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ABSTRACT

This paper addresses the problem of safe offline reinforcement learning, which
involves training a policy to satisfy safety constraints using an offline dataset.
This problem is inherently challenging as it requires balancing three highly inter-
connected and competing objectives: satisfying safety constraints, maximizing
rewards, and adhering to the behavior regularization imposed by the offline dataset.
To tackle this trilogy challenge, we propose a novel framework, the Q-learning Pe-
nalized Transformer policy (QPT). Specifically, QPT adopts a sequence modeling
paradigm, learning the action distribution conditioned on historical trajectories and
target returns, thereby ensuring robust behavior regularization. Additionally, we
incorporate Q-learning penalization into the training process to optimize the policy
by maximizing the expected reward and minimizing the expected cost, guided by
the learned Q-networks. Theoretical analysis demonstrates the advantages of our
approach by aligning with optimal policies under mild assumptions. Experimental
results across 38 tasks further validate the effectiveness of the QPT framework,
demonstrating its ability to learn adaptive, safe, robust, and high-reward poli-
cies. Notably, QPT consistently outperforms strong safe offline RL baselines by
a significant margin across all tasks. Furthermore, it retains zero-shot adaptation
capabilities to varying constraint thresholds, making it particularly well-suited for
real-world RL scenarios that operate under constraints.

1 INTRODUCTION

Offline reinforcement learning (RL) focuses on learning effective policies entirely from previously
collected data, without requiring interaction with the environment (Fujimoto et al., 2019). This
paradigm has emerged as a powerful approach for addressing sequential decision-making tasks,
such as autonomous driving (Hu et al., 2022) and control systems (Zhan et al., 2022). Various
paradigms have been developed to maximize the utility of pre-collected trajectories while mitigating
policy overfitting (Kumar et al., 2019; Fujimoto et al., 2019; Kostrikov et al., 2021a; Kumar et al.,
2020). However, standard offline RL often falls short in real-world applications, where diverse
safety constraints limit feasible solutions, making the mere maximization of a scalar reward function
insufficient. The requirement for safety, or the satisfaction of constraints, is particularly critical when
deploying RL algorithms in real-world scenarios (Garcıa & Fernández, 2015). Ensuring constraint
satisfaction not only broadens the applicability of RL methods but also enhances their reliability in
safety-critical domains.

Developing an optimal policy within a constrained manifold has been a central focus of recent
research in safe offline RL, which seeks to integrate safety requirements into offline RL frameworks
(Garcıa & Fernández, 2015). Several approaches bridge concepts from offline RL and safe RL,
employing techniques such as pessimistic estimations (Xu et al., 2022) and stationary distribution
correction (Lee et al., 2022). Constrained optimization formulations, often incorporating Lagrange
multipliers, are commonly used to identify policies that maximize rewards while adhering to safety
constraints (Le et al., 2019). Sequential modeling methods, such as the Transformer (Liu et al.,
2023b) and Diffuser (Lin et al., 2023; Zheng et al., 2024), have also been explored, demonstrating
promising results in achieving both optimal policies and satisfying safety requirements.

However, the challenges of safe offline RL are amplified by the offline setting, which necessitates
behavior regularization to mitigate distributional shift (Fujimoto et al., 2019). Balancing constraint
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satisfaction, reward maximization, and offline policy regularization is particularly difficult due to the
intricate inter-dependencies among these objectives. Jointly optimizing them often results in unstable
training and suboptimal safety performance (Lee et al., 2022; Zheng et al., 2024). Furthermore,
these objectives may inherently conflict (Xu et al., 2022). For instance, adhering to offline policy
regularization can compromise constraint satisfaction when the dataset includes unsafe trajectories.
Conversely, excluding unsafe trajectories may lead to suboptimal policies by omitting critical high-
reward data, underscoring the inherent trade-offs in safe offline RL. Besides, Lagrange-based methods
frequently integrate the constraint threshold as a constant within the training process, seeking to
optimize policy performance while adhering to specified constraints (Le et al., 2019). We argue
that the ability to adapt a trained policy to varying constraint thresholds is crucial for a wide range
of real-world applications. In practice, enforcing stricter constraints typically results in diminished
task performance and induces more conservative agent behaviors (Liu et al., 2022b). Consequently,
our objective is to investigate a training paradigm that enables an agent to dynamically adjust its
constraint threshold at deployment. This approach would allow for flexible control over the agent’s
level of conservativeness, eliminating the need for additional fine-tuning or retraining.

To address these challenges, we propose a novel safe offline RL approach, the Q-learning Penalized
Transformer policy (QPT). Specifically, QPT adopts a sequence modeling paradigm that learns the
action distribution conditioned on both historical trajectories and target returns, thereby enabling
robust behavioral regularization and facilitating zero-shot adaptation to diverse deployment scenarios.
Moreover, QPT employs separate reward and cost Q-networks, which are iteratively updated using
the n-step Bellman equation. These networks are seamlessly integrated into the training process,
where the conflicting objectives are formulated as a weighted combination of losses. This design
provides explicit guidance for the policy to maximize expected rewards while effectively constraining
expected costs, thereby promoting both safety and performance in offline RL settings. Theoretical
analysis demonstrates the advantages of our approach by aligning with optimal policies under mild
assumptions. Experimental evaluations on 38 tasks from the DSRL benchmark (Liu et al., 2023a)
further validate QPT’s effectiveness, showing its ability to learn safe, robust, and high-reward policies.
QPT consistently outperforms state-of-the-art baselines across all tasks by a significant margin.
Moreover, it retains zero-shot adaptation capabilities to varying constraint thresholds, making it
particularly well-suited for real-world RL applications with safety requirements.

2 RELATED WORK

Offline RL trains policies from a static offline dataset D, without online interaction (Levine et al.,
2020), making it ideal for scenarios where interaction is costly or unsafe. A major challenge is
distribution shift, where the learned policy deviates from the behavior policy, causing performance
degradation (Fujimoto et al., 2019). To address this, prior works have employed constrained or
regularized dynamic programming to limit policy deviations (Fujimoto & Gu, 2021; Kumar et al.,
2020; Kostrikov et al., 2021b). Conditional sequence modeling predicts future actions from past
experiences, constraining the policy within behavior boundaries and enabling zero-shot adaptability
(Chen et al., 2021a; Hu et al., 2025; 2024d; Yamagata et al., 2023; Hu et al., 2023; 2024c).

Safe RL involves learning policies that maximize long-term rewards while satisfying safety con-
straints (Wachi & Sui, 2020; Gu et al., 2022). A common approach to constrained optimization
in safe RL is the primal-dual framework, which reformulates the problem into an unconstrained
optimization using Lagrangian multipliers (Chen et al., 2021b). Correction-based methods provide
another solution by projecting unsafe actions onto safe sets, incorporating domain knowledge to
improve exploration safety (Zhao et al., 2021; Luo & Ma, 2021). Model-based RL has also been
applied to improve data efficiency and performance (Huang et al., 2023), though it often requires
larger models to parameterize environment dynamics, increasing computational complexity.

