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Abstract

In consumer theory, ranking available objects by
means of preference relations yields the most com-
mon description of individual choices. However,
preference-based models assume that individuals:
(1) give their preferences only between pairs of ob-
jects; (2) are always able to pick the best preferred
object. In many situations, they may be instead
choosing out of a set with more than two elements
and, because of lack of information and/or incom-
parability (objects with contradictory characterist-
ics), they may not be able to select a single most
preferred object. To address these situations, we
need a choice model which allows an individual
to express a set-valued choice. Choice functions
provide such a mathematical framework. We pro-
pose a Gaussian Process model to learn choice
functions from choice data. The model assumes a
multiple utility representation of a choice function
based on the concept of Pareto rationalization, and
derives a strategy to learn both the number and the
values of these latent multiple utilities. Simulation
experiments demonstrate that the proposed model
outperforms the state-of-the-art methods.

1 INTRODUCTION

We are interested in learning the behavior of an individual
(e.g., a consumer), we call her Alice, who is faced with
the problem of choosing from among a set of objects, e.g.,
laptops:{

, , , ,

}
.

This is an important problem for instance in computational
advertising, and for personalisation of products and services.
In consumer theory [Kreps et al., 1990], ranking available

objects by means of preference relations yields the most
common description of individual choices:

≻ .

Preference-based models assume that Alice is always able to
pick the best preferred object from a set of objects. However,
in many contexts, Alice is faced with the problem of dealing
with several contradictory primitives. For example, if the
objects are laptops, Alice has to consider criteria such as:
speed, drive-capacity and weight. In other contexts, Alice
may not have sufficient knowledge to pick up the best pre-
ferred object. For instance, in the laptop case, she may not
know if she will use the laptop for expensive computer
experiments or for everyday office work.

To deal with incomparability of objects, we need a choice
model which allows Alice to express a set-valued choice.
Choice functions provide such a mathematical framework,
as well as allowing individuals to choose out of a set with
more than two elements. For any given set of objects A, they
return the corresponding set-valued choice C(A):

A =
{

, , , ,

}
,

C(A) =
{

, ,

}
.

In the general interpretation of choice functions, the state-
ment that an object in A is rejected (that is, /∈C(A))
means that there is at least one object in A that Alice strictly
prefers over .1 On the other hand, any two objects in
C(A) are deemed to be incomparable by Alice.

We represent each object by the feature vector x ∈ Rc of
its characteristics (e.g., for laptops, speed, weight, etc.) and
propose a Gaussian process (GP) model to learn choice
functions from choice data {(C(As),As), s = 1, . . . ,m}.

The uncertainty estimates automatically provided by GPs

1Alice is not required to tell us which object(s) in C(A) domin-

ate .
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can be useful in decision making scenarios where it is
important to understand the reliability of the predictions.
Moreover, GP models are well adapted to applications such
as Bayesian optimization with implicit feedback [Benavoli
et al., 2021a, 2023].

Our main contributions are:

We propose a generalisation of the preference learning
model by Chu and Ghahramani [2005] to choice functions.
This generalisation assumes a multiple utility representation
of a choice function based on the concept of Pareto ration-
alization [Moulin, 1985]: Alice picks the Pareto optimal
objects based on the value of latent multiple utilities.

Learning choice functions via a Pareto embedding was ori-
ginally proposed by Pfannschmidt and Hüllermeier [2020],
but using a hinge loss and a neural network based model.
We will show that our GP-based approach results into a
more accurate and robust model.

The output of a choice function is a choice set and it is
invariant with respect to permutations of its elements. We
will show that this determines a number of challenges and
propose ways to address this issue.

Finally, we propose a method to learn the number of latent
multiple utilities via Pareto Smoothed Importance sampling
Leave-One-Out (PSIS-LOO) cross-validation [Vehtari et al.,
2017]. Exact cross-validation requires re-fitting the model
with different training sets. Instead, PSIS-LOO can be com-
puted efficiently using samples from the posterior.

2 BACKGROUND

To begin, let X represent a set of objects. It is quite typical
in applications to think of X as a subset of Rc, where c is
the number of features of the object. The standard way to
model Alice (the consumer) is with a preference relation.
We present Alice with pairs of objects, xi,x j ∈ X , and ask
her whether xi is better than x j (see for instance Kreps et al.
[1990], Fürnkranz and Hüllermeier [2010], Domshlak et al.
[2011]). If Alice says that xi is better than x j, we write
xi ≻ x j and we say that xi is strictly preferred to x j. In this
paper, we will assume that no draws are allowed – no two
distinct objects are equal – and therefore focus on strict
preference relations.

An important result in preference theory establishes condi-
tions under which a preference relation can be numerically
represented. We refer to a value function that represents
preferences as a utility function.

Definition 1. For any preference relation ≻ on X , the
function u : X → R represents ≻ if

xi ≻ x j iff u(xi)> u(x j). (1)

We say that u is a utility function for ≻.

