

000 MEDLESIONVQA: A MULTIMODAL BENCHMARK EMULATING CLINICAL VISUAL DIAGNOSIS FOR BODY SURFACE HEALTH

006 **Anonymous authors**

007 Paper under double-blind review



035 Figure 1: Overview of MedLesionVQA. The benchmark is designed to emulate the visual diagnostic workflow
036 of physicians (top-left), covering seven core abilities with fine-grained annotations. Expert physicians with
037 over 20 years of experience validated annotations (middle), which include detailed identification of 94 lesion
038 types, 96 diseases, and 110 body regions (bottom).

ABSTRACT

041 Body-surface health conditions, spanning diverse clinical departments, represent some of
042 the most frequent diagnostic scenarios and a primary target for medical multimodal large
043 language models (MLLMs). Yet existing medical benchmarks are either built from publicly
044 available sources with limited expert curation or focus narrowly on disease classification,
045 failing to reflect the stepwise recognition and reasoning processes physicians follow in
046 real practice. To address this gap, we introduce MedLesionVQA, the first benchmark

047 explicitly designed to evaluate MLLMs on the visual diagnostic workflow for body-surface
 048 conditions in large scale. All questions are derived from authentic clinical visual diagnosis
 049 scenarios and verified by medical experts with over 20 years of experience, while the data
 050 are drawn from 10k+ real patient visits, ensuring authenticity, clinical reality and diversity.
 051 MedLesionVQA consists of 12K in-house volunteer images (*never publicly leaked*) and
 052 19K expert-verified question-answer pairs, with fine-grained annotations of 94 lesion types,
 053 110 body regions, and 96 diseases. We evaluate 20+ state-of-the-art MLLMs against human
 054 physicians: the best model reaches 56.2% accuracy, far below primary physicians (61.4%)
 055 and senior specialists (73.2%). These results expose the persistent gap between MLLMs
 056 and clinical expertise, underscoring the need for the multimodal benchmarks to drive
 057 trustworthy medical AI.

1 INTRODUCTION

062 Photo-based interaction with multimodal large language models has recently gained attention as a potential
 063 pathway for addressing body-surface health concerns, including the skin, nails, hair, oral cavity, genitals, and
 064 other visible areas. It requires MLLMs (Saab et al., 2024; Moor et al., 2023; Li et al., 2023a; Chen et al.,
 065 2024a; Lin et al., 2025; Nath et al., 2024) and medical MLLMs (Tian et al., 2023; Chen et al., 2023; Wei Zhu &
 066 Wang, 2023; Wang et al., 2025) to give visual diagnosis results according to body lesion images photographed
 067 by users via smartphone or other device. Although current MLLMs have shown the ability for medical
 068 assistance (Esteva et al., 2017; Coustasse et al., 2019; Tschandl et al., 2020), they still struggle to replicate the
 069 visual diagnostic workflow (Weller et al., 2014) that physicians rely on for body-surface health—spanning fine-
 070 grained recognition, reasoning, diagnosis, and treatment suggestions across departments such as dermatology,
 071 dentistry, and general surgery. The critical challenge is how to evaluate whether MLLMs can truly align with
 072 this workflow and perform like physicians in authentic clinical settings.

073 Existing medical benchmarks are either assembled from publicly available sources with limited expert curation
 074 or focus narrowly on disease classification, failing to capture the visual diagnostic workflow for body-surface
 075 health that physicians follow in practice. General-purpose benchmarks, such as GMAI-MMBench (Ye
 076 et al., 2024) and OmniMedVQA (Hu et al., 2024), extend to up to 38 modalities by aggregating data
 077 from open-source websites. Although these datasets are extensive, publicly sourced information often
 078 includes outdated or basic-level data and lacks expert annotations critical for lesion interpretation and
 079 treatment recommendations. Conversely, specialized datasets such as SkinCon (Daneshjou et al., 2022b)
 080 and DDI (Daneshjou et al., 2022a) integrate expert annotations but focus narrowly on singular tasks, such as
 081 disease classification, not adequately reflecting real-world clinical practice. For instance, SkinCon (Daneshjou
 082 et al., 2022b) introduces lesion concepts, which are visual symptoms of disease, without open-ended diagnostic
 083 queries. DDI employs binary labeling (e.g., malignant vs. benign), which oversimplifies the real-world
 084 clinical complexities. Additionally, SkinCon contains only 3,700 images, and DDI encompasses merely 656
 085 cases (Daneshjou et al., 2022a), which are insufficient for robust evaluation.

086 To address these issues, we introduce MedLesionVQA, the first benchmark explicitly designed to evaluate the
 087 visual diagnostic workflow for body-surface health. To ensure authenticity and close alignment with physician
 088 practice, we collaborated with senior medical directors with over 20 years of experience and defined seven core
 089 diagnostic abilities by referring to authoritative textbooks and clinical literature (Weller et al., 2014). These
 090 abilities span lesion recognition, reasoning, diagnosis, and treatment across dermatology & STD, dentistry,
 091 and surgery. Our dataset comprises 12K images collected directly from real patient volunteers, guaranteeing
 092 that *none originate from internet sources or leaked repositories*. With 12K images and 19K question-answer
 093 pairs, MedLesionVQA is substantially larger than prior expert-curated benchmarks for body-surface health,
 094 enabling more robust and diverse evaluation. Beyond its authenticity and scale, MedLesionVQA implements
 095 a fine-grained annotation system, covering 94 lesion types, 96 diseases, and 110 anatomical regions. For

example, a human hand is subdivided into nine distinct regions, from the purlicue to the fingertip, enabling highly detailed evaluation of model performance.

Furthermore, our QA generation pipeline is grounded in real clinical questions, which serve as templates for automatic generation and are then refined through rigorous expert review. This yields over 19K diverse, high-quality QA pairs with expert-level accuracy and statistical reliability, addressing gaps left by prior benchmarks. After extensive prompt tuning and iterative refinement, we establish an LLM-based scoring system developed with physicians, ensuring strong consistency between automated assessments and human judgments. Our key contributions are summarized as follows:

- **The first body-surface benchmark aligned with visual diagnostic workflow.** We introduce the first multimodal benchmark explicitly designed to evaluate the visual diagnostic workflow for body-surface health, moving beyond narrow disease classification. MedLesionVQA evaluates the stepwise diagnostic abilities of state-of-the-art MLLMs, providing a foundation for their advancement toward real-world clinical use.
- **Expert-level and fine-grained annotation system.** Our benchmark benefits from valuable expert annotations, covering over 96 prevalent diseases, 110 body regions and sub-regions, and 94 distinct lesion types. All annotations are conducted and rigorously verified by clinical experts following a systematic clinical lexicon tree.
- **Comprehensive evaluation.** We conducted an extensive evaluation involving more than 20 widely-used MLLMs. Additionally, we established human baselines by engaging general practitioners and senior physicians, enabling a thorough and systematic comparison between MLLMs and medical experts.

Table 1: Difference between MedLesionVQA and other existing benchmarks/datasets. OmniMedVQA* (Hu et al., 2024) and GMAI-MMBench*(Ye et al., 2024) contains a subset of lesion images for dermatology-related evaluation.

Benchmark	Images/QA	VQA	Data source	Anno./Eval. dimension
OmniMedVQA* (Hu et al., 2024)	119K / 128K	✓	public	lesion (<i>unknown</i>) body region (25)
GMAI-MMBench*(Ye et al., 2024)	26K / 26K	✓	public	disease (<i>unknown</i>)
Fitzpatrick17K (Groh et al., 2021)	17K / <i>null</i>	✗	public	disease (114)
DermNet (der, 2023)	19K / <i>null</i>	✗	public	disease (23)
SkinCon (Daneshjou et al., 2022b)	3230 / <i>null</i>	✗	public	lesion concepts (48)
DDI (Daneshjou et al., 2022a)	656 / <i>null</i>	✗	volunteer	disease (2)
SNU-134 (Han, 2019)	2101 / <i>null</i>	✗	volunteer	disease (134)
MedLesionVQA	12K / 19K	✓	volunteer	lesion (94) and attribute (7) body region (110) disease (96) suggestion & treatment

2 RELATED WORKS

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Numerous Multimodal Large Language Models have been developed, focusing primarily on improving image captioning, visual question answering, and cross-modal retrieval (Achiam et al., 2023; Anthropic, 2025a; Bai et al., 2023; Chen et al., 2024d;e; Liu et al., 2023c; Chen et al., 2024e;b). Representative models include the GPT-4V (Achiam et al., 2023), DeepSeek series (Guo et al., 2025), LLAVA series (Li et al., 2024; Liu et al., 2023c), InternVL series (Chen et al., 2024e;c), Qwen series (Bai et al., 2025; Wang et al., 2024b), and CogVLM series (Wang et al., 2024c; Hong et al., 2024), among others (Laurençon et al., 2023; Ding et al.,

2021). These works have significantly contributed to the development of the community. To address specific medical tasks, researchers have trained and fine-tuned MLLMs using specialized medical data, leading to the development of medical vision-language models (Li et al., 2023a; He et al., 2024; Wu et al., 2023; Liu et al., 2023d), which integrate medical images (such as X-rays, MRIs, and CT scans, *etc.*) with clinical data (including patient records, diagnosis, and treatment plans, *etc.*) (Ye et al., 2024; Antonelli et al., 2022; Irvin et al., 2019). However, achieving precise medical question answering and fine-grained multimodal diagnostics remains a significant challenge.

2.2 BENCHMARKS

The field of MLLMs has experienced rapid advancements, both in terms of models (Achiam et al., 2023; Bai et al., 2023; Anthropic, 2025a) and benchmarks (Bitton et al., 2023; Zhu et al., 2024; Li et al., 2025; Ray et al., 2024; Lim et al., 2024; Yu et al., 2023; 2024; Xu et al., 2023; Lee et al., 2024; Roberts et al., 2024). Evaluating the medical capabilities of MLLMs requires specific benchmarks, and the representative medical benchmarks include VQA-RAD (Lau et al., 2018), SkinCon (Daneshjou et al., 2022b), SkinCAP (Zhou et al., 2024), DDI (Daneshjou et al., 2022a), SCIN (Ward et al., 2024), SLAKE (Liu et al., 2021), RadBench (Wright & Reeves, 2016), MMMU (Yue et al., 2024), GMAI-MMBench (Ye et al., 2024), OmniMedVQA (Hu et al., 2024) and MediConfusion (Sepehri et al., 2024), *etc.*. Among which, OmniMedVQA (Hu et al., 2024) introduces the largest medical VQA dataset to date, covering 12 data modalities and 20 anatomical regions, with over 100k images. GMAI-MMBench (Ye et al., 2024) includes various medical imaging data, such as X-rays, CT scans, MRIs, and ultrasounds, along with corresponding clinical information. RadBench (Wright & Reeves, 2016) focuses on radiology, involving tasks such as modality recognition and disease diagnosis. In this work, we introduce MedLesionVQA, which consists of 12K+ in-house volunteer body lesion images and 19K expert-verified QA pairs. It uniquely targets the stepwise visual diagnostic multimodal abilities that are central to real visual diagnosis workflows.

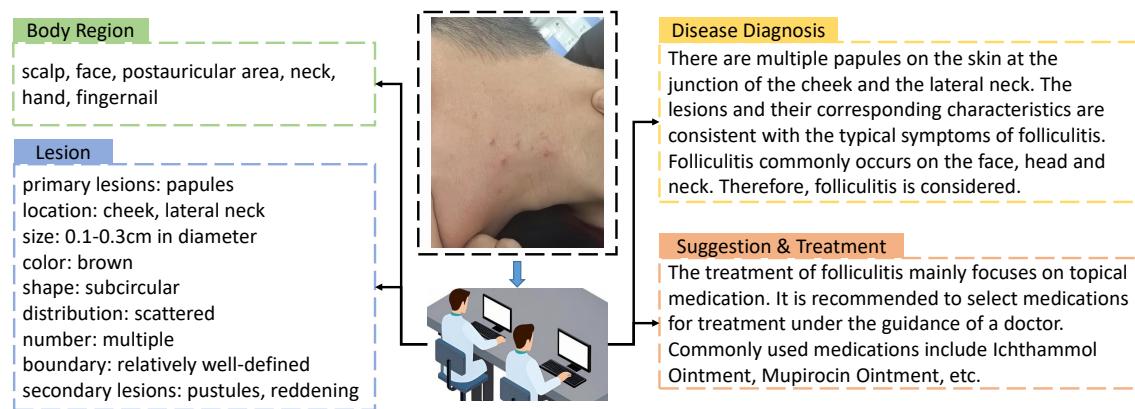


Figure 2: The Annotation procedure. The physicians sequentially annotate the body regions, lesions, attributes, disease diagnosis, and finally suggestion & treatments.

