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ABSTRACT

Spatio-temporal point process (STPP) data appear in many domains. A natural
way to model them is to describe how the instantaneous event rate varies over
space and time given the observed history which enables interpretation, interac-
tion detection, and forecasting. Traditional parametric kernel-based models, while
historically dominant, struggle to capture complex nonlinear patterns. In contrast,
deep learning methods leverage the representational power of neural networks to
aggregate historical events and integrate spatio-temporal point processes. How-
ever, existing deep learning methods often process space and time independently,
overlooking the spatio-temporal dependencies. To address this limitation, we pro-
pose a novel method called Topology-ENhanced Diffusion Model (TEN-DM),
including two key components namely spatio-temporal graph construction and
multimodal topological feature representation learning. Further, we use temporal
query technique to effectively capture periodic temporal patterns for learning ef-
fective temporal representations. Extensive experiments show the effectiveness of
TEN-DM on multiple STPP datasets compared to state-of-the-art methods.

1 INTRODUCTION

Stochastic point processes are loosely speaking random sets of points (marks) scattered over some
domain. Such processes appear in a wide range of natural and manmade phenomena and can be
also used to characterize various human activities, with applications ranging from earthquake occur-
rence to emergency calls to heart beat. Some point processes can be put in correspondence with an
index. If such index represents time, we call this stochastic process a temporal point process (TPP)
like, for instance, high-frequency trading order book events in finance or patient’s decline towards
septic shock in medicine which are often modeled by Hawkes processes (Lima, 2023; Kuang et al.,
2024; Laub et al., 2025). If the points live in some d-dimensional domain (e.g., Euclidean space
or a manifold), for example, patterns of Ice Age archaeological sites Jayalath et al. (2015), spatial
arrangements of trees and animals in ecology (Samarasekara et al., 2025) or distributions of young
stellar objects in astronomy (Retter et al., 2019), we call it a spatial point process (SPP). In turn,
spatio-temporal point processes (STPP) extend these concepts by considering stochastic processes
that integrate both spatial and temporal dimensions. STPP allow us to consider phenomena in which
events occur within a spatial domain, with the time of occurrence serving as a distinguishing feature
(mark) associated with each event, with applications ranging from earthquake tracking to crime de-
tection to monitoring infectious diseases (Zhu & Xie, 2022; Bernabeu et al., 2025), just to name a
few. SPP, TPP and STPP have been a longstanding area of research within statistical sciences (Cox
& Isham, 1980; Daley & Vere-Jones, 2003; Diggle, 2013). However, such more traditional statistical
approaches predominantly either impose some parametric model restrictions or tend to rely heav-
ily on unrealistic assumptions about the event sequences’ generative processes, exhibiting limited
abilities to scale for long historical records and massive event sets.

In turn, numerous recent efforts have been dedicated to developing DL for modeling TPPs and
STPPs (see the most recent comprehensive overview by Cheng et al. (2025)). Some of the earlier
thrusts in this direction include combination of an event encoder, aggregation encoder, and decoder
parametrization for event sequence prediction (Du et al., 2016; Shchur et al., 2021). The more re-
cent techniques advance the concept of deep STPPs which encompass such methods as deep kernels,
neural latent processes with transformers, and deep generative models (Zhu et al., 2020; Chen et al.,
2020; Zhou et al., 2022; Cheng et al., 2025). Despite these advances, due to inherent non-stationarity
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and complex interplay within and between time and space dimensions, existing DL tools often ex-
hibit limited capabilities to capture intrinsic structural organization of the underlying STTPs and
to distill intricate latent spatio-temporal interdependencies, especially under sparse regimes, which
leads to deficiencies in predictive performance (Cheng et al., 2025). Our paper is, hence, motivated
by the following tightly interwoven questions: How can we describe the complex spatio-temporal
STTP interdependencies, especially under sparse and noisy scenarios? and How can we distill latent
structural STTP characteristics that play a particularly important role for predictive tasks?

We argue that these fundamental questions in STTP modeling can be approached by fusing the rais-
ing paradigm of diffusion models with the emerging tools from computational topology, particularly,
the concepts of zigzag persistence. Why graphs? As shown by a number of recent studies (Jin
et al., 2024), graph abstraction offers a flexible and versatile framework to describe higher-order
interdependencies in multivariate spatio-temporal processes which otherwise cannot be systemati-
cally assessed by more traditional methods. Despite this success and despite the existence of STTPs
on graphs and manifolds, graph abstractions have never been used to model STTPs. We fill this
gap by designing a STPP graph construction strategy with different views that convert STPP into
a graph abstraction and learning node (i.e., event) embeddings. By leveraging temporal query and
self-attention on data in temporal dimension, we then capture period patterns and temporal-wise
dependencies. This allows us to enhance prediction in spatial and temporal domains. Why topol-
ogy and why zigzag persistence? In a nutshell, computational topology extracts shape properties
of the data that are intact under continuous transformations. Integrating such extracted topological
descriptors to DL has shown to result in enhanced model performance and robustness gains. Zigzag
persistence (ZP) advances these ideas toward distilling the most essential shape signatures of the
data that manifest over time. While ZP has been studied in conjunction with graph diffusion, the
utility of ZP for modeling STTPs has never been explored. To leverage such important time-aware
shape information, we transform the observed STPP to a time series of images and then, armed
with ZP, learn the most essential topological characteristics that reveal over time. Finally, Why dif-
fusion? Thanks to their advanced capabilities to capture complex relational structures within the
observed data, diffusion models have recently emerged as a new powerful machinery for a variety
of downstream tasks, from anomaly detection to prediction. While there are a number of studies on
diffusion models for TTPs (Lüdke et al., 2023; Zhang et al., 2024) to the best of our knowledge,
neither of them yet consider diffusion for STTP. As such, this paper advances STTP modeling along
multiple directions: by leveraging zigzag-enhanced diffusion and STTP graph representation, we
propose a novel versatile Topology-ENhanced Diffusion Model (TEN-DM) for capturing complex
spatio-temporal dynamics of STTP under sparse and noisy regimes.

In summary, the paper makes the following key contributions:

• We design (i) a STPP graph construction and learning (GCL) module to preprocess STPP
into the graph format, enabling the GNNs to learn complex spatio-temporal interactions;
(ii) a novel temporal topological learning (TTL) framework coupled with cubical zigzag
persistence, which captures topology-aware spatio-temporal information over STPP; and
(iii) a temporal query-guided self-attention mechanism (TQ-SA) to capture temporal de-
pendencies.

• Based on the GCL, TTL, and TQ-SA, we introduce TEN-DM, a novel diffusion model to
address the “dynamic spatio-temporal dependencies learning dilemma” in STPP.

• Extensive experiments on 5 real-world STPP datasets show the proposed TEN-DM
achieves state-of-the-art prediction performance in both spatial and temporal dimensions.

