

000 **TEN-DM: TOPOLOGY-ENHANCED DIFFUSION** 001 **MODEL FOR SPATIO-TEMPORAL EVENT PREDICTION** 002

003 **Anonymous authors**
 004

005 Paper under double-blind review
 006

007 ABSTRACT 008

009 Spatio-temporal point process (STPP) data appear in many domains. A natural
 010 way to model them is to describe how the instantaneous event rate varies over
 011 space and time given the observed history which enables interpretation, interac-
 012 tion detection, and forecasting. Traditional parametric kernel-based models, while
 013 historically dominant, struggle to capture complex nonlinear patterns. In contrast,
 014 deep learning methods leverage the representational power of neural networks to
 015 aggregate historical events and integrate spatio-temporal point processes. How-
 016 ever, existing deep learning methods often process space and time independently,
 017 overlooking the spatio-temporal dependencies. To address this limitation, we pro-
 018 pose a novel method called Topology-ENhanced Diffusion Model (TEN-DM),
 019 including two key components namely spatio-temporal graph construction and
 020 multimodal topological feature representation learning. Further, we use temporal
 021 query technique to effectively capture periodic temporal patterns for learning ef-
 022 fective temporal representations. Extensive experiments show the effectiveness of
 023 TEN-DM on multiple STPP datasets compared to state-of-the-art methods.
 024

025 1 INTRODUCTION 026

027 Stochastic point processes are loosely speaking random sets of points (marks) scattered over some
 028 domain. Such processes appear in a wide range of natural and manmade phenomena and can be
 029 also used to characterize various human activities, with applications ranging from earthquake occur-
 030 rence to emergency calls to heart beat. Some point processes can be put in correspondence with an
 031 index. If such index represents time, we call this stochastic process a temporal point process (TPP)
 032 like, for instance, high-frequency trading order book events in finance or patient’s decline towards
 033 septic shock in medicine which are often modeled by Hawkes processes (Lima, 2023; Kuang et al.,
 034 2024; Laub et al., 2025). If the points live in some d -dimensional domain (e.g., Euclidean space
 035 or a manifold), for example, patterns of Ice Age archaeological sites Jayalath et al. (2015), spatial
 036 arrangements of trees and animals in ecology (Samarasekara et al., 2025) or distributions of young
 037 stellar objects in astronomy (Retter et al., 2019), we call it a spatial point process (SPP). In turn,
 038 spatio-temporal point processes (STPP) extend these concepts by considering stochastic processes
 039 that integrate both spatial and temporal dimensions. STPP allow us to consider phenomena in which
 040 events occur within a spatial domain, with the time of occurrence serving as a distinguishing feature
 041 (mark) associated with each event, with applications ranging from earthquake tracking to crime de-
 042 tection to monitoring infectious diseases (Zhu & Xie, 2022; Bernabeu et al., 2025), just to name a
 043 few. SPP, TPP and STPP have been a longstanding area of research within statistical sciences (Cox
 044 & Isham, 1980; Daley & Vere-Jones, 2003; Diggle, 2013). However, such more traditional statistical
 045 approaches predominantly either impose some parametric model restrictions or tend to rely heav-
 046 ily on unrealistic assumptions about the event sequences’ generative processes, exhibiting limited
 047 abilities to scale for long historical records and massive event sets.

048 In turn, numerous recent efforts have been dedicated to developing DL for modeling TPPs and
 049 STPPs (see the most recent comprehensive overview by Cheng et al. (2025)). Some of the earlier
 050 thrusts in this direction include combination of an event encoder, aggregation encoder, and decoder
 051 parametrization for event sequence prediction (Du et al., 2016; Shchur et al., 2021). The more re-
 052 cent techniques advance the concept of deep STPPs which encompass such methods as deep kernels,
 053 neural latent processes with transformers, and deep generative models (Zhu et al., 2020; Chen et al.,
 2020; Zhou et al., 2022; Cheng et al., 2025). Despite these advances, due to inherent non-stationarity

054 and complex interplay within and between time and space dimensions, existing DL tools often ex-
 055 hibit limited capabilities to capture intrinsic structural organization of the underlying STTPs and
 056 to distill intricate latent spatio-temporal interdependencies, especially under sparse regimes, which
 057 leads to deficiencies in predictive performance (Cheng et al., 2025). Our paper is, hence, motivated
 058 by the following tightly interwoven questions: *How can we describe the complex spatio-temporal*
 059 *STTP interdependencies, especially under sparse and noisy scenarios?* and *How can we distill latent*
 060 *structural STTP characteristics that play a particularly important role for predictive tasks?*

061 We argue that these fundamental questions in STTP modeling can be approached by fusing the rais-
 062 ing paradigm of diffusion models with the emerging tools from computational topology, particularly,
 063 the concepts of zigzag persistence. **Why graphs?** As shown by a number of recent studies (Jin
 064 et al., 2024), graph abstraction offers a flexible and versatile framework to describe higher-order
 065 interdependencies in multivariate spatio-temporal processes which otherwise cannot be systemati-
 066 cally assessed by more traditional methods. Despite this success and despite the existence of STTPs
 067 on graphs and manifolds, graph abstractions have never been used to model STTPs. We fill this
 068 gap by designing a STPP graph construction strategy with different views that convert STPP into
 069 a graph abstraction and learning node (i.e., event) embeddings. By leveraging temporal query and
 070 self-attention on data in temporal dimension, we then capture period patterns and temporal-wise
 071 dependencies. This allows us to enhance prediction in spatial and temporal domains. **Why topology**
 072 and **why zigzag persistence?** In a nutshell, computational topology extracts shape properties
 073 of the data that are intact under continuous transformations. Integrating such extracted topological
 074 descriptors to DL has shown to result in enhanced model performance and robustness gains. Zigzag
 075 persistence (ZP) advances these ideas toward distilling the most essential shape signatures of the
 076 data that manifest over time. While ZP has been studied in conjunction with graph diffusion, the
 077 utility of ZP for modeling STTPs has never been explored. To leverage such important time-aware
 078 shape information, we transform the observed STPP to a time series of images and then, armed
 079 with ZP, learn the most essential topological characteristics that reveal over time. Finally, **Why diffusion?**
 080 Thanks to their advanced capabilities to capture complex relational structures within the
 081 observed data, diffusion models have recently emerged as a new powerful machinery for a variety
 082 of downstream tasks, from anomaly detection to prediction. While there are a number of studies on
 083 diffusion models for TTPs (Lüdke et al., 2023; Zhang et al., 2024) to the best of our knowledge,
 084 neither of them yet consider diffusion for STTP. As such, this paper advances STTP modeling along
 085 multiple directions: by leveraging zigzag-enhanced diffusion and STTP graph representation, we
 086 propose a novel versatile Topology-ENhanced Diffusion Model (TEN-DM) for capturing complex
 087 spatio-temporal dynamics of STTP under sparse and noisy regimes.

088 In summary, the paper makes the following key contributions:
 089

- 090 • We design (i) a STPP graph construction and learning (GCL) module to preprocess STPP
 091 into the graph format, enabling the GNNs to learn complex spatio-temporal interactions;
 092 (ii) a novel temporal topological learning (TTL) framework coupled with cubical zigzag
 093 persistence, which captures topology-aware spatio-temporal information over STPP; and
 094 (iii) a temporal query-guided self-attention mechanism (TQ-SA) to capture temporal de-
 095 pendencies.
- 096 • Based on the GCL, TTL, and TQ-SA, we introduce TEN-DM, a novel diffusion model to
 097 address the “*dynamic spatio-temporal dependencies learning dilemma*” in STPP.
- 098 • Extensive experiments on 5 real-world STPP datasets show the proposed TEN-DM
 099 achieves state-of-the-art prediction performance in both spatial and temporal dimensions.