3 ESTABLISHMENT OF MEDLESIONVQA

3.1 OVERVIEW OF BENCHMARK

MedLesionVQA contains 12K inhouse images collected from volunteers under ethical approvals in data collection process. We cooperate with senior physicians to design and implement an annotation protocol,

referencing authoritative materials (Weller et al., 2014; James et al., 2011). The protocol covers 96 prevalent diseases, 94 lesion types, and 119 body regions. Then, inspired by diagnosis and treatment pipeline in clinical practice, we construct 19K diverse question-answer samples involved with 7 stepwise visual diagnostic abilities, and some examples are shown in Fig. 1. These 7 abilities include lesion recognition, attribute recognition, region recognition, spatial relation, lesion reasoning, disease diagnosis and suggestion & treatment, and detailed explanation can be found in supplement materials. Finally, we propose an automated scoring pipeline to calculate the metric of MLLMs' benchmark results, and the scoring pipeline is tuned to align physician judgment metric with negligible difference.

3.2 DATA COLLECTION

We recruit more than 10K+ volunteers aging from 15 to 75 years old to take photos on their body lesion regions. Each person is instructed to take at least 5 photos at near, medium, and far camera focus, respectively. Finally, these images are preprocessed through image quality filtering, content inspecting, personal information desensitizing, and distribution balancing.

3.3 ANNOTATION PROTOCOL

More than tens of physicians are invited into the image annotation process, which contains image filtering, annotation labeling, and annotation reviewing. First, a group of annotators check the quality of each image, such as its clarity, and discard the unqualified images as well as those that do not show the exposed human skin or the oral cavity. Second, body region type, lesion type, lesion attribute type, disease type, and suggestion & treatment annotations are labeled under annotation rules, which are developed by an expert panel of senior experts. Finally, other senior experts review the annotation results and correct any errors, ensuring the annotation quality with entity-level precision and recall of over 95%.

Body region. The physicians are asked to annotate all visible parts of the human body and the internal parts of the oral cavity. We have respectively constructed the corresponding lexical trees for part division, and the annotation is carried out according to the secondary nodes of the lexical trees. More information of the lexical trees is detailed in Appendix A.2.

Lesion. Our dataset has annotations for 94 types of lesions. For each lesion, we describe its key attributes. These attributes are: size, color, shape, quantity, distribution, and boundary. We also pinpoint the exact location of each lesion. To do this, we use a very detailed body map, much like the fine branches of a tree. All our labels have multiple options, not just "yes or no," and most come with at least 7 different text descriptions. Finally, we identify primary and secondary lesions. We also describe their relationship and how often they appear together.

Disease. Each image is provided with up to 3 differential disease diagnosis by two independent physicians, which are sorted in the order they consider the most reasonable. Then, the inverse of the rank is used as the weight to combine the annotation results of the two physicians, to obtain the final sorting result. For the list of total disease labels in the annotation data, please refer to Table 4 of the supplementary material. The logic of diagnostic reasoning is also provided during annotation.

Suggestion & Treatment. For each image, physicians are required to provide corresponding treatment suggestions based on the unique disease diagnosis or differential disease diagnosis, including advice on seeking medical treatment, medication, matters needing attention in daily life, and so on.

3.4 QUESTION-ANSWER CONSTRUCTION

This section introduces the process of question generation, including category balance, prompt design tailored for assessing different cognitive abilities, and the development of various question types.

Evaluation category balance. We balanced the distribution of questions across seven abilities to closely reflect their real-world distribution in clinical practice, as illustrated in Fig. 1. Lesion, attribute, and location recognition questions comprise 61% of the MedLesionVQA dataset, as accurate fine-grained recognition is fundamental for subsequent diagnostic tasks. Specifically, the evaluation assigned equal weighting to each lesion type according to the real-world distribution, ensuring comprehensive coverage for accurate skin lesion identification and analysis.

QA construction prompts. In the context of real-world question examples, we design different QA generation templates for different evaluated abilities in order to test the corresponding capabilities. Two typical prompts are displayed in Fig. 3(a), and the rest will be included in the supplementary materials.

Diverse question types. The generated questions are categorized into two types: multi-choice and open-ended questions, while open-ended questions include judgment, fill-in-the-blank, and short-answer questions. For multi-choice questions, we create similar distracted options based on the correct answer and then randomize the order of all options, ensuring that the correct answer has an equal likelihood of appearing in any position. To prevent answers from being overly diverse and difficult to assess, the answers to open-ended questions are kept relatively concise. This approach enables the judging model to provide more consistent scores in the subsequent evaluation.

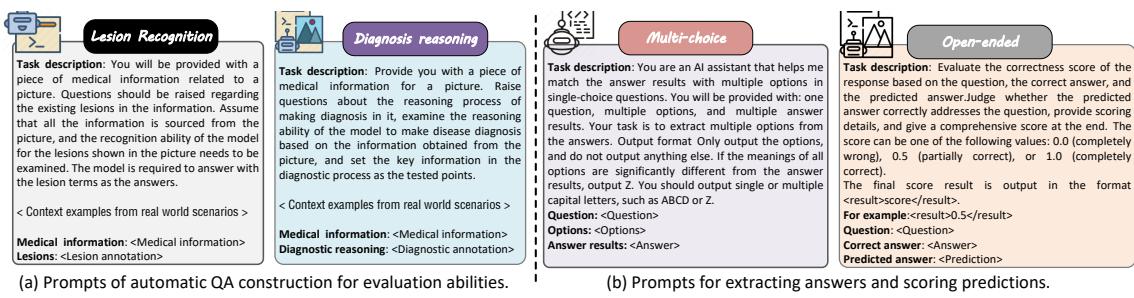


Figure 3: The prompt template used on MedLesionVQ. Medical information includes body region, lesion, attribute, disease diagnosis, and suggestion & treatment information annotated above.

Manual review and improvement. To enhance the medical accuracy and ensure appropriate difficulty in QA sets, physicians manually review all auto-generated QA pairs. This review focuses primarily on verifying the correctness of critical medical information within both the questions and the answers. Ambiguous questions are clarified, and non-standard answers are revised accordingly. Additionally, distractors in multi-choice questions are assessed regarding their accuracy and difficulty. A few open-ended questions, particularly those concerning suggestion & treatment and lesion reasoning, are converted into multi-choice format due to the inherent complexity of determining definitive answers. The final benchmark comprises 19,843 question-answer pairs (QAs), which are partitioned into a validation subset containing 1,499 QAs (7.55% of total samples) and a test subset consisting of 18,344 QAs (92.45% of total samples).

3.5 AUTOMATIC SCORING PIPELINE

For *multiple-response questions*, since MLLMs occasionally fail to output exact option answer, we need to extract the option answer from the answer set and the raw prediction output using extracting-answer prompt and then compare it with the correct answer. To calculate score, we have set the following rules: 1) If the predicted answer contains options that are not in the correct answer set, it is considered completely wrong and receives a score of 0; 2) If the predicted answer fails to identify all correct answers, the score is calculated based on the ratio of the number of correctly answered options to the total number of correct answers.

282 For *open-ended questions*, the prompt for the judge model is designed as indicated in Fig. 3(b). With this
 283 prompt, the judge model will analyze the predicted answer, compare its similarity to the correct answer, and
 284 most importantly, determine whether the question has been answered.

285 **Evaluation consistency test.** We use GPT-4 as judge to score the model’s predicted answers for open-ended
 286 QAs. Moreover, we invite physicians to score the answers, also using the three scoring levels of 0 – 0.5 – 1.0.
 287 Through the analysis of inconsistent cases, we find that the model is *too strict* in scoring for attributes such
 288 as color and size. For example, or color descriptions like "pink" and "skin tone", and size descriptions like
 289 "pinpoint" and "millimeter", due to the lack of specialized medical knowledge, the judge model tends to be
 290 overly strict according to general criteria. When we supplement the evaluation details for color and size in
 291 the prompt, therefore the high consistency rate between the judge model’s scores and manual scores can be
 292 ensured. The details can be found in Appendix A.5.

294 4 EXPERIMENTS

295 4.1 EVALUATION

296 **MLLMs baseline.** For closed-source models, we evaluate several well-known models, including GPT
 297 series models (Achiam et al., 2023), Gemini series models (Google, 2025; DeepMind, 2024), and Claude4-
 298 opus(Anthropic, 2025a). For open-source models, we comprehensively evaluate model parameters ranging
 299 from 0.256 billion to 72 billion, including the famous LLaVA series(Liu et al., 2023b; Li et al., 2023b),
 300 Qwen2.5 series (Wang et al., 2024a), InternVL series(Chen et al., 2024e) and DeepSeek-VL series (Wu et al.,
 301 2024).

302 **Physician baseline.** We invite two groups of 15 primary and 15 senior physicians to answer the 1499 questions
 303 in the validation set, respectively. Primary physicians are general practitioner, while senior physicians are
 304 specialized expert from dermatology or dentistry departments. Questions are randomly distributed, and each
 305 question is completed by at least 2 different physicians. The physicians are not allowed to consult textbooks
 306 or search the Internet during the question completion task.

307 **Evaluation Implementation.** The evaluation is conducted using the VLMEvalKit (Duan et al., 2024)
 308 framework. We evaluate all models using a zero-shot setting. All tests are conducted on 8 NVIDIA H20
 309 GPUs (96GB). We additionally add a text-only baseline input to isolate the contribution of the visual modality,
 310 helping to evaluate the model’s reliance on visual versus textual information.

314 4.2 MAIN RESULTS

315 The evaluation results presented in Tab. 2 compare the performance of 22 vision-language models on
 316 MedLesionVQA which includes 7 medical tasks aligned closely with real clinical setting, assessed through
 317 both multiple-choice and open-ended question formats. Fig 4 presents the performance of 10 representative
 318 MLLMs across the 7 ability dimensions defined in MedLesionVQA. In general, Gemini-2.5-pro(Google, 2025)
 319 shows the best performance across nearly all capabilities with 56.24% average accuracy. Senior physicians
 320 achieve averaged score of 73.21%, far beyond the best MLLMs. Key findings from this comprehensive
 321 comparison include:

322 **Insight 1: MLLMs Cannot Function as Body Surface Health Doctors.** MedLesionVQA presents
 323 significant challenges for multimodal large language models (MLLMs). The overall accuracy of representative
 324 MLLMs on our MedLesionVQA benchmark is below 57%, emphasizing the need for implementing real-world
 325 visual diagnostic tests. Although many MLLMs claim to perform at a physician’s level, Tab. 2 indicates
 326 that even the best MLLM performs notably worse than primary care physicians (by 5%) and significantly
 327 worse than expert clinicians (by 17%). The primary reason of incorrect diagnosis are errors in recognizing

329

330 Table 2: The overall accuracy of open-source and closed-source models on the test set and validation set.
 331 *:Some closed-source commercial models are evaluated only on the valid set due to API access limitations.
 332 The table is sorted in descending order based on the AVG_test score.