2 TECHNICAL BACKGROUND

Notations & Problem Formulation. We are given a sequence of spatio-temporal events X =
{xi | i = 1, 2, . . . , N} whose number of events N . Each event is described as xi = (ti, gi), where
ti denotes i-th occurrence time, gi denotes i-th geospatial information (e.g., latitude, longitude, or
zipcode), and 0 < t1 < · · · < tT < T (i.e., a sequence of strictly increasing arrival times). The goal
of forecasting model Fθ with weights θ to predict future spatial and temporal information based on
the history until time t denoted as Ht = {x1, . . . ,xn}tn<t, i.e., x̂t+1 = Fθ(Ht).
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Diffusion Models. Diffusion models are probabilistic generators that learn a data distribution by
corrupting samples with Gaussian noise in a forward Markov chain and then training a neural net-
work to iteratively denoise in reverse. This framework has exerted a significant influence on state-
of-the-art results in computer vision (Rombach et al., 2022; Saharia et al., 2022; Ho et al., 2022) and
natural language processing (Gong et al., 2022; He et al., 2022; Li et al., 2022). Given their abil-
ity to capture data distributions, diffusion models are increasingly studied for spatio-temporal data
forecasting and generation in a variety of scenarios. DiffSTG (Wen et al., 2023) adapts diffusion
to spatio-temporal graphs and introduces a UNet style temporal module with graph convolutions.
KSTDiff (Zhou et al., 2023) tackles urban flow generation by combining a region-customized dif-
fusion process guided by a learned volume estimator with a knowledge graph-enhanced denoising
network. Dyffusion (Rühling Cachay et al., 2023) introduces a dynamics informed diffusion model
by embedding temporal dynamics into the diffusion steps and training a stochastic time conditioned
interpolator with a predictor. Diff-RNTraj (Wei et al., 2024) focus on vehicle trajectory data, which
pretrains continuous embeddings of road information as denoising condition and decodes back with
a spatial-validity loss. ControlTraj (Zhu et al., 2024) develops a autoencoder that learns road seg-
ment embeddings and combines road-network topology constraints, merging them into a geographic
UNet to guide the denoising process.

Point Processes. Point processes are widely used to model sequences of discrete events across di-
verse domains (Daley & Vere-Jones, 2008; Reiss, 2012; Karr, 2017). Classical TPP models focuses
on conditional intensity function (Rasmussen, 2018), including Poisson process (Kingman, 1992),
Hawkes process (Hawkes, 1971) , and self-correcting process (Isham & Westcott, 1979). The simple
patterns of occurrence can be captured by the classical TPP models, while the neural TPP models
can perform better in capturing complex dependencies (Shchur et al., 2021). Decoupled Marked
Temporal Point Process (MTPP) (Song et al., 2024) uses Neural ODEs to decouple the influence
of each past event into its own latent continuous trajectory. Neural Jump-Diffusion TPP (NJDTPP)
(Zhang et al., 2024) proves the equivalence of stochastic differential equations (SDEs) for classical
TPPs, and uses neural jump-diffusion SDE (NJDSDE) which provides a unified SDE view with the-
oretical footing. For the SPP, it is well introduced in Moller & Waagepetersen (2003); Illian et al.
(2008). Continuous normalizing flows (CNF) and Time-Varying CNF (TVCNF) can be used for
modeling spatial distribution where the latter considers the dependence on the timestamps (Chen
et al., 2018; Yuan et al., 2023a). Beyond TPP and SPP, STPP takes spatial and temporal information
into consideration. Classical STPPs are extended from the point process including (in)homogeneous
Poisson process (Daley & Vere-Jones, 2003), Neyman–Scott process (Gabriel & Diggle, 2009), in-
hibition process (Gabriel et al., 2013), strauss process (Cronie & Van Lieshout, 2015), and Cox
process (Cox, 1955; Diggle, 2013; Diggle et al., 2013). Recent neural approaches extend STPPs
along two main directions, i.e., Influence-kernel–based models and Intensity-based models (Cheng
et al., 2025). Deep Non-stationary Kernel (DNSK) (Dong et al., 2022) develops a novel and general
low-rank decomposition to approximate the influence kernel and representation through deep neu-
ral networks. However, real-world STPP often exhibit complex and nonstationary spatio-temporal
dependencies, which leads to significant challenges in accurately predicting spatio-temporal events.
In contrast, our TEN-DM introduces spatio-temporal geometric and topological learning paradigm,
which can effectively introduce the graph structural and dynamic topological information into the
diffusion model, thereby being able to capture complex spatio-temporal dependence between dis-
crete events.

3 METHODOLOGY

To address the limitations of existing STPP approaches and leverage the strengths of geometric
and topological representation learning, we propose TEN-DM, a unified diffusion model framework
that integrates structural, temporal, and topological information for enhanced spatial and temporal
forecasting. As illustrated in Figure 1, the framework comprises three core components.

3.1 SPATIO-TEMPORAL POINT PROCESS GRAPH LEARNING

Compared with existing approaches which neglect spatio-temporal point process inherent interac-
tions between different event properties, to address this limitation, we propose a new strategy to
capture the nuanced spatial and temporal relationships by generating a graph structure and learn the
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Figure 1: Overview of the TEN-DM model: (1) a sequence of events; (2) extracted temporal, spatial,
time-series image, and graph information; (3) key components including temporal encoding, spatial
encoding, temporal topological learning module (TLL), graph representation learning (GNN), and
topology-guided spatio-temporal multi-head attention (TST-MHA).

corresponding high-level graph representation. There exist multiple types of edges between nodes
(i.e., events), and each type of edge has a different role and impact on node representation learning.
For example, for the graph representation learning in crime incidents, different types of relationships
between crime incidents exhibit various dependency semantics such as thefts in specific census tracts
can be temporally linked to seasonal trends (e.g., spikes during holidays), robberies tied to highways
or transit stations, and burglaries are often higher in neighborhoods with high poverty rates and hous-
ing instability. Therefore, in this section, we aim to answer the question: How to build a STPP graph
by fully utilizing the rich multi-semantic information?. We first generate multiple graphs by differen-
tiating the types of edge connections between nodes in the heterogeneous graph. Then we aggregate
the relation-guided graph structural information with different importance weights. We denote our
generated graph as Gr = (Ar,Xr) (where r = {1, . . . ,R}; note that, in our study, R = 3 includes
time, latitude, and longitude information) with r-th node feature matrix Xr and the adjacency ma-
trix of r-th graph Ar. To achieve this, we first construct a ϵ-graph Gr (Calder & Trillos, 2022).
Specifically, we quantify similarity suv between events u and v as follows:

sruv = (xr
u ⊙ xr

v)/(||xr
u||2||xr

v||2),
eruv = {(u, v) | sruv > Rr}, (1)

where ⊙ denotes dot product. In this work, we use cosine similarity to calculate event similarity. By
using a cell list to find event pairs that are within a given cut-off distance, we can efficiently solve
the problem with a time complexity O(kN) where k is the maximal number of neighbors within the
radius. Hence, node interactions with various relation semantics will have different structural char-
acteristics. To capture such multi-typed node dependencies, we assign different weights to different
adjacency matrices and aggregate R edge-type-specific adjacency matrices as A =

∑R
r=1 αrAr.

Note that the set of importance weights {αr} are updated adaptively during training.