100 2 TECHNICAL BACKGROUND

101 **Notations & Problem Formulation.** We are given a sequence of spatio-temporal events $\mathcal{X} =$
 102 $\{x_i \mid i = 1, 2, \dots, N\}$ whose number of events N . Each event is described as $x_i = (t_i, g_i)$, where
 103 t_i denotes i -th occurrence time, g_i denotes i -th geospatial information (e.g., latitude, longitude, or
 104 zipcode), and $0 < t_1 < \dots < t_T < T$ (i.e., a sequence of strictly increasing arrival times). The goal
 105 of forecasting model \mathcal{F}_θ with weights θ to predict future spatial and temporal information based on
 106 the history until time t denoted as $\mathcal{H}_t = \{x_1, \dots, x_n\}_{t_n < t}$, i.e., $\hat{x}_{t+1} = \mathcal{F}_\theta(\mathcal{H}_t)$.

108 **Diffusion Models.** Diffusion models are probabilistic generators that learn a data distribution by
 109 corrupting samples with Gaussian noise in a forward Markov chain and then training a neural net-
 110 work to iteratively denoise in reverse. This framework has exerted a significant influence on state-
 111 of-the-art results in computer vision (Rombach et al., 2022; Saharia et al., 2022; Ho et al., 2022) and
 112 natural language processing (Gong et al., 2022; He et al., 2022; Li et al., 2022). Given their abil-
 113 ity to capture data distributions, diffusion models are increasingly studied for spatio-temporal data
 114 forecasting and generation in a variety of scenarios. DiffSTG (Wen et al., 2023) adapts diffusion
 115 to spatio-temporal graphs and introduces a UNet style temporal module with graph convolutions.
 116 KSTDif (Zhou et al., 2023) tackles urban flow generation by combining a region-customized dif-
 117 fusion process guided by a learned volume estimator with a knowledge graph-enhanced denoising
 118 network. Dyffusion (Rühling Cachay et al., 2023) introduces a dynamics informed diffusion model
 119 by embedding temporal dynamics into the diffusion steps and training a stochastic time conditioned
 120 interpolator with a predictor. Diff-RNTraj (Wei et al., 2024) focus on vehicle trajectory data, which
 121 pretrains continuous embeddings of road information as denoising condition and decodes back with
 122 a spatial-validity loss. ControlTraj (Zhu et al., 2024) develops a autoencoder that learns road seg-
 123 ment embeddings and combines road-network topology constraints, merging them into a geographic
 124 UNet to guide the denoising process.

125 **Point Processes.** Point processes are widely used to model sequences of discrete events across di-
 126 verse domains (Daley & Vere-Jones, 2008; Reiss, 2012; Karr, 2017). Classical TPP models focuses
 127 on conditional intensity function (Rasmussen, 2018), including Poisson process (Kingman, 1992),
 128 Hawkes process (Hawkes, 1971) , and self-correcting process (Isham & Westcott, 1979). The simple
 129 patterns of occurrence can be captured by the classical TPP models, while the neural TPP models
 130 can perform better in capturing complex dependencies (Shchur et al., 2021). Decoupled Marked
 131 Temporal Point Process (MTPP) (Song et al., 2024) uses Neural ODEs to decouple the influence
 132 of each past event into its own latent continuous trajectory. Neural Jump-Diffusion TPP (NJDTTP)
 133 (Zhang et al., 2024) proves the equivalence of stochastic differential equations (SDEs) for classical
 134 TPPs, and uses neural jump-diffusion SDE (NJDSDE) which provides a unified SDE view with the-
 135 oretical footing. For the SPP, it is well introduced in Moller & Waagepetersen (2003); Illian et al.
 136 (2008). Continuous normalizing flows (CNF) and Time-Varying CNF (TVCNF) can be used for
 137 modeling spatial distribution where the latter considers the dependence on the timestamps (Chen
 138 et al., 2018; Yuan et al., 2023a). Beyond TPP and SPP, STPP takes spatial and temporal information
 139 into consideration. Classical STPPs are extended from the point process including (in)homogeneous
 140 Poisson process (Daley & Vere-Jones, 2003), Neyman–Scott process (Gabriel & Diggle, 2009), in-
 141 hibition process (Gabriel et al., 2013), strauss process (Cronie & Van Lieshout, 2015), and Cox
 142 process (Cox, 1955; Diggle, 2013; Diggle et al., 2013). Recent neural approaches extend STPPs
 143 along two main directions, i.e., Influence-kernel–based models and Intensity-based models (Cheng
 144 et al., 2025). Deep Non-stationary Kernel (DNSK) (Dong et al., 2022) develops a novel and general
 145 low-rank decomposition to approximate the influence kernel and representation through deep neu-
 146 ral networks. However, real-world STPP often exhibit complex and nonstationary spatio-temporal
 147 dependencies, which leads to significant challenges in accurately predicting spatio-temporal events.
 148 In contrast, our TEN-DM introduces spatio-temporal geometric and topological learning paradigm,
 149 which can effectively introduce the graph structural and dynamic topological information into the
 150 diffusion model, thereby being able to capture complex spatio-temporal dependence between dis-
 151 crete events.

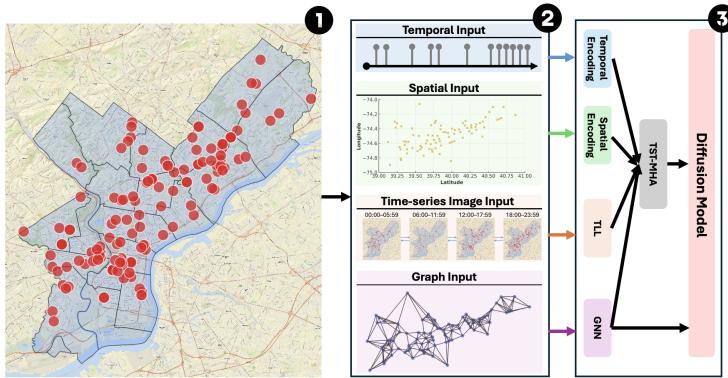
3 METHODOLOGY

153 To address the limitations of existing STPP approaches and leverage the strengths of geometric
 154 and topological representation learning, we propose TEN-DM, a unified diffusion model framework
 155 that integrates structural, temporal, and topological information for enhanced spatial and temporal
 156 forecasting. As illustrated in Figure 1, the framework comprises three core components.

3.1 SPATIO-TEMPORAL POINT PROCESS GRAPH LEARNING

157 Compared with existing approaches which neglect spatio-temporal point process inherent interac-
 158 tions between different event properties, to address this limitation, we propose a new strategy to
 159 capture the nuanced spatial and temporal relationships by generating a graph structure and learn the

162
163
164
165
166
167
168
169
170
171
172
173
174



175 Figure 1: Overview of the TEN-DM model: (1) a sequence of events; (2) extracted temporal, spatial,
176 time-series image, and graph information; (3) key components including temporal encoding, spatial
177 encoding, temporal topological learning module (TLL), graph representation learning (GNN), and
178 topology-guided spatio-temporal multi-head attention (TST-MHA).

