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Abstract

Langevin dynamics (LD) and its discrete proposal have been widely applied in
the field of Combinatorial Optimization (CO). Both sampling-based and data-
driven approaches have benefited significantly from these methods. However, LD’s
reliance on Gaussian noise limits its ability to escape narrow local optima, requires
costly parallel chains, and performs poorly in rugged landscapes or with non-strict
constraints. These challenges have impeded the development of more advanced
approaches. To address these issues, we introduce fractional Langevin dynamics
(FLD) for CO, replacing Gaussian noise with a-stable Lévy noise. FLD can escape
from local optima more readily via Lévy flights, and in multiple-peak CO problems
with high potential barriers it exhibits a polynomial escape time that outperforms
the exponential escape time of LD. Moreover, FLD coincides with LD when o« = 2,
and by tuning « it can be adapted to a wider range of complex scenarios in the CO
field. We provide theoretical proof that our method offers enhanced exploration
capabilities and improved convergence. Experimental results on the Maximum
Independent Set, Maximum Clique, and Maximum Cut problems demonstrate
that incorporating FLLD advances both sampling-based and data-driven approaches,
achieving state-of-the-art (SOTA) performance in most of the experiments. The
codes are publicly available at https://github.com/Thinklab-SJTU/FLD4CO.

1 Introduction

Combinatorial optimization (CO) problems, which involve finding an optimal solution from a finite set
of possible configurations subject to a set of constraints, are of paramount importance and usefulness
across fields, e.g. logistics [45]], scheduling [S9]], network design [4]], and finance [39].

There has been growing interest in developing efficient algorithms for obtaining high-quality sub-
optimal solutions. Among these efforts, sampling-based methods have shown considerable promise
due to their simplicity, ability to balance speed and solution quality, and training-free property.
A fundamental approach is simulated annealing (SA) [28]], which uses random local fluctuations
guided by Metropolis-Hastings updates [36} [23] and probabilistically explores the solution space.
Recent work [51] has demonstrated that incorporating Langevin dynamics (LD) and its discrete
proposal [69, [50] can vastly improve the sampling efficiency, thereby advancing sampling-based
approaches for CO. The core idea of LD is to leverage the gradient to guide the sampling in each
iteration, resulting in a more efficient searching process. However, there are certain limitations
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associated with LD. Firstly, it relies on Gaussian noise as a random perturbation, with the step size
being coupled to the noise amplitude. As the Gaussian noise decays exponentially at the tail, reducing
the step size also diminishes the noise, making it challenging to escape from ‘deep and narrow’ local
optima. The time required to escape local minima grows exponentially with the energy barrier height.
Moreover, to maintain sample diversity, LD necessitates parallel independent chains, which can be
computationally expensive. Furthermore, Gaussian noise assumes a locally smooth energy landscape,
meaning that LD is less effective in scenarios where the energy function is rugged or when non-strict
constraints are present. These factors limit the effectiveness of LD in more complex optimization
landscapes and the development of more advanced sampling-based approaches for CO.

Another trend is the data-driven approach to learning for optimization. Early neural network (NN)-
based methods [24] primarily relied on supervised learning [33, 18| 21]]. Subsequent works have
explored reinforcement learning [[62} 160, 161]] and unsupervised learning [27, 57, 52] techniques to
address the challenge of collecting labeled training data. More recently, diffusion models have been
introduced to the CO domain [31} 53} 144} 43|, demonstrating superior performance and promising
potential. These approaches also implicitly incorporate LD, as diffusion models were initially derived
from LD in the field of image generation. Unlike sampling-based methods, NN-based approaches
eliminate the need for explicit gradients of the problem, thereby enabling unification for a variety of
problems without relying on the problem structure, utilizing the network’s automatic differentiation
capabilities. We leave detailed related works in Appendix [2]

In this paper, we introduce fractional Langevin dynamics (FLD) to address the propensity of con-
ventional LD to become trapped in local optima. We incorporate symmetric a-stable (SaS) noise
with truncation into FLD: unlike Gaussian perturbations, SaS noise exhibits heavy-tailed jumps
(Lévy flights), enabling instantaneous energy-barrier leaps that facilitate escape from local min-
ima. Moreover, by setting o = 2, FLD reduces to standard LD, thus retaining efficient exploration
in smoother or strongly constrained settings. We propose the SaS-noise FLD sampling process
and present both explicit- and implicit-gradient formulations to advance both sampling-based and
data-driven approaches. We adopt the mean escape time as our convergence metric, and derive
theoretical upper bounds in the discrete setting, showing a polynomial-time bound for FLD versus an
exponential bound for LD. Through comparative case studies on three prototypical CO problems,
our methods outperform existing sampling-based and data-driven methods. Additionally, extensive
sampling-trajectory experiments have been conducted to vividly illustrate the enhanced escape ability
of FLD, demonstrate the impact of varying o on escape performance, and confirm the effectiveness
of our truncation strategy. Finally, we perform ablation studies on the best energy-function values
over iterations, thereby validating superior convergence and exploration capabilities of FLD.

2 Related Work

Data-driven Approaches for CO. They involve training NN models for CO, commonly referred
to as neural solvers. Significant efforts have been made to explore supervised learning [33} 18} 21}
531131} 158 1321 130} 34, 35]], unsupervised learning [27} 157, 152, 156/ 144} 43|, 20]], and reinforcement
learning [40, [17]. Our FLD-IG integrates FLLD with a simple reinforcement learning-based approach.
FLD-IG achieves competitive performance with a simple architecture and minimal training resources,
resulting in faster convergence and improved training efficiency.

Sampling-based Approaches for CO. Sampling-based approaches have been widely utilized for
CO [36} 123,137, [10L 165} 146]. However, these previous approaches are generally less efficient than
data-driven approaches. Recent work by [51] has advanced sampling-based methods, achieving
comparable or even superior performance to data-driven approaches by introducing the discrete LD
proposal[69,50]]. [[17] further develops a regularized approach on discrete LD, resulting in improved
performance. Our FLD-EG enhances the sampling-based approach by integrating FLD, which can be
seen as a generalization of vanilla LD, leading to faster convergence and better performance.