Model	AVG_val (1499)	AVG_test (18344)	Recognition			Understanding			
			Lesion Recognition (3340)	Location Recognition (3986)	Attribute Recognition (3508)	Spatial Relation (1133)	Lesion Reasoning (3071)	Disease Diagnosis (1693)	Suggestion Treatment (1613)
Text + Image as Input									
Senior physicians*	0.7321	-	0.6826	0.7583	0.7046	0.7102	0.6533	0.7313	0.8574
Primary physicians*	0.6144	-	0.5932	0.6218	0.5203	0.6336	0.5412	0.6258	0.8162
Gemini-2.5-pro*(Google, 2025)	0.5624	-	0.4902	0.5166	0.4300	0.6223	0.5754	0.6048	0.8482
GPT-5*(OpenAI, 2025)	0.5252	-	0.4741	0.5109	0.4039	0.6932	0.4550	0.4444	0.5684
Claude4-opus*(Anthropic, 2025b)	0.5139	-	0.3906	0.4513	0.4488	0.7412	0.4458	0.5744	0.6076
GPT-O3*(OpenAI, 2024)	0.5092	-	0.4379	0.4881	0.4718	0.6288	0.4302	0.3826	0.4229
GPT-4V (OpenAI, 2024)	0.4938	0.4915	0.4071	0.4780	0.4050	0.6308	0.3393	0.5132	0.8216
Gemini-2.0-flash(DeepMind, 2024)	0.4954	0.4801	0.4062	0.4453	0.3923	0.6112	0.3443	0.5219	0.8136
Qwen2.5-VL-72B (Wang et al., 2024a)	0.4904	0.4904	0.3735	0.4636	0.417	0.6618	0.3608	0.5272	0.8246
InternVL2.5-78B (Chen et al., 2024e)	0.4790	0.4757	0.3352	0.4981	0.4259	0.6601	0.3084	0.4800	0.7963
GLM-4V-9B (GLM et al., 2024)	0.4654	0.4474	0.3472	0.4528	0.3584	0.5596	0.3283	0.4929	0.7281
Qwen2.5-VL-7B (Wang et al., 2024a)	0.4243	0.4243	0.3256	0.4005	0.3547	0.5482	0.3356	0.4248	0.7474
Deepseek-v12-small(Wu et al., 2024)	0.4142	0.4164	0.3226	0.4107	0.3627	0.5297	0.2534	0.4822	0.7192
Deepseek-v12 (Wu et al., 2024)	0.3882	0.3928	0.3293	0.3383	0.3514	0.5563	0.2468	0.4309	0.7147
Qwen2-VL-2B (Wang et al., 2024a)	0.3536	0.3533	0.2876	0.3319	0.3059	0.4448	0.2057	0.4171	0.6675
LLaVA-InternLM-7B (Contributors, 2023)	0.3467	0.3316	0.2700	0.3135	0.2967	0.3887	0.1947	0.3981	0.5959
Deepseek-v12-tiny (Wu et al., 2024)	0.3168	0.3293	0.2660	0.2869	0.3079	0.4529	0.1817	0.3953	0.6109
LLaVA-v1.5-13B (Liu et al., 2023b)	0.2980	0.3008	0.2437	0.3270	0.2742	0.3177	0.1798	0.3082	0.4966
InternVL2.5-38B (Chen et al., 2024e)	0.3096	0.2994	0.3035	0.3247	0.2796	0.3109	0.1474	0.2772	0.4082
ShareGPT4V-7B (Chen et al., 2024b)	0.2897	0.2831	0.2232	0.2914	0.2656	0.4158	0.1476	0.3256	0.4235
LLaVA-mistral-7B (Liu et al., 2023a)	0.2911	0.2731	0.2205	0.2714	0.2640	0.3740	0.1585	0.2399	0.4913
LLaVA-v1.5-7B (Liu et al., 2023b)	0.2648	0.2595	0.2254	0.2456	0.2288	0.3169	0.1605	0.3042	0.423
InternVL2.5-4B (Chen et al., 2024e)	0.2632	0.254	0.1895	0.3151	0.2428	0.2172	0.1336	0.3121	0.2965
SmolVLM-500M (Marafioti et al., 2025)	0.1898	0.1761	0.1711	0.1602	0.1897	0.2656	0.0992	0.1417	0.2190
SmolVLM-256M (Marafioti et al., 2025)	0.1564	0.156	0.1397	0.1418	0.1507	0.2172	0.0912	0.1691	0.2274
LLaVA-med-v1.5-7B (Li et al., 2023b)	0.0885	0.0791	0.0372	0.0715	0.1104	0.1258	0.0466	0.0535	0.1426
Only Text as Input									
InternVL2.5-78B (Wang et al., 2024a)	0.3636	0.3839	0.3378	0.3089	0.3763	0.6606	0.2967	0.3946	0.8014
Qwen2.5vl-72B (Wang et al., 2024a)	0.3478	0.3537	0.2640	0.2784	0.2987	0.5818	0.3194	0.3016	0.8124
InternVL2.5-4B (Chen et al., 2024e)	0.3403	0.3406	0.2071	0.3023	0.3190	0.5266	0.2981	0.2645	0.7446
GPT-4V (Achiam et al., 2023)	0.3089	0.3185	0.2201	0.1687	0.3200	0.6076	0.2441	0.2844	0.8140
Qwen2.5VL-7B(Wang et al., 2024a)	0.3153	0.3097	0.2217	0.2376	0.2646	0.4900	0.2939	0.2945	0.7404
Deepseek-v12 (Wu et al., 2024)	0.2981	0.2851	0.2452	0.1685	0.2916	0.5455	0.1996	0.3032	0.7227
Qwen2-VL-2B (Wang et al., 2024a)	0.2693	0.2814	0.2146	0.2384	0.2636	0.4195	0.1873	0.2232	0.6389
ShareGPT4V-7B (Chen et al., 2024b)	0.2193	0.2477	0.1940	0.1171	0.2293	0.3374	0.1439	0.2668	0.4247
LLaVA-med-v1.5-7B (Li et al., 2023b)	0.0842	0.0763	0.0349	0.0535	0.1096	0.1533	0.0398	0.0739	0.1899

364

365 lesion types, locations, attributes, or relationships-tasks that human doctors perform reliably while the best
 366 lesion recognition accuracy for MLLMs is only 49%. Our results from MedLesionVQA show that MLLMs
 367 frequently fail in diagnostic tasks and often struggle to align with physicians in real clinical settings. These
 368 findings underscore the need for caution when employing MLLMs as medical practitioners and highlight the
 369 necessity to develop more advanced medical-specific MLLMs.

370

Insight 2: Textual Capabilities Can Cause MLLMs to Appear More Competent Than They Are

371

372 People often perceive MLLMs as highly knowledgeable experts and report positive experiences during
 373 question-and-answer interactions. However, our MedLesionVQA benchmark suggests that MLLMs seem
 374 more competent than they are due to their impressive text generation abilities, even when subjective questions
 375 are minimized in MedLesionVQA. A comparison between text-only and vision-text evaluations indicates that
 "suggestion" scores remain high regardless of the modality (82.4% vs. 81.2% with and without images). The

376 high accuracy of treatment recommendations demonstrates that large language models can generate effective
 377 general advice, even without specialized expertise in body health images. In contrast, MLLMs perform poorly
 378 on more visually demanding tasks, such as lesion and location recognition. These findings underscore the
 379 necessity of comprehensive clinical pipeline evaluations when applying MLLMs in medical contexts.
 380

381 Insights 3: Performance Improves as Model Size 382 Increases.

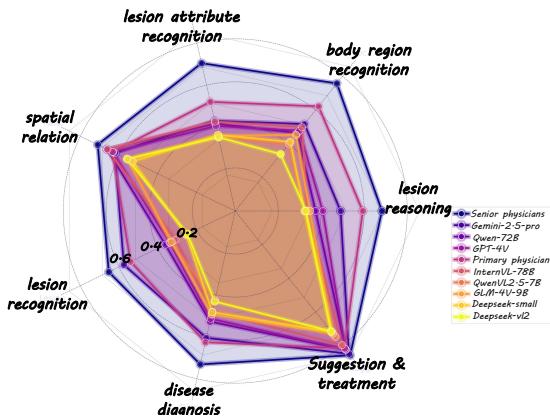
383 The results demonstrate a generally
 384 positive correlation between model size and per-
 385 formance, but with diminishing returns and no-
 386 table exceptions. Models under 1B parameters
 387 (e.g., SmoMLLM-256M/500M) show limited ca-
 388 pabilities across all tasks (scores below 0.2), while
 389 mid-scale models (1B-10B) like Qwen2-VL-2B and
 390 Deepseek-vl2-tiny (3.4B) exhibit significant per-
 391 formance jumps, particularly in recognition and diag-
 392 nostic tasks. The GLM-4V-9B model achieves near-
 393 state-of-the-art results, rivaling much larger models
 394 with average of 0.465 compared to the 0.309 score of
 395 InternVL2.5-38B. However, scaling beyond 10B pa-
 396 rameters shows inconsistent returns – while Qwen2-
 397 VL-72B dominates in most metrics, the InternVL2.5-
 398 78B underperforms smaller models in key areas like
 399 disease diagnosis, suggesting current architectural or
 400 training limitations in MLLMs. Generally, closed-
 401 source models consist of hundreds of billions of
 402 parameters and provide the relatively high performance.

403 **Insight 4: The Need to Rethink Domain-Specific Models.** The comparison between LLaVA1.5-7B and
 404 LLaVA-Med-7B highlights the trade-off between specialization and generalization. LLaVA-Med-7B performs
 405 18% worse than LLaVA1.5-7B on the MedLesionVQA dataset, yet demonstrates superior performance on
 406 VQA-RAD. Simply applying instruction tuning to general-purpose foundation models may diminish model
 407 performance in other domains, even within the same medical concept.

408 To show more evaluation results, we also analyze the error instances sampled from the model’s predictions
 409 and give the distribution of these errors, including lack of knowledge, text misunderstanding, and judgment
 410 error, etc, in Appendix B.2 and B.3.

411 5 CONCLUSION

412 In this paper, we propose MedLesionVQA, a large-scale and body surface oriented benchmark evaluating
 413 the lesion, region, diagnosis, and treatment-related recognition and reasoning ability for medical MLLMs.
 414 MedLesionVQA contains 12K body lesion images with expert-level fine-grained annotations of 96 prevalent
 415 dermatological diseases, 94 distinct lesion types and 110 body regions. The evaluation dimension of
 416 MedLesionVQA is built on basis of 7 multimodal stepwise visual diagnostic abilities, including lesion
 417 recognition, lesion attribute recognition, body region recognition, lesion spatial relation recognition, lesion
 418 reasoning, disease diagnosis and suggestion & treatment, which ensure the alignment with the authentic clinic
 419 senary. Mainstream MLLMs are evaluated on the benchmarks, and Gemini-2.5-pro has the best score of
 420 56.24. Furthermore, senior and primary physicians are invited to answer the questions of benchmark and
 421 obtain score of 61.44 and 73.21, respectively. The results show that there is large improvement for MLLMs
 422 on the benchmark and indicates significant challenges and medical specialization of the MedLesionVQA.



423 Figure 4: Results of 10 representative MLLMs across
 424 the 7 ability dimensions defined in MedLesionVQA.

423 REFERENCES

424

425 Dermnet, 2023. <https://dermnet.com/> [2024].

426 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
427 Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. [arXiv preprint](https://arxiv.org/abs/2303.08774)
428 [arXiv:2303.08774](https://arxiv.org/abs/2303.08774), 2023.

429

430 Anthropic. Claude 3 model family. <https://www.anthropic.com>, 2025a.

431 Anthropic. Introducing claude 4. [Anthropic News](https://www.anthropic.com/news/clause-4), 2025b. URL https://www.anthropic.com/news/clause-4?_bh1id=aeb6fd9f68ee0feec09df9256d36a1ef7371ca56.

432

433 Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Annette Kopp-Schneider, Bennett A
434 Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M Summers, et al. The medical
435 segmentation decathlon. [Nature communications](https://www.nature.com/articles/s41591-022-01281-1), 13(1):4128, 2022.

436

437 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and
438 Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization. [Text Reading,
439 and Beyond](https://www.semanticscience.org/TextReadingAndBeyond2023/), 2, 2023.

440

441 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
442 Wang, Jun Tang, et al. Qwen2. 5-vl technical report. [arXiv preprint arXiv:2502.13923](https://arxiv.org/abs/2502.13923), 2025.

443

444 Yonatan Bitton, Hritik Bansal, Jack Hessel, Rulin Shao, Wanrong Zhu, Anas Awadalla, Josh Gardner, Rohan
445 Taori, and Ludwig Schmidt. Visit-bench: A benchmark for vision-language instruction following inspired
446 by real-world use. [arXiv preprint arXiv:2308.06595](https://arxiv.org/abs/2308.06595), 2023.