180 corresponding high-level graph representation. There exist multiple types of edges between nodes
181 (i.e., events), and each type of edge has a different role and impact on node representation learning.
182 For example, for the graph representation learning in crime incidents, different types of relationships
183 between crime incidents exhibit various dependency semantics such as thefts in specific census tracts
184 can be temporally linked to seasonal trends (e.g., spikes during holidays), robberies tied to highways
185 or transit stations, and burglaries are often higher in neighborhoods with high poverty rates and hous-
186 ing instability. Therefore, in this section, we aim to answer the question: *How to build a STPP graph*
187 *by fully utilizing the rich multi-semantic information?* We first generate multiple graphs by differen-
188 tiating the types of edge connections between nodes in the heterogeneous graph. Then we aggregate
189 the relation-guided graph structural information with different importance weights. We denote our
190 generated graph as $\mathcal{G}_r = (\mathbf{A}_r, \mathbf{X}_r)$ (where $r = \{1, \dots, \mathcal{R}\}$; note that, in our study, $\mathcal{R} = 3$ includes
191 time, latitude, and longitude information) with r -th node feature matrix \mathbf{X}_r and the adjacency ma-
192 trix of r -th graph \mathbf{A}_r . To achieve this, we first construct a ϵ -graph \mathcal{G}_r (Calder & Trillos, 2022).
193 Specifically, we quantify similarity s_{uv} between events u and v as follows:
194

$$s_{uv}^r = (\mathbf{x}_u^r \odot \mathbf{x}_v^r) / (\|\mathbf{x}_u^r\|_2 \|\mathbf{x}_v^r\|_2), \quad (1)$$

$$e_{uv}^r = \{(u, v) \mid s_{uv}^r > \mathcal{R}^r\},$$

196 where \odot denotes dot product. In this work, we use cosine similarity to calculate event similarity. By
197 using a cell list to find event pairs that are within a given cut-off distance, we can efficiently solve
198 the problem with a time complexity $\mathcal{O}(kN)$ where k is the maximal number of neighbors within the
199 radius. Hence, node interactions with various relation semantics will have different structural char-
200 acteristics. To capture such multi-typed node dependencies, we assign different weights to different
201 adjacency matrices and aggregate \mathcal{R} edge-type-specific adjacency matrices as $\mathbb{A} = \sum_{r=1}^{\mathcal{R}} \alpha_r \mathbf{A}_r$.
202 Note that the set of importance weights $\{\alpha_r\}$ are updated adaptively during training.

203 To deliver high-level graph-structured information into our diffusion model framework, we pretrain a
204 GNN with the node features \mathbb{X} (where $\mathbb{X} = \oplus(\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_{\mathcal{R}})$ and \oplus denotes the concatenation)
205 and joint adjacency matrix \mathbb{A} , and adopt a pooling layer (i.e., $\text{Pool}(\cdot)$) to get the graph representation
206 which can be formalized as:
207

$$\mathbf{o}_{\mathcal{G}} = \text{Pool}(\text{GNN}(\mathbb{X}, \mathbb{A})). \quad (2)$$

210 3.2 TIME-SERIES IMAGE TOPOLOGICAL REPRESENTATION LEARNING

211 To enhance spatio-temporal prediction by incorporating dynamic topological information, we create
212 time-series images for spatio-temporal point process data and propose an effective method, i.e.,
213 dynamic image topology learning module that captures dynamic visual scenes.

214 **Formulating time-series image representation by the sequence of events.** Given a sequence
215 of events $\mathbf{X} = \{\mathbf{x}\}_{i=1}^{\mathcal{T}}$, we first divide \mathbf{X} into patches which can be either overlapped or non-

216 overlapped. Here we set the patch length (i.e., scale) to be P and the stride to be S (i.e., the non-
 217 overlapping region between two neighboring patches). Then we can obtain a sequence of patches
 218 which is denoted by $\hat{\mathbf{X}} = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}\} \in \mathbb{R}^{P \times N}$ where $\mathbf{x}^{(i)} \in \mathbb{R}^P$ and $N = \lfloor (T -$
 219 $P)/S \rfloor + 2$. After that, for each patch i , we create an image $m_i \in \mathbb{R}^{H \times W}$ which is a 2D grid
 220 and clipped to the target data region. For instance, given the Philadelphia crime incident data, the
 221 2D grid is bounded by the set of latitude (min: 39.86; max: 40.14) and longitude (min: -75.28;
 222 max: -74.95). Within the patch i , we rasterize the events' geo-coordinates onto the 2D image by
 223 recording as each pixel's value the associated temporal attribute. Specifically, we convert the spatial
 224 locations of events into a grayscale image, where each pixel corresponds to a discretized spatial cell.
 225 Pixels containing at least one event are assigned a value of 1 (white), while pixels without events are
 226 assigned 0 (black). Thus, we can create a binary image that encodes the spatial distribution of events
 227 within the patch. That is, $m_{x_j, y_j}^{(i)} = \mathbf{x}^{(i)}[j]$ which represents j -th timestamp in i -th patch $\mathbf{x}^{(i)}$. Thus,
 228 we can generate the time-series image data \mathbf{M} as a series of images $\{m^{(1)}, m^{(2)}, \dots, m^{(N)}\}$.

229 **Topology learning on time-series image data.** Persistent homology (PH) is a branch in topolog-
 230 ical data analysis which tracks the evolution of the various data shape patterns along various user-
 231 selected geometric dimensions (Zomorodian & Carlsson, 2004; Edelsbrunner & Morozov, 2012).
 232 Despite the generality of simplicial complexes in PH, cubical complex is a more natural representa-
 233 tion for 2D images or 3D volumes. See Appendix A for formal definition of the cubical complex.

234 **Definition 3.1** Let \mathcal{K} be a cubical complex, and suppose $f : Q_{\mathcal{K}} \mapsto \mathbb{R}$, where $Q_{\mathcal{K}}$ denotes
 235 the set of elementary cubes in \mathcal{K} , satisfies (i) $f(Q') \leq f(Q)$ whenever Q' is a face of Q . Let
 236 $\mathcal{K}(\alpha) = f^{-1}((-\infty, \alpha])$, and notice that (i) implies $\mathcal{K}(\alpha)$ is a subcomplex of \mathcal{K} for every $\alpha \in \mathbb{R}$.
 237 Taking $\alpha_1 < \alpha_2 < \dots < \alpha_n$ to be the values of f on the cubes of \mathcal{K} and denoting $\mathcal{K}(\alpha_i) = \mathcal{K}_{\alpha_i}$,
 238 we say that the following increasing sequence of subcomplexes is a filtration associated with f

$$239 \quad \emptyset = \mathcal{K}_{\alpha_0} \subset \mathcal{K}_{\alpha_1} \subset \dots \subset \mathcal{K}_{\alpha_n} = \mathcal{K}.$$

241 In our setup, we use the lower-star filtration to extract the topological information encoded in 2D
 242 images. However, given time-series image data, standard persistence algorithms capture only in-
 243 dependent spatial topological information, and unaware of the temporal topological information
 244 and complex spatio-temporal dependencies. Furthermore, beyond capturing dynamic structures and
 245 temporal dependencies, it is equally important to learn multi-scale temporal information, i.e., under-
 246 standing temporal information by leveraging multi-scale time-related data such as time units (e.g.,
 247 minutes, hours, and days). To address the above two challenges, we propose a more flexible temporal
 248 topology learning (TTL) framework coupled with zigzag persistence which is capable of capturing
 249 vital time-aware topological information on time-series images across different time scales.