The relation ≻ admits a utility function representation iff2

it is [Kreps et al., 1990, Ch. 2]:

• Asymmetric: if xi ≻ x j then ¬(x j ≻ xi);
• Negatively transitive: if xi ≻ x j then for any other ele-

ment xk ∈ X either xi ≻ xk or xk ≻ x j or both.

A strict preference relation is said to be consistent – Alice
is rational – when it satisfies the above two properties. It is
immediate to verify that any consistent strict preference is
also transitive and acyclic [Kreps et al., 1990, Ch. 2].3

Typical preference learning (PL) models can be divided in
two categories: (1) those assuming that the preference rela-
tion is consistent and aiming to learn the underlying latent
utility function, e.g., [Chu and Ghahramani, 2005, Houlsby
et al., 2011, Benavoli et al., 2021a]; (2) those solving the
problem as an augmented binary classification problem or
constrained classification, for example, with Support Vec-
tor Machines (SVM), e.g., [Cohen et al., 1997, Herbrich
et al., 1998, Aiolli and Sperduti, 2004, Har-Peled et al.,
2002, Fiechter and Rogers, 2000].

In the first case, the goal is to learn u : X → R from m
preferential observations:

Dm = {x(s)l ≻ x(s)r : s = 1, . . . ,m},

with x(s)l ̸= x(s)r , x(s)l ,x(s)r ∈ X and the subscripts l,r stay
for “left hand side” term and, respectively, “right hand side”
term of the inequality. These PL models assume a Gaussian
Process (GP) prior on the latent utility u.

These PL models also account for the fact that Alice may
make mistakes when stating her preferences and, therefore,
violate asymmetry and/or negative transitivity. We therefore
assume that the probability of correctly stating xi ≻ x j is
a function of the difference u(xi)−u(x j). This probability
can be modelled by the following likelihood:

p(xi ≻ x j|u) = Φ

(
u(xi)−u(x j)

σ

)
, (2)

where Φ(·) is the Cumulative Distribution Function (CDF)
of the standard Normal distribution and σ > 0 is a scaling
parameter. When σ → 0, the CDF converges to an indicator
function and (2) reduces to (1). For PL, this likelihood was
originally proposed by Chu and Ghahramani [2005] and
derived under a Gaussian noise model – see Supp. Mat. 4
for more details about the different interpretations of this
likelihood.

A binary relation on X ×X can be represented, more in
general, through a two-argument function q : X ×X → R

2Kreps et al. [1990] proves this result only for a finite X .
This result can be extended to infinite sets under some topological
assumptions on X [Debreu, 1954]. In this paper, we assume that
the set X is finite.

3Acyclic: if, for any finite number n, x1 ≻ x2, x2 ≻ x3, . . . ,
xn−1 ≻ xn then xn ̸= x1.



[Shafer, 1974, Fishburn, 1988]. If xi is in relation with x j
then q(xi,x j)> 0. Since in general q(xi,x j) ̸= q(x j,xi) we
can equivalently write q(xi,x j) as q([xi,x j]), that is as a
function of the vector [xi,x j]. The function q can be inter-
preted as a “strength of preference”, with values of q([xi,x j])
close to zero indicating a difficult decision – Alice cannot
distinguish xi,x j. This is a natural generalization of repres-
entation results for consistent preferences discussed previ-
ously, in which case one can set q([xi,x j]) = u(xi)−u(x j)
for a utility function u.

Under this representation, PL can be formulated as a classi-
fication problem by rewriting Dm as the dataset (X ,Y ):

X =


x(1)l x(1)r

x(2)l x(2)r
...

...
x(m)

l x(m)
r

 , Y =


1
1
...
1

 .
Indeed, most of the initial PL methods solved the PL prob-
lem as an augmented binary classification problem. The
resulting classification function is not guaranteed to satisfy
asymmetry and negative transitivity in general. However,
for kernel-based methods, it is possible to derive classifiers
that satisfy one or both of these properties.

Indeed, a GP prior on the latent utility u(x) ∼
GP(0,k(x,x′)) induces a GP prior on q([xi,x j]) = u(xi)−
u(x j) by linearity [Houlsby et al., 2011]: q([xi,x j]) ∼
GP(0,kp([xi,x j], [x′i,x′j]), where

kp([xi,x j], [x′i,x
′
j]) = k(xi,x′i)− k(xi,x′j)− k(x′i,x j)+ k(x j,x′j),

(3)

which is called preference kernel. Functions q sampled from
the above GP satisfy asymmetry and negative transitivity,
and so do the GP classifier based on it. In the following, we
refer to the GP PL-model based on this kernel as Preferential
GP (PGP).

Pahikkala et al. [2010] instead, using a feature map view,
derived a kernel

ka([xi,x j], [x′i,x
′
j]) = k(xi,x′i)k(x j,x′j)− k(xi,x′j)k(x

′
i,x j),

(4)

satisfying asymmetry but not negative transitivity in general.
This kernel is known as intransitive preference kernel. A
PL model which employs a GP prior on q with kernel (4)
has been recently proposed by Chau et al. [2022]. In the
following, we refer to this model as GPGP.