447

448 Junying Chen, Xidong Wang, Ke Ji, Anningzhe Gao, Feng Jiang, Shunian Chen, Hongbo Zhang, Dingjie
449 Song, Wenya Xie, Chuyi Kong, et al. Huatuogpt-ii, one-stage training for medical adaption of llms. [arXiv
preprint arXiv:2311.09774](https://arxiv.org/abs/2311.09774), 2023.

450

451 Junying Chen, Chi Gui, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen, Xidong Wang,
452 Ruifei Zhang, Zhenyang Cai, Ke Ji, et al. Huatuogpt-vision, towards injecting medical visual knowledge
453 into multimodal llms at scale. [arXiv preprint arXiv:2406.19280](https://arxiv.org/abs/2406.19280), 2024a.

454

455 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahu Lin.
456 Sharegpt4v: Improving large multi-modal models with better captions. In [European Conference on
Computer Vision](https://www.semanticscience.org/ECCV2024/), pp. 370–387. Springer, 2024b.

457

458 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye,
459 Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models
460 with model, data, and test-time scaling. [arXiv preprint arXiv:2412.05271](https://arxiv.org/abs/2412.05271), 2024c.

461

462 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu,
463 Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial multimodal models
464 with open-source suites. [Science China Information Sciences](https://www.semanticscience.org/SCIS2024/), 67(12):220101, 2024d.

465

466 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
467 Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic
468 visual-linguistic tasks. In [Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition](https://www.semanticscience.org/ICCV2024/), pp. 24185–24198, 2024e.

469

470 XTuner Contributors. Xtuner: A toolkit for efficiently fine-tuning llm. <https://github.com/InternLM/xtuner>, 2023.

470 Alberto Coustasse, Raghav Sarkar, Bukola Abodunde, Brandon J Metzger, and Chelsea M Slater. Use of
 471 teledermatology to improve dermatological access in rural areas. *Telemedicine and e-Health*, 25(11):
 472 1022–1032, 2019.

473

474 Roxana Daneshjou, Kailas Vodrahalli, Roberto A Novoa, Melissa Jenkins, Weixin Liang, Veronica Rotemberg,
 475 Justin Ko, Susan M Swetter, Elizabeth E Bailey, Olivier Gevaert, et al. Disparities in dermatology ai
 476 performance on a diverse, curated clinical image set. *Science advances*, 8(31):eabq6147, 2022a.

477

478 Roxana Daneshjou, Mert Yuksekgonul, Zhuo Ran Cai, Roberto Novoa, and James Y Zou. Skincon: A skin
 479 disease dataset densely annotated by domain experts for fine-grained debugging and analysis. *Advances in
 480 Neural Information Processing Systems*, 35:18157–18167, 2022b.

481

482 Google DeepMind. Gemini 1.5: Unlocking multimodal understanding across millions of tokens, 2024. URL
 483 <https://arxiv.org/abs/2403.05530>. Accessed: 2025-04-30.

484

485 Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou
 486 Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers. *Advances in
 487 neural information processing systems*, 34:19822–19835, 2021.

488

489 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang Zang,
 490 Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large multi-modality
 491 models. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp. 11198–11201,
 492 2024.

493

494 Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and Sebastian
 495 Thrun. Dermatologist-level classification of skin cancer with deep neural networks. *nature*, 542(7639):
 496 115–118, 2017.

497

498 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin
 499 Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing
 500 Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai
 501 Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao,
 502 Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan
 503 Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong,
 504 Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of
 505 large language models from glm-130b to glm-4 all tools, 2024.

506

507 Google. Gemini 2.5 pro, 2025. URL <https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro>. Large language model; Capable of handling
 508 various modalities such as text, audio, image, and video; Supports a context window of 1 million tokens.

509

510 Matthew Groh, Caleb Harris, Luis Soenksen, Felix Lau, Rachel Han, Aerin Kim, Arash Koochek, and Omar
 511 Badri. Evaluating deep neural networks trained on clinical images in dermatology with the fitzpatrick
 512 17k dataset. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 513 1820–1828, 2021.

514

515 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
 516 Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
 517 learning. *arXiv preprint arXiv:2501.12948*, 2025.

518

519 Seung Seog Han. SNU dataset + Quiz. 3 2019. doi: 10.6084/m9.figshare.6454973.v12.
 520 URL https://figshare.com/articles/dataset/SNU_SNU_MELANOMA_and_Reddit_dataset_Quiz/6454973.

517 Sunan He, Yuxiang Nie, Zhixuan Chen, Zhiyuan Cai, Hongmei Wang, Shu Yang, and Hao Chen. Meddr:
 518 Diagnosis-guided bootstrapping for large-scale medical vision-language learning. [arXiv e-prints](#), pp.
 519 arXiv:2404, 2024.

520

521 Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng, Shiyu Huang,
 522 Junhui Ji, Zhao Xue, et al. Cogvlm2: Visual language models for image and video understanding. [arXiv](#)
 523 preprint arXiv:2408.16500, 2024.

524

525 Yutao Hu, Tianbin Li, Quanfeng Lu, Wenqi Shao, Junjun He, Yu Qiao, and Ping Luo. Omnimedvqa: A
 526 new large-scale comprehensive evaluation benchmark for medical lylm. In [Proceedings of the IEEE/CVF](#)
 527 Conference on Computer Vision and Pattern Recognition

528 , pp. 22170–22183, 2024.

529

530 Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik Marklund,
 531 Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al. Chexpert: A large chest radiograph dataset with
 532 uncertainty labels and expert comparison. In [Proceedings of the AAAI conference on artificial intelligence](#),
 533 volume 33, pp. 590–597, 2019.

534

535 William D James, Dirk Elston, and Timothy Berger. [Andrew's diseases of the skin E-book: clinical](#)
 536 [dermatology](#). Elsevier Health Sciences, 2011.

537

538 Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically generated
 539 visual questions and answers about radiology images. [Scientific data](#), 5(1):1–10, 2018.

540

541 Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas
 542 Wang, Siddharth Karamcheti, Alexander Rush, Douwe Kiela, et al. Obelics: An open web-scale filtered
 543 dataset of interleaved image-text documents. [Advances in Neural Information Processing Systems](#), 36:
 544 71683–71702, 2023.

545

546 Tony Lee, Haoqin Tu, Chi Heem Wong, Wenhao Zheng, Yiyang Zhou, Yifan Mai, Josselin Roberts, Michihiro
 547 Yasunaga, Huaxiu Yao, Cihang Xie, et al. Vhelm: A holistic evaluation of vision language models.
 548 [Advances in Neural Information Processing Systems](#), 37:140632–140666, 2024.

549

550 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Naumann, Hoi-
 551 fung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision assistant for biomedicine
 552 in one day. [Advances in Neural Information Processing Systems](#), 36:28541–28564, 2023a.

553

554 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Naumann, Hoi-
 555 fung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision assistant for biomedicine
 556 in one day. [arXiv preprint arXiv:2306.00890](#), 2023b.

557

558 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li. Llava-
 559 next-interleave: Tackling multi-image, video, and 3d in large multimodal models. [arXiv preprint](#)
 560 arXiv:2407.07895, 2024.

561

562 Haodong Li, Xiaofeng Zhang, and Haicheng Qu. Ddfav: Remote sensing large vision language models
 563 dataset and evaluation benchmark. [Remote Sensing](#), 17(4):719, 2025.

564

565 Hyeonseok Lim, Dongjae Shin, Seohyun Song, Inho Won, Minjun Kim, Junghun Yuk, Haneol Jang, and
 566 KyungTae Lim. Vlr-bench: Multilingual benchmark dataset for vision-language retrieval augmented
 567 generation. [arXiv preprint arXiv:2412.10151](#), 2024.

568

569 Tianwei Lin, Wenqiao Zhang, Sijing Li, Yuqian Yuan, Binhe Yu, Haoyuan Li, Wanggui He, Hao Jiang, Mengze
 570 Li, Xiaohui Song, et al. Healthgpt: A medical large vision-language model for unifying comprehension
 571 and generation via heterogeneous knowledge adaptation. [arXiv preprint arXiv:2502.09838](#), 2025.

572

564 Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. Slake: A semantically-labeled
 565 knowledge-enhanced dataset for medical visual question answering. In 2021 IEEE 18th international
 566 symposium on biomedical imaging (ISBI), pp. 1650–1654. IEEE, 2021.

567 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning,
 568 2023a.

569 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023b.

570 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in neural
 571 information processing systems, 36:34892–34916, 2023c.

572 Junling Liu, Ziming Wang, Qichen Ye, Dading Chong, Peilin Zhou, and Yining Hua. Qilin-med-vl: Towards
 573 chinese large vision-language model for general healthcare. arXiv preprint arXiv:2310.17956, 2023d.

574 Andrés Marafioti, Orr Zohar, Miquel Farré, Merve Noyan, Elie Bakouch, Pedro Cuenca, Cyril Zakka,
 575 Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, Vaibhav Srivastav, Joshua Lochner, Hugo Larcher,
 576 Mathieu Morlon, Lewis Tunstall, Leandro von Werra, and Thomas Wolf. Smolvlm: Redefining small and
 577 efficient multimodal models. arXiv preprint arXiv:2504.05299, 2025.

578 Michael Moor, Qian Huang, Shirley Wu, Michihiro Yasunaga, Yash Dalmia, Jure Leskovec, Cyril Zakka,
 579 Eduardo Pontes Reis, and Pranav Rajpurkar. Med-flamingo: a multimodal medical few-shot learner. In
 580 Machine Learning for Health (ML4H), pp. 353–367. PMLR, 2023.

581 Vishwesh Nath, Wenqi Li, Dong Yang, Andriy Myronenko, Mingxin Zheng, Yao Lu, Zhijian Liu, Hongxu
 582 Yin, Yucheng Tang, Pengfei Guo, et al. Vila-m3: Enhancing vision-language models with medical expert
 583 knowledge. arXiv preprint arXiv:2411.12915, 2024.

584 OpenAI. Gpt-4o, 2024. URL <https://chat.openai.com>. Large language model; Prompt: "".

585 OpenAI. Chatgpt (gpt-5 version), 2025. URL <https://chat.openai.com/chat>.

586 Sourjyadip Ray, Kushal Gupta, Soumi Kundu, Payal Arvind Kasat, Somak Aditya, and Pawan Goyal. Ervqa:
 587 A dataset to benchmark the readiness of large vision language models in hospital environments. arXiv
 588 preprint arXiv:2410.06420, 2024.

589 Josselin S Roberts, Tony Lee, Chi H Wong, Michihiro Yasunaga, Yifan Mai, and Percy Liang. Image2struct:
 590 Benchmarking structure extraction for vision-language models. Advances in Neural Information
 591 Processing Systems, 37:115058–115097, 2024.

592 Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang, Tim
 593 Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini models in medicine. arXiv preprint
 594 arXiv:2404.18416, 2024.

595 Mohammad Shahab Sepehri, Zalan Fabian, Maryam Soltanolkotabi, and Mahdi Soltanolkotabi. Mediconfusion:
 596 Can you trust your ai radiologist? probing the reliability of multimodal medical foundation models.
 597 arXiv preprint arXiv:2409.15477, 2024.

598 Yuanhe Tian, Ruyi Gan, Yan Song, Jiaxing Zhang, and Yongdong Zhang. Chimed-gpt: A chinese medical
 599 large language model with full training regime and better alignment to human preferences. arXiv preprint
 600 arXiv:2311.06025, 2023.

601 Philipp Tschandl, Christoph Rinner, Zoe Apalla, Giuseppe Argenziano, Noel Codella, Allan Halpern, Monika
 602 Janda, Aimilios Lallas, Caterina Longo, Josep Malvehy, et al. Human–computer collaboration for skin
 603 cancer recognition. Nature medicine, 26(8):1229–1234, 2020.

611 Bingning Wang, Haizhou Zhao, Huozhi Zhou, Liang Song, Mingyu Xu, Wei Cheng, Xiangrong Zeng, Yupeng
 612 Zhang, Yuqi Huo, Zecheng Wang, et al. Baichuan-m1: Pushing the medical capability of large language
 613 models. [arXiv preprint arXiv:2502.12671](https://arxiv.org/abs/2502.12671), 2025.