To deliver high-level graph-structured information into our diffusion model framework, we pretrain a
GNN with the node features X (where X = ⊕(X1,X2, . . . ,XR) and ⊕ denotes the concatenation)
and joint adjacency matrix A, and adopt a pooling layer (i.e., Pool(·)) to get the graph representation
which can be formalized as:

oG = Pool(GNN(X,A)). (2)

3.2 TIME-SERIES IMAGE TOPOLOGICAL REPRESENTATION LEARNING

To enhance spatio-temporal prediction by incorporating dynamic topological information, we create
time-series images for spatio-temporal point process data and propose an effective method, i.e.,
dynamic image topology learning module that captures dynamic visual scenes.

Formulating time-series image representation by the sequence of events. Given a sequence
of events X = {x}Ti=1, we first divide X into patches which can be either overlapped or non-
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overlapped. Here we set the patch length (i.e., scale) to be P and the stride to be S (i.e., the non-
overlapping region between two neighboring patches). Then we can obtain a sequence of patches
which is denoted by X̂ = {x(1),x(2), . . . ,x(N)} ∈ RP×N where x(i) ∈ RP and N = ⌊(T −
P )/S⌋ + 2. After that, for each patch i, we create an image mi ∈ RH×W which is a 2D grid
and clipped to the target data region. For instance, given the Philadelphia crime incident data, the
2D grid is bounded by the set of latitude (min: 39.86; max: 40.14) and longitude (min: −75.28;
max: −74.95). Within the patch i, we rasterize the events’ geo-coordinates onto the 2D image by
recording as each pixel’s value the associated temporal attribute. That is, m(i)

xj ,yj = x(i)[j] which
represents j-th timestamp in i-th patch x(i). Thus, we can generate the time-series image data M
as a series of images {m(1),m(2), . . . ,m(N)}.

Topology learning on time-series image data. Persistent homology (PH) is a branch in topolog-
ical data analysis which tracks the evolution of the various data shape patterns along various user-
selected geometric dimensions (Zomorodian & Carlsson, 2004; Edelsbrunner & Morozov, 2012).
Despite the generality of simplicial complexes in PH, cubical complex is a more natural representa-
tion for 2D images or 3D volumes. See Appendix A for formal definition of the cubical complex.

Definition 3.1 Let K be a cubical complex, and suppose f : QK 7! R, where QK denotes
the set of elementary cubes in K , satisfies (i) f(Q′) ≤ f(Q) whenever Q′ is a face of Q. Let
K (α) = f−1((−∞, α]), and notice that (i) implies K (α) is a subcomplex of K for every α ∈ R.
Taking α1 < α2 < · · · < αn to be the values of f on the cubes of K and denoting K (αi) = Kαi

,
we say that the following increasing sequence of subcomplexes is a filtration associated with f

∅ = Kα0
⊂ Kα1

⊂ · · · ⊂ Kαn
= K .

In our setup, we use the lower-star filtration to extract the topological information encoded in 2D
images. However, given time-series image data, standard persistence algorithms capture only in-
dependent spatial topological information, and unaware of the temporal topological information
and complex spatio-temporal dependencies. Furthermore, beyond capturing dynamic structures and
temporal dependencies, it is equally important to learn multi-scale temporal information, i.e., under-
standing temporal information by leveraging multi-scale time-related data such as time units (e.g.,
minutes, hours, and days). To address the above two challenges, we propose a more flexible temporal
topology learning (TTL) framework coupled with zigzag persistence which is capable of capturing
vital time-aware topological information on time-series images across different time scales.

Zigzag persistence. Zigzag persistence (ZP) is a special type of quiver representations and gener-
alizes conventional PH by enabling the analysis of topological spaces connected through inclusions
in both forward and backward directions (Carlsson & De Silva, 2010). Unlike the above standard
PH which requires a nested sequence of spaces, ZP can accommodate more flexible filtrations which
makes it particularly well suited for capturing the evolving topological structure of image time-series
data. This capability has led to growing interest in ZP across a range of data analysis tasks involv-
ing time-varying signals. Specifically, for a time sequence of images {m(1),m(2), . . . ,m(N)}, the
zigzag filtration over image snapshots is constructed by the bidirectional arrows as follows:

m(1) ↪! m(1) ∪m(2)  ↩ m(2) ↪! · · · ↩ m(N−1) ↪! m(N−1) ∪m(N)  ↩ m(N)

To compute the homology groups and the corresponding topological feature of the zigzag filtration,
for each timestamp i, we first apply the cubical complex (i.e., with lower star filtration) to the image
m(i) at time step within the i-th patch and construct a simplicial complex K i. Then we compute
the union of two adjacent simplicial complexes K (i) and K (i+1) denoted by K (i,i+1) = K (i) ∪
K (i+1), i.e., we include a simplex ρ ∈ K (i,i+1) if and only if ρ ∈ K (i) or ρ ∈ K (i+1) which
preserves features that appear (born) or disappear (die) across time steps. Leveraging the zigzag
sequence of images, based on a fixed scale parameter α, we can compute the zigzag persistence of
the sequence of vector spaces as follows (where Hp(K ) denotes p-th homology group of K ):

Hp(K
(1)) ↪! Hp(K

(1) ∪ K (2)) ↩ Hp(K
(2)) ↪! · · ·Hp(K

(N−1) ∪ K (N)) ↩ Hp(K
(N))

The extracted topological information can be summarized in the form of a multiset in R2, i.e., so-
called persistence diagram (ZPD) DgZ = {pρ = (bρ, dρ) ∈ R2 : dρ > bρ} ∪ ∆ (here ∆ =
{(τ, τ)|τ ∈ R} is the diagonal set containing points counted with infinite multiplicity; including ∆
allows us to compare different ZPDs based on the cost of the optimal matching between their points).
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For each persistence diagram DgZ , we compute its zigzag persistence image (ZPI) denoted as PIZ
via the vectorization (denoted as Vec(·)) scheme (Adams et al., 2017). We provide an exmaple of
ZPI generation pipeline in Figure 2, Appendix A. In our experiments, we use both 0- (i.e., connected
components) and 1-dimensional (i.e., holes) topological features.

Theorem 3.2 (Zigzag stability for time–series images) Let Ω ⊂ Z2 be finite and m(i) : Ω ! R
(i = 1, . . . , N ) be grayscale frames. For α ∈ R define the lower-star cubical sublevel complexes
K

(i)
α = {σ ⊂ Ω cubical : maxv∈vert(σ) m

(i)(v) ≤ α} and bridges K
(i,i+1)
α = K

(i)
α ∪ K

(i+1)
α .

Fix p ≥ 0 and a field k. For each α, let

Xα : K (1)
α ↪! K (1,2)

α  ↩ K (2)
α ↪! · · · ↩ K (N)

α , Vα = Hp(Xα; k),

and have V : α 7! Vα. For another sequence m̃(i) with ∥m(i) − m̃(i)∥∞ ≤ ε for all i, define
Ṽ analogously. Let shδ be the shift (shδV)α = Vα+δ . Then there exist natural transformations
Φ : V ⇒ shεṼ and Ψ : Ṽ ⇒ shεV making an ε-interleaving: (shεΦ) ◦Ψ = η̃ and (shεΨ) ◦Φ = η,
where η, η̃ are the canonical inclusions to the 2ε-shift. Hence dI(V, Ṽ) ≤ ε, and (since these
modules are pointwise finite-dimensional on a finite grid) their zigzag persistence diagrams satisfy:

dB
(
ZPDp(V), ZPDp(Ṽ)

)
≤ ε.