2.1 CHOICE FUNCTIONS

The PL models discussed in the previous section assume
that Alice gives her preferences between pairs of objects.
In many situations, she will be instead choosing out of a

set with more than two elements. In this more general case,
Alice’s choices can be formalised through the concept of
choice functions. Let Q denote the set of all finite subsets
of X , then [Kreps et al., 1990]:

Definition 2. A choice function C is a set-valued operator
on sets of objects. More precisely, it is a map C : Q → Q
such that, for any set of objects A ∈ Q, the corresponding
value of C is a subset C(A) of A.

It will be assumed throughout this paper that Alice is able
to find a choosable object in every set she is presented with,
and therefore C(A) ̸= /0 for all A.

It is convenient to introduce the set of rejected objects, de-
noted by R(A), and equal to A\C(A). A rejection-function R
is a useful tool to explain the behavioral meaning of choice
functions. We can think of the decision maker, Alice, as
eliminating the objects xi in A that she considers to be bad.
That is, she thinks that there is at least one object x j ∈ A
that is strictly better than xi. Note that, Alice is not required
to tell us which object(s) in C(A) she strictly prefers to xi

The interpretation of two objects {x j,xk} ⊆C(A) is that x j
and xk are incomparable for Alice. She cannot reject either
of them. Since we have assumed that no two distinct objects
are equal, incomparability can arise for two reasons. First,
the objects to be compared have multiple utilities for Alice.
For example, if the objects are laptops, Alice may consider
multiple utilities such as speed and weight. Second, incom-
parability can arise due to incompleteness [Seidenfeld et al.,
2010, Van Camp et al., 2018],4 which represents simply an
absence of knowledge about the underlying utility function.
We can model both these cases assuming there are multiple
utility functions (due either to incomparability or incom-
pleteness) and then interpret the statement {xi,x j} ⊆C(A)
as “xi and x j are undominated in A in a Pareto sense”.5

This approach was originally proposed in Pfannschmidt and
Hüllermeier [2020] to learn choice functions. The authors
devise a differentiable loss function based on two hinge loss
terms. Furthermore, they add two additional terms to the
loss function: (i) an L2 regularization term; (ii) a multidi-
mensional scaling (MDS) loss to ensure that objects close
to each other in the inputs space X will also be close in the
embedding space Rd . Overall the loss function is the sum
of four terms weighted by four non-negative scalar paramet-

4Note that, differently from this paper, we consider choices
over objects and not over gambles.

5Similar to preferences, a choice function needs to satisfy
some consistency properties in order to be Pareto rationalisable
[Moulin, 1985, Eliaz and Ok, 2006]. However, Pareto rationalisa-
tion is not the only way to rationalise choice functions. [Moulin,
1985], referring to previous work, showed that three properties
(Chernoff, Expansion, Aizerman) are necessary and sufficient for
Pareto rationalisation of choice functions. But one could also define
a weaker form of rationality by only requiring a subset of these
properties.



ers α1,α2,α3,α4 which sum up to one. These weights are
treated as hyperparameters of the learning algorithm. This
loss function is then used to learn a (deep) multi-layer per-
ceptron to represent the embedding. We refer to this model
as ChoiceNN.

In the next section, we instead propose a GP model to learn
choice functions from choice data. In Section 4.1, we will
show that the GP-based model outperforms ChoiceNN.

Finally, it is worth mentioning that PL with more than two
comparisons between objects was also considered by Siivola
et al. [2021], the so-called batch-preference model. This
model considers the case where a subject expresses prefer-
ences for a group of objects. However, the batch-preference
model in [Siivola et al., 2021] assumes that two objects
are always comparable and, therefore, as we will show in
Section 3.3, this model assumes a single utility function.

3 METHODOLOGY

For each A, we interpret C(A) as the undominated set in the
strong Pareto sense with R(A) being the set of dominated
objects. In other words, we assume that there is a latent
vector function u(x) = [u1(x), . . . ,ud(x)]⊤, for some finite
dimension d, which embeds the objects x into a space Rd .
The choice set can then be represented through a Pareto set
of strongly undominated objects:

¬
(

min
i∈{1,...,d}

(ui(o)−ui(v))< 0, ∀o ∈C(A)
)
,∀v ∈ R(A),

(5)

min
i∈{1,...,d}

(ui(o)−ui(v))< 0, ∀o,v ∈C(A), o ̸= v. (6)

Condition (5) means that, for each object v ∈ R(A), it is not
true (¬ stands for logical negation) that all objects in C(A)
are worse than v, i.e. there is at least an object in C(A) which
is strictly better than v. It can equivalently be written as ∀v∈
R(A), ∃o ∈C(A) such that mini∈{1,...,d}(ui(o)−ui(v))> 0.

Condition (6) means that, for each object in C(A), there is no
better object in C(A). This requires that the latent functions
values of the objects should be consistent with the choice
function implied relations.