Safe offline RL has also received growing attention, with the goal of ensuring zero constraint
violations during inference. These methods combine offline RL techniques with safety constraints,
such as using DICE-style approaches for constrained optimization (Polosky et al., 2022; Lee et al.,
2022) and Lagrangian-based methods for simplicity and compatibility with existing offline RL
frameworks. Recent studies have introduced novel networks for safe offline RL (Koirala et al.,
2024b;a; Gong et al., 2025). For instance, CDT (Liu et al., 2023b) employs sequential modeling
to learn from trajectory datasets, while TREBI (Lin et al., 2023) and FISOR (Zheng et al., 2024)
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utilize diffusion models for safe policy development. TREBI generates safe trajectories directly,
whereas FISOR uses a diffusion actor to constrain actions within feasible regions. In contrast to these
approaches, we propose a novel framework that explicitly formulates the objectives as controllable
losses, enabling the development of policies that directly align high rewards with minimal costs.

3 METHODOLOGY

3.1 PROBLEM SETUP

RL problems with safety constraints are naturally formulated within the Constrained Markov
Decision Process (CMDP) framework (Altman, 1998). A CMDP is defined by a tuple M =
(S,A, T ,R, C, µ0), where S is the state space, A is the action space, T : S × A × S → [0, 1]
is the state transition probability function, R : S × A → R defines the reward function, and
C : S ×A → [0, Cmax] quantifies the costs associated state-action pairs, where Cmax is the maximum
possible cost, and µ0 : S → [0, 1] is the initial state distribution.

In safe offline RL problems, we are given a fixed pre-collected dataset D={(s,a, r, c, s′)i}Hi=1 from
one or more (unknown) behavior policies, where each training example i contains the action a taken
at state s, reward received r, cost incurred c, and the next state s′. The goal is to learn a policy
π : S → A from the offline dataset D to maximize the expected reward while satisfying a specified
cost/safety constraint. This problem is mathematically formulated as:

max
π

Eτ∼π[R(τ)] subject to Eτ∼π[C(τ)] ≤ κ. (1)

Here, κ ∈ [0,+∞) is the cost threshold for safety constraint, H is the horizon length of episode,
τ = {s1,a1, r1, c1, . . . , sH,aH, rH, cH} denotes a trajectory sampled by executing the policy π,
R(τ) =

∑H
t=1 rt is the total accumulated reward, and C(τ) =

∑H
t=1 ct is the total incurred cost.

Most existing offline safe RL methods approach policy training as a constrained optimization problem,
wherein learnable dual variables are updated according to estimates of constraint violation costs and
a target threshold (Xu et al., 2022; Lee et al., 2022; Polosky et al., 2022). While this constrained
optimization paradigm is effective in online safe RL settings (Stooke et al., 2020), it faces significant
challenges in the offline context (Liu et al., 2023b). First, offline RL policies often become either
unsafe or overly conservative due to biased value estimates, stemming from incomplete dataset
coverage. In the Lagrangian dual optimization of Equation 1, such bias in cost estimation C(τ) can
mislead dual variable updates relative to the fixed threshold κ, resulting in unsafe or overly cautious
behaviors, a problem exacerbated in offline settings (Liu et al., 2022a). Second, policies cannot adapt
to new constraint thresholds without retraining, as the threshold must remain fixed during training.
Changing it post hoc destabilizes dual variables and can cause optimization to diverge, thus requiring
full retraining for each new constraint.

To address these issues, we reformulate the learning objective described in Equation 1 and leverage
sequential modeling techniques, which have shown promise in achieving zero-shot adaptation to
varying constraint thresholds while maintaining near-optimal task performance (Hu et al., 2024b;
Liu et al., 2023b). However, a key limitation of sequence modeling in this context is its tendency to
imitate the behavior distribution present in the training dataset (Brandfonbrener et al., 2022), which
often includes unsafe trajectories. Directly learning from such datasets may therefore result in unsafe
policies. One potential remedy is to filter out unsafe trajectories from the dataset D to construct
a “safe” dataset. Unfortunately, this strategy often eliminates high-reward transitions, leading to
suboptimal policies. Ideally, the optimal solution would involve selectively “stitching” together
transitions from both safe and unsafe trajectories, empowering the policy to generate behaviors that
both maximize cumulative rewards and satisfy safety constraints. To this end, we propose a novel
framework centered on the Conditional Transformer Policy (Section 3.2), augmented by Q-learning
Penalization (Section 3.3), Data Augmentation, and an Ensemble Policy for the inference stage
(Section 3.4). We also provide formal theoretical analysis to justify the observed performance gains
of our methods (Section 3.5).

3.2 CONDITIONAL TRANSFORMER POLICY

The Transformer architecture (Vaswani et al., 2017), extensively studied in NLP (Devlin et al., 2018)
and CV (Dosovitskiy et al., 2020), has also been explored in RL through the conditional sequence

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

modeling (CSM) paradigm (Hu et al., 2024b). In contrast to most traditional RL methods, which rely
on value function estimation or policy gradient computation, DT (Chen et al., 2021a) directly predicts
desired future actions based on a sequence of historical data comprising state (st), action (at), and
return-to-go (r̂t =

∑T
i=t ri) tuples. In the context of safe offline RL, this formulation is extended by

including an additional cost-to-go token, ĉt =
∑T
i=t ci, which quantifies the cumulative cost from

the current time step to the end of the episode (Liu et al., 2023b). During training on offline data,
the Transformer processes trajectory sequences in an auto-regressive manner, utilizing a historical
context of the most recent K steps. A trajectory sequence τt is formulated as follows:

τt = (r̂t−K+1, ĉt−K+1, st−K+1,at−K+1, . . . , r̂t, ĉt, st,at). (2)

The prediction head corresponding to the state token st is trained to predict the associated action at.
For continuous action spaces, the training objective is to minimize the mean squared error (MSE)
loss, defined as:

LDT = Eτt∼D

[
1

K

t∑
i=t−K+1

(ai − π(τt)i)2
]
, (3)

where π(τt)i denotes the i-th action output of the policy π learned by Equation 3.

3.3 Q-LEARNING PENALIZATION

To address the “stitching” challenge and design a target-conditioned policy that aligns the expected
returns of sampled actions with the optimal returns while simultaneously minimizing the associated
expected cost, we leverage the penalization from the Q-learning module (Kumar et al., 2022; Hu
et al., 2024a).

In the safe offline RL setting, two types of Q-networks are utilized: the reward Q-network and the cost
Q-network. A straightforward approach to learning these networks involves applying the empirical
Bellman evaluation operator, T π̂ , to samples (s,a, r, c, s′) ∼ B:

Qr(s,a) = r + γEa′∼π̂(·|s′) [Q
r(s′,a′)] , (4)

Qc(s,a) = c+ γEa′∼π̂(·|s′) [Q
c(s′,a′)] , (5)

where Qr and Qc denote the reward and cost Q-networks, respectively, γ represents the discount
factor, and π̂ represents the learned policy by Equation 8.

To mitigate overestimation bias, we employ the double Q-learning technique (Hasselt, 2010), con-
structing two Q-networks for each type: Qrϕ1

, Qrϕ2
for the reward Q-network and Qcψ1

, Qcψ2
for the

cost Q-network. These are accompanied by their corresponding target networks: Qrϕ′
1
, Qrϕ′

2
, Qcψ′

1
, Qcψ′

2
.

Additionally, we construct a target policy π̂θ′ to guide the learning process.