The proof of Theorem 3.2 is provided in Appendix B. The theorem suggests that time-zigzag per-
sistence on image sequences is robust to small grayscale fluctuations, so differences observed in the
resulting zigzag diagrams reflect genuine structural change rather than noise, which supports reliable
comparison across time windows and trustworthy use in downstream analysis.

Temporal topological learning framework. To address the challenge of processing multi-scale
temporal information, we aggregate multiple time-scale topological features into on one uni-
fied representation. More specifically, according to different temporal scales, we use Q dif-
ferent patch lengths P = {P1, P2, . . . , PQ} and obtain the corresponding Q time-series data
M = {MP1

,MP2
, . . . ,MPQ

} by using the proposed patching strategy. Given multi-scale time-
series image M, we first employ the ZP and vectorization method to generate zigzag persistence
images with different scales, and then integrate them into a mixup zigzag persistence image with
different coefficients. That is:

PIZ =

Q∑
q=1

βqPI
Pq

Z , P I
Pq

Z = Vec(ZP(MPq
)), (3)

where βq represent the importance coefficient for q-th temporal scale (in this paper, we consider 4
different time scales and hyperparameters β = {βq}Qq=1 are equal to 0.25 (i.e., β1 = β2 = β3 =
β4 = 0.25)). Next, we apply a two-layer CNN over the mixup zigzag persistence image PIZ ,
yielding latent dynamic topological representation:

z̃ = FC(LayerNorm(CNN(PIZ))), (4)

where LayerNorm denotes the layer normalization to maintain the feature scale, and FC denotes a
fully connected layer which flattens convolution results.

3.3 MODELING SPATIAL AND TEMPORAL INFORMATION

Temporal encoding. Positional encoding is a crucial design in the Transformer architecture for
making use of the order of the sequence. To effectively utilize temporal information of STPP, for
each event time ti, we map it into the temporal embedding ti by using a positional encoding (where
D denotes the embedding dimension). In summary, we have:

[ti]j =

{
cos
(

ti
10000(j−1)/D

)
, when j is odd,

sin
(

ti
10000(j−1)/D

)
, when j is even.

(5)

For accurate temporal prediction, it is vital to model temporal dependencies, as well as trend shift.
Temporal query (TQ) techniques have been successfully applied to learn robust multivariate corre-
lations from multivariate time-series data (Kulkarni et al., 2011; Lin et al., 2025). Inspired by this,
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in this work, we develop a TQ-aware self-attention module to effectively and adaptively identify
temporal patterns inside the sequence of events. Specifically, given the skeleton of the self-attention
module, i.e., Self-Attention = Softmax(QK⊤

√
d

)V (where Q, K, and V are queries, keys, and val-
ues respectively), we integrate a TQ learnable matrix into the query matrix, and integrate temporal
encoding output into both key and value matrices, i.e.,

Self-AttentionTQ(t̃) = Softmax

(
QTQK

⊤
t̃√

dt̃

)
Vt̃, (6)

where QTQ = WTQW
Q, Kt̃ = t̃WK , Vt̃ = t̃W V , WTQ is a learnable TQ matrix, WQ, WK ,

and W V are projection matrices, and dt̃ is the dimensionality of the queries and the keys. Then
the output of the positional encoding, i.e., t̃ = (t1, t2, . . . , tK) is fed into the self-attention mech-
anism, and the self-attention output is added back to its input (i.e., t̃) via a residual connection and
then normalized with the layer normalization, which stabilizes optimization and gradient flow while
preserving the initial embedding as new contextual information is integrated:

õt = LayerNorm(t̃+ Self-AttentionTQ(t̃)). (7)

Spatial encoding. Given the spatial information gi of event i, we apply a lightweight MLP to
learn the spatial embedding and we present the output as gi. In our study, the MLP consists of two
connected layers with ReLU activation, which are defined as gi = Linear(ReLU(Linear(gi)).

For spatial encoding, we apply the regular self-attention mechanism over the initial spatial embed-
ding g̃ = (g1, g2, . . . , gK), yielding the final spatial representation:

õs = LayerNorm(g̃ + Self-Attention(g̃)). (8)

Following Eqs. 7 and 8, we can obtain latent embeddings in temporal (õt) and spatial (õs) domains
separately. However, to jointly learn spatio-temporal representations, the summarization operation
is not enough to seamlessly link two domains without an adapter. To integrate spatial and temporal
embeddings, next we introduce an unified topology-aware fusion framework.

3.4 SPATIO-TEMPORAL FUSION WITH TEMPORAL TOPOLOGY LEARNING FRAMEWORK

The topology-aware fusion framework integrates spatial, temporal, and dynamic topological em-
beddings, leveraging their complementary strengths to (i) capture spatio-temporal dependencies and
(ii) narrow the gap between spatial and temporal domains. The dynamic topology embedding z̃
from TTL encodes spatio-temporal topological patterns and serve as queries in the topology-guided
spatio-temporal multi-head attention (TST-MHA) mechanism, while the concatenation of spatial,
temporal, and graph embeddings denoted as r̃ = ⊕(t̃, g̃,oG) serve as keys and values. The TST-
MHA is defined as:

TST-MHA(Q,K,V ) = ⊕(head1, . . . , headH)WO, headh = Softmax
(
QhK

⊤
h√

dk

)
Vh, (9)

where Qh = z̃WQ, Kh = r̃WK , Vh = r̃W V , and WQ
h , WK

h , W V
h , and WO are learnable

projection matrices. dk denotes the head dimension, and H is the number of attention heads. The
proposed fusion framework integrates spatial, temporal, and topology-aware dynamic information,
capturing both local and global dependencies. We derive the Lipschitz bound for TST-MHA, see
Theorem B.1 in Appendix B.

Finally, the combined embedding (i.e., from spatial domain, temporal domain, and TST-MHA) will
be transformed by the feedforward layer, which is formally computed as:

õTST = Feed-Forward(LayerNorm(r̃ + TST-MHA(Q,K,V ))). (10)

3.5 SPATIO-TEMPORAL FORWARD AND REVERSE DIFFUSION

For each event xi = (τi, gi) in the sequence (where τi is the time interval since the last event), we
perform the forward diffusion process as a Markov process over the spatial and temporal dimensions
as (x0

i ,x
1
i , ...,x

K
i ), where K is the number of diffusion steps. That is, we add small amount of

7
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Gaussian noise step by step to the space and time values until they are close to pure Gaussian noises.
The forward process of our diffusion model on spatial and temporal dimensions can be written as:

qst(x
k
i |xk−1

i ) = (q(τki |τk−1
i ), q(gki |gk−1

i )), (11)

where the recursive formula is q(xk|xk−1) = N (xk;
√
1− βkx

k, βkI), N (·, ·) denotes the Gaus-
sian distribution used to generate the noise, I is the identity matrix, and αk =

∏k
i=1(1−βi) (where

β1:K ∈ (0, 1)). The purpose of the reverse process is enable our diffusion model to learn the denois-
ing ability of noisy spatial and temporal information. Specifically, we aim to reconstruct the point
xi = (τi, gi) with the learned model over K steps xK

i ! xK−1
i ! · · ·! x0

i . Further, we also in-
corporate latent spatio-temporal embedding denoted as õi−1 (where õi−1 = ⊕(õs

i−1, õ
g
i−1, õ

TST
i−1 ))

into the backward diffusion process which helps to guide the denoising process towards the clean
sample. The denoising transition step is outlined as follows:

pθ(x
k−1
i |xk

i , õi−1) = pθ(τ
k−1
i |τki , gki , õi−1)pθ(g

k−1
i |τki , gki , õi−1). (12)

In our experiments, we employ the cross-attentive conditional denoising decoder (Wang et al., 2024)
which incorporates predicted values τk+1

i , gk+1
i in temporal and spatial dimensions respectively,

graph learning output oG (see Eq. 2), and denoising step k with positional encoding and leverages
the latent spatio-temporal embedding õi−1 for the guidance in the conditional denoising process. To
predict future event, we utilize the inference framework proposed by Yuan et al. (2023a).