3 Preliminaries

Energy-Based Model (EBM). It defines an energy function H : S — R with the target distribution:
e—H (z)/T
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where S represents the energy state space, 7 is a temperature parameter controlling the smoothness
of the distribution, and Z = > _s e~ H(®)/7 is the partition function in statistical physics or
normalization factor in probability theory.

Markov Chain Monte Carlo. Markov chain Monte Carlo (MCMC) techniques [63} |54], which
are grounded in continuous diffusion processes, have gained widespread popularity owing to their
demonstrated success in large-scale Bayesian machine learning [[11]]. The goal of the MCMC is to
generate samples from a target distribution p., by forming a continuous diffusion that has p, as a
stationary distribution. Given a current state x; € S, a Metropolis-Hastings (MH) sampler [36}, 23]
proposes a candidate state y € S from a proposal distribution g(y | ;). Then calculate the Metropolis
acceptance ratio:

— mind 1 Pr@y(ee |y)
Alyz) = {1’p7(wt)g(y|xt)} @

With generating a random number u ~ U (0, 1), where U(0, 1) is the uniform distribution within
[0,1], if u < A(y, z), then the proposal state is accepted and set x;11 = y; otherwise, set x;11 = xy.

Langevin Dynamics. Langevin dynamics (LD) is an MCMC algorithm that has also been incor-
porated in combinatorial optimization algorithms for better exploring the landscape of the energy
function H (x) [47]. LD methods are based on constructing stochastic differential equations (SDEs)
equipped with Brownian motion (shown as Eq. (3))), assuming that the particle is driven by an infinite
number of small forces with finite variance.

dz, = s(z;)dt + V2dB, (3)

where B; denotes the standard Brownian motion and s(-) = Vlogp,(-) = —1VH () represents
the score function of EBM. With the condition of sampling state x; can be shown to be ergodic with
pr(xt). The samples can be generated from p, by simulating the sampling process of continuous

space discrete space [41], which is given by using a first-order Euler-Maruyama discretization:

Tn4+1 = Tn + nn-l-ls(xn) + vV 277n+1ABn+1 (4)

where 7),, denotes the step size of the sampling iteration and AB,, = £ is an i.i.d. standard Gaussian
random variable, £ ~ N(0, Iy« ) when the state space S = RY [69].

Simulated Annealing. Simulated annealing (SA) is a variant of local search [[14] that explores the
solution landscape with probabilistic relaxation. As the temperature decreases, there is a tendency to
sample points on the landscape to make the energy function H () value smaller; when the temperature
equals zero, the solution x will stop at the point where the H (z) has the lowest value (that is, the
solution obtained by the SA algorithm converges to the global optimum in probability) [S5].

4 Methodology

4.1 Problem Formulation

Without loss of generality, we formulate a CO problem as follows:

min  a(z), s.t. b(z) =0 5
2€8={0,1}N (@) (z) )
where the solution landscape S is an V-dimensional vector such that each dimension takes a discrete
value from {0, 1}, which is the most challenging to deal with, although it will be possible to extend.

To recast a constrained optimization problem as a sampling task, a penalty function (generally treated
as the energy function of EBM) takes the form:

H(z) = a(z) + \b(z) (6)

where ) is the penalty factor of the constraints. Furthermore, the attempt to directly sample from
pr(x) with the small 7 makes the energy landscape highly nonsmooth; a common remedy is to
incorporate the SA algorithm, progressively lowering 7 toward zero as the chain evolves.



4.2 Fractional Langevin Dynamics

By Eq. @), it can be seen that the term (25,41 — Xy, — Nt 18(2n))/v/2Nn+1 follows a Gaussian. Thus
the transition probability ¢(z,+1 | ©,) in the LD algorithm can be interpreted as a Gaussian with
mean &,, + Np4+15(2,) and covariance 21,111y« n [69]. The discrete (gradient-based) proposal
distribution with the explicit domain S = RY of LD is:

exp (— gl = 20— o as(ea)3) 7
q(Tp41 | 2n) = Ton (l‘n) @)
where,
1
Zpn (Tn) = Z exp (— |zns1 — zn — 77n+18(a?n)||%> = (dmn)N? ()
Tp41ERN +1
Thus, it can be factorized coordinate-wise into a set of simple categorical distributions:
1 Tint1 — Tin)?
q(l'i.,n—‘rl | xn) X exp {QS(x)i(xi,n-&-l — Xip — (l’mz’n))} (9)
Tn+1
with
N
q(@Tny1 | Tn) = Hq(armﬂ | ) (10)
i=1

Typically, the iteration step size 7, = C, where C'is a con-

stant, is too stable due to the combination of a fixed step o] e=1b
size and Gaussian noise. This stability makes it difficult N a=29
for LD to escape from local optima on the energy surface = x0*1

during the iterative process, often causing the trajectory to “10,3 i

remain trapped near suboptimal solutions, thereby signif-

icantly degrading the quality of the final result. To address 0

-100 75 50 -25 00 2.5 ,0 75 100

this issue, we introduce the a-stable Lévy noise [67]—a
type of stochastic process with a heavy-tailed distribution.
Unlike Gaussian noise, a-stable Lévy noise allows for
occasional large jumps (Lévy flights), which increases the
probability of escaping local optima and thus improves the
exploration capability of the algorithm.
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In this work, we are interested in the centered symmet- ‘
ric a-stable (SaS) distribution, which is a special case Figure 1: Pdf of SasS distribution and
of a-stable distribution. The definition of SaS random  «-stable Lévy motion.

variables and Sa.§ Lévy motion are shown as:

Definition 1 (S random variables [42]]). The a-stable distribution arises as the limiting distribution
in the generalized Central Limit Theorem (CLT). A scalar random variable x € R is said to follow a
Sas distribution if its characteristic function takes the following form:

Elexp(iwz)] = exp(—|ow|*) (11)

Here, « € (0, 2] is the characteristic exponent, which controls the tail heaviness of the distribution:
smaller values of o result in heavier tails (shown in Figure . The parameter o € R is the scale
parameter, reflecting the dispersion of x around zero.