To account for errors in Alice’s choices, we ex-
tend the likelihood in (2) to choice functions.
Consider the vectors X = [x1,x2, . . . ,xt ]

⊤ with
xi ∈ X , u(xi) = [u1(xi),u2(xi), . . . ,ud(xi)]

⊤ and
u(X) = [u(x1),u(x2), . . . ,u(xt)]

⊤, and the choice dataset

Dm = {(C(As),As) : for s = 1, . . . ,m},

where As ⊂ X for each s. The likelihood is defined as

p(Dm|u(X)) =
m

∏
k=1

p(C(Ak),Ak|u(X))

=
m

∏
k=1

∏
{o,v}∈C♯(Ak)

(
1−

d

∏
i=1

Φ

(
ui(o)−ui(v)

σ

)

−
d

∏
i=1

Φ

(
ui(v)−ui(o)

σ

))

∏
v∈R(Ak)

(
1− ∏

o∈C(Ak)

(
1−

d

∏
i=1

Φ

(
ui(o)−ui(v)

σ

))
(7)

where the notation {o,v}∈C♯(Ak) means that the pair {o,v}
is an element of C♯(Ak), which denotes the set of all pos-
sible 2-combination (without repetition) of the elements
of the set C(Ak). We assumed that the choice-statements
k = 1, . . . ,m are conditionally independent given the utilit-
ies u(X), which is in line with our model based on Pareto
rationalisation. The product in the first and second row
in (7) is a probabilistic relaxation of (6). Note the nega-
tion 1−∏

d
i=1 Φ

(
ui(o)−ui(v)

σ

)
−∏

d
i=1 Φ

(
ui(v)−ui(o)

σ

)
, which

states that o does not dominate v and vice versa. The product
in the last row in (7) is a probabilistic relaxation of (5). In
Supp. Mat. 1, we discuss how to vectorise this likelihood.

Example 1. To understand the error-model defined by the
above likelihood, let us take four objects o1,o2,o3,o4 and
suppose they have the following utilities:

u(o1)=

[
0.2
0

]
,u(o2)=

[
0.1
0.2

]
,u(o3)=

[
−1
−1

]
,u(o4)=

[
−0.5
−0.5

]
.

Assume Alice makes the following choices:

C({o1,o2,o3}) = {o1,o2}, C({o1,o2,o4}) = {o1},

making a mistake in the second statement (these choices
are not Pareto rational). This might be because the objects
{o1,o2} are hard to tell apart since they have very similar
utilities. Assuming σ = 1 we computed the likelihood for
the two choices

p({o1,o2},{o1,o2,o3}|u(X))≈ 0.48,
p({o1},{o1,o2,o4}|u(X))≈ 0.12.

This means that, given the above latent utilities, the prob-
ability that Alice jointly makes these choices is 0.48 ·
0.12 = 0.057. For a given u(X), the probability of er-
ror increases with the parameter σ . Indeed, the probabil-
ity p({o1,o2},{o1,o2,o3}|u(X))p({o1},{o1,o2,o4}|u(X))
tends to zero for σ → 0, since in this case the likelihood (7)
reduces to (5)–(6) and Alice’s choice is Pareto irrational.

Prior: Similarly to GP processes for multiclass classific-
ation [Williams and Barber, 1998], we model each latent



utility function in the vector u(x) = [u1(x), . . . ,ud(x)]⊤ as
an independent GP:

ui(x)∼ GPi(0,ki(x,x′)), i = 1,2, . . . ,d. (8)

Each GP is fully specified by its kernel function ki(·, ·),
which defines the covariance of the latent function between
any two points. The model parameters are the kernel para-
meters (lengthscales) in ki(·, ·), and the scale parameter σ in
the likelihood function. These parameters can be collected
into a hyperparameter vector θ .

3.1 POSTERIOR AND PREDICTION

The posterior probability of u(X) is

p(u(X)|Dm) =
p(u(X))

p(Dm)

m

∏
k=1

p(C(Ak),Ak|u(X)), (9)

where the prior over the component of u is defined in (8), the
likelihood is defined in (7) and the probability of the evid-
ence is p(Dm) =

∫
p(Dm|u(X))p(u(X))du(X). The pos-

terior p(u(X)|Dm) is intractable because it is not a GP. Con-
trarily to the case of binary preferences, the posterior is not
a Skew Gaussian Process [Benavoli et al., 2020, 2021b]. In-
ference on u could be computed using approximation meth-
ods such as (i) the Laplace Approximation (LA) [MacKay,
1996]; (ii) Variational Inference (VI) [Opper and Archam-
beau, 2009, Hensman et al., 2015].