250 **Zigzag persistence.** Zigzag persistence (ZP) is a special type of quiver representations and gener-
 251 alizes conventional PH by enabling the analysis of topological spaces connected through inclusions
 252 in both forward and backward directions (Carlsson & De Silva, 2010). Unlike the above standard
 253 PH which requires a nested sequence of spaces, ZP can accommodate more flexible filtrations which
 254 makes it particularly well suited for capturing the evolving topological structure of image time-series
 255 data. This capability has led to growing interest in ZP across a range of data analysis tasks involv-
 256 ing time-varying signals. Specifically, for a time sequence of images $\{m^{(1)}, m^{(2)}, \dots, m^{(N)}\}$, the
 257 zigzag filtration over image snapshots is constructed by the bidirectional arrows as follows:

$$258 \quad m^{(1)} \hookrightarrow m^{(1)} \cup m^{(2)} \hookleftarrow m^{(2)} \hookrightarrow \dots \hookleftarrow m^{(N-1)} \hookrightarrow m^{(N-1)} \cup m^{(N)} \hookleftarrow m^{(N)}$$

259 To compute the homology groups and the corresponding topological feature of the zigzag filtration,
 260 for each timestamp i , we first apply the cubical complex (i.e., with lower star filtration) to the image
 261 $m^{(i)}$ at time step within the i -th patch and construct a simplicial complex $\mathcal{K}^{(i)}$. Then we compute
 262 the union of two adjacent simplicial complexes $\mathcal{K}^{(i)}$ and $\mathcal{K}^{(i+1)}$ denoted by $\mathcal{K}^{(i,i+1)} = \mathcal{K}^{(i)} \cup$
 263 $\mathcal{K}^{(i+1)}$, i.e., we include a simplex $\rho \in \mathcal{K}^{(i,i+1)}$ if and only if $\rho \in \mathcal{K}^{(i)}$ or $\rho \in \mathcal{K}^{(i+1)}$ which
 264 preserves features that appear (born) or disappear (die) across time steps. Leveraging the zigzag
 265 sequence of images, based on a fixed scale parameter α , we can compute the zigzag persistence of
 266 the sequence of vector spaces as follows (where $H_p(\mathcal{K})$ denotes p -th homology group of \mathcal{K}):

$$267 \quad H_p(\mathcal{K}^{(1)}) \hookrightarrow H_p(\mathcal{K}^{(1)} \cup \mathcal{K}^{(2)}) \hookleftarrow H_p(\mathcal{K}^{(2)}) \hookrightarrow \dots H_p(\mathcal{K}^{(N-1)} \cup \mathcal{K}^{(N)}) \hookleftarrow H_p(\mathcal{K}^{(N)})$$

268 The extracted topological information can be summarized in the form of a multiset in \mathbb{R}^2 , i.e., so-
 269 called persistence diagram (ZPD) $Dg_Z = \{p_{\rho} = (b_{\rho}, d_{\rho}) \in \mathbb{R}^2 : d_{\rho} > b_{\rho}\} \cup \Delta$ (here $\Delta =$

270 $\{(\tau, \tau) | \tau \in \mathbb{R}\}$ is the diagonal set containing points counted with infinite multiplicity; including Δ
 271 allows us to compare different ZPDs based on the cost of the optimal matching between their points).
 272 For each persistence diagram Dg_Z , we compute its zigzag persistence image (ZPI) denoted as PI_Z
 273 via the vectorization (denoted as $\text{Vec}(\cdot)$) scheme (Adams et al., 2017). We provide an exmaple of
 274 ZPI generation pipeline in Figure 2, Appendix A. In our experiments, we use both 0- (i.e., connected
 275 components) and 1-dimensional (i.e., holes) topological features.

276 **Theorem 3.2 (Zigzag stability for time-series images)** *Let $\Omega \subset \mathbb{Z}^2$ be finite and $m^{(i)} : \Omega \rightarrow \mathbb{R}$
 277 ($i = 1, \dots, N$) be grayscale frames. For $\alpha \in \mathbb{R}$ define the lower-star cubical sublevel complexes
 278 $\mathcal{K}_\alpha^{(i)} = \{\sigma \subset \Omega \text{ cubical} : \max_{v \in \text{vert}(\sigma)} m^{(i)}(v) \leq \alpha\}$ and bridges $\mathcal{K}_\alpha^{(i, i+1)} = \mathcal{K}_\alpha^{(i)} \cup \mathcal{K}_\alpha^{(i+1)}$.
 279 Fix $p \geq 0$ and a field \mathbb{k} . For each α , let*

$$281 \quad X_\alpha : \mathcal{K}_\alpha^{(1)} \hookrightarrow \mathcal{K}_\alpha^{(1,2)} \hookrightarrow \mathcal{K}_\alpha^{(2)} \hookrightarrow \dots \hookrightarrow \mathcal{K}_\alpha^{(N)}, \quad V_\alpha = H_p(X_\alpha; \mathbb{k}),$$

282 and have $\mathbb{V} : \alpha \mapsto V_\alpha$. For another sequence $\tilde{m}^{(i)}$ with $\|m^{(i)} - \tilde{m}^{(i)}\|_\infty \leq \varepsilon$ for all i , define
 283 $\tilde{\mathbb{V}}$ analogously. Let sh_δ be the shift ($\text{sh}_\delta \mathbb{V})_\alpha = V_{\alpha+\delta}$. Then there exist natural transformations
 284 $\Phi : \mathbb{V} \Rightarrow \text{sh}_\varepsilon \tilde{\mathbb{V}}$ and $\Psi : \tilde{\mathbb{V}} \Rightarrow \text{sh}_\varepsilon \mathbb{V}$ making an ε -interleaving: $(\text{sh}_\varepsilon \Phi) \circ \Psi = \tilde{\eta}$ and $(\text{sh}_\varepsilon \Psi) \circ \Phi = \eta$,
 285 where $\eta, \tilde{\eta}$ are the canonical inclusions to the 2ε -shift. Hence $d_I(\mathbb{V}, \tilde{\mathbb{V}}) \leq \varepsilon$, and (since these
 286 modules are pointwise finite-dimensional on a finite grid) their zigzag persistence diagrams satisfy:
 287

$$288 \quad d_B(\text{ZPD}_p(\mathbb{V}), \text{ZPD}_p(\tilde{\mathbb{V}})) \leq \varepsilon.$$

290 The proof of Theorem 3.2 is provided in Appendix B. The theorem suggests that time-zigzag per-
 291 sistence on image sequences is robust to small grayscale fluctuations, so differences observed in the
 292 resulting zigzag diagrams reflect genuine structural change rather than noise, which supports reliable
 293 comparison across time windows and trustworthy use in downstream analysis.

294 **Temporal topological learning framework.** To address the challenge of processing multi-scale
 295 temporal information, we aggregate multiple time-scale topological features into on one uni-
 296 fied representation. More specifically, according to different temporal scales, we use Q dif-
 297 ferent patch lengths $\mathbf{P} = \{P_1, P_2, \dots, P_Q\}$ and obtain the corresponding Q time-series data
 298 $\mathbb{M} = \{M_{P_1}, M_{P_2}, \dots, M_{P_Q}\}$ by using the proposed patching strategy. Given multi-scale time-
 299 series image \mathbb{M} , we first employ the ZP and vectorization method to generate zigzag persistence
 300 images with different scales, and then integrate them into a mixup zigzag persistence image with
 301 different coefficients. That is:

$$302 \quad \mathbf{PI}_Z = \sum_{q=1}^Q \beta_q PI_Z^{P_q}, \quad PI_Z^{P_q} = \text{Vec}(\text{ZP}(M_{P_q})), \quad (3)$$

305 where β_q represent the importance coefficient for q -th temporal scale (in this paper, we consider 4
 306 different time scales and hyperparameters $\beta = \{\beta_q\}_{q=1}^Q$ are equal to 0.25 (i.e., $\beta_1 = \beta_2 = \beta_3 =$
 307 $\beta_4 = 0.25$)). Next, we apply a two-layer CNN over the mixup zigzag persistence image \mathbf{PI}_Z ,
 308 yielding latent dynamic topological representation:

$$309 \quad \hat{z} = \text{FC}(\text{LayerNorm}(\text{CNN}(\mathbf{PI}_Z))), \quad (4)$$

310 where LayerNorm denotes the layer normalization to maintain the feature scale, and FC denotes a
 311 fully connected layer which flattens convolution results.