Definition 2 (SaS Lévy motion [13]). A scalar symmetric a-stable Lévy motion LY, with o € (0, 2],
is a stochastic process satisfying the following properties:

1. Ly = 0 almost surely.

2. Fortg <ty <--- <tpy, the increments (L — LY ) (n=1,2,---,N) are independent.

tn—1

3. The (LY — L) and LY, have the same distribution SaS((t — s)'/®) (0 < s < t).



4. L has stochastically continuous sample paths (that is, continuous in probability):
}@P(|L?—L§‘|>5):O, vd > 0,s > 0. (12)

Similarly to the Sa$ distributions, the SaS Lévy motions L§* coincide with a scaled Brownian

motion v/2B; when o = 2. Thus, the SaS distribution can be seen as a heavy-tailed generalization
of the centered Gaussian distribution. As an important special case of SaS, we obtain the Gaussian
distribution SaS(o) = N (0, 20?) for a = 2.

The fractional Langevin dynamics (FLD) framework is driven by the Sa$ Lévy-based SDE as [47]:
dzy = b(z—, a)dt + dLY (13)
where, b(+) denotes the drift function shown in Theorem E], x+_ represents the left limit of the process

at time ¢, and L' is the standard Sa.S Lévy motion shown as Deﬁnition@
Theorem 1 ([47])). The drift function of the SDE is defined below:

b(x, ) £ W 2 cos(x) (14)
where, f,_(z) £ —¢(x)0, H(x), fractional integration D=2 £ F~H|w|* 2 F(f,. (2))}, ¢(z) =

exp{—H ()}, co 2 T(a — 1)/T'(a/2)?, and F is the Fourier transforms.

Detailed derivation and proof can be found in Appendix [A]
Proposition 1. The FLD-based SDE is the generalization of the LD-based SDE.

Proof. When o = 2, the SDE driven by the FLD:
dzy = b(x,_,2)dt + dLE (o — 2) & cos(x,)dt + ALY (a — 2) = s(x,)dt +V2dB,  (15)

Thus, the FLD-based SDE reduces to the LD-based SDE when o« = 2, while for a@ # 2, the
FLD-based SDE exhibits heavier tails. O

Combining the Theorem [I]and Eq. (13), the approximate SaS Lévy-based SDE and the first-order
Euler-Maruyama discretized Sa.S sampling process can be obtained as:

dxy =cos(xe)dt + dLEXni1 = Tp + Mnt1Cas(@n) + ni{ﬁAL%H (16)

The Proposition [1| also demonstrates that the target distribution can be sampled more accurately
by adaptively adjusting « during the sampling process. In regions where the energy function is
locally smooth or tightly constrained, setting o = 2 enables efficient sampling. Conversely, when
the sampling process becomes trapped in a local optimum, decreasing « increases the probability of
Lévy flights, thereby facilitating escape from the local minimum.

Moreover, although the probability density function (pdf) of the Sa.§ distribution does not have a
closed-form expression, it is straightforward to generate random samples from stable distributions
when a # 2. The sampling of SaS is given by Theorem 2] with 3 = 0 by the Chambers-Mallows-

Stuck method, which is shown in Theorem [3}

Theorem 2. Let vy be uniformly distributed on (—7%, %) and W be an independent exponential
random variable with mean 1. The a-stable sampling is:

sina(y — 7o) (COS(V —o(y - 70))>(1_a)/a £ 8,(1,5,0), a #1

(cosy)t/« w

7 — (17)

W cos~y
5+ 07
, K(a) = a— 1+ sign(1 — ), and sign(-) denotes the sign function.

(72T+ﬁ7)tanv—510g< )éSl(L&O),a:l

TBK ()
2a
Theorem 3. Let y be uniformly distributed on (=%, %) and W be an independent exponential

random variable with mean 1. The SaS sampling is:

sin ary cos(y — ay)) e £28aS(1), a#1
7 — J (cosvy)t/e w - |

gtan'y £818(1), a=1

where, vg = —

(18)



Since SasS distributions are a special case of a-stable distributions, the detailed proof of Theorem 2]
and Theorem [3]is presented together in Appendix [B] Thus the discrete sampling process can be
rewritten as [48]], where 2,11 ~ SaS(1):

n C(X «
Tyl = Tn — U%VH(x) e 2 (19)

4.3 Comparative Analysis of Convergence
We compare the convergence capabilities of LD and FLD by analyzing the escape time from the local
minima, which is defined as follows [3]:

Definition 3 (Escape Time). The escape time is a random variable:

7';": =inf{t >0: 2 € Bs(y*)} (20)

where, xo = x*, two points x* and y* separately represent local minima under the assumption that
the potential energy H has several (at least two) local minima, and Bs(y*) denotes the ball of radius
0 centered in y*.

Under the low noise intensity €, the LD-based SDE can be rewritten as:

dx; = —V H (z;)dt + v/2ed B, (1)

By Eyring—Kramers law, the mean escape time of LD-based SDE in the continuous space S € R is:

B 1~ iy et XU )= )6} x expl(H() - H(z)/e) (22

where z* is a unique saddle (that is the maximum of the potential energy barrier) and A(-) denotes
the single negative eigenvalue of the Hessian matrix V2 H (-).

The mean escape time of FLD-based SDE [23]] in the continuous space S € RV is:

E[T;*] o< w (23)

where w denotes the “width” of the local minima to the boundary of a potential well.

Similarly, we provide the discrete proposal for the escape time of both LD and FLD. We state upfront
that the Markov chains of LD and FLD are reversible if they satisfy the detailed balance conditions.
Additionally, p,(z) is a positive stationary distribution, given that the symmetric proposal and the
Metropolis-Hastings acceptance criterion are satisfied for constructing discrete LD and FLD. Thus,
when the state space is a finite or countable set S = {0, 1}*V, the symmetric Dirichlet form:

Dalf f) =5 32 (F() ~ F(@)Ppe () Paliy) @)

z,yeS

where P, (z,y) represents the transition matrix. Then, the conductance of an arbitrary non-empty
truth subset B C S is:

Do(B) = inf Daﬁ(sé)]ls) _ ij) S5 (@) Pala,y) (25)

zeEBy¢B

The first non-trivial eigenvalue given by the Cheeger inequality of LD [29]49]] is shown as follows:

D, (B))?
\z @282 o0
By the same reasoning, the first non-trivial eigenvalue of FLD [2}12] is:
0420‘71]_—‘ N4+«
A > Ona®a(B) = (5 )éa(B) (27)

oN/20(1 - %)



Table 1: Results of compared methods for MIS problem.