Given that the input to the Transformer policy includes trajectory history, we adopt the n-step Bellman
equation to estimate the Q-networks. This choice is motivated by its demonstrated improvements
over the 1-step approximation (Sutton & Barto, 2018). The optimization of the reward Q-network
parameters ϕi for i ∈ {1, 2} is performed by minimizing the following objective:

Eτt∼D,ât∼π̂θ′

t−1∑
m=t−K+1

∣∣∣∣∣∣Q̂rm −Qrϕi
(sm,am)

∣∣∣∣∣∣2, (6)

s.t. Q̂rm =

t−1∑
j=m

γj−mrj + γt−m min
i=1,2

Qrϕ′
i
(st, ât),

where ât denotes the predicted action output by the target policy π̂θ′ . Similarly, the optimization of
the cost Q-network parameters ψi for i ∈ {1, 2} is performed by minimizing the following objective:

Eτt∼D,ât∼π̂θ′

t−1∑
m=t−K+1

∣∣∣∣∣∣Q̂cm −Qcψi
(sm,am)

∣∣∣∣∣∣2, (7)

s.t. Q̂cm =

t−1∑
j=m

γj−mcj + γt−m min
i=1,2

Qcψ′
i
(st, ât).
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Leveraging the learned Q-networks, we incorporate them as penalization mechanisms during the
training phase. This approach aims to enhance the policy’s “stitching” capability by prioritizing the
sampling of high-reward actions while ensuring low-cost trajectories are favored. The final learning
objective is formulated as a linear combination of MSE loss and Q-learning penalization terms:

π̂ = argmin
π̂θ

{L(θ) := LDT (θ)− LQr (θ) + LQc(θ)}

=argmin
π̂θ

LDT (θ)︸ ︷︷ ︸
regularization

−α1 · Eτt∼DE(si,ai)∼τtQ
r
ϕ(si, π̂(τt)i)︸ ︷︷ ︸

reward maximization

+α2 · Eτt∼DE(si,ai)∼τtQ
c
ψ(si, π̂(τt)i)︸ ︷︷ ︸

cost minimization

.

(8)

To account for variations in the scale of the Q-networks across different offline datasets, we employ a
normalization technique inspired by Fujimoto & Gu (2021). Specifically, the weighting factors α1

and α2 are defined as follows:

α1 =
η1

Eτt∼DE(s,a)∼τt

[
|Qrϕ(s,a)|

] , (9)

α2 =
η2

Eτt∼DE(s,a)∼τt

[
|Qcψ(s,a)|

] , (10)

where η1, η2 are hyperparameters that control the balance between these loss terms. Notably, these Q-
networks in the denominator serve exclusively for normalization and are not subject to differentiation.

3.4 DATA AUGMENTATION AND ENSEMBLE

QPT leverages a conditional transformer structure, making the agent’s behavior highly sensitive to the
selection of target reward and cost values. In the context of safe offline RL, the range of feasible and
valid target cost and reward pairs is inherently limited. This limitation poses a significant challenge:
how can conflicts between the two target returns be effectively resolved while ensuring that meeting
the target cost is prioritized over maximizing the target reward? To address the aforementioned issues,
we employ two techniques: data augmentation and ensemble.

Inspired by CDT (Liu et al., 2023b), when an infeasible pair of target reward and cost (ρ, κ) arises,
we associate the conflicting target with the safest trajectory that achieves the maximum reward:

τ∗ = argmax
τ∼D

R(τ), s.t. C(τ) ≤ κ. (11)

Based on the identified trajectory τ∗ = {r̂∗t , ĉ∗t , s∗t ,a∗t }t, we construct a new augmented trajectory:

τ̂ = {r̂∗t + ρ−R(τ∗), ĉ∗t + κ− C(τ∗), s∗t ,a∗t }t, (12)

where the operation over r̂∗ and ĉ∗ are applied element-wise. This augmentation technique enables
the agent to learn by imitating the behavior of the most rewarding and safe trajectory τ∗ when the
desired target pair (ρ, κ) is infeasible. Further details on this process are provided in Appendix C.2.

Moreover, sequence modeling methods are sensitive to the choice of target conditioning, which serves
as input to the policy during inference. Rather than manually tuning the values of the return-to-go and
cost-to-go tokens, as required in previous conditional transformer policies – a process that demands
extensive trial and error – we leverage learned reward and cost Q-networks to guide action selection.
Specifically, actions are preferentially sampled to maximize expected returns while minimizing costs,
following the approach in Hu et al. (2024a). This process can be formulated as:

argmax
âj
t

Qrϕ′(st, â
j
t ), (13)

s.t. Qcψ′(st, â
j
t ) ≤ ĉ

j
t , (14)

âjt = π̂(r̂jt−K+1:t, ĉ
j
t−K+1:t, st−K+1:t,at−K+1:t−1)).

Here, (r̂j , ĉj) represent candidate target reward and cost pairs. This approach is highly parallelizable.
By assigning distinct return-to-go and cost-to-go pairs to each batch, we can effectively utilize GPU
capabilities to concurrently generate multiple action sequences, thereby minimizing computational
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overhead. Further details on this process are provided in Appendix C.3 A larger number of candidate
target pairs provides a broader search space, potentially improving performance. However, this also
incurs increased computational costs and greater susceptibility to noisy or suboptimal pairs, stemming
from the biased estimation of the learned Q-networks. Corresponding ablation studies are conducted
to demonstrate the efficacy of this procedure, as detailed in Section 4.1 and Appendix D.3. The
training and inference procedures are thoroughly outlined in Algorithm 1, providing a comprehensive
summary of the processes involved.

3.5 THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of QPT, specifically proving that a safe and high-
reward policy can be learned from an offline dataset.
Theorem 3.1. Consider an MDP with binary rewards and costs, behavior policy β, and conditioning
function fr and f c. Let gr(τ) =

∑H
t=1 rt, g

c(τ) =
∑H
t=1 ct. Assume the following:

1. Return coverage: Pβ(gr(τ) = fr(s1)|s1) ≥ αfr , Pβ(g
c(τ) = f c(s1)|s1) ≥ αfc for all

initial states s1.

2. Near determinism: P (r ̸= R(s,a) or c ̸= C(s,a) or s′ ̸= T (s,a)|s,a) ≤ ϵ at all s,a for
some functions T ,R and C.

3. Consistency of fr and f c: fr(s) = fr(s′) + r, f c(s) = fc(s′) + c for all s.

For timestep i, the probabilities of selecting actions with maximum reward or minimum cost satisfy:

1. Reward Selection: P{P̂ ri − P ri ≥ σr, ∀ i} ≥ 1− δr, where P ri and P̂ ri are probabilities under
the policies updated by Equation 3 and Equation 8, respectively. With probability at least (1− δr):

Eτ∼π∗ [gr(τ)]− Eτ∼π̂[gr(τ)] ≤ ϵ(
1

αfr

+ 3)H2 −Hσr.

2. Cost Selection: P{P̂ ci − P ci ≥ σc, ∀ i} ≥ 1− δc, where P ci and P̂ ci are probabilities under the
policies updated by Equation 3 and Equation 8, respectively. With probability at least (1− δc):

Eτ∼π̂[gc(τ)]− Eτ∼π∗ [gc(τ)] ≤ ϵ( 1

αfc

+ 3)H2 −Hσc.