313 3.3 MODELING SPATIAL AND TEMPORAL INFORMATION

315 **Temporal encoding.** Positional encoding is a crucial design in the Transformer architecture for
 316 making use of the order of the sequence. To effectively utilize temporal information of STPP, for
 317 each event time t_i , we map it into the temporal embedding \mathbf{t}_i by using a positional encoding (where
 318 D denotes the embedding dimension). In summary, we have:

$$319 \quad [\mathbf{t}_i]_j = \begin{cases} \cos\left(\frac{t_i}{10000^{(j-1)/D}}\right), & \text{when } j \text{ is odd,} \\ \sin\left(\frac{t_i}{10000^{(j-1)/D}}\right), & \text{when } j \text{ is even.} \end{cases} \quad (5)$$

322 For accurate temporal prediction, it is vital to model temporal dependencies, as well as trend shift.
 323 Temporal query (TQ) techniques have been successfully applied to learn robust multivariate corre-
 324 lations from multivariate time-series data (Kulkarni et al., 2011; Lin et al., 2025). Inspired by this,

in this work, we develop a TQ-aware self-attention module to effectively and adaptively identify temporal patterns inside the sequence of events. Specifically, given the skeleton of the self-attention module, i.e., $\text{Self-Attention} = \text{Softmax}(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}})\mathbf{V}$ (where \mathbf{Q} , \mathbf{K} , and \mathbf{V} are queries, keys, and values respectively), we integrate a TQ learnable matrix into the query matrix, and integrate temporal encoding output into both key and value matrices, i.e.,

$$\text{Self-Attention}_{\text{TQ}}(\tilde{\mathbf{t}}) = \text{Softmax} \left(\frac{\mathbf{Q}_{\text{TQ}} \mathbf{K}_{\tilde{\mathbf{t}}}^\top}{\sqrt{d_{\tilde{\mathbf{t}}}}} \right) \mathbf{V}_{\tilde{\mathbf{t}}}, \quad (6)$$

where $\mathbf{Q}_{\text{TQ}} = \mathbf{W}_{\text{TQ}} \mathbf{W}^Q$, $\mathbf{K}_{\tilde{\mathbf{t}}} = \tilde{\mathbf{t}} \mathbf{W}^K$, $\mathbf{V}_{\tilde{\mathbf{t}}} = \tilde{\mathbf{t}} \mathbf{W}^V$, \mathbf{W}_{TQ} is a learnable TQ matrix, \mathbf{W}^Q , \mathbf{W}^K , and \mathbf{W}^V are projection matrices, and $d_{\tilde{\mathbf{t}}}$ is the dimensionality of the queries and the keys. Then the output of the positional encoding, i.e., $\tilde{\mathbf{t}} = (\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_K)$ is fed into the self-attention mechanism, and the self-attention output is added back to its input (i.e., $\tilde{\mathbf{t}}$) via a residual connection and then normalized with the layer normalization, which stabilizes optimization and gradient flow while preserving the initial embedding as new contextual information is integrated:

$$\tilde{\mathbf{o}}^t = \text{LayerNorm}(\tilde{\mathbf{t}} + \text{Self-Attention}_{\text{TQ}}(\tilde{\mathbf{t}})). \quad (7)$$

Spatial encoding. Given the spatial information g_i of event i , we apply a lightweight MLP to learn the spatial embedding and we present the output as \mathbf{g}_i . In our study, the MLP consists of two connected layers with ReLU activation, which are defined as $\mathbf{g}_i = \text{Linear}(\text{ReLU}(\text{Linear}(g_i)))$.

For spatial encoding, we apply the regular self-attention mechanism over the initial spatial embedding $\tilde{\mathbf{g}} = (\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_K)$, yielding the final spatial representation:

$$\tilde{\mathbf{o}}^s = \text{LayerNorm}(\tilde{\mathbf{g}} + \text{Self-Attention}(\tilde{\mathbf{g}})). \quad (8)$$

Following Eqs. 7 and 8, we can obtain latent embeddings in temporal ($\tilde{\mathbf{o}}_t$) and spatial ($\tilde{\mathbf{o}}_s$) domains separately. However, to jointly learn spatio-temporal representations, the summarization operation is not enough to seamlessly link two domains without an adapter. To integrate spatial and temporal embeddings, next we introduce an unified topology-aware fusion framework.

3.4 SPATIO-TEMPORAL FUSION WITH TEMPORAL TOPOLOGY LEARNING FRAMEWORK

The topology-aware fusion framework integrates spatial, temporal, and dynamic topological embeddings, leveraging their complementary strengths to (i) capture spatio-temporal dependencies and (ii) narrow the gap between spatial and temporal domains. The dynamic topology embedding $\tilde{\mathbf{z}}$ from TTL encodes spatio-temporal topological patterns and serve as queries in the topology-guided spatio-temporal multi-head attention (TST-MHA) mechanism, while the concatenation of spatial, temporal, and graph embeddings denoted as $\tilde{\mathbf{r}} = \oplus(\tilde{\mathbf{t}}, \tilde{\mathbf{g}}, \mathbf{o}_G)$ serve as keys and values. The TST-MHA is defined as:

$$\text{TST-MHA}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \oplus(\text{head}_1, \dots, \text{head}_H) \mathbf{W}^O, \quad \text{head}_h = \text{Softmax} \left(\frac{\mathbf{Q}_h \mathbf{K}_h^\top}{\sqrt{d_k}} \right) \mathbf{V}_h, \quad (9)$$

where $\mathbf{Q}_h = \tilde{\mathbf{z}} \mathbf{W}^Q$, $\mathbf{K}_h = \tilde{\mathbf{r}} \mathbf{W}^K$, $\mathbf{V}_h = \tilde{\mathbf{r}} \mathbf{W}^V$, and \mathbf{W}_h^Q , \mathbf{W}_h^K , \mathbf{W}_h^V , and \mathbf{W}^O are learnable projection matrices. d_k denotes the head dimension, and H is the number of attention heads. The proposed fusion framework integrates spatial, temporal, and topology-aware dynamic information, capturing both local and global dependencies. We derive the Lipschitz bound for TST-MHA, see Theorem B.1 in Appendix B.

Finally, the combined embedding (i.e., from spatial domain, temporal domain, and TST-MHA) will be transformed by the feedforward layer, which is formally computed as:

$$\tilde{\mathbf{o}}^{TST} = \text{Feed-Forward}(\text{LayerNorm}(\tilde{\mathbf{r}} + \text{TST-MHA}(\mathbf{Q}, \mathbf{K}, \mathbf{V}))). \quad (10)$$

3.5 SPATIO-TEMPORAL FORWARD AND REVERSE DIFFUSION

For each event $\mathbf{x}_i = (\tau_i, g_i)$ in the sequence (where τ_i is the time interval since the last event), we perform the forward diffusion process as a Markov process over the spatial and temporal dimensions as $(\mathbf{x}_i^0, \mathbf{x}_i^1, \dots, \mathbf{x}_i^K)$, where K is the number of diffusion steps. That is, we add small amount of

378 Gaussian noise step by step to the space and time values until they are close to pure Gaussian noises.
 379 The forward process of our diffusion model on spatial and temporal dimensions can be written as:
 380

$$381 \quad q_{st}(\mathbf{x}_i^k | \mathbf{x}_i^{k-1}) = (q(\tau_i^k | \tau_i^{k-1}), q(g_i^k | g_i^{k-1})), \quad (11)$$