614
 615 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
 616 Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
 617 Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's perception of the
 618 world at any resolution. [arXiv preprint arXiv:2409.12191](https://arxiv.org/abs/2409.12191), 2024a.

619 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
 620 Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any
 621 resolution. [arXiv preprint arXiv:2409.12191](https://arxiv.org/abs/2409.12191), 2024b.

622 Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei
 623 Zhao, Song XiXuan, et al. Cogvlm: Visual expert for pretrained language models. [Advances in Neural](https://openreview.net/pdf?id=121475-121499)
 624 [Information Processing Systems](https://openreview.net/pdf?id=121475-121499), 37:121475–121499, 2024c.

625 Abbi Ward, Jimmy Li, Julie Wang, Sriram Lakshminarasimhan, Ashley Carrick, Bilson Campana, Jay
 626 Hartford, Pradeep K. Sreenivasiah, Tiya Tiyasirisokchai, Sunny Virmani, Renee Wong, Yossi Matias,
 627 Greg S. Corrado, Dale R. Webster, Margaret Ann Smith, Dawn Siegel, Steven Lin, Justin Ko, Alan
 628 Karthikesalingam, Christopher Semturs, and Pooja Rao. Creating an empirical dermatology dataset through
 629 crowdsourcing with web search advertisements. [JAMA Network Open](https://jamanetworkopen.com/article/2446615), 7(11):e2446615–e2446615, 11
 630 2024. ISSN 2574-3805. doi: 10.1001/jamanetworkopen.2024.46615. URL <https://doi.org/10.1001/jamanetworkopen.2024.46615>.

631
 632 Wenjing Yue Wei Zhu and Xiaoling Wang. Shennong-tcm: A traditional chinese medicine large language
 633 model. <https://github.com/michael-wzhu/ShenNong-TCM-LLM>, 2023.

634
 635 Richard B Weller, Hamish JA Hunter, and Margaret W Mann. [Clinical dermatology](https://www.wiley.com/medicine/cd). John Wiley & Sons,
 636 2014.

637 Chris Wright and Pauline Reeves. Radbench: benchmarking image interpretation skills. [Radiography](https://www.sciencedirect.com/science/article/pii/S0898243816300137), 22(2):
 638 e131–e136, 2016.

639
 640 Chaoyi Wu, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Towards generalist foundation model
 641 for radiology by leveraging web-scale 2d&3d medical data. [arXiv preprint arXiv:2308.02463](https://arxiv.org/abs/2308.02463), 2023.

642 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma,
 643 Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi
 644 Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao,
 645 Yisong Wang, and Chong Ruan. Deepseek-vl2: Mixture-of-experts vision-language models for advanced
 646 multimodal understanding, 2024. URL <https://arxiv.org/abs/2412.10302>.

647 Cheng Xu, Xiaofeng Hou, Jiacheng Liu, Chao Li, Tianhao Huang, Xiaozhi Zhu, Mo Niu, Lingyu Sun, Peng
 648 Tang, Tongqiao Xu, et al. Mmbench: Benchmarking end-to-end multi-modal dnns and understanding their
 649 hardware-software implications. In [2023 IEEE International Symposium on Workload Characterization](https://ieeexplore.ieee.org/abstract/document/9750000)
 650 (IISWC), pp. 154–166. IEEE, 2023.

651
 652 Jin Ye, Guoan Wang, Yanjun Li, Zhongying Deng, Wei Li, Tianbin Li, Haodong Duan, Ziyan Huang, Yanzhou
 653 Su, Benyou Wang, et al. Gmai-mmbench: A comprehensive multimodal evaluation benchmark towards
 654 general medical ai. [Advances in Neural Information Processing Systems](https://openreview.net/pdf?id=94327-94427), 37:94327–94427, 2024.

655 Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and
 656 Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. [arXiv preprint](https://arxiv.org/abs/2308.02490)
 657 [arXiv:2308.02490](https://arxiv.org/abs/2308.02490), 2023.

658 Weihao Yu, Zhengyuan Yang, Lingfeng Ren, Linjie Li, Jianfeng Wang, Kevin Lin, Chung-Ching Lin, Zicheng
659 Liu, Lijuan Wang, and Xinchao Wang. Mm-vet v2: A challenging benchmark to evaluate large multimodal
660 models for integrated capabilities. [arXiv preprint arXiv:2408.00765](https://arxiv.org/abs/2408.00765), 2024.

661
662 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
663 Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding and
664 reasoning benchmark for expert agi. In [Proceedings of the IEEE/CVF Conference on Computer Vision
665 and Pattern Recognition](https://openaccess.thecvf.com/content/CVPR2024/papers/Mmmu_Massive_Multi-Discipline_Multimodal_Understanding_and_Reasoning_Benchmark_for_Expert_AGI_CVPR_2024_paper.pdf), pp. 9556–9567, 2024.

666 Juexiao Zhou, Liyuan Sun, Yan Xu, Wenbin Liu, Shawn Afvari, Zhongyi Han, Jiaoyan Song, Yongzhi Ji,
667 Xiaonan He, and Xin Gao. Skincap: A multi-modal dermatology dataset annotated with rich medical
668 captions. [arXiv preprint arXiv:2405.18004](https://arxiv.org/abs/2405.18004), 2024.

669 Fengbin Zhu, Ziyang Liu, Xiang Yao Ng, Haohui Wu, Wenjie Wang, Fuli Feng, Chao Wang, Huanbo Luan,
670 and Tat Seng Chua. Mmdocbench: Benchmarking large vision-language models for fine-grained visual
671 document understanding. [arXiv preprint arXiv:2410.21311](https://arxiv.org/abs/2410.21311), 2024.

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

705 706 707 708 709 710 711 712 **MedLesionVQA: A Multimodal Benchmark Emulating Clinical Visual 713 Diagnosis for Body Surface Health**

714 715 **Supplementary Materials**

716 717 **A DATASET DETAILS**

718 719 **A.1 DETAILS FOR DATA DISTRIBUTION.**

720 721 722 We recruit more than 10K volunteers to collect images
723 724 on their body lesion regions. Age distribution of the
725 726 volunteers can be seen in Fig 5. For example, the 40
727 728 to 45 age group is the largest, with approximately 1,750
729 730 people. In addition to age, we also collected data on
731 732 gender distribution. The results show a male-to-female
733 734 ratio of approximately 53:47.

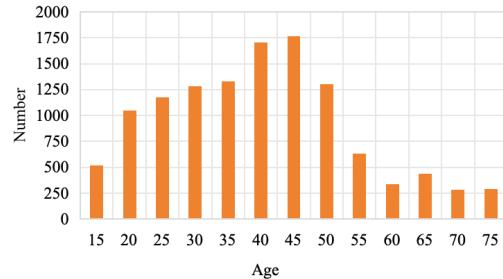
735 736 All annotation data are reviewed by another group of
737 738 expert physicians, and the qualified standard is that the
739 740 recall and precision of the sampled data in each annotation
741 742 dimension reach 95%, respectively. Among all images
743 744 obtained through annotation, taking into account the cov-
745 746 erage of body region, lesion, and disease, we screen out
747 748 a total of 12K images including 10K images with abnor-
749 750 malities and 2K images without abnormalities. The histogram
751 distribution of lesion, disease and body region is shown in
Fig. 6, which is used to illustrate the annotation information
density. Taking the left sub-figure as example, the horizontal
axis represents the number of images containing a certain lesion,
while the vertical axis represents the number of these type of
lesions, which indicates that most type of lesions has at least
50 images and there is enough lesion annotations and there is less
issue of long-tail distribution.

752 753 Fig. 7 offers a detailed view of the data distribution for different clinical-oriented abilities. Taking the top-left
754 755 image as an example: This multi-layer ring chart illustrates the distribution of recognition questions in the
756 757 test dataset across four main categories. The outer ring shows the total number of questions for each category:
758 759 Region Recognition contains 3,986 questions, Attribute Recognition has 3,508 questions, Lesion Recognition
760 761 includes 3,340 questions, and Spatial Relation comprises 1,133 questions. The inner ring further breaks down
762 763 each category into different types, including multiple-choice, judgment, fill-in-the-blank, and short-answer
764 765 questions, highlighting their relative proportions within each category.

766 767 **A.2 DETAILS FOR LEXICAL TREES IN ANNOTATION PROTOCOL**

768 769 We have respectively construct the corresponding lexical trees for part division. The detailed information of
770 771 the lexical trees are listed below, in Tab. 3 and 4. Visible body parts are annotated with the secondary node in
772 773 the level-2 list, while abnormal body parts are annotated with more refined leaf node in the level-2, level-3
774 775 or level-4 list according to the minimum body division. For example, the leaf node of upper eyelid is in the
776 777 path (head -> face -> periorbital area -> upper eyelid) at the fourth level. The leaf node of anterior neck is in
778 779 the path (neck -> anterior neck) at the second level.

780 781 Besides the lexicon of body regions, we construct the lexicon list of lesion, disease and lesion attributes, as
782 783 shown in Tab. 5, 6 and 7



784 785 **Figure 5: Age distribution of the volunteers.**

786 787 The histogram distribution of lesion, disease and body region
788 789 is shown in Fig. 6, which is used to illustrate the annotation information density. Taking the left sub-figure as
790 791 example, the horizontal axis represents the number of images containing a certain lesion, while the vertical
792 793 axis represents the number of these type of lesions, which indicates that most type of lesions has at least 50
794 795 images and there is enough lesion annotations and there is less issue of long-tail distribution.

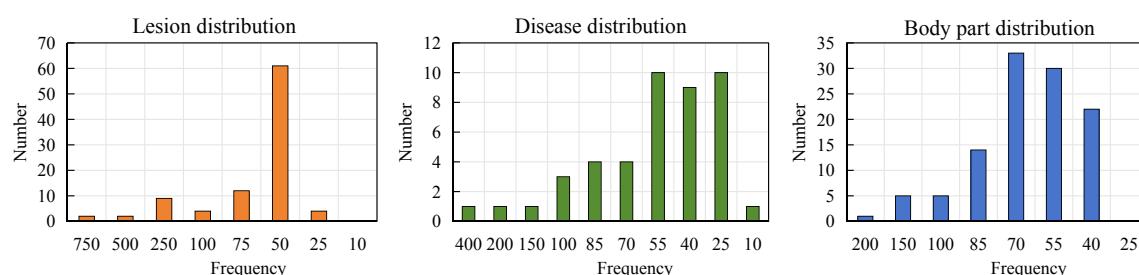


Figure 6: Histogram of lesion, disease, and body region distribution of MedLesionVQA. The left figure shows that most lesions has at least 50 images.

Table 3: Lexical tree for body regions.

Level 1	Level 2	Level 3	Level 4
head	scalp	top	
		temporal region	
		occipital region	
	face	forehead	
		cheek	
		perioral area	
		chin	
		periorbital area	upper eyelid
			lower eyelid
			supraorbital arch
			perinasal area
	ear	nose	
neck	postauricular area		
		anterior neck	
		lateral neck	
	posterior neck		
trunk	chest	breast	
		submammary area	
		nipple	
		areola	
	back		
	waist		
	abdomen	perumbilical area	
		groin	
		axilla	
upper limb	lateral trunk	iliac region	
	shoulder		
	upper arm		
		flexor side	
	elbow	extensor side	
		extensor side	
	forearm	cubital fossa	
		flexor side	
		extensor side	

799	hand	wrist		
800		dorsum of hand		
801		palm		
802		interdigital space		
803		thenar space		
804		finger	lateral side of finger	
805			palmar side of finger	
806			dorsal side of finger	
807			tip of finger	
808	lower limb	buttock		
809		thigh	medial side	
810			lateral side	
811		knee		
812		popliteal fossa		
813		leg	extensor side	
814			flexor side	
815		foot	dorsum of foot	
816			sole	heel
817				plantar aspect of foot
818				forefoot
819			first metatarsophalangeal joint area	
820			lateral border of foot	
821			ankle	
822			interdigital space of toes	
823			toe	dorsal side of toe
824				plantar side of toe
825				lateral side of toe
826				tip of toe
827	nail	nail plate		
828		nail bed		
829		nail root		
830		nail fold		
831		nail groove		
832	perineum	anus		
833		perianal skin		
834		female external genitalia	labia majora	
835			labia minora	
836			clitoris	
837			vaginal orifice	
838		male external genitalia	penis	glans penis
839				external urethral orifice in male
840				coronal sulcus
841				prepuce
842				penile shaft
843		scrotum		
844	skin of undetermined location	upper limb or lower limb		
845				

846

847

mucosa of undeter- mined location			
--------------------------------------	--	--	--

848

849

850

851

852

A.3 PROMPTS FOR AUTOMATIC CONSTRUCTING QAS

853

Table 8,9 systematically outline the task framework for automatically constructing question-answering (QAs). The QA construction prompts for lesion recognition, location recognition, lesion reasoning, spatial relation, disease diagnosis and suggestion & treatment are shown in Table 8. Lesion attributes contain size, color, shape, distribution, quantity, and boundary. We design QA construction prompts for each attribute, as shown in Table 9.