Theorem 3.1 demonstrates that training with Equation 8 enables the recovery of near-optimal policies
π∗ from the offline dataset under the specified assumptions, providing the theoretical support for our
algorithm. The complete proof and detailed illustration are provided in Appendix B.

4 EXPERIMENT

Experimental Setups. We conducted extensive evaluations on tasks from Safety-Gymnasium (Ray
et al., 2019; Ji et al., 2024), Bullet-Safety-Gym (Gronauer, 2022), and MetaDrive (Li et al., 2022),
utilizing the DSRL benchmark (Liu et al., 2023a) to assess the performance of QPT against state-of-
the-art safe offline RL methods. The evaluation metrics used are normalized return and normalized
cost, where a normalized cost below 1 is indicative of safety. In accordance with the DSRL benchmark,
safety is prioritized as the primary evaluation criterion, with higher rewards pursued only after meeting
safety requirements. To ensure fair comparisons, we set the cost limit for all tasks to 10.

Baselines. We compared our method with four types of baseline methods: (1) Q-learning-based
algorithms: CPQ (Xu et al., 2022), BCQ-Lag (Fujimoto et al., 2019; Stooke et al., 2020); (2)
Distribution correction estimation: COptiDICE (Lee et al., 2022; 2021); (3) Imitation learning:
Behavior Cloning (BC-Safe) (Liu et al., 2023a), which is trained exclusively on safe trajectories
that satisfy safety constraints, and FISOR (Zheng et al., 2024), which leverages diffusion models
for the development of safe policies; (4) Sequential modeling algorithms: CDT (Liu et al., 2023b),
which incorporates cost-to-go token in the training process. The codebase for these baseline methods
are sourced from Liu et al. (2023a) and executed by us to ensure a fair comparison. For evaluation,
when the normalized cost is below 1, we select the configuration with the highest normalized reward.
Otherwise, we prioritize minimizing normalized cost and report the corresponding normalized reward.
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Table 1: Complete evaluation results of the normalized reward and cost. The cost threshold is 1. The
↑ symbol denotes that the higher reward, the better. The ↓ symbol denotes that the lower cost (up
to threshold 1), the better. Each value is averaged over 20 evaluation episodes and 3 random seeds.
Bold: Safe agents whose normalized cost is smaller than 1. Gray: Unsafe agents with normalized
costs exceeding 1. Blue: Safe agent with the highest reward.

QPT (Ours) BC-Safe CDT BCQ-Lag CPQ COptiDICE FISORTask
reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

PointButton1 0.13 0.81 0.10 0.63 0.62 7.17 0.24 1.73 0.69 3.2 0.13 1.35 0.03 0.81
PointButton2 -0.01 0.88 0.04 0.58 0.31 5.15 0.4 2.66 0.58 4.3 0.15 1.51 0.02 0.69
PointCircle1 0.58 0.93 0.45 0.67 0.57 0.75 0.17 1.04 0.43 0.29 0.78 15.64 0.60 12.8
PointCircle2 0.62 0.92 0.49 0.44 0.61 1.39 0.53 8.35 0.28 0.77 0.78 25.94 0.70 11.79
PointGoal1 0.68 0.65 0.42 0.70 0.70 1.54 0.59 1.30 0.68 0.76 0.35 1.75 0.54 2.73
PointGoal2 0.18 0.76 0.16 0.29 0.57 3.45 0.71 7.53 0.08 2.14 0.42 2.71 0.04 0.14
PointPush1 0.34 0.81 0.17 0.72 0.23 1.65 0.19 1.05 0.21 0.29 0.12 0.82 0.28 0.54
PointPush2 0.18 0.90 0.15 0.76 0.18 1.69 0.12 1.19 0.14 0.56 0.08 1.19 0.05 0.27
CarButton1 -0.15 0.87 0.05 0.51 0.16 4.91 0.04 1.63 0.42 9.66 -0.08 1.68 0.02 0.12
CarButton2 -0.33 0.99 -0.01 0.71 0.08 5.87 0.06 2.13 0.37 12.51 -0.07 1.59 0.01 0.20
CarCircle1 0.31 0.39 0.21 0.95 0.45 4.62 0.59 11.06 -0.09 1.02 0.64 15.47 0.60 6.54
CarCircle2 0.48 0.94 0.54 3.38 0.45 6.24 0.53 8.35 0.50 0.13 0.64 18.15 0.45 1.46
CarGoal1 0.60 0.44 0.39 0.25 0.72 2.25 0.44 2.76 0.33 4.93 0.43 2.81 0.49 0.83
CarGoal2 0.28 0.64 0.19 0.68 0.39 3.53 0.34 4.72 0.10 6.31 0.19 2.83 0.06 0.33
CarPush1 0.34 0.65 0.23 0.35 0.34 0.79 0.23 1.33 0.08 0.77 0.21 1.28 0.28 0.28
CarPush2 0.18 0.61 0.10 0.91 0.11 2.33 0.10 2.78 -0.03 10.00 0.10 4.55 0.14 0.89

SwimmerVelocity 0.65 0.58 0.55 0.89 0.65 0.94 0.29 4.10 0.31 11.58 0.58 23.64 -0.04 0.00
HopperVelocity 0.88 0.45 0.58 0.45 0.76 0.97 0.12 0.97 0.57 0.00 0.23 1.44 0.19 0.51

HalfCheetahVelocity 1.01 0.03 0.90 0.53 1.01 0.28 1.04 57.06 0.08 2.56 0.43 0.00 0.89 0.00
Walker2dVelocity 0.83 0.47 0.81 0.31 0.83 0.97 0.81 0.37 0.31 0.65 0.09 0.84 0.23 0.83

AntVelocity 0.99 0.78 0.96 0.89 0.98 0.94 0.85 18.54 -1.01 0.00 1.00 10.29 0.89 0.00
SafetyGym

Average 0.54 0.64 0.43 0.77 0.56 2.02 0.45 7.79 0.17 2.52 0.42 7.61 0.31 2.01

BallRun 0.31 0.00 0.29 0.37 0.32 1.00 0.30 0.89 0.33 0.00 0.26 0.96 0.24 0.00
CarRun 0.99 0.30 0.98 0.34 0.99 0.78 0.98 0.13 0.98 0.23 0.95 0.54 0.76 0.00

DroneRun 0.60 0.48 0.57 0.00 0.59 0.80 0.68 4.47 0.46 0.00 0.57 6.67 0.31 0.16
AntRun 0.73 0.82 0.70 0.79 0.72 0.99 0.58 0.77 0.09 0.46 0.61 0.92 0.52 0.83

BallCircle 0.68 0.95 0.55 0.08 0.68 0.97 0.68 1.57 0.71 0.30 0.64 3.28 0.36 0.00
CarCircle 0.67 0.90 0.55 0.43 0.73 0.83 0.46 1.42 0.73 0.89 0.46 2.78 0.42 0.16

DroneCircle 0.60 0.92 0.57 0.56 0.58 0.96 0.52 0.98 -0.20 0.45 0.26 0.51 0.49 0.00
AntCircle 0.41 0.41 0.45 0.98 0.31 1.25 0.57 2.11 0.02 0.00 0.10 1.31 0.29 0.00