383 where the recursive formula is $q(\mathbf{x}^k | \mathbf{x}^{k-1}) = \mathcal{N}(\mathbf{x}^k; \sqrt{1 - \beta_k} \mathbf{x}^k, \beta_k \mathbf{I})$, $\mathcal{N}(\cdot, \cdot)$ denotes the Gaussian
 384 distribution used to generate the noise, \mathbf{I} is the identity matrix, and $\bar{\alpha}_k = \prod_{i=1}^k (1 - \beta_i)$ (where
 385 $\beta_{1:K} \in (0, 1)$). The purpose of the reverse process is enable our diffusion model to learn the denoising
 386 ability of noisy spatial and temporal information. Specifically, we aim to reconstruct the point
 387 $\mathbf{x}_i = (\tau_i, g_i)$ with the learned model over K steps $\mathbf{x}_i^K \rightarrow \mathbf{x}_i^{K-1} \rightarrow \dots \rightarrow \mathbf{x}_i^0$. Further, we also in-
 388 incorporate latent spatio-temporal embedding denoted as $\tilde{\mathbf{o}}_{i-1}$ (where $\tilde{\mathbf{o}}_{i-1} = \oplus(\tilde{\mathbf{o}}_{i-1}^s, \tilde{\mathbf{o}}_{i-1}^g, \tilde{\mathbf{o}}_{i-1}^{TST})$)
 389 into the backward diffusion process which helps to guide the denoising process towards the clean
 390 sample. The denoising transition step is outlined as follows:
 391

$$392 \quad p_{\theta}(\mathbf{x}_i^{k-1} | \mathbf{x}_i^k, \tilde{\mathbf{o}}_{i-1}) = p_{\theta}(\tau_i^{k-1} | \tau_i^k, g_i^k, \tilde{\mathbf{o}}_{i-1}) p_{\theta}(g_i^{k-1} | \tau_i^k, g_i^k, \tilde{\mathbf{o}}_{i-1}). \quad (12)$$

393 In our experiments, we employ the cross-attentive conditional denoising decoder (Wang et al., 2024)
 394 which incorporates predicted values τ_i^{k+1}, g_i^{k+1} in temporal and spatial dimensions respectively,
 395 graph learning output \mathbf{o}_G (see Eq. 2), and denoising step k with positional encoding and leverages
 396 the latent spatio-temporal embedding $\tilde{\mathbf{o}}_{i-1}$ for the guidance in the conditional denoising process. To
 397 predict future event, we utilize the inference framework proposed by Yuan et al. (2023a).
 398

399 4 EXPERIMENTS

400 4.1 EXPERIMENT SETTINGS

401 **Datasets.** In our experiments, we use 5 real-world datasets, i.e., **JPN Earthquake**: Earthquake with
 402 a magnitude of at least 2.5 in Japan from 1990 to 2020; **COVID-19**: COVID-19 dataset is collected
 403 from publicly released COVID19 cases in New Jersey state from March 2020 to July 2020; **US**
 404 **Earthquake**: The US earthquake dataset contains earthquake occurrences from December 2023 to
 405 January 2024 in US; **Theft**: The theft data is collected by the Philadelphia police department from
 406 January 2025 to April 2025 in Philadelphia; **311 Service**: Similar to theft data, we collect Philadelphia
 407 311 service dataset from OpenDataPhilly from January 2025 to June 2025. More details of data
 408 resources and train/validation/test split ratio are in Appendix A.
 409

410 **Baselines and Evaluation Protocol.** We compare TEN-DM with 17 baselines, including 3 SPP
 411 baselines, 10 TPP baselines, and 4 STPP baselines. **SPP baselines:** (i) Conditional Kernel Density
 412 Estimator (KDE) (Chen et al., 2018); (ii) Continuous Normalizing Flow (CNF) (Chen et al., 2018);
 413 and (iii) Time-Varing Continuous Normalizing Flow (TVCNF) (Chen et al., 2018). **TPP Baselines:** (i)
 414 homogeneous Poisson process (Kingman, 1992); (ii) Hawkes Process (Hawkes, 1971);
 415 (iii) Self-correcting process (Isham & Westcott, 1979); (iv) Recurrent Marked Temporal Point Pro-
 416 cess (RMTPP) (Du et al., 2016); (v) Neural Hawkes Process (NHP) (Mei & Eisner, 2017); (vi)
 417 Transformer Hawkes Process (THP) (Zuo et al., 2020); (vii) Self-Attentive Hawkes Process (SAHP)
 418 (Zhang et al., 2020); (viii) Log Normal Mixture model (LogNormMix) (Shchur et al., 2019); (ix)
 419 Wasserstein GAN (WGAN) (Xiao et al., 2017); and (x) Neural Jump-Diffusion Temporal Point
 420 Process (NJDTPP) (Zhang et al., 2024). **STPP Baselines:** (i) Neural Jump Stochastic Differ-
 421 ential Equations (NJSDE) (Jia & Benson, 2019); (ii) Neural Spatio-temporal Point Process (NSTPP)
 422 (Chen et al., 2020); (iii) Deep Spatio-temporal Point Process (DeepSTPP) (Zhou et al., 2022); and
 423 (iv) Spatio-temporal Diffusion Point Processes (DSTPP) (Yuan et al., 2023b). We have included a
 424 detailed introduction about baselines in Appendix A. We evaluate prediction on the next event in
 425 both space and time. The spatial error is measured by the Euclidean distance between the predicted
 426 and ground truth location, and the temporal error by root-mean-square error (RMSE) between the
 427 predicted and ground truth time interval.

428 **Implementation Details.** We run our experiments on 4 NVIDIA RTX A5000 GPU cards with 24GB
 429 memory. Optimization uses AdamW($\beta_1 = 0.9, \beta_2 = 0.99$) and a learning rate warm-up from 0 to
 430 a peak selected from $\{1e^{-3}, 3e^{-4}\}$ followed by linear decay to $5e^{-5}$ for 1000 epochs. More details
 431 can be found in the Appendix A. Evaluation metrics report spatial Euclidean distance and temporal
 RMSE on 3 runs with different random seeds. See code link in “Reproducibility statement”.

432 4.2 RESULTS
433

434 Table 1 compares the forecasting errors of TEN-DM with 17 baseline models across 5 real-world
435 datasets in spatial and temporal domains. Lower Euclidean distance and RMSE indicate higher
436 forecasting accuracy. As shown in Table 1, TEN-DM significantly outperforms all baselines across
437 all 5 datasets in both Euclidean distance and RMSE except for JPN earthquake data in temporal
438 dimension. Notably, on COVID-19, US earthquake, and 311 service, our TEN-DM is statistically
439 significantly (with p -value < 0.05) better than runner-ups in both spatial and temporal domains. **Superior performance against SPP baselines.** TEN-DM outperforms all 3 baselines; compared with
440 SPP runner-ups, TEN-DM achieves 21.97%, 42.97%, 9.37%, 0.29%, and 0.55% relative improvement
441 on JPN earthquake, COVID-19, US earthquake, theft, and 311 service datasets respectively.
442 **Superior performance against TPP baselines.** TEN-DM statistically significantly outperforms all
443 TPP baselines with 6.74%, 42.53%, 57.14%, 38.02% and 13.89% relative improvements on JPN
444 earthquake, COVID-19, US earthquake, theft, and 311 service datasets respectively (compared with
445 runner-ups). **Better performance against STPP baselines.** Compared with the runner-up (i.e.,
446 DSTPP), TEN-DM achieves 7.16% and 6.90% relative improvement on COVID-19 dataset in spa-
447 tial and temporal dimensions respectively; a 17.08% and 3.66% relative improvement on theft and
448 311 service datasets respectively in temporal dimension. Computational complexity and running
449 time are provided in Appendix A.