MIS ‘ RB-[200-300] ‘ RB-[800-1200] ‘ ER-[700-800] ‘ ER-[9000-11000]
Method Type | Sizet Time| | Size? Time| | Sizet Time | | Sizet Time |
Gurobi OR 19.98 47.57m | 40.90 2.17h 41.38  50.00m — —
KaMIS OR 20.10 1.40h 43.15 2.05h 44.87 52.13m | 381.31 7.60h
DGL SL 1736 12.78m | 3450 2390m | 3726 22.71m — —
INTEL SL 1847 13.07m | 3447 20.28m | 34.86 6.06m | 284.63 5.02m
DIFUSCO SL 18.52  16.05m — — 41.12  26.67m — —
LTFT UL 19.18 32s 37.48 4.37m — — — —
DiffuCO UL 19.24 54s 38.87 495m — — — —
SDDS UL 19.62 20s 39.99 6.35m — — — —
PPO RL 19.01 1.28 m 32.32 7.55m — — — —
DIMES RL — — — — 42.06 12.0lm | 332.80 12.72m
RLNN PRL 19.52 1.64m 38.46 6.24 m 43.34 1.37m | 363.34 11.76 m
iSCO H 19.29 2.71m 36.96 11.26m | 42.18 1.45m | 365.37 1.10h
RLSA H 19.97 35s 40.19 1.85m | 44.10 20s 375.31 1.66 m
FLD-1G PRL 19.72 1.08 m 39.56 6.31m | 43.50 1.35m | 365.03 11.41m
FLD-EG H 20.02 38s 40.25 1.93m 44.37 19s 377.50 1.12m

Derived via spectral expansion, the upper bound of mean escape time for LD and FLD is W

and m. Due to the ®5(B) x exp{—AH} [8/[13] and ®,(B) x w~= [26], as the potential

barrier A H increases linearly, the escape time of the LD increases exponentially, making it prone to
becoming “trapped” at high potential barriers. In contrast, FLD-based SDE, the mean escape time is
no longer governed exponentially by the barrier height A H but is instead primarily influenced by
the barrier width w in a polynomial manner. Consequently, in multiple-peak landscapes with high
potential barriers, FLD-based sampling exhibits superior convergence properties compared to LD.

4.4 Enhanced Sampling-Based Approach: FLD-EG

We aim to enhance sampling-based approaches by introducing our FLD-EG (i.e., with explicit
gradient). As discussed in Sec.[d.3] FLD exhibits a stronger ability to escape from local minima
in multiple-peak and high-barrier CO landscapes compared to LD. Motivated by this, we employ
FLD-based sampling to guide the assignment of variable values at each iteration. To further enhance
stability and reduce the impact of outlier samples that may hinder local exploration, we apply a
truncation scheme to remove extreme samples, as illustrated in Fig.[2b] This leads to a more stable
and consistent sampling trajectory. Also, inspired by [[17], we update only the top-d variables that

have the greatest influence on V H (x) and determine the variable values based on the result of the

sampling iteration. Specifically, a truncated version of the drift term %W is applied, guided

by a top-d gradient indicator defined as Sigmoid((5-((2z2—1)©VH(z)); — (22— 1) O VH(2))(a))-
Similarly, the SavS noise is truncated based on a top-dpoise noise indicator: Sigmoid((5=((2z — 1) ®
VH(z)); — (20 — 1) © VH(x))(4,....))- The final update rule is given in Eq. (I9). Details on the
algorithmic process can be found in Appendix

Consistent with standard sampling-based approaches, FLD-EG requires a closed-form gradient of the
energy function for the CO problems it addresses. Case studies on the energy functions of applied
CO problems are presented in Appendix [C|

4.5 Enhanced Data-Driven Approach: FLD-IG

Since the gradient V H (z) is not available for all CO problems, we propose a data-driven implicit-
gradient FLD solver named FLD-IG. Inspired by [27] and [17]], we introduce an NN-based framework
whose training procedure resembles reinforcement learning, alternating between sampling and update
steps (we denote this framework as PRL). We introduce the concept of flip probability for variables,
as proposed by [17], to mitigate numerical issues, and the network is designed to predict these flip
probabilities. Additionally, SaS noise is incorporated into the flip decisions at each iteration. To
match the FLD process, we first apply a linear transformation to rescale the noise from the range



Table 2: Results of compared methods for MaxCl and MaxCut problems.
MaxCl ‘ RB-[200-300] ‘ RB-[800-1200] ‘ MaxCut ‘ BA-[200-300] ‘ BA-[800-1200]
Method  Type | Sizet Time| | Sizet Time| | Method Type | Sizet Time| | Size?  Time |
Gurobi OR | 1905 1.92m | 3389 19.67m | Gurobi OR | 730.87 8.50m | 2944.38 1.28h

ERDOES UL 12.02 41s 2543 227m | ERDOES UL | 693.45 46s 287034  2.82m
LTFT UL 16.24 425 3142  483m LTFT UL | 70430 295m | 2864.61 21.33m
DiffUCoO UL 1622 1.00m — — DiffUCO UL | 72732 1.00m | 294753 3.78m
SDDS UL 18.90 38s — — SDDS UL | 731.93 14s 2971.62 1.08m
RLNN PRL 18.13  1.36m | 3523 7.83m RLNN PRL | 729.00 1.58m | 2907.18 3.67m
Greedy H 13.53 25s 26.71 25s Greedy H 688.31 13s 2786.00  3.12m
MFA H 14.82 27s 2794  232m MFA H 704.03 1.60m | 2833.86 7.27m
iSCO H 18.96 54s 4035 11.37m iSCO H 72824 1.67m | 291997 4.18m
RLSA H 18.97 23s 40.53 1.27m RLSA H 733.54 27s 295581 1.45m

FLD-IG PRL | 1852 1.40m | 3740 6.89m FLD-IG  PRL | 73348 1.57m | 292254 3.07m
FLD-EG H 18.97 20s 40.63 1.91m | FLD-EG H 734.18 25s 2960.13  1.70m

[0, 1] to [—1, 1] by multiplying 1 — 2z. The training loss function is defined as:

2
1(0;%,d, /\/) = qu(xnﬂ\xn)[H(Xn)] + X Z QG(Xi,n+1|Xn) - d] (28)

eV

where gg(X; n+1|%y) still satisfies the mean-field decomposition Eq. (I0). Details on the network
architecture and the training and inference process can be found in Appendix

S Experiments

We evaluate our FLD-EG and FLD-IG on three common CO problems, including maximum inde-
pendent set (MIS), maximum clique (MaxCl) and max cut (MaxCut) problems. Furthermore, we
demonstrate more analysis on the sampling trajectories and ablation studies.