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets. In our experiments, we use 5 real-world datasets, i.e., JPN Earthquake: Earthquake with
a magnitude of at least 2.5 in Japan from 1990 to 2020; COVID-19: COVID-19 dataset is collected
from publicly released COVID19 cases in New Jersey state from March 2020 to July 2020; US
Earthquake: The US earthquake dataset contains earthquake occurrences from December 2023 to
January 2024 in US; Theft: The theft data is collected by the Philadelphia police department from
January 2025 to April 2025 in Philadelphia; 311 Service: Similar to theft data, we collect Philadel-
phia 311 service dataset from OpenDataPhilly from January 2025 to June 2025. More details of data
resources and train/validation/test split ratio are in Appendix A.

Baselines and Evaluation Protocol. We compare TEN-DM with 17 baselines, including 3 SPP
baselines, 10 TPP baselines, and 4 STPP baselines. SPP baselines: (i) Conditional Kernel Density
Estimator (KDE) (Chen et al., 2018); (ii) Continuous Normalizing Flow (CNF) (Chen et al., 2018);
and (iii) Time-Varing Continuous Normalizing Flow (TVCNF) (Chen et al., 2018). TPP Base-
lines: (i) homogeneous Poisson process (Kingman, 1992); (ii) Hawkes Process (Hawkes, 1971);
(iii) Self-correcting process (Isham & Westcott, 1979); (iv) Recurrent Marked Temporal Point Pro-
cess (RMTPP) (Du et al., 2016); (v) Neural Hawkes Process (NHP) (Mei & Eisner, 2017); (vi)
Transformer Hawkes Process (THP) (Zuo et al., 2020); (vii) Self-Attentive Hawkes Process (SAHP)
(Zhang et al., 2020); (viii) Log Normal Mixture model (LogNormMix) (Shchur et al., 2019); (ix)
Wasserstein GAN (WGAN) (Xiao et al., 2017); and (x) Neural Jump-Diffusion Temporal Point
Process (NJDTPP) (Zhang et al., 2024). STPP Baselines: (i) Neural Jump Stochastic Differen-
tial Equations (NJSDE) (Jia & Benson, 2019); (ii) Neural Spatio-temporal Point Process (NSTPP)
(Chen et al., 2020); (iii) Deep Spatio-temporal Point Process (DeepSTPP) (Zhou et al., 2022); and
(iv) Spatio-temporal Diffusion Point Processes (DSTPP) (Yuan et al., 2023b). We have included a
detailed introduction about baselines in Appendix A. We evaluate prediction on the next event in
both space and time. The spatial error is measured by the Euclidean distance between the predicted
and ground truth location, and the temporal error by root-mean-square error (RMSE) between the
predicted and ground truth time interval.

Implementation Details. We run our experiments on 4 NVIDIA RTX A5000 GPU cards with 24GB
memory. Optimization uses AdamW(β1 = 0.9, β2 = 0.99) and a learning rate warm-up from 0 to
a peak selected from {1e−3, 3e−4} followed by linear decay to 5e−5 for 1000 epochs. More details
can be found in the Appendix A. Evaluation metrics report spatial Euclidean distance and temporal
RMSE on 3 runs with different random seeds. See code link in “Reproducibility statement”.
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4.2 RESULTS

Table 1 compares the forecasting errors of TEN-DM with 17 baseline models across 5 real-world
datasets in spatial and temporal domains. Lower Euclidean distance and RMSE indicate higher
forecasting accuracy. As shown in Table 1, TEN-DM significantly outperforms all baselines across
all 5 datasets in both Euclidean distance and RMSE except for JPN earthquake data in temporal
dimension. Notably, on COVID-19, US earthquake, and 311 service, our TEN-DM is statistically
significantly (with p-value < 0.05) better than runner-ups in both spatial and temporal domains. Su-
perior performance against SPP baselines. TEN-DM outperforms all 3 baselines; compared with
SPP runner-ups, TEN-DM achieves 21.97%, 42.97%, 9.37%, 0.29%, and 0.55% relative improve-
ment on JPN earthquake, COVID-19, US earthquake, theft, and 311 service datasets respectively.
Superior performance against TPP baselines. TEN-DM statistically significantly outperforms all
TPP baselines with 6.74%, 42.53%, 57.14%, 38.02% and 13.89% relative improvements on JPN
earthquake, COVID-19, US earthquake, theft, and 311 service datasets respectively (compared with
runner-ups). Better performance against STPP baselines. Compared with the runner-up (i.e.,
DSTPP), TEN-DM achieves 7.16% and 6.90% relative improvement on COVID-19 dataset in spa-
tial and temporal dimensions respectively; a 17.08% and 3.66% relative improvement on theft and
311 service datasets respectively in temporal dimension. Computational complexity and running
time are provided in Appendix A.

Table 1: Performance evaluation for predicting both time and space of the next event. We use Eu-
clidean distance and RMSE to predict errors of the spatial domain and temporal domain respectively.
Here * denotes p-value < 0.05 (i.e., statistically significant results).

JPN Earthquake COVID-19 US Earthquake Theft 311 Service
Model Spatial # Temporal # Spatial # Temporal # Spatial # Temporal # Spatial # Temporal # Spatial # Temporal #

Conditional KDE 11.300±0.658 - 0.688±0.047 - 41.999±0.036 - 0.073±0.000 - 0.057±0.001 -
CNF 8.480±0.054 - 0.559±0.000 - 42.634±0.036 - 0.072±0.000 - 0.056±0.000 -

TVCNF 8.110±0.001 - 0.560±0.000 - 42.155±2.122 - 0.072±0.000 - 0.056±0.000 -
Poisson - 0.631±0.017 - 0.463±0.021 - 0.431±0.035 - 0.626±0.016 - 1.259±0.032
Hawkes - 0.544±0.010 - 0.672±0.088 - 0.121±0.002 - 0.629±0.027 - 1.486±0.024

Self-correcting - 11.200±0.486 - 2.830±0.141 - 3.130±0.346 - 0.659±0.024 - 2.526±0.122
RMTPP - 0.424±0.009 - 1.320±0.024 - 1.626±0.030 - 0.583±0.028 - 1.742±0.009

NHP - 1.860±0.023 - 2.130±0.100 - 3.749±0.153 - 0.612±0.021 - 2.314±0.065
THP - 2.440±0.021 - 0.611±0.008 - 1.242±0.009 - 0.527±0.017 - 0.976±0.051