854

855

A.4 EXPLANATION OF 7 CLINIC-ORIENTED MULTIMODAL ABILITIES

856

857

To further illustrate the evaluation dimension of MedLesionVQA, we give detailed explanation for each evaluated ability, as follows:

858

Lesion Recognition. Skin lesion is an abnormal condition on the surface of body skin. For example, macule lesion represents a change in surface color without elevation or depression, while papule lesion is a circumscribed and solid elevation of skin, varying in size. Thus, lesion recognition requires MLLMs the perception ability of visual semantic information of disease images.

859

Attribute Recognition. Lesion attributes include its color, size, quantity, boundary clarity, spatial distribution, and geometric shape. There is no need to describe all attributes but some key attributes for each lesion. The key attributes of bulla lesion include its size, shape, quantity, and spatial distribution, and the reason for ignoring its color attribute is that nearly all bulla has a typical color of transparent skin tones. Attribute recognition demands the perception ability of detailed visual information and understanding of general world knowledge.

860

Location Recognition. Region represents human body regions, such as head, face, ear, hand, foot, etc. We expect medical MLLMs to recognize body regions like clinical doctors do. Moreover, body region information is related to disease diagnosis because some diseases may frequently occur in certain body regions.

861

Spatial Relation. Spatial relationship between lesions serves as evaluation dimension when there are more than one lesions on affected skin area and can be a hint for analysis of primary and secondary lesions. Spatial relation evaluates the complex visual understanding about different lesion entities.

862

Lesion Reasoning. Lesion reasoning evaluates MLLMs' capacity to deduce pathological mechanisms from visual information. Furthermore, it also involves the analysis of how primary lesions evolve (e.g., papules progressing to pustules in folliculitis) or how secondary lesion changes (scaling, scabs) are introduced.

863

Disease Diagnosis. Disease diagnosis requires MLLMs to exploit both multi-dimensional visual information, including lesion, its attributes, body region, and spatial relationships, and cross-referencing medical knowledge to map clinical manifestations to potential pathologies. Thus, disease diagnosis evaluates the comprehensive visual recognition and reasoning ability of MLLMs.

864

Suggestion & Treatment. Suggestion and treatment recommendations should align with evidence-based medical knowledge while incorporating patient-personalized context, including lesion severity, attributes, and region, which is reflected in lesion images. Thus, this evaluation dimension requires comprehensive multimodal reasoning ability integrating knowledge and visual information.

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

Table 4: Lexical tree for oral cavity.

Level 1	Level 2	Level 3	Level 4
oral mucosa	labial mucosa	upper labial mucosa lower labial mucosa	upper labial frenum lower labial frenum
	buccal mucosa	orifice of parotid duct	
		occlusal line of teeth	
		buccal frenum	
	mucosa of retromolar area		
	tongue	tip of tongue	lingual papillae on the tip of tongue
		dorsum of tongue	lingual papillae on the dorsum of tongue
		root of tongue	lingual papillae on the root of tongue
		lateral border of tongue	lingual papillae on the lateral border of tongue
		ventral surface of tongue	sublingual veins
		sublingual region	lingual frenum
			sublingual caruncle
			sublingual fold
palate	hard palate		
	soft palate		
pharynx	posterior pharyngeal wall		
	uvula		
	palatoglossal arch		
	palatopharyngeal arch		
	tonsil/adenoid	tonsil	
		adenoid	
lip	upper lip		
	lower lip		
	margin of upper lip		
	margin of lower lip		
	angle of mouth		
ingiva	gingiva of central incisor		
	gingiva of lateral incisor		
	gingiva of canine		
	gingiva of premolar		
	gingiva of molar		
teeth	central incisor		
	lateral incisor		
	canine		
	premolar		
	molar		

940
941
942
943

944

Table 5: Lesion list.

945

Lesions

macule, patch, papule, plaque, mass, vesicle, bulla, pustule, wheal, alopecia, nevus, scale, scale, crust, fissure, scar, pigmentation, depigmentation, swelling, erosion, ulcer, hypertrophy, breakage, peeling, hypopigmentation, blood blister, excrescence, keratotic papule, keratotic plaque, erythema, striae atrophicae, comedone, maculopapule, fissure, rupture, maceration, excoriation, exudation, dryness, lichenification, thickening of the skin, topical preparation, papule/macule, papule/vesicle, macule/vesicle, patch/plaque, unidentifiable lesion (poor image quality), unidentifiable lesion (difficult to classify), unidentifiable lesion (possible physiological nature), opening, reddening, keratin plug, blackhead, whitehead, bleeding, purulent discharge, elevated edge, xerosis capillorum, trichotilosis, pili annulati, canities, thickening, atrophy, roughness, onycholysis, absence, longitudinal fissure, longitudinal stripe, melanonychia striata, transverse stripe, punctate depression, unevenness, subungual hemorrhage, color change of the nail plate, alopecia patch, hypotrichosis, absence of hair, receding hairline, loss of eyebrows, sparse eyebrows, loss of eyelashes, nodule, ecchymosis, petechia, striae, pseudomembrane, frenum rupture, recession, groove and fissure, desquamation of tongue coating, thickening of tongue coating, tooth mark, tonsillar hypertrophy, adenoidal hypertrophy

959

960

961

962

963

964

965

966

Table 6: Disease list.

967

Diseases

acne, rosacea, lupus miliaris disseminatus faciei, seborrheic dermatitis, scalp psoriasis, psoriasis, pityriasis rosea, eczema, tinea corporis, folliculitis, androgenetic alopecia, telogen effluvium, alopecia areata, pseudopelade, trichotillomania, tinea capitis, systemic lupus erythematosus, syphilitic alopecia, white hair, contact dermatitis, lichen simplex chronicus, tinea manus, tinea pedis, acute eczema, chronic eczema, asteatotic eczema, nummular eczema, pompholyx, stasis dermatitis, auto-sensitive dermatitis, progressive pigmented purpuric dermatosis, atopic dermatitis, scabies, exfoliative keratolysis, palmoplantar pustulosis, palmoplantar keratoderma, onychomycosis, onychodystrophy, tinea cruris, malassezia folliculitis, urticaria, urticarial vasculitis, dermatographism, cold contact urticaria, chronic urticaria, chronic spontaneous urticaria, cholinergic urticaria, nevus, skin tag, herpes zoster, herpes simplex, impetigo, varicella, papular urticaria, prurigo, verruca plantaris, corn, callus, verruca vulgaris, verruca filiformis, verruca plana, pruritus cutis, pediculosis, insect bite dermatitis, keratosis pilaris, lichen spinulosus, pityriasis rubra pilaris, post-inflammatory hypopigmentation, pityriasis alba, pityriasis versicolor, nevus anemicus, achromic nevus, vitiligo, alopecia, hyperhidrosis, ichthyosis, scleroderma, molluscum contagiosum, diaper dermatitis, pemphigus, bullous pemphigoid, melasma, freckles, cutaneous candidiasis, furuncle, carbuncle, paronychia, erysipelas, cellulitis, dermatophytosis, lichen planus, basal cell carcinoma, squamous cell carcinoma, malignant melanoma, keloid scar, hypertrophic scar

984

985

986

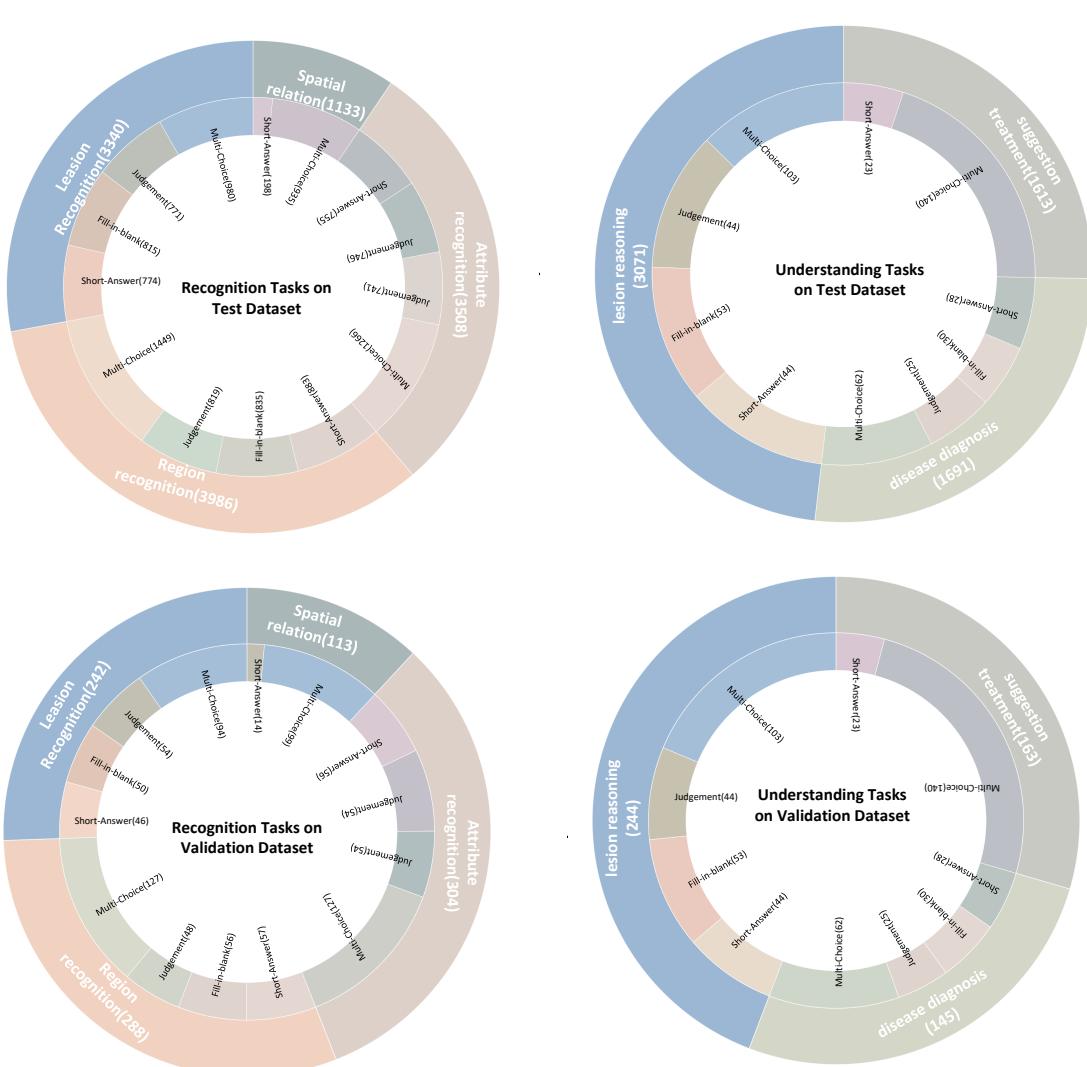


Figure 7: Data distribution of MedLesionVQA benchmark.

1025 A.5 JUDGE-LLM, PROMPT DESIGN, AND RELIABILITY ANALYSIS

1026 A.5.1 SCORING PROTOCOL AND PROMPT

1028 For the open-ended image-QA evaluation, we use GPT-4 as a judge-LLM to score model responses. Given a
 1029 question, its reference (gold) answer, and a model-predicted answer, the judge-LLM assigns a score from
 1030 $\{0.0, 0.5, 1.0\}$, corresponding to incorrect, partially correct, and fully correct, respectively. The judge is
 1031 instructed to (1) compare the predicted answer with the reference answer under the context of the question,
 1032 (2) provide a short explanation of the decision, and (3) output the final score in a machine-readable form as
 1033 `<result>score</result>`.