BulletGym
Average 0.62 0.60 0.58 0.44 0.61 0.95 0.60 1.54 0.39 0.29 0.48 2.12 0.42 0.14

easysparse 0.70 0.98 0.28 0.20 0.51 0.76 0.09 0.92 -0.05 0.19 0.07 0.86 0.44 0.28
eastmean 0.67 0.99 0.49 0.06 0.52 0.99 0.08 0.70 -0.06 0.00 0.04 0.83 0.40 0.30
easydense 0.65 0.50 0.59 0.01 0.47 0.87 0.04 0.80 -0.05 0.10 0.17 1.54 0.46 0.64

mediumsparse 0.97 0.76 0.50 0.10 0.52 0.03 0.92 0.42 -0.07 0.00 0.05 0.72 0.73 0.06
mediummean 0.97 0.66 0.36 0.05 0.68 0.97 0.03 0.68 -0.06 0.00 0.09 0.77 0.52 0.01
mediumdense 0.97 0.95 0.25 0.10 0.25 0.10 0.94 0.29 -0.05 0.00 0.00 0.31 0.81 0.15

hardsparse 0.44 0.98 0.24 0.00 0.37 0.48 0.47 0.80 -0.05 0.06 0.16 1.92 0.32 0.01
hardmean 0.48 0.94 0.30 0.28 0.20 0.77 -0.01 0.44 -0.04 0.16 0.03 0.82 0.30 0.01
harddense 0.50 0.81 0.27 0.39 0.24 0.16 0.05 0.74 -0.05 0.00 0.02 0.57 0.39 0.32

MetaDrive
Average 0.71 0.84 0.36 0.13 0.42 0.57 0.29 0.64 -0.05 0.10 0.07 0.93 0.49 0.20

Metrics. We use the normalized cost return and the normalized reward return as the evaluation metric
for comparison. Denote rmax(M) and rmin(M) as the maximum empirical reward return and the
minimum empirical reward return for taskM. The normalized reward is computed by:

Rnormalized =
Rπ − rmin(M)

rmax(M)− rmin(M)
× 100, (15)

where Rπ denotes the evaluated reward return of policy π. While the normalized cost is computed by
the ratio between the evaluated cost return Cπ and the target threshold κ:

Cnormalized =
Cπ + ϵ

κ+ ϵ
, (16)

where ϵ is a positive number to ensure numerical stability if the threshold κ = 0. The agent is safe if
Cnormalized ≤ 1. Without otherwise statements, we will abbreviate “normalized cost return" as “cost"
and “normalized reward return" as “reward" for simplicity.

Main Results. The evaluation results are summarized in Table 1. QPT stands out as the only method
that consistently achieves satisfactory safety performance across all tasks while also attaining the
highest returns in most cases. This highlights its effectiveness in simultaneously ensuring safety
and achieving high rewards. In contrast, other methods exhibit significant limitations, either due to
severe constraint violations or suboptimal returns. Notably, BC-Safe, which is trained exclusively on
safe trajectories, satisfies most safety requirements but demonstrates conservative performance with
comparatively lower rewards. Q-learning-based algorithms, including BCQ-Lag and CPQ, as well as
the distribution correction estimation-based method, COptiDICE, show inconsistent performance.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Impact of different components. Average scores and standard deviations are reported over
three random seeds for the harddense task in the MetaDrive setting and the HopperVelocity setting.
“Train with Qr” and “Train with Qc” indicate whether the corresponding penalization in Equation 8
is applied. “Data aug.” refers to the use of data augmentation, while “Inf. with ensemble" denotes
ensemble applied at inference time.

Exp Data
aug.

Train
with Qr

Train
with Qc

Inf. with
ensemble

harddense
Reward

harddense
Cost

HopperVelocity
Reward

HopperVelocity
Cost

1 0.37± 0.19 1.00± 0.08 0.04± 0.02 1.49± 0.12
2 ✓ 0.40± 0.05 0.94± 0.04 0.54± 0.03 0.65± 0.03
3 ✓ ✓ 0.48± 0.08 0.94± 0.05 0.85± 0.05 0.99± 0.04
4 ✓ ✓ 0.43± 0.06 0.14± 0.10 0.15± 0.02 0.22± 0.01
5 ✓ ✓ ✓ 0.49± 0.04 0.84± 0.02 0.69± 0.04 0.51± 0.02
6 ✓ ✓ 0.46± 0.05 0.91± 0.06 0.56± 0.02 0.60± 0.04
7 ✓ ✓ ✓ 0.50± 0.01 0.93± 0.02 0.66± 0.03 0.56± 0.03
8 ✓ ✓ ✓ ✓ 0.50± 0.02 0.81± 0.03 0.88± 0.02 0.45± 0.04
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Figure 1: Results of the impact of hyper-parameters η1 and η2. Each column is a task with one
hyper-parameter stable. The x-axis is the training steps. The first row shows the evaluated normalized
reward, and the second row shows the evaluated normalized cost. All plots are averaged among 3
random seeds and 20 trajectories for each seed. The solid line is the mean value, and the light shade
represents the area within one standard deviation.

These methods tend to oscillate between overly conservative behavior and excessive risk-taking. For
instance, CPQ achieves high rewards at the expense of significant safety violations in tasks such as
CarGoal1 and CarGoal2, while in MetaDrive tasks, it achieves nearly zero cost but at the cost of
extremely low rewards. FISOR employs a diffusion-based architecture to maximize rewards within
the largest safe region, thereby offering strong safety guarantees. However, it tends to sacrifice
potential rewards by strictly adhering to the safe region, resulting in lower reward values while
maintaining predominantly safe cost levels. CDT, leveraging its advanced architecture and efficient
data utilization, demonstrates more balanced performance. However, it still struggles with trade-offs
between safety and utility in safe offline RL settings, particularly in SafetyGym tasks, where it fails
to meet safety requirements in most cases. In contrast, QPT, which shares the same Transformer
architecture as CDT, surpasses it by utilizing our novel framework. QPT achieves the highest returns
while consistently satisfying safety requirements, underscoring the efficacy of our proposed method.

4.1 ABLATION

Role of Different Components. As detailed in Section 3, our methodology incorporates four key
components: data augmentation, reward Q-network, cost Q-network, and inference ensemble. Each
component warrants individual analysis. We evaluate these components on the harddense dataset
from the MetaDrive task and on the HopperVelocity task, both selected for their challenging nature in
achieving high rewards and for the substantial performance improvements that QPT demonstrates
over baseline methods. The results are summarized in Table 2. Integrating the Qr and Qc networks
substantially enhances performance, as evidenced by comparisons between Exp 2 vs. 3 and Exp 2
vs. 4, where the added Q-learning penalization leads to notable improvements in reward and cost
metrics. Furthermore, incorporating an ensemble of learned Q-networks further boosts performance,
as shown by comparisons between Exp 2 vs. 6 and Exp 5 vs. 8. Data augmentation also improves
cost performance by “stitching” additional safe trajectories into the training dataset, as demonstrated
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Figure 2: Results of zero-shot adaption to different cost returns. Each column is a task. The x-axis
is the target cost return. The first row shows the evaluated normalized reward, and the second row
shows the evaluated normalized cost under different target costs. All plots are averaged among 3
random seeds and 20 trajectories for each seed. The solid line is the mean value, and the light shade
represents the area within one standard deviation.

by Exp 1 vs. 2 and Exp 7 vs. 8. These findings highlight the effectiveness of our framework in
addressing the challenges of safe offline RL.