Datasets. (1) MIS datasets: Following the benchmarks in [17], we evaluate our algorithms on two
graph classes: Revised Model B (RB) instances [66] and Erd6s—Rényi (ER) random graphs [16] with
node weight set to 1; (2) Maximum Clique dataset: we use the single RB graph which is introduced in
MIS datasets for the evaluation; (3) Max Cut dataset: we compare our algorithms with the baselines
on the Barabdsi-Albert (BA) graphs [3]. An additional point that warrants special attention is: The
size of the training set and the validation set is separately 1000 and 500 graphs for all datasets except
for ER-[9000, 11000] (that is, the ER graphs contain 9000 to 11000 nodes), and the test size is 500
for RB and BA graphs; 128 for ER-[700-800] and 16 for ER-[9000, 11000].

Baselines. (1) Classical methods: we categorize them into two types: operation research (OR)
methods; heuristic (H) methods. In the OR type, we give the general integer linear programming
representation of MIS, Maximum Clique, and Max Cut, solved by the Gurobi solver [22] as the OR
baseline; especially for MIS, we additionally give the MIS problem-specific solver KAMIS [19]].
For the heuristic methods, we give two sampling methods iSCO [51]] and RLSA [[17]] with SA and
discrete proposal of LD for all cases; additionally, the Greedy and MFA (Mean-Field Annealing) [6]
methods are provided for Maximum Clique and Max Cut problems. (2) Learning-based methods: we
classify the learning-based methods into four types: supervised learning (SL), unsupervised learning
(UL), reinforcement learning (RL), and pseudo reinforcement learning (PRL) which uses the sample
and update scheme similar to the RL. For SL, the INTEL with GCN and probability heatmap [33]],
DGL with Monte Carlo Tree Search and two GNN backbones [7], and DIFUSCO with UNet-Style
diffusion model [53] are given as SL baselines for the MIS problem. In the type of UL, the LIFT
with GFlownets [68], DiffUCO with UNet-Style diffusion model [44], and SDDS with discrete
diffusion models [43] are presented for three case studies; beyond that, ERDOES with random
graph model [[16] is set for the case studies without the MIS problem. The RL methods, PPO with
actor-and-critic [[1] and DIMES with reinforcement optimization combined with meta-learning [40],
are introduced for the MIS problem. Similar to the FLD-IG, RLNN with the discrete proposal of LD
is the baseline method of the PRL for three case studies [17].

Main Results. In the main experiments for the evaluation of our FLD-EG and FLD-IG, we give
two metrics: the objective value of each problem and the overall sequential testing time, which
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Figure 2: Sampling trajectories of the FLD-based SDE.

attracted the main concern in the field of CO. For three case studies in this work, the objective values
separately represent the independent set size of MIS, the clique size of Maximum Clique, and the cut
size of the Max Cut (the detailed formation can be seen in Appendix [C). The reported results for each
learning-based method correspond to the longest runtimes and, accordingly, should also exhibit the
highest objective values; with regard to heuristic methods, we fixed the number of iterations to be
the same. TableE] and[Z] demonstrate the results on MIS, MaxCl and MaxCut. On most problems,
our FLD-EG and FLD-IG outperform the SOTA classical and learning-based methods, respectively,
achieving higher objective values in shorter or comparable runtimes. For the classical methods,
since OR methods can obtain the optimal solution given sufficient runtimes, we report the results of
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Figure 3: Ablation for our methods (FLD with Sa.S) and LD sampling process method with Gaussian
noise. The staircase curves show how the "Best Energy" evolves as the number of iterations ("epochs"),
where the "Best Energy" is the minimum energy function value between last and current epoch.

OR methods solely to demonstrate the performance gap between the heuristic and learning-based
methods relative to the optimum, rather than to make a direct comparison. In the competitive heuristic
methods (i.e. iSCO, RLSA and our FLD-EG), our FLD-EG can attain equal or superior objective
values within the same sampling steps, while maintaining comparable or slightly reduced runtime. In
the field of learning-based methods, our FLD-IG achieves higher objective values than the others
on 75% of datasets; among methods with comparable performance metrics, our FLD-IG achieves
shorter runtimes on all datasets except the RB-[800-1200] instance.

Sampling Trajectories. We conduct FLD-based iterative sampling under different values of « to
simulate the trajectory of a single variable x during CO solving. Owing to the symmetry of the SaS,
we shift and scale x from [0, 1] to [-1, 1] in our methods. As shown in Fig. @ when o = 2 (i.e.,
the process degenerates to LD sampling), x readily becomes trapped in local minima, leading to
slow convergence; as - decreases—intensifying the heavy tail of the Sa.S distribution—z flips more
frequently between —1 and 1, promoting escape from local minima and accelerating convergence
(theoretical justification is provided in Sec.[4.3). However, for very small «, the generation of large
outliers can cause sampled points to deviate excessively, losing track of the underlying landscape. To
remedy this, we introduce a truncation strategy. As shown in Fig.[2b] bounding the sampled points
within a prescribed range yields a markedly more stable sampling process.

Ablation Studies. To rigorously validate the effectiveness of our SaS-noise sampling process, we
conducted ablation studies comparing its convergence behavior against that of LD with Gaussian
noise when solving CO problems (cf. Sec.[#.3). Specifically, in both FLD-EG and FLD-IG, we
replaced the FLD sampling process driven by Sa.$S noise with the LD sampling process driven by
Gaussian noise, and designed comparative experiments to monitor the iterative descent of the energy
function. As shown in Fig.[3] two panels on the left depict the ablation studies for FLD-EG, while the
others depict the ablation studies for FLD-IG. Notably, since the optimal solution is not attained, there
is a gap between the best energy function value and the current objective value, which corresponds to
the penalty term imposed by the constraints (i.e. Ab(z) shown in Eq. (6)). The results in the figure
indicate that, whether using explicit gradient or implicit gradient, our method markedly outperforms
LD with Gaussian noise; it not only demonstrates superior ability of FLD with Sa:S noise to escape
local optima compared to LD, but also its capacity to converge to a lower energy function value.

