERATION

Visual Generation can generally be split into three categories: 1) Diffusion models (Dhariwal &
Nichol, 2021; Rombach et al., 2022) treat visual generation as the reverse process of the diffusion
process. 2) Mask prediction model (Chang et al., 2022) follows BERT-style (Devlin, 2018) language
model to generate images by predicting mask tokens 3) Autoregressive models generate images by
predicting the next pixel/token/scale in a sequence. We focus on the last one in this paper.

The pioneering method that brings autoregressive into visual generation is PixelCNN (Van den
Oord et al., 2016), which models images by predicting the discrete probability distributions of raw
pixel values, effectively capturing all dependencies within an image. Building on this foundation,
VQGAN (Esser et al., 2021) advances the field by applying autoregressive learning within the la-
tent space of VQVAE (Razavi et al., 2019), simplifying the data representation for more efficient
modeling. The RQ Transformer (Lee et al., 2022) introduces a novel technique using a fixed-size
codebook to approximate an image’s feature map with stacked discrete codes, forecasting the next
quantized feature vectors by predicting subsequent code stacks. Parti (Yu et al., 2022) takes a dif-
ferent route by framing image generation as a sequence-to-sequence modeling task akin to machine
translation, using sequences of image tokens as targets instead of text tokens, and thus capitalizing
on the significant advancements made in large language models through data and model scaling.
LlamaGen (Sun et al., 2024) further extends this concept by applying the traditional ”next-token
prediction” paradigm of large language models to visual generation, demonstrating that standard
autoregressive models like Llama can achieve state-of-the-art image generation performance when
appropriately scaled, even without specific inductive biases for visual signals. Lastly, VAR (Tian
et al., 2024) reimagines autoregressive learning for images by adopting a coarse-to-fine strategy
termed ”next-scale prediction” departing from the conventional raster-scan ”next-token prediction”
method to offer a new perspective on image generation.

2.2 MAMBA

State-space models (SSMs) (Gu et al., 2021a;b) have recently emerged as a compelling alterna-
tive to Convolutional Neural Networks (CNNs) (LeCun et al., 1998) and Transformers (Vaswani,
2017) for capturing long-range dependencies with linear computational complexity. These models
employ hidden states to represent sequences efficiently. The latest advancement in this domain is
Mamba (Gu & Dao, 2023; Dao & Gu, 2024), a sophisticated SSM that introduces data-dependent
layers with expanded hidden states. Mamba constructs a versatile language model backbone that
not only rivals Transformers across various scales but also maintains linear scalability with respect
to sequence length.
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Building on Mamba’s success in natural language processing, its application has been extended
to computer vision tasks. Vision Mamba (Vim) (Zhu et al., 2024) utilizes pure Mamba layers
within Vim blocks, leveraging both forward and backward scans to model bidirectional represen-
tations. This approach effectively addresses the direction-sensitive limitations inherent in the origi-
nal Mamba model. Additionally, ARM (Ren et al., 2024) pioneers the integration of autoregressive
pretraining with Mamba in the vision domain.

In the realm of image generation, Diffusion Mamba (DiM) (Fei et al., 2024) combines the efficiency
of the Mamba sequence model with diffusion processes to achieve high-resolution image synthe-
sis. DiM employs multi-directional scans, introduces learnable padding tokens, and enhances local
features to adeptly manage two-dimensional signal processing. AiM (Li et al., 2024) further ad-
vances this by replacing Transformers with Mamba for autoregressive image generation, following
methodologies similar to LlamaGen (Sun et al., 2024). However, these existing methods typically
apply Mamba to sequences with lengths up to 256. Our proposed M-VAR model extends this ca-
pability by using Mamba to capture inter-scale dependencies in sequences as long as 2,240 tokens.
This significant increase in sequence length underscores Mamba’s efficiency and effectiveness in
modeling long sequences within vision applications.

3 METHOD

3.1 PRELIMINARY: AUTOREGRESSIVE MODELING

Autoregressive modeling in natural language processing. Given a set of corpus U =
{u1, ..., un}, autoregressive modeling predicts next words based on all preceding words:

p(u) =

n∏
i=1

p(ui|u1, ..., ui−1,Θ) (1)

Autoregressive modeling minimize the negative log-likelihood of each word ui given all preceding
words from u1 to ui−1:

L = − log p(u) (2)

This strategy leads to the success of a large language model.