Table 7: Value lists of attributes

Attributes	Value List
Size	needlepoint-sized, sesame-seed-sized, millet-grain-sized, rice-grain-sized, mung-bean-sized, soybean-sized, fingernail-sized, coin-sized, walnut-sized, palm-sized, x cm in diameter, y cm * z cm
Color	white, pinkish white, red, light red, pink, dark red, yellow, purple, dark purple, gray, black, brown, flesh-colored
Shape	subcircular, subelliptical, subspherical, subhemispherical, elongated strip-shaped, irregular, annular, cauliflower-like, spider-like, target-shaped, crab claw-like
Quantity	1, 2, 3, a few, multiple
Distribution	scattered, dense, cluster-like, symmetrical, zonal, reticular, fused, partially fused, fused into a sheet, adjacent, diffuse, localized
Boundary	well-defined, poorly-defined, relatively well-defined

The scoring is purely text-based: the judge-LLM only observes the question text, the reference answer, and the model’s predicted answer, but not the image itself. Thus, the evaluation probes the semantic correctness of the generated textual answers, and does not depend on any visual capability of the judge-LLM.

A.5.2 RUBRIC AND DISAMBIGUATION RULES

To reduce ambiguity and avoid overly strict grading on surface-form mismatches, we provide the judge-LLM with a detailed scoring rubric. The final prompt used in all reported experiments contains the following guidelines in Table 10):

- **Color.** Colors are grouped into coarse color families, and scores are assigned as: (i) exactly the same color: 1.0; (ii) same color family but not exactly the same term: 0.5; (iii) different color family: 0.0. For example, “light red” and “dark red” are in the red family, and “purple” and “dark purple” are in the purple family; browns (e.g., “brown”, “dark brown”) and blacks are grouped into a dark-color family.
- **Shape.** Shapes are grouped into coarse categories, with: (i) exactly the same shape: 1.0; (ii) same category (e.g., different but related shapes): 0.5; (iii) different categories: 0.0. For instance, circle-like and ellipse-like descriptions are in one category, rectangle- and square-like descriptions are in another, and irregular shapes (e.g., “bran-like / furfuraceous”) are treated separately.
- **Size.** For size descriptions, common-sense consistency is used: (i) fully consistent or equivalent units: 1.0; (ii) close but not identical size: 0.5; (iii) substantially different scale: 0.0.
- **Lesions / Morphology.** Certain clinically equivalent terms are treated as the same category, e.g., “blood scab” and “crust” are both mapped to “scab”, and “scale” is treated as equivalent to “desquamation”.
- **Diseases / Diagnoses.** If the predicted answer uses a standard synonym or an alternative yet clinically equivalent name for the same disease as in the reference answer, the response is considered fully correct (1.0).

These rules explicitly address the disagreement modes that we observed in a preliminary analysis, where the judge-LLM tended to be overly strict on attributes such as color and size (e.g., treating “pink” vs. “skin tone”, or “pinpoint” vs. “millimeter” as completely different). After incorporating the above rubric into the prompt, we fix this prompt and use it unchanged for all experiments reported in the main paper and appendix.

1081 A.5.3 AGREEMENT WITH HUMAN EXPERT
10821083 To quantify the reliability of GPT-4 as a judge-LLM, we evaluate its agreement with a senior physician on all
1084 open-ended questions in the test set (18,344 image-QA pairs). Both the human expert and the judge-LLM
1085 assign scores from $\{0.0, 0.5, 1.0\}$ using the same rubric.1086 **Exact-match consistency and average score difference.** Let $s_{\text{human}} \in \{0.0, 0.5, 1.0\}$ and $s_{\text{LLM}} \in$
1087 $\{0.0, 0.5, 1.0\}$ be the scores for a given sample, and define the absolute score difference
1088

1089
$$\Delta s = |s_{\text{human}} - s_{\text{LLM}}| \in \{0, 0.5, 1.0\}.$$

1090 On the 18,344 open-ended QA pairs, the distribution of Δs is:
10911092

Δs	0	0.5	1.0
Proportion	91.43%	6.45%	2.12%

1093 The average absolute score difference is therefore
1094

1095
$$\overline{\Delta s} = 0 \times 0.9143 + 0.5 \times 0.0645 + 1.0 \times 0.0212 = 0.053.$$

1096 We define the consistency rate as $1 - \overline{\Delta s}$, which yields a final consistency of
1097

1098
$$1 - \overline{\Delta s} = 0.947 \approx 95\%.$$

1099 In other words, GPT-4 exactly matches the human score on over 91% of the samples, and differs by at most
1100 one tier (0.5) on the vast majority of the remaining cases.
11011102 **Quadratic-weighted Cohen's Kappa.** To further assess inter-rater reliability, we compute the quadratic-
1103 weighted Cohen's Kappa κ_w between the human expert and GPT-4 on the same set of open-ended questions.
1104 Using the standard quadratic weighting scheme for ordinal categories, we obtain
1105

1106
$$\kappa_w = 0.8825,$$

1107 which is typically interpreted as high or “almost perfect” agreement between the judge-LLM and the human
1108 expert.
11091110 **Empirical reliability.** The high exact-match rate (95%), the very small average absolute score difference
1111 ($\overline{\Delta s} = 0.053$), and the quadratic-weighted Cohen's Kappa of $\kappa_w = 0.8825$ demonstrate that GPT-4's scores
1112 closely track those of a senior physician. This indicates that, despite being a proprietary model, the judge-LLM
1113 behaves as a stable and reliable proxy for expert assessment in our setting.
11141115 B MORE RESULTS
11161117 In this section, we present the comprehensive experimental results, followed by a detailed case study analyzing
1118 representative examples of model outputs.
11191120 B.1 EVALUATION OF FEW-SHOT AND COT PROMPTING
11211122 Our primary evaluation is conducted in a "zero-shot" setting, which aligns with the standard practice of
1123 prominent benchmarks such as MMBench (Xu et al., 2023), OmniMedVQA (Hu et al., 2024), and MMMU
1124 (Yue et al., 2024). This approach effectively assesses the model's intrinsic, out-of-the-box capabilities.
1125 To further explore the upper bounds of the model's performance and its adaptability, we also conducted
1126 supplementary experiments, incorporating few-shot and CoT prompting. The results are presented in Tab. 11.
1127 The following results show that there is an increasing trend but no significant differences.

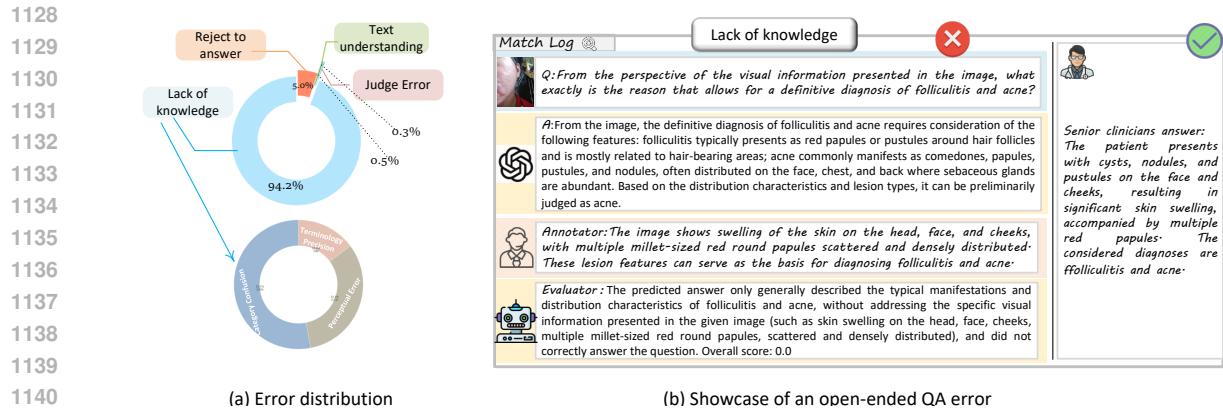


Figure 8: Error analysis of GPT-4V on our benchmark. Figure (a) illustrates the error analysis: the top-left panel shows the overall distribution of error cases, while the bottom-left panel displays the distribution for the 'Lack of Knowledge' category. The right figure presents an example of an incorrect response to an open-ended question.

B.2 ERROR ANALYSIS

For a comprehensive understanding of the model’s operational strengths and weaknesses, we meticulously examined error instances sampled from GPT-4V’s predictions. The distribution of these errors is illustrated in Fig 8 (a). The fundamental deficiency lies in the predicted answer’s failure to perform targeted visual analysis. As shown in Fig 8 (b), While generically mentioning textbook features of folliculitis and acne, it critically neglected to anatomically map the documented clinical findings. This representational gap between generalized knowledge and case-specific application resulted in diagnostic inaccuracy. In addition, Current models lack explicit medical concept grounding, meaning visual features (e.g., "millet-sized papules") are not rigorously verified against diagnostic criteria (e.g., folliculitis vs. acne). If the model has low confidence in its answer, it may either refuse to respond or provide an irrelevant reply.

B.3 ERROR CASES

Judge Error. As shown in Fig. 13, the judgment model incorrectly identifies a correct answer as erroneous. In other words, the judge model mistakenly flags a valid response as erroneous. This type of error arises during the assessment phase rather than during the answer generation phase, and then potentially affects the overall accuracy of the evaluation by unfairly penalizing correct answers.

Text Misunderstanding. As shown in Fig. 12, GPT-4V fails to correctly understand the question and generate erroneous answers. This indicates that the model struggles with accurately interpreting the semantic meaning or the specific intent behind the input question. This misunderstanding can lead to responses that are irrelevant, partially correct, or completely incorrect, highlighting limitations in the natural language comprehension capabilities of the model in this context.

Reject to answer. As shown in Fig. 9, GPT-4V outputs irrelevant responses or declines to answer certain questions. This behavior suggests that the model may encounter difficulties in comprehending complex or ambiguous queries, leading it either to produce answers unrelated to the question or to withhold a response altogether.

1175 **Lack of knowledge.** We further categorize Lack of Knowledge into three error types (as shown in Fig. 8)(a):
1176 Category Confusion, Perceptual Error, and Terminology Precision. **1) Category Confusion:** The model
1177 fails to correctly distinguish between categories or hierarchies of concepts, leading to misclassification
1178 or illogical associations (Fig. 10). **2) Perceptual Error:** The model struggles with spatial, physical, or
1179 contextual reasoning, resulting in implausible descriptions or interpretations of real-world scenarios (Fig. 11).
1180 **3) Terminology Precision.** The model uses imprecise, overly broad, or incorrect terms, especially in technical
1181 domains (Fig. 14).

1183 C LIMITATIONS AND POTENTIAL RISKS.

1185 Our proposed MedLesionVQA is the first clinically-oriented benchmark designed to assess whether current
1186 state-of-the-art MLLMs can function similarly to real physicians and to guide the development of future
1187 MLLMs. However, publicly releasing the dataset may lead to leakage, potentially compromising its future
1188 effectiveness as a gold-standard benchmark.

1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

1222
1223
1224
1225
1226
1227

1228
1229
1230

1231
1232
1233
1234

1235
1236
1237
1238
1239

1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250

1251
1252
1253
1254

1255
1256

1257
1258

1259
1260

1261
1262

1263
1264
1265
1266
1267
1268

Error: Reject to Answer

Question:

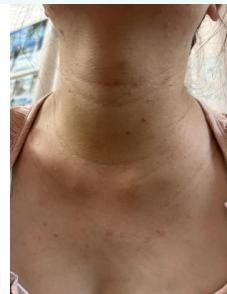
Based on the visual information presented in the images, why can a definitive diagnosis of fungal skin disease (*Malassezia folliculitis*) be made?

Ground Truth Answer:

✓ The images show multiple pinpoint-to-rice-grain-sized, flesh-colored to pink, roundish papules on the neck and chest, with secondary erythematous manifestations. These characteristics are consistent with the clinical presentation of *Malassezia folliculitis*, thus confirming the diagnosis.