As discussed in Supp. Mat. 2, LA cannot be applied due to
the so-called ‘label switching’ problem. Therefore, we resort
to VI to learn at the same time the kernel hyperparameters
θ and a Gaussian approximation of the posterior p(u|Dm).6

Prediction and Inferences Let X∗ = {x∗1, . . . ,x
∗
p} be a

set including p test points and u(X∗) = [u(x∗1), . . . ,u(x
∗
m)]

⊤.
Under the GP prior assumption on u, the conditional predict-
ive distribution p(u(X∗)|u(X)) is Gaussian and, therefore,

p(u(X∗)|Dm) =
∫

p(u(X∗)|u(X))p(u(X)|Dm)du(X)

(10)
can be easily computed analytically using the VI posterior
p(u|Dm), which is Gaussian. In choice function learning,
we are interested in the inference:

P(C(A∗),A∗|Dm) =
∫

p(C(A∗),A∗|u(X∗))

p(u(X∗)|Dm)du(X∗),
(11)

which returns the posterior probability that the agent chooses
the objects C(A∗) from the set of objects A∗. This probability
can be easily computed via Monte Carlo sampling from the
approximate posterior p(u(X∗)|Dm), which is Gaussian.

6We implemented our model using automatic-differentiation
in Jax [Bradbury et al., 2018]. Details are reported in Supp. Mat. 3.

Example 2. We illustrate the overall model with an ex-
ample. We consider the bi-dimensional utility function
u(x) = [cos(2x),−sin(2x)] with x ∈ R.

4 2 0 2 4
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

u u2
u1

We use u to define a choice function. For instance, con-
sider the set of objects Ak = {0,0.5,2.36} (represented
by the values of x marked by the vertical lines in the
above plot), given that u(0) = [1,0], u(0.5) = [0.54,−0.84],
u(2.36) = [0,1], we have that C(Ak) = {0,2.36} and
R(Ak) = Ak\C(Ak) = {0.5}. In fact, one can notice that
[1,0] dominates [0.54,−0.84] on both utilities, and [1,0]
and [0,1] are incomparable. We sample 200 inputs xi at
random in [−4.5,4.5] and, using the above approach, we
generate

• m = 50 random subsets {Ak}m
k=1 of the 200 points and

compute the corresponding choice pairs (C(Ak),Ak)
based on u. The size of the each choice set is fixed to
|Ak|= 3 and to |Ak|= 5;

• m = 150 random subsets {Ak}m
k=1 each one of size

|Ak|= 3 (respectively |Ak|= 5) and compute the cor-
responding choice pairs (C(Ak),Ak) based on u;

Fixing the latent dimension d = 2, we use these datasets to
compute the posterior means and 95% credible intervals of
the latent functions learned using the model introduced in
Section 3.1. The four posterior plots are shown in Figure 1.
By comparing the 1st with the 3rd plot and the 2nd with the
4th plot, it can be noticed how the posterior means become
more accurate (and the credible interval smaller) as the
size of the dataset increases (from m=50 to m=150 choice
sets). We can also observe that we obtain better estimates
by increasing the dimension of |Ak|.

A key insight from the previous example is that the learned
latent utilities only maintain the Pareto dominance among
the objects (the x in the example), which is the only thing
we observe. Hence, we can never recover the true utilities.

One might ask how the size of choice-set |As| should be
determined. It is clear from (7) that the computational com-
plexity of calculating the likelihood grows with |As|. The
optimal value should therefore be |As|= 2. However, hav-
ing Alice choose objects from a larger set provides more
information for a fixed m. In general, the size |As| depends
on the application, as objects may come in a batch.
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Figure 1: Posterior mean and 95% credible intervals of the two latent functions for the four artificial datasets.

Scalability: In terms of the number of latent utilities, the
computational complexity for ChoiceGP is similar to that
in GP multiclass classification. By exploiting the independ-
ence structure of the prior in the VI, we need storing and
inverting d kernel matrices with dimension t × t. For large
t, there are a number of well established ways to scale up
GPs that can be applied to ChoiceGP [Quiñonero-Candela
and Rasmussen, 2005, Snelson and Ghahramani, 2006, Tit-
sias, 2009, Hensman et al., 2013] [Hernández-Lobato and
Hernández-Lobato, 2016, Bauer et al., 2016, Schuerch et al.,
2020, 2023].

3.2 LATENT DIMENSION SELECTION

In the previous sections, we provided a GP-based model to
learn choice functions. We refer to this model as ChoiceGPd .
ChoiceGPd is conditional on the predefined latent dimen-
sion d (that is, the dimension of the vector of the latent
functions u(x) = [u1(x), . . . ,ud(x)]⊤). Although, it is some-
times reasonable to assume the number of utility functions
defining the choice function is known, it is crucial to derive
a statistical method to select d from data.

We propose a forward selection method. We start learning
the model ChoiceGP1 and we increase the dimension d in a
stepwise manner (so learning ChoiceGP2,ChoiceGP3 and
so on) until some model selection criterion is optimised. Cri-
teria like AIC and BIC are inappropriate for the proposed
GP-based choice function model, since the nonparametric
nature of the model implies that the number of parameters
increases with the size of the data (as d ×m). We propose
to use instead the Pareto Smoothed Importance Sampling
Leave-One-Out cross-validation (PSIS-LOO, Vehtari et al.
[2017]). Exact cross-validation requires re-fitting the model
with different training sets. Instead, PSIS-LOO can be com-
puted efficiently using the samples from the posterior.