6 Conclusion and Outlook

In this paper, we have addressed the limitations of LD in CO, including its tendency to be trapped in
local optima, slow convergence, and generally suboptimal iterative performance. To overcome these
challenges, we propose a FLD sampling process driven by Sa$ noise, fortified with a truncation
strategy to ensure sampling stability. We theoretically prove that FLD achieves a polynomial mean
escape time—significantly faster than the exponential escape time of LD, which depends on the
energy barrier height—thereby enabling more rapid convergence. By integrating FLD into both
sampling-based and data-driven frameworks, accommodating problems with or without explicit
gradient information, we demonstrate its superior convergence and exploration capabilities on three
case studies: MIS, MaxCl and MaxCut. Our FLD-EG and FLD-IG achieve SOTA or near-SOTA
results compared to existing methods. Although our current FLD design focuses on binary-variable
CO problems, it has potential applicability to integer and continuous-variable formulations. We plan
to investigate these promising extensions in future work.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims are supported by theoretical proof in Sec.d.3]and empirical results
in Sec.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the last part of the main paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Critical theoretical proof can be found in Appendix [A]and[B]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental settings are included in Sec. [5}

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will release the complete source code once the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings are included in Sec. 5] Appendix [E.2] presents
hyperparameter values.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The test set size is appropriate to demonstrate the statistical significance of the
experiments, consistent with previous works.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Included in Appendix [E.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: I have read the NeurIPS Code of Ethics and I am sure that our work fully
adheres to its guidelines.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussed in Appendix [
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All models, data, and code used in this work are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The documentation is attached to our complete source code and will be released
once the paper is accepted.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The LLM was used solely for grammar checking in this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorem (1]

Theorem 4 ([47]). Consider the SDE (13), the drift b is defined by:
bz, a) = (D72 fr(x)) /() (29)
fr(x) = —¢(x)0,U(x), and 7 is an invariant measure of the Markov process.

Theorem 5 ([38]]). The Riesz derivative D" of a function f(x) can be defined as the limit of the
fractional centered difference operator N\, given:

D" f(x) = lim A] f(x) (30)
where, .
ALf(x) = (/) D gynf(x—kh) 31)
and e
gy = (—1)" Lo +1) (32)

N(v/2—k+1)T(y/2+k+1)

Proof. Theorem [4] guarantees the existence of the equality on the left-hand side of Eq.(I3).

Next, we will give the proof of the right-hand side. The more computationally efficient variant of the
first numerical scheme presented in Theorem [3]is given as follows [9]:

D7 fr(x) ~ g’y,Of?T(x) (33)
where g, 0 = I'(y+1)/T'(y/2+ 1)? for z € R.
Then we get , ,
D fp, (&) D (=¢(x)0H(x)) 0o
b(z, @) () prpe D> %s(x)
=T(a = 1)/T(a/2)*s(z) = cas(x) (34)
where ¢, = I'(a — 1)/T(«/2)2. O

B Proof of Theorem [2land Theorem [3]

Definition 4 ([64]])). A random variable X is a-stable if and only if its characteristic function is given
by
™ .
— o5 |t|* exp{—ifasign(t) = K (o)} +iut, a # 1

log (1) = 2 (35)
- 02|t|( + iB2sign(t) log [t]) + ipt, a =1

where, K(a) = a — 1 + sign(1 — ), and sign(-) denotes the sign function. The parameters oo and
Bo are related to o and (3.

Case 1: for o # 1, B is such that

tan(ﬂg

K
T 2(0‘)> _ tan% (36)
and the new scale parameter
1
o2 = o (148 tan?3p ) ™ (37)

Case2: fora=1, s =L and oy = =
Lemma 1 ([64]]). X is a S, (1, 32,0) random variable if and only if for x > 0:

P(O <X < x) :l /5 exp[fxﬁ Ua(’y,fyo)} dv, a <1
Yo (38)

1 [2 o
P(X z l‘) :7/ exp [_'rﬁ Ua(’Ya’YO):| d’Y) a>1
™
~

0

- af/l—o
where, vy = —”BK ) and U, (7,7) = (751"(2‘5)3;)70)) 7‘305(722‘;3770)).
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Proof. When ~ > ~, then the right hand side of Eq. (I7) (« # 1) is positive and can be expressed

4]
s 164 a(y)\(1-e)/a 39
() ! (39)
where

a(y) = (W)a/(l—a) cos(y _CZ;(Z — %))

Case 1: When 0 < « < 1, Eq. (T7) (o # 1) implies that X > 0 if and only if v > ~,. Since
1=a > (), we can write

PO<X<z)=P0<X <z, v>)
= P(0 < (al)/ W) <,y > )
= P(W >z Va(y), v > 70)
E

" [exp(_xa/(ail) a(7)) 1{v>70}}

1 7\'/2 1
7/ exp(—xo‘/(o‘* )a('y)) dry.
Ty

0

. (40)

From Lemma we conclude that X ~ S, (1, 82,0).
Case 2: For 1 < «a < 2, noting that O‘Tfl > 0, we similarly deduce that for all z > 0,

P(X>z)=P(X >z, 7> 7)
(/W)= 2 2, 5 > 0)
(W/a) ™ >, > o)
(W >z Da(y), v > 70)

K [eXP(_xa/(a_l) a(7)) 1{’Y>’YO}}

Again by Lemmal(T]we get X ~ S,(1, 52,0).

Case 3: For the case « = 1, when 32 = 0 the right hand side of Eq. (I7) (o« = 1) simplifies to
Z tan -y, which has a Cauchy law (cf. Eq. (33)). If 82 # 0, it can instead be written as

o tog( WY, o

where

m):m@((l

oy ol (5 ) tan). @)
For 82 > 0, we have
P(X < z) = P(B2log(ai(y)/W) < z)

= P(W > ¢ %/B2 al(fy))

= By [exp(—e /% a1(4)]
1 /2
== / exp(—e "% ay (7)) dy.
T J—7/2
Finally, we conclude that for all 55, X ~ S1(1, 3,0).