450
451 Table 1: Performance evaluation for predicting both time and space of the next event. We use Eu-
452 clidean distance and RMSE to predict errors of the spatial domain and temporal domain respectively.
453 Here * denotes p -value < 0.05 (i.e., statistically significant results).

Model	JPN Earthquake		COVID-19		US Earthquake		Theft		311 Service	
	Spatial ↓	Temporal ↓	Spatial ↓	Temporal ↓	Spatial ↓	Temporal ↓	Spatial ↓	Temporal ↓	Spatial ↓	Temporal ↓
Conditional KDE	11.300±0.658	-	0.688±0.047	-	41.999±0.036	-	0.073±0.000	-	0.057±0.001	-
CNF	8.480±0.054	-	0.559±0.000	-	42.634±0.036	-	0.072±0.000	-	0.056±0.000	-
TCNF	8.110±0.001	-	0.560±0.000	-	42.155±2.122	-	0.072±0.000	-	0.056±0.000	-
Poisson	-	0.631±0.017	-	0.463±0.021	-	0.431±0.035	-	0.626±0.016	-	1.259±0.032
Hawkes	-	0.544±0.010	-	0.672±0.088	-	0.121±0.002	-	0.629±0.027	-	1.486±0.024
Self-correcting	-	11.200±0.486	-	2.830±0.141	-	3.130±0.346	-	0.659±0.024	-	2.526±0.122
RMTPP	-	0.424±0.009	-	1.320±0.024	-	1.626±0.030	-	0.583±0.028	-	1.742±0.009
NHP	-	1.860±0.023	-	2.130±0.100	-	3.749±0.153	-	0.612±0.021	-	2.314±0.065
THP	-	2.440±0.021	-	0.611±0.008	-	1.242±0.009	-	0.527±0.017	-	0.976±0.051
SAHP	-	0.409±0.002	-	0.184±0.024	-	0.457±0.008	-	0.694±0.039	-	1.128±0.087
LogNormMix	-	0.593±0.005	-	0.168±0.011	-	0.474±0.062	-	0.501±0.008	-	2.675±0.009
WGAN	-	0.481±0.007	-	0.124±0.002	-	0.766±0.001	-	0.699±0.019	-	2.083±0.093
NJDTPP	-	0.396±0.003	-	0.790±0.098	-	0.535±0.110	-	0.508±0.046	-	0.902±0.012
NJSDE	9.980±0.024	0.465±0.009	0.641±0.009	0.137±0.001	51.784±0.013	0.081±0.000	0.099±0.002	0.465±0.006	0.067±0.001	0.865±0.033
NSTPP	8.110±0.000	0.547±0.000	0.560±0.000	0.145±0.002	59.833±0.006	0.102±0.000	0.097±0.000	0.534±0.046	0.072±0.000	0.870±0.027
DeepSTPP	9.200±0.000	*0.341±0.000	0.687±0.000	0.197±0.000	56.322±0.178	0.093±0.000	0.089±0.001	0.420±0.007	0.059±0.000	0.830±0.035
DSTPP	6.770±0.000	0.375±0.000	0.419±0.000	0.093±0.000	38.892±0.104	0.078±0.000	0.0701±0.0001	0.425±0.002	0.0551±0.0001	0.821±0.001
TEN-DM (ours)	6.649±0.041	0.371±0.003	0.391±0.001	0.087±0.001	38.543±0.200	0.077±0.000	0.0700±0.0001	0.363±0.017	0.0547±0.0002	0.792±0.026

464 465 4.3 ABLATION STUDIES

466 To examine the effectiveness of the proposed components, we conduct experiments without graph
467 learning (i.e., W/o Graph), TQ-SA (i.e., W/o TQ-SA), and TTL (i.e., W/o TTL) on JPN earthquake,
468 COVID-19, 311 service datasets. From Table 2 in Appendix A, the results indicate that employing
469 graph learning, TQ-SA, and TTL significantly improves model performance which demonstrate the
470 effectiveness of the TEN-DM model architecture. For instance, (i) removing graph learning leads
471 to Euclidean distance 0.24% and 0.26% increases on JPN earthquake and COVID-19 datasets re-
472 spectively; (ii) removing TQ-SA leads to Euclidean distance 1.28% increases on COVID-19; (iii)
473 removing TTL severely limits TEN-DM’s ability to capture spatio-temporal topological informa-
474 tion, i.e., leading to RMSE 4.60% and 3.03% increases on COVID-19 and 311 service datasets
475 respectively.

476 477 5 CONCLUSION
478

479 We present TEN-DM, a novel diffusion model that leverages geometric and topological learning
480 frameworks to capture dynamic local and global spatio-temporal dependencies for STPP forecast-
481 ing. Integration of the GCL, TQ-SA, and TTL modules enhances the diffusion model’s ability to
482 learn complex spatio-temporal interactions, periodic patterns, and local and global dynamic topo-
483 logical information. Extensive experiments on 5 real-world datasets demonstrated the effectiveness
484 of TEN-DM, achieving state-of-the-art performance across diverse datasets and dimensions. Our
485 work establishes a new direction in STPP forecasting by highlighting the potential of geometric and
486 topological DL in capturing intricate temporal and spatial dependencies.

486
487
ETHICS STATEMENT488
489
490
491
492
493
494
495
496
497
This work enables more accurate spatio-temporal event prediction, which facilities the state-of-the-art forecasting results in natural hazards, public health, transportation, and social systems. In this way, our work can help improve efficiency of flood alerts and hazard zoning, dispatching for 911, and actionable uncertainty for resource allocation. In practice, this translates into faster response and cost savings. We also note a potential, yet underexplored, negative impact that is not exclusive to our method, e.g., diffusion models may lead to mislead operations or manipulate public perception. Hence, developing rigorous ethical guidelines and protections is imperative for its use. This study did not involve personally identifiable information, and we conducted no experiments that could raise privacy or security concerns. We are committed to maintaining transparency and integrity throughout the research.498
499
REPRODUCIBILITY STATEMENT
500501
502
503
504
505
506
We release code experiment scripts in an anonymized dropbox link https://www.dropbox.com/scl/fo/v6rmicn32j72wi51knml1/AFht7uPbD_tOXcF8GOIpvcE?rlkey=87girset4ykkz738qm4av6g2d&st=r6imcskx&dl=0. All datasets used are publicly available; we include raw data resources, and the train/val/test splits used in our experiments. Hyperparameter settings are reported in “Implementation Details”. We report mean \pm standard error over three runs with different random seeds, and provide running time.507
508
REFERENCES
509