We define the Bayesian LOO estimate of out-of-sample
predictive fit for the model in (9):

ϕ =
m

∑
k=1

ln p(zk|z−k), (12)

where zk = (C(Ak),Ak), z−k = {(C(Ai),Ai)}m
i=1,i̸=k,

p(zk|z−k) =
∫

p(zk|u(X))p(u(X)|z−k)du(X). (13)

As derived in Gelfand et al. [1992], we can evaluate (13)
using the samples from the full posterior, that is u(s)(X)∼
p(u(X)|{zk,z−k}) = p(u(X)|D) for s = 1, . . . ,S.7 We first
define the importance weights:

w(s)
k =

1
p(zk|u(s)(X))

∝
p(u(s)(X)|z−k)

p(u(s)(X)|{zk,z−k})

and then approximate (13) as:

p(zk|z−k)≈
∑

S
s=1 w(s)

k p(zk|u(s)(X))

∑
S
s=1 w(s)

k

. (14)

It can be noticed that (14) is a function of p(zk|u(s)(X)) only,
which can easily be computed from the posterior samples.
Unfortunately, a direct use of (14) induces instability be-
cause the importance weights can have high variance. To
address this issue, Vehtari et al. [2017] applies a simple
smoothing procedure to the importance weights using a
Pareto distribution. We provide an example hereafter.

Example 3. We run the latent-dimension selection proced-
ure on the four datasets in Example 2. The table below
reports the PSIS-LOO for different values of the dimension
d. It can be observed how the selection procedure always
selects the true dimension d = 2.

m = 50 m = 150
d |Ak|= 3 |Ak|= 5 |Ak|= 3 |Ak|= 5

1 -882 -1906 -3213 -6108
2 -34 -118 -69 -84
3 -42 -134 -80 -95
4 -50 -152 -91 -109

In Section 4.3, we will show that the proposed PSIS-LOO-
based forward procedure also works on real datasets.

7We generate these samples from the variational posterior.



3.3 RELATION TO (BATCH-)PREFERENCE

For d = 1 (the latent dimension is one), we have that
|C(Ak)|= 1. This means the subject always selects a single
best object. In this case, the likelihood (7), for a given k,
simplifies to

p((C(Ak),Ak)|u(X)) = ∏
o∈C(Ak)

∏
v∈R(Ak)

Φ

(
u(o)−u(v)

σ

)
,

(15)
and reduces to the likelihood (2) when |R(Ak)|= 1 (that is,
in the binary case |Ak|= 2). For |Ak|> 2, the likelihood (15)
is a lower bound of the batch preference likelihood derived
in [Siivola et al., 2021, Eq.3]:

∫ (
∏

v∈R(Ak)

Φ

(
u(o)+wk −u(v)

σ

))
N(wk;0,σ2)dwk,

(16)
as proven in Supp. Mat. 4. The difference between (15) and
(16) comes from two different ways of modelling errors.
The likelihood (16) assumes that inconsistencies in Alice’s
preferences are due to an additive Gaussian noise perturba-
tion of the true utility. The likelihood (15) instead assumes
that inconsistencies are due to a limit of discernability, that
is the probability of error is inversely proportional to the
difference between the utilities of the two objects to be com-
pared (when this difference is zero Alice has 50% chance to
select one object or another). Supp. Mat. 4 includes a further
discussion about these two likelihoods.

4 EXPERIMENTS

Our experiments aim to compare ChoiceGP with the
state-of-the-art methods for choice functions and pref-
erence learning. In section 4.1, we compare ChoiceGP
against ChoiceNN [Pfannschmidt and Hüllermeier, 2020]
on choice data simulated using multi-utility functions taken
from benchmark problems used in multi-criteria optim-
ization. In section 4.2, using simulated preferences, we
compare ChoiceGP with Preferential GP (PGP) [Chu and
Ghahramani, 2005], General Preferential GP (GPGP) [Chau
et al., 2022] and GP with data augmentation (PairGP) [Chau
et al., 2022]. PairGP solves the PL problem as an augmented
binary classification problem. In PairGP, skew-symmetry
is further enforced by averaging the model outputs [Chau
et al., 2022, Sec. 3.3]. For PGP, GPGP and PairGP, we use
the Laplace approximation to compute an approximation of
the posterior. Finally in Section 4.2, we compare ChoiceGP,
PGP, GPGP and PairGP using real-world datasets. For all
methods involving kernels, we use the Gaussian radial basis
function (RBF) kernel with automatic relevance determina-
tion (ARD):

k(x,x′) = exp

(
−

c

∑
i=1

(xi − x′i)
2

2ℓ2
i

)
, (17)

where ℓi are the lengthscale parameters for each dimension
i = 1, . . . ,c. The scale-parameter of the kernel is set to one,
but we estimate all lengthscale parameters ℓi and the scaling
parameter σ of the likelihood.