SAHP - 0.409±0.002 - 0.184±0.024 - 0.457±0.008 - 0.694±0.039 - 1.128±0.087
LogNormMix - 0.593±0.005 - 0.168±0.011 - 0.474±0.062 - 0.501±0.008 - 2.675±0.009

WGAN - 0.481±0.007 - 0.124±0.002 - 0.766±0.001 - 0.699±0.019 - 2.083±0.093
NJDTPP - 0.396±0.003 - 0.790±0.098 - 0.535±0.110 - 0.508±0.046 - 0.902±0.012
NJSDE 9.980±0.024 0.465±0.009 0.641±0.009 0.137±0.001 51.784±0.013 0.081±0.000 0.099±0.002 0.465±0.006 0.067±0.001 0.865±0.033
NSTPP 8.110±0.000 0.547±0.000 0.560±0.000 0.145±0.002 59.833±0.006 0.102±0.000 0.097±0.000 0.534±0.046 0.072±0.000 0.870±0.027

DeepSTPP 9.200±0.000 ∗0.341±0.000 0.687±0.000 0.197±0.000 56.322±0.178 0.093±0.000 0.089±0.001 0.420±0.007 0.059±0.000 0.830±0.035
DSTPP 6.770±0.000 0.375±0.000 0.419±0.000 0.093±0.000 38.892±0.104 0.078±0.000 0.0701±0.0001 0.425±0.002 0.0551±0.0001 0.821±0.001

TEN-DM (ours) ∗6.649±0.041 0.371±0.003 ∗0.391±0.001 ∗0.087±0.001 ∗38.543±0.200 ∗0.077±0.000 0.0700±0.0001 ∗0.363±0.017 ∗0.0547±0.0002 ∗0.792±0.026

4.3 ABLATION STUDIES

To examine the effectiveness of the proposed components, we conduct experiments without graph
learning (i.e., W/o Graph), TQ-SA (i.e., W/o TQ-SA), and TTL (i.e., W/o TTL) on JPN earthquake,
COVID-19, 311 service datasets. From Table 2 in Appendix A, the results indicate that employing
graph learning, TQ-SA, and TTL significantly improves model performance which demonstrate the
effectiveness of the TEN-DM model architecture. For instance, (i) removing graph learning leads
to Euclidean distance 0.24% and 0.26% increases on JPN earthquake and COVID-19 datasets re-
spectively; (ii) removing TQ-SA leads to Euclidean distance 1.28% increases on COVID-19; (iii)
removing TTL severely limits TEN-DM’s ability to capture spatio-temporal topological informa-
tion, i.e., leading to RMSE 4.60% and 3.03% increases on COVID-19 and 311 service datasets
respectively.

5 CONCLUSION

We present TEN-DM, a novel diffusion model that leverages geometric and topological learning
frameworks to capture dynamic local and global spatio-temporal dependencies for STPP forecast-
ing. Integration of the GCL, TQ-SA, and TTL modules enhances the diffusion model’s ability to
learn complex spatio-temporal interactions, periodic patterns, and local and global dynamic topo-
logical information. Extensive experiments on 5 real-world datasets demonstrated the effectiveness
of TEN-DM, achieving state-of-the-art performance across diverse datasets and dimensions. Our
work establishes a new direction in STPP forecasting by highlighting the potential of geometric and
topological DL in capturing intricate temporal and spatial dependencies.
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ETHICS STATEMENT

This work enables more accurate spatio-temporal event prediction, which facilities the state-of-the-
art forecasting results in natural hazards, public health, transportation, and social systems. In this
way, our work can help improve efficiency of flood alerts and hazard zoning, dispatching for 911,
and actionable uncertainty for resource allocation. In practice, this translates into faster response and
cost savings. We also note a potential, yet underexplored, negative impact that is not exclusive to
our method, e.g., diffusion models may lead to mislead operations or manipulate public perception.
Hence, developing rigorous ethical guidelines and protections is imperative for its use. This study
did not involve personally identifiable information, and we conducted no experiments that could
raise privacy or security concerns. We are committed to maintaining transparency and integrity
throughout the research.

REPRODUCIBILITY STATEMENT

We release code experiment scripts in an anonymized dropbox link https://www.dropbox.
com/scl/fo/v6rmicn32j72wi5lknml6/AFht7uPbD_tOXcF8GOIpycE?rlkey=
87girset4ykkz738qm4av6g2d&st=r6imcskx&dl=0. All datasets used are publicly
available; we include raw data resources, and the train/val/test splits used in our experiments.
Hyperparameter settings are reported in “Implementation Details”. We report mean ± standard
error over three runs with different random seeds, and provide running time.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We only use large language models (LLMs) for rephrasing sentences and correcting grammar. It
is important to note that the LLMs are not involved in the data analysis, research methodology, or
experimental design.

A MORE DETAILS

Cubical complex. An elementary interval is a closed subset of R of the form [z, z +1] with z ∈ Z,
together with the degenerate interval [z, z] (i.e., a point). An elementary cube is any Cartesian
product

Q = I1 × · · · × Id,

where d is the dimension of the space; for each j we have Ij = [zj , zj + 1] with zj ∈ Z. The
dimension of Q is:

dimQ = #{ j ∈ {1, . . . , d} : Ij is nondegenerate ([zj , zj + 1]) }.

A cubical complex K is a finite collection of such axis-aligned elementary cubes in some Rd that
satisfies: if Q ∈ K and F is obtained from Q by replacing one or more nondegenerate factors
[zj , zj + 1] with an endpoint {zj} or {zj + 1}, then F ∈ K ; for any Q,Q′ ∈ K , the intersection
Q ∩Q′ is either empty or a (possibly degenerate) common face of both.

Persistent homology. By utilizing a multi-scale approach to shape description, PH addresses the
intrinsic limitations of classical homology and allows for the retrieval of shape patterns that tend to
persist over multiple scales and, hence, are likelier to play an important role for a given downstream
task. The main idea is to select some suitable scale parameters α and then to assess changes in
shape (or more formally homology) that occur to an image m, which evolves with respect to α.
Specifically, let f be a filtration function that maps every simplex to the maximum function value
of its vertices (in our case the grayscale value) and let mα = f−1((−∞, α]), α ∈ R. Setting an
increasing sequence of (dis)similarity thresholds α, i.e., α0 < α1 < · · · < αh, sub-images are
generated in a nested sequence of cubical complexes (and their connected components, loops, and
voids are recorded), i.e., mα0

⊂ mα1
⊂ · · · ⊂ mαh

and we can construct the corresponding
sequence of complexes, i.e., Kα0

⊂ Kα1
⊂ · · · ⊂ Kαh

which are referred to as the lower-star
filtered cubical complexes. Based on the evolution of these simplicial complexes through a sequence
of thresholds, the homology groups are induced as {Hp(Kα0

), Hp(Kα1
), . . . ,Hp(Kαh

)}, where
Hp(Kαj ) represents the p-th homology group of Kαj .

Zigzag persistence image generation pipeline. Figure 2 illustrate zigzag persistence image gener-
ation pipeline.

00:00–05:59 06:00–11:59 12:00–17:59 18:00–23:59

00:00–03:59 04:00–07:59 08:00–11:59 12:00–15:59 16:00–19:59 20:00–23:59

TT
L

TT
L

00:00–23:59
𝑃𝐼!