Due to the Sa§ distribution being the special case of a-stable distribution when 8 = 0, thus
Theorem [2]and Theorem 3| have been proven together. O
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C Case Study on Energy Functions

The problem formulations utilized in this paper are given below for three common case studies with
the closed form of the energy function H (x), which means H (z) is first-order derivable. Let G(V, E)
be an undirected and unweighted graph, where V"= {1,2,--- | N} denotes the node set of the graph
G and E C V x V represents the edge set. The problem descriptions, energy function, and its
gradient are given.

Case Study 1: Maximum Independent Set (MIS). The independent set is .S satisfied that Vi, j €
S CVande(i,j) € E, then i = j. Thus the definition of MIS S* = argmaxgcy |S| (| - | denotes
the size of -). The formulation of MIS is:

ma; CiT;, S.t. xz;x; =0 43
{01} - Z ! @)
eV e(i,j)EE

The energy function of MIS formed as Eq. (6) is:

x T Ax

H(z) = — Z CiT; + A Z Tix; = —c'x+ A (44)

eV e(i,j)EE

where ¢; (i € V') denotes the node weights of graph G and the content to the right of the last equal
sign is the energy function under the matrix form representation (the same goes for the following two
cases). The gradient of the energy function can be presented readily:

VH(z) = —c+ MAx (45)
Case Study 2: Maximum Clique. The clique is the set C' C V satisfied that Vi, j € C, i # j, then

e(i,j) € E. Therefore, the definition of maximum clique C* = arg maxgcy |C|. The formulation
of maximum clique is:

i s, St ix; =0 46
A 2o 2 4o
i€V e(i,j)¢E

The energy function of maximum clique formed as Eq. (0) is:

A
H(z) = — E amit A Y wmm;=-—c x+ 5((1%)2 —x'x—x"Ax) A7)
i€V e(i.))¢E

The gradient of H () is shown as:

VH(z) = —c+ AM(1"%x)1 —x — Ax) (48)
Case Study 3: Max Cut. The max cut problem seeks a partition (.S, S) that maximizes the number
of crossing edges:

gnéx&(\{e(z,j)eE\zeS,jES:V\S}| (49)

The mathematical formulation, energy function, and its gradient can be presented as:

1—(2z; —1)(2x; — 1
max Y (2 2)( = 1) (50)
2€{0.1} e(i,))EE
_ 1 -
H(x) = — Z 1- (22 2)(2% b =x"Ax—1"Ax (629
e(i,j)€EE
VH(z) = A(2x — 1) (52)
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D Details on FLD-EG and FLD-IG

D.1 Algorithmic Process of FLD-EG

We now present the detailed implementation of the FLD-EG algorithm in Alg. [T} The algorithm
takes as input the maximum number of iterations 7', the number K of independent SA processes,
the truncation parameter d for the closed-form gradient V H, the truncation parameter dise for the
Sas noise, the initial temperature 7 for SA, the stability parameter o of the FLD sampling process,
and the stepsize schedule parameters a,, and b,,. (For the specific values of these hyperparameters,

see Appendix [E.2])

The FLD-EG algorithm employs a near—continuous sampling procedure to guide the assignment of
binary variables. First, both the binary variable vector x and the auxiliary continuous variable vector
h are initialized, and the initial energy is computed via the problem-specific function energy_func().
Each iteration then comprises two stages: (1) a sampling update for h, and (2) an update for x based
on the newly sampled h. After each update of x, we record the best observed energy. Once the
maximum iteration count 7' is reached, a greedy decoding step produces a final, constraint-satisfying
solution.

The sampling update for h consists of four substeps:

1. Noise sampling. Sample the noise variable z_iter from an SaS(1) distribution as pre-
scribed by Theorem [3] with the sampling mechanism defined in Eq. (I8). In practice, for
convenience, we replace exponentially distributed sampling with uniformly distributed
sampling for U.

2. Gradient truncation. Apply the Top-d truncated indicator to V H, ensuring that only the d
components with the largest magnitude influence the update.

3. Noise truncation. Apply the Top-d,ise truncated indicator to the sampled noise vector,
truncating extreme values to stabilize the sampling process.

4. State update. Update h according to the FLD update rule in Eq. (T9).

Finally, since the solution may still violate some problem constraints, we perform a greedy decoding
step on x until all constraints are satisfied.

D.2 Details on FLD-IG

Training and Inference Process. In Alg. 2| we present the detailed training procedure for FLD-IG.
The algorithm takes as input the maximum number of iterations 7" for training and 7T for inference,
the number of independent parallel sampling processes K’ for training and K for inference, the
truncation parameter d for both the gradient and the SaS noise, the initial temperature 7 for the
sampling process, and the stability parameter o of the FLD sampling process. (For the specific
values of these hyperparameters, see Appendix [E.2]) At each iteration, we sample Sa.S noise and
incorporate it into the proposal distribution, allowing x’ to be drawn from this noise-augmented
proposal so as to compute flip probabilities and update x. Unlike FLD-EG, which applies truncation
to both the gradient and the noise terms during sampling, and given that the noise samples are
independent at each iteration and no closed-form formulation exists for the energy-function gradient,
we instead perform a unified truncation of the noise-augmented proposal distribution directly within
the loss function. After each update, we record the best-observed energy. Once the maximum training
iteration step 7" is reached, save the best parameters for the inference process.

Similar to the training process, we first sample the Sa$ noise and incorporate it into the proposal
distribution in the inference process. Next, we draw x’ by sampling from this noise-augmented
proposal distribution to compute flip probabilities for updating x’, and we record the best energy
observed after each update. Once the maximum inference iteration count 7" is reached, a final greedy
decoding step generates a constraint-satisfying solution which is similar to the greedy decoding step
of FLD-EG.

Network Architecture. For the implementation of the network architecture, we adopt a five-layer
GCN with 128 hidden dimensions, which is consistent with [[17]. We observe that our FLD-IG
converges faster than [[17]. Therefore, we set the number of training epochs to 30, which is adequate
for convergence.
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Algorithm 1 FLD-EG

Require: 7', K, d, dyoise, To, @, Gy, and by,.
I: Initialize x € {0, 1}V*%;  h+x; x* x5 co=I(a—1)/T(a/2)?)