Hyper-parameters. This ablation introduces the hyper-parameters η1 and η2, as defined in Equation
8, which regulate the influence of two additional loss components. To evaluate their effects, we
conducted an ablation study on two tasks: SwimmerVelocity and HopperVelocity. As illustrated in
Figure 1, when η2 is held constant and η1 is gradually increased, the normalized reward rises within
a specific range. For instance, in the HopperVelocity task, the reward increases consistently when
η1 ≤ 1. However, beyond this point (e.g., η1 = 2), the reward decreases sharply with no further
performance gains. Conversely, increasing η1 also leads to a corresponding increase in the normalized
cost within a certain range, indicating that the policy faces challenges in stitching trajectories with
higher associated costs. Similarly, when η1 is kept constant and η2 is increased, the normalized
reward decreases progressively, accompanied by a reduction in the normalized cost within a certain
range. This observation suggests that a larger η2 can contribute to a safer policy, albeit with a trade-off
in reward performance within specific bounds.

Zero-shot Adaptation. One significant advantage of the Transformer-based policy is its capability for
zero-shot adaptation to varying cost thresholds (Liu et al., 2023b). In contrast, the Q-learning-based
baselines introduced earlier lack this capability, as they require a fixed, pre-defined threshold to
solve constrained optimization problems. Adapting these methods to new constraint conditions
necessitates re-training, which limits their flexibility. Consequently, we primarily compare our
method with CDT, which also supports zero-shot adaptation. In this evaluation, each cost-return
threshold is treated as a distinct task, with corresponding adjustments made to the target reward.
The results are presented in Figure 2. Both methods demonstrate improved performance when
conditioned on a higher cost threshold, highlighting the zero-shot adaptation capability of sequence
modeling approaches. Furthermore, our method consistently outperforms CDT in scenarios where
both methods satisfy the constraint, achieving lower costs than the specified threshold (as shown
in the left three plots of Figure 2). Although CDT achieves higher rewards than our method in the
Button environments, it does so at the expense of greater safety violations. In contrast, our method
adheres to the cost threshold, underscoring its effectiveness in maintaining safety while delivering
competitive performance.

5 CONCLUSION

This paper addresses the safe offline RL problem from the perspective of trilogy optimization,
introducing the Q-learning Penalized Transformer policy (QPT) framework. By integrating Q-
learning penalization into the conditional transformer policy, QPT effectively maximizes expected
rewards while minimizing expected costs. Theoretical analysis under mild assumptions highlights
its advantages in aligning with optimal policies. Extensive experiments demonstrate QPT’s ability
to learn safe, robust, high-reward policies, consistently outperforming state-of-the-art baselines and
retaining zero-shot adaptation to varying constraints. We hope this work inspires further research into
safety and generalization in offline learning.
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A ADDITIONAL STATEMENT

The Use of Large Language Models. In this work, we exclusively employ large language models
(LLMs) to refine the writing and presentation of our manuscript.

Limitations. The theoretical guarantees of our algorithms rely on a near-deterministic environment,
an assumption that does not always hold in real-world deep learning models. Moreover, current
evaluations rely on limited offline data, potentially constraining performance. Extending QPT to a
safe offline-to-online RL framework presents a promising direction to enhance performance through
online interactions while maintaining safety.

B PROOF OF THEOREM 3.1

First, we give the following Lemma.

Lemma B.1 (Alignment with respect to the conditioning function (Brandfonbrener et al., 2022)).
Consider an MDP, behavior β and conditioning function fr. Let Jr(π) = Eτ∼π[gr(τ)], where
gr(τ) =

∑H
t=1 rt. Assume the following:

1. Return coverage: Pβ(gr(τ) = fr(s1)|s1) ≥ αfr for all initial states s1.

2. Near determinism: P (r ̸= R(s,a) or s′ ̸= T (s,a)|s,a) ≤ ϵ at all s, a for some functions
T andR. Note that this does not constrain the stochasticity of the initial state.

3. Consistency of fr: fr(s) = fr(s′) + r for all s. 1

Then

Jr(π∗)− Jr(π) ≤ ϵ
(

1

αfr

+ 3

)
H2, (17)

where π is derived from Equation 3, , π∗ is the optimal policy, andH is the horizon length of episode.
Moreover, there exist problems where the bound is tight up to constant factors.

Corollary B.2. Under assumptions analogous to those in Lemma B.1 for the cost function, specifi-
cally: Pβ(gc(τ) = f c(s1)|s1) ≥ αfc , P (c ̸= C(s,a) or s′ ̸= T (s,a)|s,a) ≤ ϵ, f c(s) = fc(s′) + c.
Let Jc(π) = Eτ∼π[gc(τ)], the following bound holds:

Jc(π)− Jc(π∗) ≥ ϵ
(

1

αfc

+ 3

)
H2. (18)

The proof follows a similar reasoning as Lemma B.1, given the structural parallels between the cost
and reward functions.

Based on Lemma B.1 and Corollary B.2, we now give the proof of Theorem 3.1.

Proof. We prove the bounds for reward and cost separately.

Reward Bound. For the reward, we begin with:

Eτ∼π∗ [gr(τ)]− Eτ∼π̂[gr(τ)] (19)
= Eτ∼π∗ [gr(τ)]− Eτ∼π[gr(τ)] + Eτ∼π[gr(τ)]− Eτ∼π̂[gr(τ)] (20)
= Jr(π∗)− Jr(π) + Jr(π)− Eτ∼π̂[gr(τ)] (21)

≤ ϵ
(

1

αf
+ 3

)
H2 + Jr(π)− Eτ∼π̂[gr(τ)]. (22)

1Note this can be exactly enforced (as in prior work) by augmenting the state space to include the cumulative
reward observed so far.
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Next, for the second term in Equation 22:

Jr(π)− Eτ∼π̂[gr(τ)] (23)
= Eτ∼π[gr(τ)]− Eτ∼π̂[gr(τ)] (24)

= Eτ∼π[
H∑
t=1

(rt)]− Eτ∼π̂[
H∑
t=1

(rt)] (25)

= Es1

H∑
t=1

(P rt · rt)− Es1

H∑
t=1

(P̂ rt · rt), (26)

(27)

where P rt and P̂ rt represent the probabilities of selecting the maximum-reward actions under policies
derived from Equation 3 and Equation 8, respectively. Since rewards are binary and by the condition
P{P̂ ri − P ri ≥ σr, ∀ i} ≥ 1− δr, we have:

Es1

H∑
t=1

(P rt · rt)− Es1

H∑
t=1

(P̂ rt · rt) (28)

= Es1

H∑
t=1

[(P rt − P̂ rt )rt] (29)

≤ Es1

H∑
t=1

(−σr) · rt (30)

≤ −Hσr. (31)

Substituting Equation 31 into Equation 22, we get:

Eτ∼π∗ [gr(τ)]− Eτ∼π̂[gr(τ)] (32)

≤ ϵ
(

1

αf
+ 3

)
H2 −Hσr. (33)

Cost Bound. For the cost bound, using a similar approach:

Eτ∼π̂[gc(τ)]− Eτ∼π∗ [gc(τ)] (34)

≥ ϵ
(

1

αf
+ 3

)
H2 + Eτ∼π̂[gc(τ)]− Jc(π) (35)

= ϵ

(
1

αf
+ 3

)
H2 + Es1

H∑
t=1

(P̂ ct · ct)− Es1

H∑
t=1

(P ct · ct), (36)

= ϵ

(
1

αf
+ 3

)
H2 + Es1

H∑
t=1

[(P̂ ct − P ct )ct] (37)

≥ ϵ
(

1

αf
+ 3

)
H2 −Hσc, (38)

where P ct and P̂ ct represent the probabilities of selecting minimum-cost actions under policies derived
from Equation 3 and Equation 8, respectively.