"!

… 𝑃𝐼!
""

Figure 2: Pipeline for generating ZPI with different time scales.

Datasets. In our experiments, we use five real-world STPP datasets, i.e., Japan Earthquake: Earth-
quake with a magnitude of at least 2.5 in Japan from 1990 to 2020 were sourced from the U.S. Geo-
logical Survey1. It contains 91,897 events in total. Sequences are formed using sliding windows of
30 days. The dataset is partitioned into nonoverlapping splits containing 950 training sequences, 50
validation sequences, and 50 test sequences. Sequence lengths range from 22 to 554. COVID-19:

1https://earthquake.usgs.gov/earthquakes/search/
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COVID-19 dataset is collected from publicly released COVID19 cases in New Jersey state from
March 2020 to July 2020 by The New York Times2. This dataset includes 161,307 recorded cases,
aggregated at the county level with a 7-day window size. It is split without overlap into 1450 train-
ing sequences, 100 validation sequences, and 100 test sequences. Sequence lengths range from 5
to 287. US Earthquake: The US earthquake dataset3 contains 9,451 earthquake occurrences from
12/27/2023 to 01/26/2024 in US, and is divided into 21 training sequences, 5 validation sequences,
and 5 testing sequences. Sequences lengths range from 5 to 512. Theft: The theft data is collected
by the Philadelphia police department (PPD)4 and we select 11,405 cases from the most recent theft
incidents from 01/01/2025 - 04/30/2025 in Philadelphia. We use 24-hour sliding windows to form
the dataset that contains 100 training sequences, 9 validation sequences, and 9 testing sequences.
Sequence lengths range from 6 to 138. 311 Service: Similar to theft data, we collect Philadelphia
311 service dataset from OpenDataPhilly. In this work, we focus on 9,597 illegal dumping reports
from 01/01/2025 - 06/30/2025, and split the dataset into disjoint training, validation, and test sets
with 151, 15, and 15 sequences respectively. Sequence lengths range from 9 to 111.

Baselines. SPP Baselines: We evaluate methods that model continuous spatial density function. A
learned parameterized conditional kernel density estimator (KDE) (Chen et al., 2018) that models
p(x|t) as a Gaussion mixture model conditioned on historical events. Continuous normalizing flow
(CNF) (Chen et al., 2018) defines the invertible flow as a neural ODE and learns a continuous prob-
ability density over space. Time-varing Continuous normalizing flow (TVCNF) (Chen et al., 2018)
extends CNF by making the flow dynamics dependent on timestamps. TPP Baselines: Homoge-
neous Poisson process (Kingman, 1992) models the probability of an event as proportional to the
time interval length. Hawkes Process (Hawkes, 1971) is a self-exciting process where the historical
occurrence of events can positively influences the probability of future event occurrence. Self-
correcting process (Isham & Westcott, 1979) is opposite to self-exciting processes, which means
historical occurrence of events can decrease the probability of future event occurrence and the in-
tensity is negatively influenced upon a new event happened. The Recurrent Marked Temporal Point
Process (RMTPP) (Du et al., 2016) simultaneously model the event timings and the markers by
viewing the intensity function as a nonlinear one and apply a recurrent neural network to embed the
event history. Neural Hawkes Process (NHP) (Mei & Eisner, 2017) uses neurally self-modulating
multivariate point process where the intensities of each event type change by a novel LSTM. Trans-
former Hawkes Process (THP) (Zuo et al., 2020) replaces RNNs with self-attention mechanism to
better capture long-term dependencies and keeps computational efficiency. Self-Attentive Hawkes
Process (SAHP) (Zhang et al., 2020) also uses self-attention mechanism and modify positional en-
coding so that time intervals become phase shifts in sinusoidal encoding, which improves the usual
“order-only” encoding. Log Normal Mixture model (LogNormMix) (Shchur et al., 2019) learns
probability density by a log-normal mixture model. Wasserstein GAN (WGAN) (Xiao et al., 2017)
transforms nuisance processes to a target one, providing an intensity-free approach for point pro-
cesses modeling. Neural Jump-Diffusion Temporal Point Process (NJDTPP) (Zhang et al., 2024)
which formulates a neural jump–diffusion SDE with neural parameterizations of the drift, diffu-
sion, and jump coefficient functions. STPP Baselines: Neural Jump Stochastic Differential Equa-
tions (NJSDE) (Jia & Benson, 2019) learns hybrid continuous–discrete dynamics and generates a
piecewise-continuous latent trajectory to model the temporal point processes. The spatial distribu-
tion is modeled with a Gaussian mixture model. Neural Spatio-temporal Point Process (NSTPP)
(Chen et al., 2020) proposed two novel neural architectures which adds event-time updates and
attention for long histories non-trivially. Deep Spatio-temporal Point Process (DeepSTPP) (Zhou
et al., 2022) proposes a nonparametric space–time intensity governed by a neural latent process.
Spatio-temporal Diffusion Point Processes (DSTPP) (Yuan et al., 2023b) uses conditional diffusion
that learns the joint distribution of next event’s time and location.

Implementation Details. We run our experiments on 4 NVIDIA RTX A5000 GPU cards with 24GB
memory. Optimization uses AdamW(β1 = 0.9, β2 = 0.99) and a learning rate warm-up from 0 to
a peak selected from {1e−3, 3e−4} followed by linear decay to 5e−5 for 1000 epochs. Training and
sampling timesteps are selected from {200, 500}. We tune the batch size over {32, 64}. We consider
three losses applied to the diffusion objective: ℓ1 loss, ℓ2 loss, and Euclidean loss. The length of the
learnable TQ vectors is selected from {7, 24, 30}. The number of attention heads is selected from

2https://github.com/nytimes/covid-19-data
3https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php
4http://opendataphilly.org/
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{2, 3, 4}. For ZPI, we set the grid size to be 50× 50. For graph pretraining, we learn per-sequence
graph embeddings with a graph auto-encoder (GAE) (Kipf & Welling, 2016) with graph attention
network (GAT) (Veličković et al., 2017) encoder trained on each graph independently. Optimization
uses Adam with a learning rate of 0.01 over 400 epochs. Evaluation metrics report spatial Euclidean
distance and temporal RMSE on 3 runs with different random seeds.

Ablation studies.

Table 2: Ablation studies.
JPN Earthquake COVID-19 311 Service

Model Spatial # Temporal # Spatial # Temporal # Spatial # Temporal #
TEN-DM 6.649±0.041 0.371±0.003 0.391±0.001 0.087±0.001 0.0547±0.0002 0.792±0.026
W/o Graph 6.665±0.054 0.372±0.000 0.392±0.000 0.088±0.001 0.0547±0.0003 0.798±0.004
W/o TQ-SA 6.663±0.031 0.373±0.001 0.396±0.004 0.088±0.000 0.0548±0.0001 0.807±0.009

W/o TTL 6.663±0.027 0.372±0.000 0.405±0.003 0.091±0.001 0.0549±0.0002 0.816±0.004

Computational complexity. The computational complexity of GNN with l layers is
O(ξ|E|

∑l
i=1 di) where ξ denotes the total number of gradient descent. The computational com-

plexity of cubical zigzag persistence for connected components and is O(U log2 n + U logU) and
O(U log2 n + U logU + n log n) where U =

∑T
t=1 ∆t, n denotes pixels per frame, and T is the

number of frames. As shown in Table 3, we also report the running time (training time per epoch)
of our TEN-DM model on all 5 datasets.