2: Build adjacency matrix A from (edge_index, edge_weight)

3: (energy, VH) < energy_func(A,b,x, True)

4: best_sol < x; best_energy « energy

5: fort=1,2,--- ,T do

t

6: T 7o (1 — ?)

7. fori=1,2,--- ,Ndo

8: Sample W ~U(—-5, %), U ~U(0,1)

sin(aW (1 — )W)\ =
9: z_iter < czlsrzi?/)l/)a (COS((_ o [Oj_) )) > Sas Noise Sampling
10: (2 "
’ 7 t+1

11: ty « —kthvalue(—3 ((2x — 1) ® VH) iy d, dim = 0) > Top-d Truncated Indicator
12: py « Sigmoid((3 ((2x — 1) ® VH) @ tg)/7)

13: Sample I, ~ Bernoulli(p,)

14: t, fkthvalue(f% ((2x -1Hoe VH) iy dnoise, dim = 0) > Top-dpoise Truncated

Indicator

15: p. « Sigmoid((—3 ((2x — 1) ©® VH) W t)/7)

16: Sample I, ~ Bernoulli(p,)

17: grad_iter <— 1 cq (—%) VH

18: z_iter < 771/0‘ z_iter

19: hi < h; — 15 © grad_iter + 1, © z_iter > Sampling Iterative Process
20: hl «— Clamp(hl, 0, 1)
21: z; + where(rand() < h;, 0, 1)
22:  end for

23:  (energy, VH) < energy_func(A,b,x, epoch < T)
24:  if energy < best_energy then

25: best_sol + x; best_energy <« energy
26:  end if
27: end for

28: return best_sol (or return min best_energy if skip-decode)

E Details on Experiments

E.1 Hardware and Software Devices

Experiments are conducted on a Linux workstation using an H100 GPU and an Intel(R) Xeon(R)
Platinum 8468 CPU, with programs implemented in PyTorch.

E.2 Hyperparameters

We show the utilized hyperparameter values of FLD-EG and FLD-IG in Table [3] and Table []
respectively. The selection of hyperparameter values partly refers to [17].

F Broader Impacts

The FLD framework we introduce has the potential to substantially advance both the practical
application and theoretical understanding of CO. By enabling reliable escape from deep local
optima—and doing so in polynomial time across a range of problem landscapes—FLD can drive more
efficient logistic networks, reducing transportation costs and carbon emissions through better routing;
streamline scheduling in manufacturing and cloud computing, leading to higher resource utilization
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Algorithm 2 FLD-IG (Training)

Require: 77, K', d, N, a, 19
1: Initialize ¢
2: while stopping criterion not met do

3:  Initialize x € {0,1}Y, D« {a}
4: fort=1,2,---,7" do
5 T 7o (1— A
6:  Sample Wy "K' U(~Z,%), i=1,...,N
7 Sample Uy "< ¢(0,1), i=1,...,N
8 Compute
sin(aW;)) [cos((1 — )W) a _
Z i) s = 1, . ,N
@ COS(W(i))l/O‘ —In U(i) !
> SaS Noise Sampling
9: X' ~q(x' | x+ 7Z(1—2x)) > Sample from proposal distribution with SaS Noise
10: D+ DU {z'}
11: x <+ a
12: end for

13: 9<—argm9in]EweD [trLp (052, d, N, o, 70)]

14: end while
15:
16: return 0

Table 3: Hyperparameters used by FLD-EG on all datasets.
Problem Dataset | 7o d K T A dnoise Q@ ap, by

RB-[200-300] 001 5 200 300 1.02 9 1.2 4 06
MIS RB-[800-1200] | 0.01 5 200 500 1.02 12 1.3 0.1 0.6
ER-[700-800] 0.01 20 200 500 1.001 20 .5 01 0.6
ER-[9000-1100] | 0.01 20 200 5000 1.001 60 .1 0.1 0.6
MaxCl RB-[200-300] 4 2 200 100 1.02 4 1.5 30 0.6
RB-[800-1200] 4 2 200 500 1.02 2 1.7 0.1 0.6
MaxCut BA-[200-300] 5 20 200 200 @ 1.02 33 1.01 200 0.6
BA-[800-1200] 5 20 200 500 @ 1.02 35 1.01 200 0.6

Table 4: Hyperparameters used by FLD-IG on all datasets.
Problem Dataset | 70 d K T A K T XN «

RB-[200-300] 025 5 20 100 1.02 10 50 05 1.7
MIS RB-[800-1200] | 025 5 20 200 1.02 10 300 0.5 1.7
ER-[700-800] 06 20 20 200 1.001 10 500 0.5 1.7
ER-[9000-1100] | 0.9 20 20 800 1.001 - - - 1.7
MaxCl RB-[200-300] 025 2 20 100 1.02 10 100 0.5 1.7
RB-[800-1200] | 025 2 20 200 1.02 10 300 05 1.7
MaxCut BA-[200-300] 025 20 20 100 1.02 10 50 05 1.7
BA-[800-1200] | 0.25 20 20 200 1.02 10 300 05 1.7

and energy savings; and enhance network-design and financial-optimization tools, yielding more
robust communication infrastructures and investment strategies. Moreover, because FLD naturally
integrates with data-driven pipelines via its implicit-gradient formulation, it can be seamlessly
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incorporated into emerging machine-learning platforms for applications such as automated materials
discovery, bioinformatics, and large-scale resource allocation, fostering interdisciplinary innovation.

At the same time, we acknowledge that any powerful optimization technology carries risks.
Unchecked, FLD could be used to accelerate adversarial planning—such as in cybersecurity, market
manipulation, or autonomous weaponry—by quickly finding worst-case configurations. To mitigate
misuse, we recommend that practitioners pair FLD with domain-specific ethical guidelines and
transparency mechanisms (e.g., logging and audit trails for critical decision systems), and that the
research community pursue formal verification methods to ensure that FLD-based solutions adhere
to safety and fairness constraints. By proactively addressing these considerations, we believe FLD
can serve as a force for positive impact—improving efficiency and sustainability in industrial and
scientific applications while minimizing potential harms.
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