4.1 BENCHMARK OPTIMISATION PROBLEMS

Data generation In this section, we repeat the experiment
in [Pfannschmidt and Hüllermeier, 2020, Sec. 4]. Choice
data are simulated using multi-utility functions taken from
benchmark problems used in multi-criteria optimization: the
DTLZ test suite [Deb et al., 2005] and the ZDT test suite
[Zitzler et al., 2000], for a total of 10 benchmarks. In all
experiments, the dimension of the choice set is |A|= 10 and
each object xi ∈ R6 (6 features). A total of 40,960 choice
sets are generated. For the DTLZ problems, the number
of objective functions is set to 5 (i.e., d = 5). As perform-
ance, Pfannschmidt and Hüllermeier [2020] used the av-
erage A-mean (A-mean is the arithmetic mean of the true
positive and true negative rate) of 5 repetitions of a Monte
Carlo cross validation with a 90/10% split into training
and test data. For ChoiceNN, the training instances are fur-
ther split into 1/9 validation instances and 8/9 training in-
stances in order to optimize the hyperparameters: (a) the
loss weights α1,α2,α3,α4 (b) the number of hidden units
and layers, using 60 iterations of Bayesian optimization. For
both ChoiceNN and ChoiceGP, the latent dimension is equal
to the number of objective functions.

Results Figure 2 reports the average A-mean of the two
models when predicting choices on held-out data. ChoiceGP
significantly outperforms ChoiceNN. We have found that
this is due to ChoiceNN not often being able to find latent
functions that are consistent with the training data. The
disadvantage of a parametric method, like ChoiceNN, is
that the latent utility functions depend nonlinearly on the
optimisation parameters. Instead, in ChoiceGP, the values
of the utility functions at the training data are part of the
variational parameters and, therefore, can be more easily
optimised. We provide a simple example in Supp. Mat. 5 to
illustrate this issue. For this reason, we have not included
ChoiceNN in the subsequent experiments.

4.2 INCONSISTENT PREFERENCES

Data generation In this section, we repeat the experiment
proposed in Chau et al. [2022, Sec. 4.1]. Consider a data
matrix X ∈ Rn×c. We randomly assign to each row a latent
variable z ∈ {1, . . . ,L} and generate a set of utility functions
{uz,z′}L

z,z′=1 , i.e. a different utility function for each pair
z,z′ of latent states. We impose the constraint uz,z′ = uz′,z

and assume that uz,z′(x) = ∑
n
j=1 α

z,z′
j k(x,x j), where k is the

RBF kernel, eq. (17), and each vector α
z,z′
j

i.i.d.∼ N(0, In).
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Figure 2: Comparisons ChoiceGP vs. ChoiceNN on 10 multi-criteria optimization problems. A-means are averaged over 5
runs and error bars of 1 standard deviation are provided.
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Figure 3: Comparisons of algorithms for simulations at different sparsity and inconsistency level. Accuracy is averaged over
20 runs and error bars of 1 standard deviation are provided

We generate two datasets. In the first dataset, as done in
Chau et al. [2022], the comparison between objects xi,x j is
conducted based on the utility selected by their latent states,
i.e. xi ≻ x j iff uzi,z j(xi)> uzi,z j(x j), leading to a dataset of
m pairwise comparisons:

D
(1)
m = {x(s)l ≻ x(s)r : s = 1, . . . ,m}.

D
(1)
m includes preferences violating negative transitivity. In

the second dataset, the comparison between objects xi,x j
is based on Pareto’s dominance criterion, i.e. xi is chosen
from the set A = {xi,x j} iff uz,z′(xi)> uz,z′(x j) for all z,z′.
This naturally originates into a choice dataset:

D
(2)
m = {(C(As),As) : s = 1, . . . ,m},

where As = {x(s)l ,x(s)r } (the same pairs as in D
(1)
m ) and C(As)

equal to either {x(s)l } if uz,z′(x
(s)
l ) > uz,z′(x

(s)
r ) for all z,z′

or to {x(s)l ,x(s)r } otherwise. Dataset D
(2)
m corresponds to a

scenario in which Alice is allowed to express incomplete
judgments while, in D

(1)
m , Alice is compelled to always

choose between two objects.

Results Figure 3 reports the accuracy for the 4 models
when predicting preferences on held-out data and when
trained on datasets with different sparsity level. To generate
training datasets, we set the number of objects to n = 30 and
their dimension to c = 5. We then varied the sparsity level
γ ∈ [0,1) and generated preferences/choices (as described
previously) for a random subset of dimension (1− γ)n(n−
1)/2 of the possible pairs of objects.

In the case L = 1 (d = 1), ChoiceGP and PGP coincide,
since there is only one utility function. They outperform
both GPGP and PairGP in terms of average accuracy. In the
case L = 2 (d = 3), the average accuracy of ChoiceGP is
always higher than the other three methods. The rightmost
plot of figure 3 (labelled L = 2 (d = 1,2,3,4,5)) reports the
accuracy for ChoiceGP in the medium sparsity regime as a
function of the latent dimension d. It can be observed as the
accuracy increases until d = 3 (corresponding to the true
latent dimension) and then remains stable.