Token-wise autoregressive modeling in computer vision. From language to image, to apply
autoregressive pertaining, image tokenization via vector-quantization transfers 2D images X ∈
RH×W×C 2D tokens and flatten tokens into 1D token sequences X = {x1, x2, ..., xn}:

L = −
N∑
i=1

log p(xi|x1, ..., xi−1,Θ) (3)

However, such the flatten operation breaks down the 2D structure of an image. Therefore, VAR (Tian
et al., 2024) proposes to perform scale-wise autoregressive modeling to keep the 2D structure.

Scale-wise autoregressive modeling. Instead of tokenizing image into a sequence of tokens, VAR
tokenizes the image into multi-scale token maps S = {s1, ..., sn}, where si is the token map with
the resolution of hi × wi downsampling from sn ∈ Rhn×wn , therefore, si contains hi × wi tokens
and maintains the 2D structure, while xi only contain one token and break the 2D structure. The
auto regressive model is reformed to:

L = −
N∑
i=1

log p(si|s1, ..., si−1,Θ) (4)

In practice, the sequence S of multiple scales is much longer than each scale (s1, ..., sn). VAR
utilizes attention and Transformer to implement this algorithm. For generating the ith scale, VAR
attends the first scale to the (i− 1)th and generates hi ×wi tokens in parallel as the ith scale rather
than token by token.
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Attention Mode Attention Score Computation Cost

256×256 Image Generation
Intra Scale 79.6% 23.9%
Inter Scale 20.4% 76.1%

512×512 Image Generation
Intra Scale 77.1% 30.3%
Inter Scale 22.9% 69.7%

Table 1: The statistics of attention score and computation cost of the attention in VAR.

3.2 DECOUPLE SCALE-WISE AUTOREGRESSIVE MODELING

We can break the attention in VAR into two parts: 1) bidirectionally attend intra scale which the
sequence length is much shorter; 2) Uni-directional attend from coarse-scale to fine scale which the
sequence length is much longer.

We show the statistic of attention score and the computation cost of VAR in Table 1. Surprisingly,
intra-scale attention scores account for 79.6% of the total attention scores in 256×256 image gen-
eration and 77.1% in 512×512 image generation. This dominance of intra-scale attention suggests
that capturing fine-grained details within the same scale is crucial for high-quality image synthesis.
However, a closer examination of the computation cost presents a contrasting scenario. Despite
intra-scale attention contributing the most to the attention scores, it only consumes 23.9% of the
computation cost for 256×256 images and 30.3% for 512×512 images. In stark contrast, inter-
scale attention, which accounts for a smaller portion of the attention scores (20.4% and 22.9% for
256×256 and 512×512 images respectively), is responsible for the majority of the computation
cost—76.1% and 69.7% respectively. The disparity between the attention scores and computation
cost highlights an inefficiency in the current attention mechanism in VAR.

Based on this observation, we propose a novel approach to optimize the efficiency of the scale-
wise autoregressive image generation model. Specifically, we use standard attention mechanisms
for intra-scale interactions—where the majority of attention is naturally focused, and computation
is relatively low and employ Mamba, a model with linear computational complexity, for inter-scale
interactions. By integrating Mamba for inter-scale attention, we aim to significantly reduce the
computational overhead without compromising the model’s ability to capture essential cross-scale
dependencies. Mamba is designed to handle long-range interactions efficiently that scales linearly
with the sequence length, as opposed to the quadratic scaling of traditional attention mechanisms.
This makes it particularly suitable for modeling inter-scale relationships, where the computational
cost is otherwise prohibitive.

As shown in Figure 3, our proposed M-VAR introduces an efficient approach for scale-wise
autoregressive image generation by combining traditional attention mechanisms with Mamba, a
model characterized by linear computational complexity. Given an image with multiple scales
S = [s1, ..., sn], we aim to model both intra-scale and inter-scale representations effectively while
optimizing computational.

To capture the fine-grained details and local dependencies within each scale, we apply an attention
mechanism independently to each scale:

S
′
= [s

′

1, ..., s
′

n] = [Attn(C), Attn(Upsample(s1)), ..., Attn(Upsample(sn−1))] (5)

Here, Attn represents the attention applied to scale, producing the intra-scale representation and C
is the condition token. All attention share the same parameters but process each scale independently.
This design choice ensures consistency across scales and reduces the overall model complexity. For
efficient implementation, we adopt FlashAttention (Dao et al., 2022; Dao, 2024) to perform the
intra-scale attention in parallel.