Table 3: Running time (in seconds (s)) per epoch.
Model JPN Earthquake COVID-19 US Earthquake Theft 311 Service

TEN-DM 14.096 22.873 1.846 5.982 4.570

B PROOFS

Proof of Theorem 3.2.

Proof: The bound ∥m(i) − m̃(i)∥∞ ≤ ε implies, for every i and α,

K (i)
α ↪! K̃

(i)
α+ε, K̃ (i)

α ↪! K
(i)
α+ε,

and likewise for bridge nodes: K
(i,i+1)
α ↪! K̃

(i,i+1)
α+ε and the reverse inclusion with tildes and

non-tildes swapped. Objectwise, these inclusions assemble into morphisms of zigzags

Iα : Xα ! X̃α+ε, Jα : X̃α ! Xα+ε,

which commute with all internal arrows. Moreover, on each node,

K̃α ↪! Kα+ε ↪! K̃α+2ε, Kα ↪! K̃α+ε ↪! Kα+2ε,

so (shε I)α◦Jα = ι̃α and (shε J)α◦Iα = ια, the canonical 2ε-shift inclusions of zigzags. Applying
Hp(−; k) yields natural transformations

Φα = Hp(Iα) : Vα ! Ṽα+ε, Ψα = Hp(Jα) : Ṽα ! Vα+ε,

satisfying (shε Φ)α ◦ Ψα = η̃α and (shε Ψ)α ◦ Φα = ηα. Hence V and Ṽ are ε-interleaved, so
dI(V, Ṽ ) ≤ ε. Since Ω is finite, the modules are pointwise finite-dimensional and constructible;
algebraic stability for zigzag persistence then gives dB(ZPDp(V ),ZPDp(Ṽ )) ≤ dI(V, Ṽ ) ≤ ε.

Theorem B.1 (Lipschitz bound for topology-guided multi-head attention) Let z̃ be topology
embeddings and r̃ be concatenated spatial, temporal, and graph embeddings. Consider a single
multi-head attention block with h heads,

TST-MHA(z̃, r̃) = ⊕h

(
Softmax

(
Qh(z̃)Kh(r̃)

⊤
√
dk

)
Vh(r̃)

)
WO,
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where Qh,Kh,Vh,W
O are linear maps with operator norms bounded by MQ,MK ,MV ,MO,

and logits are uniformly bounded by B (e.g., via clipping or LayerNorm). Then the map (z̃, r̃) 7!
TST-MHA(z̃, r̃) is jointly Lipschitz:∥∥TST-MHA(z̃, r̃)− TST-MHA(z̃′, r̃′)

∥∥
F

≤ L
(
∥z̃ − z̃′∥F + ∥r̃ − r̃′∥F

)
,

with L = c(h,B)MO (MQ +MK +MV ) for an explicit c(h,B) depending only on the number
of heads and the softmax Lipschitz constant on a B–bounded domain.

Proof: For head h ∈ {1, . . . , H} define

Lh(z̃, r̃) =
Qh(z̃)Kh(r̃)

⊤
√
dk

, Sh(z̃, r̃) = Softmax
(
Lh(z̃, r̃)

)
, Ph(z̃, r̃) = Sh(z̃, r̃)Vh(r̃).

Then TST-MHA(z̃, r̃) =
(
⊕H

h=1 Ph(z̃, r̃)
)
WO. Let S′

h = Sh(z̃
′, r̃′), P ′

h = Ph(z̃
′, r̃′). By

addition/subtraction,

Ph − P ′
h = (Sh − S′

h)Vh(r
′) + Sh

(
Vh(r)− Vh(r

′)
)
.

Assume the logits are uniformly bounded, i.e., ∥Lh(z̃, r̃)∥∞, ∥Lh(z̃
′, r̃′)∥∞ ≤ B (e.g., via Layer-

Norm/clipping). The row-wise softmax is Lipschitz on this B–bounded set: for some Lsoft(B) > 0,∥∥Sh − S′
h

∥∥
F

≤ Lsoft(B)
∥∥Lh(z̃, r̃)−Lh(z̃

′, r̃′)
∥∥
F
.

Moreover each Sh is row–stochastic with entries controlled by B, hence ∥Sh∥2 ≤ CS(B) for some
CS(B).

With operator-norm bounds ∥Qh∥op≤ MQ, ∥Kh∥op≤ MK , ∥Vh∥op≤ MV and submultiplicativ-
ity,∥∥Lh(z̃, r̃)−Lh(z̃

′, r̃′)
∥∥
F

≤ MQMK√
dk

(
∥z̃−z̃′∥F+∥r̃−r̃′∥F

)
,
∥∥Vh(r̃)−Vh(r̃

′)
∥∥
F
≤ MV ∥r̃−r̃′∥F .

Also ∥Vh(r̃
′)∥2 ≤ c(B)MV for a harmless constant c(B) (absorbing input–norm control due to

normalization).

Applying these bounds to Ph − P ′
h = (Sh − S′

h)Vh(r̃
′) + Sh

(
Vh(r̃)− Vh(r̃

′)
)
,∥∥Ph − P ′

h

∥∥
F
≤
∥∥Sh − S′

h

∥∥
F

∥∥Vh(r̃
′)
∥∥
2
+
∥∥Sh

∥∥
2

∥∥Vh(r̃)− Vh(r̃
′)
∥∥
F

≤ c(B)MV Lsoft(B)
MQMK√

dk

(
∥z̃ − z̃′∥F + ∥r̃ − r̃′∥F

)
+ CS(B)MV ∥r̃ − r̃′∥F .

Hence, for a constant c1(B) depending only on B,∥∥Ph − P ′
h

∥∥
F

≤ c1(B)
(
MQMKMV +MV

) (
∥z̃ − z̃′∥F + ∥r̃ − r̃′∥F

)
.

Concatenation across heads gives∥∥∥⊕H
h=1

(
Ph−P ′

h

)∥∥∥
F

≤
√
H max

h

∥∥Ph−P ′
h

∥∥
F

≤
√
H c1(B)

(
MQMKMV +MV

) (
∥z̃−z̃′∥F+∥r̃−r̃′∥F

)
.

Finally, multiplying by WO with ∥WO∥op ≤ MO,∥∥TST-MHA(z̃, r̃)−TST-MHA(z̃′, r̃′)
∥∥
F

≤ MO

√
H c1(B)

(
MQMKMV +MV

) (
∥z̃−z̃′∥F+∥r̃−r̃′∥F

)
.

Using AM–GM to bound MQMKMV ≤ C (MQ+MK +MV ) and absorbing numeric factors into
c(H,B) =

√
H c1(B)C yields the stated form∥∥TST-MHA(z̃, r̃)−TST-MHA(z̃′, r̃′)

∥∥
F

≤ c(H,B)MO (MQ+MK+MV )
(
∥z̃−z̃′∥F+∥r̃−r̃′∥F

)
.
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