Remark B.3. We impose three assumptions. (i) The offline dataset provides sufficient coverage of
the relevant support of returns and costs - i.e., it spans heterogeneous return and cost distributions
adequate for conditioning via fr and f c. (ii) The environment dynamics are deterministic or nearly
so. (iii) The conditioning functions are time-consistent, coinciding with the notions of return-to-go
and cost-to-go in our formulation. Under these conditions, the theorem guarantees that, in (near-
)deterministic settings with appropriately specified conditioning and adequate data coverage, our
method can recover a policy whose performance approaches optimality with probability at least
(1− δr) for reward and (1− δc) for cost.
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Remark B.4. The additional Q-learning penalization encourages the learned policy to prioritize
higher-reward actions with lower costs. However, due to the constraint feasible region imposed by
the two Q-networks, the policy may not always successfully select the desired action. To address this
limitation, we introduce additional assumptions regarding reward and cost action selection, ensuring
a high probability of selecting the appropriate actions. These assumptions reinforce the effectiveness
and reliability of the proposed approach.
Remark B.5. Since Jr(π∗) represents the expected maximum reward of the optimal policy and
Jc(π∗) represents the expected minimum cost, the derived bounds for reward and cost naturally align
in opposite directions, reflecting their inherently inverse relationship. Compared to Lemma B.1 and
Corollary B.2, our framework improves upon the original loss in Equation 3 by an additionalHσr and
Hσc, demonstrating its effectiveness in achieving superior policies compared to Transformer-based
baselines.
Corollary B.6. If αfr > 0, ϵ = 0, and fr(s1) = V r∗(s1) for all initial states s1, then Jr(π∗) =

Jr(π) = Jr(π̂) under P̂ ri = P ri and σr = 0. Analogously, if αfc > 0, ϵ = 0, and f c(s1) = V c∗(s1)
for all s1, then Jc(π∗) = Jc(π) = Jc(π̂).
Remark B.7. In general, the reward- and cost-side conditions cannot be satisfied simultaneously. The
joint feasible set induced by the two Q-networks typically imposes conflicting constraints, making
fr(s1) = V r∗(s1) and f c(s1) = V c∗(s1) hold at the same time only in exceptional (e.g., degenerate
or perfectly aligned) environments. Hence, it is usually unrealistic to expect both equalities to be
achieved concurrently.

C ALGORITHM DETAILS

C.1 ALGORITHM PSEUDOCODE

The detailed pipeline of QPT is summarized in Algorithm 1.

C.2 DATA AUGMENTATION

The intuition is to relabel the associated Pareto trajectory’s reward and cost returns, such that the
agent can learn to imitate the behavior of the most rewarding and safe trajectory τ∗ when the desired
return (ρ, κ) is infeasible, i.e., ρ > RF(κ,D). The Reward Frontier (RF) value is defined by the
maximum reward with cost κ ∈ C, where C := {C(τ) : τ ∈ D} is the set of all the possible episodic
cost in D:

RF(κ,D) = max
τ∈D

R(τ), s.t. C(τ) = κ. (39)

The augmentation procedure is detailed in Algorithm 2 (Liu et al., 2023b). Figure 3 provides
an illustrative example: arrows map Pareto-optimal trajectories to their corresponding augmented
return-cost pairs.

C.3 ENSEMBLE

In this section, we highlight the detailed ensemble process. During the training phase, RTG and
CTG values are derived directly from the trajectory data within the dataset. Specifically, these values
are computed as the cumulative discounted rewards and costs from each state to the terminal state
along the observed trajectories, thereby preserving the ground-truth signal from the environment.
For inference, we utilize the default RTG and CTG pairs established in the DSRL benchmark as our
baseline. To generate candidate pairs, we perturb the RTG values by introducing random noises while
maintaining constant CTG values across all candidates. This asymmetric perturbation strategy is
theoretically motivated: our objective is to maximize expected returns while adhering to a fixed cost
constraint. By holding CTG constant while exploring a diverse range of RTG values, we effectively
search the action-value landscape for optimal policies that maximize reward within the predetermined
cost threshold.

The ensemble inference mechanism represents a computationally efficient approach to action selection
that leverages our learned Q-networks to identify optimal actions from multiple candidates. This pro-
cess operates exclusively during the inference phase and involves the following structured procedure:
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Algorithm 1 QPT: Q-learning Penalized Transformer
Input: Sequence horizonK, offline datasetsD, coefficient ρ, a set of candidate pairs of return-to-go
and cost-to-go {(r̂00, ĉ00), (r̂10, ĉ10), . . . , (r̂m0 , ĉm0 )}.
Initialize policy network πθ, reward Q-networks Qrϕ1

, Qrϕ2
, cost Q-networks Qcψ1

, Qcψ2
, and target

networks πθ′ , Qrϕ′
1
, Qrϕ′

2
, Qcψ′

1
and Qcψ′

2
.

Update the dataset D with data augmentation technique based on Equation 12.
// Train the QPT
for t = 1 toH do

Sample sequence transition mini-batch B = {(r̂j , ĉj , sj ,aj , rj , cj)t+Kj=t , } ∼ D.
// Reward Q-network and cost Q-network learning
Sample ât+K ∼ πθ′(ât+K |r̂t:t+K , ĉt:t+K , st:t+K ,at:t+K−1).
Update Qrϕ1

and Qrϕ2
by Equation 6, update Qcψ1

and Qcψ2
by Equation 7.

// Policy learning
for i = 1 to K do

Sample ât+i ∼ πθ(ât+i|r̂t:t+i, ĉt:t+i, st:t+i,at:t+i−1) in an auto-regressive way.
end for.
Update policy by minimizing Equation 8.
θ′ = ρθ′ + (1− ρ)θ, ϕ′i = ρϕ′i + (1− ρ)ϕi, ψ′

i = ρψ′
i + (1− ρ)ψi for i = {1, 2}.

end for.
// Inference with QPT
Given multiple pairs of target return-to-go and target cost-to-go choice (r̂j , ĉj)j=1:m

0 and initial
state s0.
repeat

Sample multiple actions with different return-to-go âjt =

πθ(â
j
t |r̂

j
t−K+1:t, ĉ

j
t−K+1:t, st−K+1:t,at−K+1:t−1) for j = 1, . . . ,m.

Compute Q networks with candidate state-action pair (st, â
j
t ) for j = 1, . . . ,m.

Sample the action at from action set {âjt}mj=1 with Equation 13 and Equation 14.
Execute the action at and collect the reward rt, cost ct and next state st+1.
Update current return-to-go r̂jt+1 = r̂jt − rt, cost-to-go ĉjt+1 = ĉjt − ct for j = 1, . . . ,m.

until Done is true.

cost return C( )

re
wa

rd
 re

tu
rn

 R
(

)

trajectory data
RF( , )
associated RF( , )
sampled value points
association direction

Figure 3: Illustrative example of the data-augmentation procedure (Liu et al., 2023b).