After obtaining the intra-scale representations S
′
, modeling the relation between different scales be-

comes crucial for ensuring global coherence and coarse-to-fine consistency in the generated images.
However, as previously discussed, traditional attention mechanisms are computationally expensive
for inter-scale interactions due to their quadratic complexity, and we adopt the Mamba model with
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Figure 3: An overview of M-VAR. M-VAR takes the input sequence of {[C], s1, ..., sn−1} to pre-
dict {s1, ..., sn} where [C] is the condition token. The model first divides the input into different
scales and applies an attention mechanism to capture intra-scale spatial correlations. It then utilizes
Mamba to autoregressively model inter-scale dependencies, enabling coherent and efficient multi-
scale image generation.

linear complexity.

S
′′
= [s

′′

1 , ..., s
′′

n] = Mamba(Concat([s
′

1, ..., s
′

n])) (6)

By concatenating s
′

from all scales into a single sequence, Mamba efficiently processes the com-
bined representations, capturing the essential inter-scale interactions without the heavy computa-
tional burden.

4 EXPERIMENT

4.1 IMAGENET 256×256 CONDITIONAL GENERATION

Following the same settings (Tian et al., 2024), we train M-VAR on ImageNet (Deng et al., 2009)
for 256×256 conditional generation. We design multiple model variants with depths of 12, 16, 20,
24, and 32 layers.

We compare our M-VAR with previous state-of-the-art generative adversarial nets(GAN), diffusion
models, autoregressive models, mask prediction models. As shown in Table 2, Our M-VAR models
offer a balanced synergy of high image quality and computational efficiency. M-VAR outperforms
GANs in terms of image fidelity and diversity while maintaining comparable inference speeds. Com-
pared to diffusion models, M-VAR models deliver superior or comparable image quality with sig-
nificantly reduced inference time. Against token-wise autoregressive and mask prediction models,
our models achieve better performance metrics with fewer steps and faster inference times.
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Table 2: Generative model comparison on class-conditional ImageNet 256×256. Metrics include
Fréchet inception distance (FID), inception score (IS), precision (Pre) and recall (rec). Step: the
number of model runs needed to generate an image. Time: the relative inference time of M-VAR.

Model FID↓ IS↑ Pre↑ Rec↑ Param Step Time

Generative Adversarial Net (GAN)
BigGAN (Brock et al., 1809) 6.95 224.5 0.89 0.38 112M 1 −
GigaGAN (Kang et al., 2023) 3.45 225.5 0.84 0.61 569M 1 −
StyleGan-XL (Sauer et al., 2022) 2.30 265.1 0.78 0.53 166M 1 0.2

Diffusion
ADM (Dhariwal & Nichol, 2021) 10.94 101.0 0.69 0.63 554M 250 118
CDM (Ho et al., 2022) 4.88 158.7 − − − 8100 −
LDM-4-G (Rombach et al., 2022) 3.60 247.7 − − 400M 250 −
DiT-L/2 (Peebles & Xie, 2023) 5.02 167.2 0.75 0.57 458M 250 2
DiT-XL/2 (Peebles & Xie, 2023) 2.27 278.2 0.83 0.57 675M 250 2
L-DiT-3B (dit, 2024) 2.10 304.4 0.82 0.60 3.0B 250 >32
L-DiT-7B (dit, 2024) 2.28 316.2 0.83 0.58 7.0B 250 >32

Mask Prediction
MaskGIT (Chang et al., 2022) 6.18 182.1 0.80 0.51 227M 8 0.4
RCG (cond.) (Li et al., 2023) 3.49 215.5 − − 502M 20 1.4

Token-wise Autoregressive
VQVAE-2† (Razavi et al., 2019) 31.11 ∼45 0.36 0.57 13.5B 5120 −
VQGAN† (Esser et al., 2021) 18.65 80.4 0.78 0.26 227M 256 7
VQGAN (Esser et al., 2021) 15.78 74.3 − − 1.4B 256 17
ViTVQ (Yu et al., 2021) 4.17 175.1 − − 1.7B 1024 >17
RQTran. (Lee et al., 2022) 7.55 134.0 − − 3.8B 68 15
LlamaGen-3B (Sun et al., 2024) 2.18 263.33 0.81 0.58 3.1B 576 -