Model Prediction:

✗ Visual images alone are insufficient for diagnosis. Requires clinical history and lab tests.



Scoring Breakdown:

Match Log:

✗ Fundamental Misalignment:

Expected: Justification of visual diagnosis

Provided: Refutation of visual diagnosis

Composite Score:

<result>0.0</result>

Figure 9: An example of reject to answer.

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

Table 8: Automatic QA constructing prompts

Ability Category	Prompt Description
Lesion Recognition	<p>Task Description: You will be provided with a piece of medical information related to a picture. Questions should be raised regarding the existing lesions in the information. Assume that all the information is sourced from the picture, and the recognition ability of the model for the lesions shown in the picture needs to be examined. The model is required to answer with the lesion terms as the answers.</p> <p>Medical Information: {} Lesions: {}</p>
Lesion Reasoning	<p>Task Description: You will be provided with a piece of medical information related to a picture. Please pose questions regarding the reasoning process for lesion identification, assuming all information is derived from the image. The questions should assess the model's ability to recognize lesions based on attribute information and other key information obtained from the image in the reasoning process</p> <p>Medical Information: {} Lesions: {}</p>
Spatial Relation	<p>Task Description: You will be provided with a piece of medical information related to a picture. Please pose questions regarding the spatial relationships between lesions, assessing the model's ability to understand the spatial relationships among multiple lesions in the image. The model should respond with related terms as the answer.</p> <p>Medical Information: {} Spatial relationship: {}</p>
Disease Diagnosis	<p>Task Description: You will be provided with a piece of medical information related to a picture. Provide you with a piece of medical information for a picture. Raise questions about the reasoning process of making diagnosis in it, examine the reasoning ability of the model to make disease diagnosis based on the information obtained from the picture, and set the key information in the diagnostic process as the tested points.</p> <p>Medical Information: {} Diagnostic reasoning: {}</p>
Location Recognition	<p>Task Description: You will be provided with a piece of medical information related to a picture. Please pose questions regarding the location (body region) where the lesion appears, assuming all information is derived from the image. The questions should assess the model's ability to recognize the location of the lesion area in the image, and the model needs to respond with body regions as the answer.</p> <p>Medical Information: {} Regions: {}</p>
Suggestion & Treatment	<p>Task Description: You will be provided with a piece of medical information related to a picture. Please pose questions regarding the content of suggestion & treatment, assessing the model's medical knowledge ability to make such suggestions based on information obtained from the image.</p> <p>Medical Information: {} Suggestions: {}</p>

Table 9: Automatic QA constructing prompts for lesion attribute

Subtask	Prompt Description
Lesion Size	<p>Task Description: You are provided with a paragraph of medical exam point information and supplementary medical information about an image. Please pose questions regarding the size of the lesion, assessing the model's ability to identify the size attribute of the lesion in the image. The model should respond with size terms as the answer. Add constraints in the question stem to specify whether the answer should use analogy (e.g., "pinpoint-sized", "grain-sized") or specific measurements (in mm or cm).</p> <p>Medical Exam Point Information: Attribute - Size: {}</p>
Lesion Color	<p>Task Description: You are provided with a paragraph of medical exam point information and supplementary medical information about an image. Please pose questions regarding the color of the lesion, assessing the model's ability to identify the color attribute of the lesion in the image. The model should respond with color terms as the answer. If the lesion term includes color information, do not reveal the color details in the question.</p> <p>Medical Exam Point Information: Attribute - Color: {}</p>
Lesion Shape	<p>Task Description: You are provided with a paragraph of medical exam point information and supplementary medical information about an image. Please pose questions regarding the shape of the lesion, assessing the model's ability to identify the shape attribute of the lesion in the image. The model should respond with shape terms as the answer.</p> <p>Medical Exam Point Information: Attribute - Shape: {}</p>
Lesion Distribution	<p>Task Description: You are provided with a paragraph of medical exam point information and supplementary medical information about an image. Please pose questions regarding the distribution of the lesion, assessing the model's ability to identify the distribution attribute of the lesion in the image. The model should respond with distribution terms as the answer.</p> <p>Medical Exam Point Information: Attribute - Distribution: {}</p>
Lesion Quantity	<p>Task Description: You are provided with a paragraph of medical exam point information and supplementary medical information about an image. Please pose questions regarding the quantity of the lesion, assessing the model's ability to identify the quantity attribute of the lesion in the image. The model should respond with quantity terms as the answer. If the description of the quantity is vague, ignore the question type requirements and only construct multiple-choice questions to enable the model to answer more definitively.</p> <p>Medical Exam Point Information: Attribute - Quantity: {}</p>
Lesion Boundary	<p>Task Description: You are provided with a paragraph of medical exam point information and supplementary medical information about an image. Please pose questions regarding the boundary of the lesion, assessing the model's ability to identify the boundary attribute of the lesion in the image. The model should respond with boundary terms as the answer.</p> <p>Medical Exam Point Information: Attribute - Boundary: {}</p>

1363		
1364		
1365		
1366		
1367		
1368		
1369		
1370		
1371		
1372	Section	Content
1373	Overall instruction	Based on the question, the correct answer, and the predicted answer, evaluate the correctness score of the predicted answer.
1374	Evaluation method	<ul style="list-style-type: none"> Decide whether the predicted answer correctly answers the question, provide scoring details, and finally give an overall score. The supplementary scoring rules below specify the scoring standards for different types of questions, and are used to handle situations where the expressions in the predicted answer and the reference answer are not exactly the same. The score must be one of the following values: 0.0 (completely incorrect), 0.5, or 1.0 (completely correct). Output the final score using the format <result>score</result>, for example: <result>0.5</result>.
1375	Question and answers	<p>Question: {question}</p> <p>Reference answer: {reference_answer}</p> <p>Predicted answer: {predicted_answer}</p>
1376	Supplementary rules: Color	Colors are unified by color families, with explicit scoring rules. Same color: 1.0; same color family: 0.5; different color families: 0. Red family: red-related colors such as red, light red, dark red, deep red, etc.; purple-related colors such as purple, dark purple, deep purple, purplish red, etc. Dark family: brown-related colors such as brown, dark brown, dark tan, light tan, etc., and black-related colors such as black.
1377	Supplementary rules: Shape	Shapes are categorized, with explicit scoring rules. Exactly the same: 1.0; same category: 0.5; different categories: 0. Circular category: round-like, ellipse-like. Rectangular category: rectangle, square, quadrangular. Irregular category: bran-like (furfuraceous) shapes.
1378	Supplementary rules: Size	If comparative descriptions or concrete numeric values correspond to a common-sense similar size, give 1.0; if they are close, give 0.5; if the gap is too large, give 0.
1379	Supplementary rules: Lesions	“Blood scab” and “crust” are treated as equivalent to “scab”; “scale” is treated as equivalent to “desquamation”.
1380	Supplementary rules: Diseases	If the answer is a synonym of the same disease, it should be regarded as a correct answer.

Table 10: English translation of the judge-LLM prompt used for open-ended scoring.

1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425

Table 11: Evaluation of Few-shot and CoT Prompting

Model	AVG_val	Lesion	Loc.	Attr.	Rela.	Diag.	Sugg.
Senior physicians	0.7321	0.6826	0.7583	0.7046	0.7102	0.7313	0.8574
Primary physicians	0.6144	0.5932	0.6218	0.5203	0.6336	0.6258	0.8162
<i>GPT-4.1</i>							
(Zero-shot)	0.5276	0.4487	0.5303	0.4308	0.6401	0.4879	0.8304
(1-shot)	0.5526	0.4791	0.4623	0.4700	0.6525	0.6064	0.8634
(3-shot)	0.5582	0.4808	0.5338	0.4614	0.6260	0.5477	0.8615
(5-shot)	0.5536	0.4332	0.5404	0.4682	0.6566	0.5666	0.8565
(CoT)	0.5377	0.4235	0.5706	0.4221	0.6348	0.4868	0.8245
<i>Gemini-2.5 Pro</i>							
(Zero-shot)	0.5479	0.4435	0.5052	0.4269	0.6516	0.6368	0.8716
(1-shot)	0.5506	0.5018	0.4660	0.4540	0.6890	0.5856	0.8694
(3-shot)	0.5550	0.4774	0.5138	0.4646	0.6017	0.5661	0.8398
(5-shot)	0.5588	0.4775	0.5256	0.4840	0.6404	0.4415	0.5573
(CoT)	0.5441	0.4469	0.5360	0.4195	0.6254	0.6186	0.8378

1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

Question:

The diseases diagnosed in the image include eczema and ____.

Ground Truth Answer:

✓ contact dermatitis

Model Prediction:

X skin infection

Scoring Breakdown:

Match Log:

Judgment: The predicted answer is incorrect. The question specifically requested identification of another diagnosis besides eczema evident in the image, with "contact dermatitis" being the correct answer. "Skin infection" does not fulfill the required diagnostic precision.

Composite Score:

<result>0.0</result>

Figure 10: An example of category confusion.

1504
1505
1506
1507
1508

1509
1510

Error: Perceptual Error

1511
1512

1513

Question:
The key lesion confirming melanocytic nevus in the image is ____"

1514

Ground Truth Answer:

✓ A rice-grain-sized black nevus

1515

Model Prediction:

X Pigmentation

1516

1517

1518

1519

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532

1533

Scoring Breakdown:

1534

Match Log:

1535
1536

Judge: The predicted answer only generally mentioned pigment deposition and did not explicitly point out the specific key lesion as in the correct answer, which states "a millet-sized black nevus," thus failing to correctly answer the question.

1537
1538
1539
1540

Scoring details: The prediction did not provide an accurate and specific description of the "key lesion for diagnosing pigmented nevus in the image" but instead gave a broad concept, so the score is 0.0.

1541

Composite Score:

1542

<result>0.0</result>

1543

1544

1545

Figure 11: An example of perceptual error.

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

Question:

From the perspective of the visual symptom information presented in the image, what exactly allows for a definitive diagnosis of fungal skin disease—tinea cruris?

Ground Truth Answer:

✓ The diagnosis is based on lesions including flat macules and raised papules, specifically pigmented macules. The macules are numerous, dark red in color, and round, near-oval, or irregular in shape, with a scattered distribution.

Model Prediction:

X From the perspective of the visual symptom information presented in the image, the diagnosis of skin diseases requires consideration of the lesion's morphology, distribution, color, presence of exudate or crusting, as well as the patient's medical history and symptoms.

Scoring Breakdown:**Match Log:**

Judge: The predicted answer only generally mentioned pigment deposition and did not explicitly point out the specific key lesion as in the correct answer, which states "a millet-sized black nevus," thus failing to correctly answer the question.

Scoring details: The prediction did not provide an accurate and specific description of the "key lesion for diagnosing pigmented nevus in the image" but instead gave a broad concept, so the score is 0.0.

Composite Score:

<result>0.0</result>

1595

1596

1597

Figure 12: An example of text misunderstanding error.

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Error: Judge Error

Question:
The size of the alopecia areata patch in the image is ____ cm x ____ cm.

Ground Truth Answer:
✓ 5 * 1.5

Model Prediction:
X 4 * 2

Scoring Breakdown:
Match Log:
The predicted values for both dimensions deviate from the correct measurements.
No partial credit is awarded as the answer is entirely incorrect.

Composite Score:
<result>0.0</result>

Comment:
Predicted dimensions (4 x 2 cm) are within <20% error margin of correct measurements (5 x 1.5 cm):
Length: 4 vs. 5 cm (20% under)
Width: 2 vs. 1.5 cm (clinically negligible in alopecia areata assessment).

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Error: Terminology Precision

Question:

The lesion appearing at the top of the image is _____.

Ground Truth Answer:

✓ Desquamation

Model Prediction:

X dandruff

Scoring Breakdown:

Match Log:

judge Scoring details: "Dandruff" is essentially the desquamation of the scalp. In terms of meaning, the predicted answer and the correct answer refer to the same thing, but "desquamation" is a more professional, medical term, while "dandruff" is a common colloquial expression. Therefore, the predicted answer is generally correct but lacks precision and professionalism.

Composite Score:

<result>0.7</result>