First, we generate multiple return-to-go and cost-to-go conditioning pairs by introducing controlled
stochastic perturbations to a default reference pair. This creates a diverse set of conditioning signals
that explore different regions of the reward-safety trade-off space. Rather than processing these pairs
sequentially, we exploit the parallelization capabilities of modern GPU architectures by batching all
candidate pairs into a single forward pass through our trained Transformer model. This parallelization
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Algorithm 2 Data Augmentation via Relabeling
Input: dataset D, samples N , reward sample max rmax
Output: augmented trajectory dataset D

1: cmin ← minτ∼D C(τ), cmax ← maxτ∼D C(τ)
2: for i = 1, ..., N do
3: ▷ sample a cost return
4: κi ∼ Uniform(cmin, cmax)
5: ▷ sample a reward return above the RF value
6: ρi ∼ Uniform(RF(κi,D), rmax)
7: ▷ find the closest and safe Pareto trajectory
8: τ∗i ← argmaxτ∼D R(τ), s.t. C(τ) ≤ κi
9: ▷ relabel the reward and cost return

10: τ̂i ← {r̂∗i + ρi −R(τ∗i ), ĉ∗i + κi − C(τ∗i ), s∗i ,a∗i }
11: ▷ append the trajectory to the dataset
12: D ← D ∪ {τ̂i}
13: end for

technique ensures that the computational overhead remains minimal compared to evaluating a single
conditioning pair. Once the model generates actions corresponding to each conditioning pair, we
employ our learned Q-networks (Qr and Qc) as evaluation metrics to select the optimal action
according to specified criteria. Depending on the deployment context, these criteria may prioritize
reward maximization subject to hard safety constraints, or implement a parameterized trade-off
between reward and safety considerations. By dynamically evaluating multiple conditioning pairs
during inference, our method effectively automates this hyperparameter selection process, reducing
the need for exhaustive offline tuning while potentially discovering superior action candidates that
might be overlooked in a single-sample approach.

D EXPERIMENT DETAILS

D.1 ENVIRONMENT DESCRIPTIONS

The environments designed for evaluating safe offline RL methods are based on different simulators,
each tailored to specific tasks and agent types. Figure 4 visualize some representative tasks of these
environments.

Figure 4: Visualization of the simulation environments and representative tasks (Liu et al., 2023a).

Safety-Gymnasium (Ray et al., 2019; Ji et al., 2024): Built on the Mujoco physics simulator, Safety-
Gymnasium provides safety-critical environments with diverse tasks. The Car agent engages in tasks
such as Button, Push, and Goal, each available in two difficulty levels. These tasks require navigating
hazards while completing objectives. For example, in Goal, the agent moves toward randomly reset
goal positions upon completion. In Push, it moves a box to dynamic goal locations, while Button
involves pressing scattered goal buttons. Additional velocity-constrained tasks are included for agents
such as Ant, HalfCheetah, and Swimmer. The Velocity task challenges agents to coordinate leg
movements to move forward, while Run requires navigating from a random direction and speed to
a designated endpoint. The Circle task rewards agents for following a circular path while avoiding
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hazardous zones. Tasks are named by combining agent, task, and difficulty level (e.g., CarPush1),
reflecting complexity and objectives.

Bullet-Safety-Gym (Gronauer, 2022): Developed with the PyBullet physics simulator, this suite
includes four agent types–Ball, Car, Drone, and Ant–and two primary tasks: Circle and Run. In Run,
agents navigate corridors bounded by safety lines, incurring penalties for crossing them or exceeding
speed limits. In Circle, agents move clockwise along a circular path, earning rewards for higher
speeds near the boundary and penalties for straying outside the safety zone. These environments
focus on safety evaluation with shorter, more straightforward tasks compared to Safety-Gymnasium.

MetaDrive (Li et al., 2022): MetaDrive is a self-driving simulation environment based on the
Panda3D game engine, offering realistic driving conditions with varying road complexity (easy,
medium, hard) and traffic density (sparse, medium, dense). Tasks are named by their road and vehicle
conditions. This environment enables testing offline RL algorithms in scenarios that closely mimic
real-world driving challenges.

An overview of these environments and tasks is presented in Table 3. Each environment presents
unique challenges for safe offline RL evaluation, from self-driving simulations to hazard-avoidance
tasks, offering varied complexities and objectives for testing algorithm robustness.

Table 3: Overview of the safe RL benchmarks and tasks for dataset collection (Liu et al., 2023a).

Benchmarks Backends Environments Agents
Difficulty

Levels
Total
Tasks

Dataset
Trajectories

SafetyGymnasium Mujoco
Goal, Button,
Push, Circle Point, Car 2 16 40310

Velocity
Ant, HalfCheetah, Hopper,

Swimmer, Walker2d 1 5 11399

BulletSafetyGym PyBullet Run, Circle Ball, Car, Drone, Ant 1 8 14498
MetaDrive Panda3D Driving Vehicle 3 9 9000

D.2 HYPERPARAMETERS

The reward and cost Q-networks used across all tasks consist of four linear layers, each employing
Mish activation functions for non-linearity. To ensure a fair comparison between QPT and the
baseline methods, we use a consistent setup of 105 gradient steps (except for the MetaDrive tasks)
and a rollout length equal to the maximum episode length for all experiments. A comprehensive list
of hyperparameters utilized in the experiments is provided in Table 4.

Table 4: Hyperparameters for QPT

Parameter All tasks Parameter All tasks

Number of layers 3 Number of attention heads 8
Embedding dimension 128 Batch size 2048

Context length K 10 Learning rate 0.0001
Droupout 0.1 Adam betas (0.9, 0.999)

Grad norm clip 0.25 Cost threshold 10
Training steps (BulletGym, SafetyGym) 100000 Training steps (MetaDrive) 200000

D.3 ABLATION OF THE NUMBER OF CANDIDATE ACTIONS IN ENSEMBLE

In our implementation, we utilize a default ensemble size of 50 candidate actions during inference.
We also conduct a systematic ablation study specifically examining the impact of ensemble size
on performance using the MetaDrive harddense environment as our testbed. The results in Table 5
reveal a nuanced relationship between ensemble size and overall performance. As the number of
sampled candidates increases from small values, we observe consistent performance improvements,
indicating that larger ensemble sizes enable more comprehensive exploration of the action space
and higher-quality policy selection. However, this relationship exhibits clear non-monotonicity, with
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performance plateauing and eventually declining beyond a certain threshold. A larger number of
candidate target pairs provides a broader search space, potentially improving performance. However,
this also incurs increased computational costs and greater susceptibility to noisy or suboptimal pairs,
stemming from the biased estimation of the learned Q-networks.

Table 5: Impact of the number of candidate target reward and cost pairs in the harddense task in the
MetaDrive setting.

1 10 30 50 100

Reward 0.49± 0.04 0.50± 0.02 0.52± 0.03 0.50± 0.02 0.48± 0.04
Cost 0.84± 0.02 0.83± 0.03 0.90± 0.05 0.81± 0.03 0.80± 0.03
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