Scale-wise Autoregressive
VAR-d12 (Tian et al., 2024) 5.81 201.3 0.81 0.45 132M 10 0.2
M-VAR-d12 4.19 234.8 0.83 0.48 198M 10 0.2
VAR-d16 (Tian et al., 2024) 3.55 280.4 0.84 0.51 310M 10 0.2
M-VAR-d16 3.07 294.6 0.84 0.53 464M 10 0.2
VAR-d20 (Tian et al., 2024) 2.95 302.6 0.83 0.56 600M 10 0.3
M-VAR-d20 2.41 308.4 0.85 0.58 900M 10 0.4
VAR-d24 (Tian et al., 2024) 2.33 312.9 0.82 0.59 1.0B 10 0.5
M-VAR-d24 1.93 320.7 0.83 0.59 1.5B 10 0.6
VAR-d30 (Tian et al., 2024) 1.97 323.1 0.82 0.59 2.0B 10 0.7
M-VAR-d32 1.78 331.2 0.83 0.61 3.0B 10 1

Compared with the most related VAR, our proposed M-VAR models demonstrate significant ad-
vancements in both performance and efficiency. Across various depths, M-VAR consistently
achieves lower Fréchet Inception Distance (FID) scores and higher Inception Scores (IS), indicat-
ing superior image quality and diversity. Specifically, M-VAR-d24 attains an FID of 1.93 and an
IS of 320.7 with 1.5 billion parameters. M-VAR-d24 surpasses the largest VAR model, VAR-d30,
with 25% fewer parameters and 14% faster inference speed. Furthermore, our largest model, M-
VAR-d32, achieves state-of-the-art performance with an FID of 1.78 and an IS of 331.2, utilizing
3.0 billion parameters. These results highlight the effectiveness of our approach in integrating intra-
scale attention with Mamba for inter-scale modeling, leading to superior image generation quality
and computational efficiency compared to existing models. The consistent outperformance of M-
VAR models underscores their potential for scalable, high-resolution image generation. We also
show more qualitative results in Figure 4.

As shown in Table 3, we also compare our M-VAR-d32 model with other state-of-the-art methods
using rejection sampling on class-conditional ImageNet 256×256. Our M-VAR-d32 achieves an
FID of 1.63 and an IS of 361.5, outperforming all compared models. Specifically, it surpasses
the previous best VAR-d30 by FID of 0.1 and IS of 11.3. Additionally, M-VAR-d32 demonstrates
significant improvements over ViTVQ, RQTransformer, and VQGAN by FID of 1.41, 2.17, 3.57
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Table 3: Generative model comparison on class-conditional ImageNet 256×256 with rejection
sampling.

Model Params FID↓ IS↑

ViTVQ (Yu et al., 2021) 1.7B 3.04 227.4
RQTran. (Lee et al., 2022) 3.8B 3.80 323.7
VQGAN (Esser et al., 2021) 1.4B 5.20 280.3
VAR-d30 (Tian et al., 2024) 2.0B 1.80 343.2
M-VAR-d32 3.0B 1.67 361.5

Table 4: Generative model comparison on class-conditional ImageNet 512×512.

Model FID↓ IS↑ Inference Time↓

BigGAN (Brock et al., 1809) 6.95 224.5 1
DiT-XL/2 (Peebles & Xie, 2023) 3.04 240.8 160
MaskGiT (Chang et al., 2022) 7.32 156.0 1
VQGAN (Esser et al., 2021) 26.52 66.8 50
VAR-d36 (Tian et al., 2024) 2.63 303.2 2
M-VAR-d24 2.65 305.1 1

respectively. These results highlight the effectiveness of our approach in achieving superior image
generation quality under rejection sampling, affirming the advancements of M-VAR in the realm of
scale-wise autoregressive image generation.

4.2 IMAGENET 512×512 CONDITIONAL GENERATION

We train M-VAR on ImageNet (Deng et al., 2009) for 512×512 conditional generation. As shown
in Table 4, our M-VAR-d24 model exhibits competitive performance in class-conditional ImageNet
512×512 generation when compared to the state-of-the-art generative approaches, VAR. Specifi-
cally, M-VAR-d24 achieves an FID of 2.65 and an IS of 305.1, closely matching the performance
of VAR-d36. Importantly, M-VAR-d24 accomplishes this with half the inference time of VAR-d36,
highlighting the efficiency gains from our decoupled intra-scale and inter-scale modeling approach.
Compared to other generative models, such as BigGAN, DiT-XL/2, MaskGIT, and VQGAN, M-
VAR-d24 consistently outperforms them in both FID and IS metrics while maintaining a lower or
comparable inference time. We also show more qualitative results in Figure 4. The figures high-
light that M-VAR consistently produces images with fine details, enhanced texture fidelity, and great
structural coherence.