These experiments show that, when inconsistencies in pref-
erence assessments are due to multiple conflicting utilit-
ies, it is better to allow Alice to express incomparability
judgements instead of compelling Alice to always choose a
preferred object.

4.3 REAL DATASETS

We now focus on five benchmark datasets – AM, EDM,
Jura, Slump, Vehicle – for multi-output regression problems.
We use the three output variables as utility functions to
generate choice data. For instance, in the Additive Manufac-
turing (AM) dataset, we consider 6 features (layer height,
nozzle temperature, bed temperature, print speed material,
fan speed) and we use the three outputs (roughness, tension
strength, elongation) to generate choice data. More details
on the datasets is provided in Supp. Mat. 6. For each dataset,
we set |Ak|= 2 and use the three output variables to generate
a dense choice set {(C(Ak),Ak) : k = 1, . . . ,m}. By using a



Table 1: Average accuracy

ChoiceGP PGP GPGP PairGP

AM 0.90 maj. 0.84 0.86 0.87
rand. 0.74 0.73 0.738

EDM 0.88 maj. 0.83 0.80 0.83
rand. 0.84 0.82 0.82

Jura 0.91 maj. 0.87 0.87 0.87
rand. 0.84 0.82 0.82

Slump 0.91 maj. 0.93 0.90 0.90
rand. 0.83 0.79 0.79

Vehicle 0.93 maj. 0.89 0.90 0.90
rand. 0.80 0.80 0.80

sparsity level equal to 0.4 we randomly generate a training
set and use the remaining choice pairs as test set (we repeat
this process 5 times generating a total of 25 datasets).

Since PGP, GPGP and PairGP cannot deal with conflicts
among preferences (and so with choice data), we consider
two common ways8 to deal with these conflicts: (1) random
selection; (2) looking for the alternatives that are favoured
by most (but not necessarily all) of the preference criteria.
We generate preference data from the above choice datasets
as follows. For each Ak = {xi,x j} if C(Ak) = {xi} then
xi ≻ x j. Instead, whenever C(Ak) = {xi,x j}, we generate
preference data in two ways: random: coin flip: xi ≻ x j if
Heads; x j ≻ xi if Tails; majority rule: xi ≻ x j if xi is better
than x j with respect to 2 out of 3 outputs. Table 1 reports
the average accuracy.

It can be noted that ChoiceGP overall outperforms PGP,
GPGP and PairGP in both the random and majority rule
scenario. The only exception is the dataset slump, where
PGP has higher accuracy in the majority rule scenario. In
Supp. Mat. 6, we perform a statistical analysis of the res-
ults to show that the difference between the algorithms is
practically and statistically significant.

Finally, we run the latent-dimension selection procedure on
the five datasets. Table 2 reports the PSIS-LOO for different
values of the dimension d in one of the 5 MC repetitions. It
can be observed how the selection procedure always selects
the true dimension d = 3. This happens consistently in 5
out of the 5 repetitions and demonstrates both the accuracy
and reliability of the proposed latent dimension selection
procedure.

5 CONCLUSIONS

We have developed a Gaussian Process based-method to
learn choice functions from choice data via Pareto rational-
ization. This method extends standard (pairwise) preference

8Note that, there are criteria to deal with conflicts which gen-
erate consistent preferences, for instance by weighting the utilities.
In these cases, PGP and ChoiceGP are the best models.

Table 2: Latent dimension selection, PSIS-LOO values

d AM EDM Jura Slump Vehicle

1 -16335 -5646 -11182 -10754 -12692
2 -186 -138 -254 -211 -272
3 -152 -136 -194 -179 -174
4 -160 -158 -207 -199 -179
5 -170 -173 -223 -234 -205

learning in two directions, it allows a subject to: (1) choose
out of a set with more than two elements; (2) express judge-
ments of incomparability (due to lack of information or to
objects having contradictory characteristics). Experimental
results on simulations and real-world datasets show the pro-
posed method is both robust and accurate. We also proposed
an effective method to learn the number of latent multiple
utilities via Pareto Smoothed Importance Sampling Leave-
One-Out cross-validation. As future work, we will study the
performances of a fully Bayesian method such as reversible
jump MCMC to automatically select the latent dimension.
We also plan to compare such an heavy approach with the
prior predictive matching approach [Silva et al., 2023].

The framework we proposed may enable more easy-to-elicit,
and robust recommendations to users in recommender sys-
tems and information retrieval. This model could also be
used in Bayesian optimisation with implicit feedback.

The likelihood in Equation (2) assumes that the latent func-
tions are corrupted by a Gaussian noise. We will explore
different options for the noise distribution such as a Gumbel
distribution and extend it to (7). Finally, we aim to extend
this model to handle choice-functions that are not Pareto
rationalisable, and thus we will explore weaker forms of ra-
tionality. For example, [Pfannschmidt et al., 2022] proposed
a generalisation in this direction by considering context-
dependent choice functions. We will also investigate choice
under uncertainty [Seidenfeld et al., 2010, Van Camp et al.,
2018, De Bock and De Cooman, 2019].
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