4.3 ABLATION STUDY

Parameters. We reduce M-VAR’s parameters by adjusting its width or depth, aiming for a fair
comparison while assessing the impact on performance and computational efficiency. As shown
in Table 5, we present three variants of M-VAR alongside the baseline VAR model under similar
parameter constraints. Firstly, M-VAR-W reduces the width of the model from 1024 to 768 while
keeping the depth constant at 16 layers. This reduction leads to a decrease in the total number of
parameters to 260 million, which is lower than VAR’s 310 million parameters. Remarkably, even
with fewer parameters, M-VAR-W achieves a better FID score of 3.20 compared to VAR’s 3.55,
indicating an improvement in image generation quality. Additionally, the training cost is reduced to
0.9 times that of VAR, showcasing enhanced efficiency. Similarly, M-VAR-D maintains the original
width of 1024 but reduces the depth from 16 to 12 layers. M-VAR-D attains an FID score of 3.19,
outperforming VAR while also reducing the training cost and inference time to 0.8 times that of
the VAR. These results illustrate that our proposed M-VAR models can achieve superior image
generation quality compared to the baseline VAR, even when operating under similar or reduced
parameter budgets.
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Figure 4: Qualitative Results. We show the images generated by our M-VAR.

Table 5: Compare with VAR under similar parameters. † our default settings.

Model Depth With Param. FID↓ Training Cost ↓ Inference Time↓
VAR 16 1024 310M 3.55 1 0.9

M-VAR-W 16 768 260M 3.20 0.9 0.9
M-VAR-D 12 1024 340M 3.19 0.8 0.7
M-VAR† 16 1024 450M 3.07 1 1

From VAR to MAR. We gradually replaced the global attention layers in VAR with our proposed
intra-scale attention and inter-scale Mamba modules to evaluate their impact on image generation
quality. As shown in Table 5, we incrementally increased the number of layers replaced—from 0 in
the original VAR model to all 16 layers in our model. The results demonstrate a consistent improve-
ment in FID scores from 3.55 to 3.07 as more global attention layers are replaced. The improvements
suggest that decoupling the modeling of intra-scale and inter-scale dependencies positively impacts
image synthesis quality. By effectively capturing local spatial details within each scale and effi-
ciently modeling hierarchical relationships between scales, our approach leads to more coherent and
detailed image generation.

9
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Figure 5: The effectiveness of our decouple design. We gradually replace the global attention with
our intra-scale attention and inter-scale mamba.

Table 6: Effectiveness and efficiency of Attention and Mamba. We compare our intra-scale attention
and Mamba with previous global attention in VAR

Method Global Attention Intra-scale Attention Mamba FID ↓
VAR ✓ 3.55

1 ✓ 7.17
2 ✓ 4.12

M-VAR (Ours) ✓ ✓ 3.07

Effectiveness and efficiency of Attention and Mamba. Table 6 illustrates the impact of different
attention mechanisms on image generation quality, as measured by the Fréchet Inception Distance
(FID). The baseline VAR model employs global attention, capturing both intra-scale and inter-scale
dependencies simultaneously, and achieves an FID of 3.55. When using only intra-scale attention
without inter-scale modeling (Method 1), the FID significantly deteriorates to 7.17, indicating that
inter-scale dependencies are crucial for high-quality image generation. Method 2, which also utilizes
intra-scale attention but includes some enhancements, improves the FID to 4.12, yet still falls short
of the baseline VAR performance. Our proposed M-VAR model combines intra-scale attention
with Mamba for efficient inter-scale modeling. By decoupling the two types of dependencies and
applying Mamba’s linear-complexity approach for inter-scale interactions, M-VAR achieves the best
FID of 3.07. This demonstrates that effectively capturing intra-scale dependencies with attention and
efficiently modeling inter-scale relationships with Mamba leads to superior image quality.

5 CONCLUSION

We propose a novel approach to scale-wise autoregressive image generation that decouples intra-
scale and inter-scale modeling to enhance both efficiency and performance. By employing bidi-
rectional attention mechanisms for intra-scale interactions, our model effectively captures detailed
spatial dependencies within each scale without excessive computational overhead. For inter-scale
modeling, we utilize Mamba with linear complexity, addressing the disproportionate computational
burden typically associated with inter-scale attention mechanisms. This strategic separation allows
our model to maintain spatial coherence and hierarchical consistency while significantly reducing
computational complexity. Our experiments demonstrate that this decoupled framework outper-
forms existing autoregressive and diffusion models, achieving superior image quality with fewer
parameters and faster inference speeds.
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