- 510
-
- 511
-
- 512
-
- 513
-
- Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: A stable vector representation of persistent homology.
- Journal of Machine Learning Research*
- , 18(8):1–35, 2017.
-
- 514
-
- 515
-
- Alba Bernabeu, Jiancang Zhuang, and Jorge Mateu. Spatio-temporal hawkes point processes: a review.
- Journal of Agricultural, Biological and Environmental Statistics*
- , 30(1):89–119, 2025.
-
- 516
-
- 517
-
- Jeff Calder and Nicolas Garcia Trillo. Improved spectral convergence rates for graph laplacians on
- ε
- graphs and k-nn graphs.
- Applied and Computational Harmonic Analysis*
- , 60:123–175, 2022.
-
- 518
-
- 519
-
- Gunnar Carlsson and Vin De Silva. Zigzag persistence.
- Foundations of computational mathematics*
- , 10(4):367–405, 2010.
-
- 520
-
- 521
-
- Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations.
- Advances in neural information processing systems*
- , 31, 2018.
-
- 522
-
- 523
-
- Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes.
- arXiv preprint arXiv:2011.04583*
- , 2020.
-
- 524
-
- 525
-
- Xiuyuan Cheng, Zheng Dong, and Yao Xie. Deep spatio-temporal point processes: Advances and new directions.
- arXiv preprint arXiv:2504.06364*
- , 2025.
-
- 526
-
- 527
-
- David R Cox. Some statistical methods connected with series of events.
- Journal of the Royal Statistical Society: Series B (Methodological)*
- , 17(2):129–157, 1955.
-
- 528
-
- 529
-
- David Roxbee Cox and Valerie Isham.
- Point processes*
- , volume 12. CRC Press, 1980.
-
- 530
-
- 531
-
- Ottmar Cronie and Maria Nicolette Margaretha Van Lieshout. Aj-function for inhomogeneous spatio-temporal point processes.
- Scandinavian Journal of Statistics*
- , 42(2):562–579, 2015.
-
- 532
-
- 533
-
- Daryl J Daley and David Vere-Jones.
- An introduction to the theory of point processes: volume I: elementary theory and methods*
- . Springer, 2003.
-
- 534
-
- 535
-
- Daryl J Daley and David Vere-Jones.
- An introduction to the theory of point processes: volume II: general theory and structure*
- . Springer, 2008.

- 540 Peter J Diggle. *Statistical analysis of spatial and spatio-temporal point patterns*. CRC press, 2013.
 541
- 542 Peter J Diggle, Paula Moraga, Barry Rowlingson, and Benjamin M Taylor. Spatial and spatio-
 543 temporal log-gaussian cox processes: extending the geostatistical paradigm. 2013.
- 544 Zheng Dong, Xiuyuan Cheng, and Yao Xie. Spatio-temporal point processes with deep non-
 545 stationary kernels. *arXiv preprint arXiv:2211.11179*, 2022.
- 546 Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
 547 Recurrent marked temporal point processes: Embedding event history to vector. In *Proceedings*
 548 *of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*,
 549 pp. 1555–1564, 2016.
- 550
- 551 Herbert Edelsbrunner and Dmitriy Morozov. Persistent homology: theory and practice. In *Proceed-
 552 ings of the European congress of mathematics*, volume 2012, 2012.
- 553
- 554 Edith Gabriel and Peter J Diggle. Second-order analysis of inhomogeneous spatio-temporal point
 555 process data. *Statistica Neerlandica*, 63(1):43–51, 2009.
- 556
- 557 Edith Gabriel, Barry S Rowlingson, and Peter J Diggle. stpp: an r package for plotting, simulating
 558 and analyzing spatio-temporal point patterns. *Journal of Statistical Software*, 53:1–29, 2013.
- 559
- 560 Shanshan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to
 561 sequence text generation with diffusion models. *arXiv preprint arXiv:2210.08933*, 2022.
- 562
- 563 Alan G Hawkes. Point spectra of some mutually exciting point processes. *Journal of the Royal
 564 Statistical Society Series B: Statistical Methodology*, 33(3):438–443, 1971.
- 565
- 566 Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-
 567 bert: Improving generative masked language models with diffusion models. *arXiv preprint
 568 arXiv:2211.15029*, 2022.
- 569
- 570 Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salis-
 571 mans. Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning
 572 Research*, 23(47):1–33, 2022.
- 573
- 574 Janine Illian, Antti Penttinen, Helga Stoyan, and Dietrich Stoyan. *Statistical analysis and modelling
 575 of spatial point patterns*. John Wiley & Sons, 2008.
- 576
- 577 Valerie Isham and Mark Westcott. A self-correcting point process. *Stochastic processes and their
 578 applications*, 8(3):335–347, 1979.
- 579
- 580 Kalanka P Jayalath, Richard F Gunst, and David J Meltzer. Spatial point pattern identification of an
 581 apparent ice-age house structure. *Spatial Statistics*, 14:563–580, 2015.
- 582
- 583 Junteng Jia and Austin R Benson. Neural jump stochastic differential equations. *Advances in Neural
 584 Information Processing Systems*, 32, 2019.
- 585
- 586 Ming Jin, Huan Yee Koh, Qingsong Wen, Daniele Zambon, Cesare Alippi, Geoffrey I Webb, Irwin
 587 King, and Shirui Pan. A survey on graph neural networks for time series: Forecasting, classifi-
 588 cation, imputation, and anomaly detection. *IEEE Transactions on Pattern Analysis and Machine
 589 Intelligence*, 2024.
- 590
- 591 Alan Karr. *Point processes and their statistical inference*. Routledge, 2017.
- 592
- 593 John Frank Charles Kingman. *Poisson processes*, volume 3. Clarendon Press, 1992.
- 594
- 595 Thomas N Kipf and Max Welling. Variational graph auto-encoders. *arXiv preprint
 596 arXiv:1611.07308*, 2016.
- 597
- 598 Yiling Kuang, Chao Yang, Yang Yang, and Shuang Li. Unveiling latent causal rules: A temporal
 599 point process approach for abnormal event explanation. In *International Conference on Artificial
 600 Intelligence and Statistics*, pp. 2935–2943, 2024.

- 594 Anagha Kulkarni, Jaime Teevan, Krysta M Svore, and Susan T Dumais. Understanding temporal
 595 query dynamics. In *Proceedings of the fourth ACM international conference on Web search and*
 596 *data mining*, pp. 167–176, 2011.
- 597
- 598 Patrick J Laub, Young Lee, Philip K Pollett, and Thomas Taimre. Hawkes models and their appli-
 599 cations. *Annual Review of Statistics and Its Application*, 12(2025):233–258, 2025.
- 600 Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
 601 Im improves controllable text generation. *Advances in neural information processing systems*, 35:
 602 4328–4343, 2022.
- 603
- 604 Rafael Lima. Hawkes processes modeling, inference, and control: An overview. *SIAM Review*, 65
 605 (2):331–374, 2023.
- 606 Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, and Weiwei Lin. Temporal query network
 607 for efficient multivariate time series forecasting. *arXiv preprint arXiv:2505.12917*, 2025.
- 608
- 609 David Lüdke, Marin Biloš, Oleksandr Shchur, Marten Lienen, and Stephan Günnemann. Add and
 610 thin: Diffusion for temporal point processes. *Advances in Neural Information Processing Systems*,
 611 36:56784–56801, 2023.
- 612 Shaurya Mathur, Shreyas Bellary Manjunath, Nitin Kulkarni, et al. Spatiotemporal wildfire predic-
 613 tion and reinforcement learning for helitack suppression. *PLoS one*, 2025.
- 614
- 615 Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating multi-
 616 variate point process. *Advances in neural information processing systems*, 30, 2017.
- 617
- 618 Jesper Moller and Rasmus Plenge Waagepetersen. *Statistical inference and simulation for spatial*
 619 *point processes*. CRC press, 2003.
- 620 Jakob Gulddahl Rasmussen. Lecture notes: Temporal point processes and the conditional intensity
 621 function. *arXiv preprint arXiv:1806.00221*, 2018.
- 622
- 623 R-D Reiss. *A course on point processes*. Springer Science & Business Media, 2012.
- 624
- 625 Brendan Ritter, Jennifer Hatchell, and Tim Naylor. Spatial statistics in star-forming regions: testing
 626 the limits of randomness. *Monthly Notices of the Royal Astronomical Society*, 487(1):887–899,
 627 2019.
- 628
- 629 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 630 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 631 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- 632
- 633 Salva Rühling Cachay, Bo Zhao, Hailey Joren, and Rose Yu. Dyffusion: A dynamics-informed dif-
 634 fusion model for spatiotemporal forecasting. *Advances in neural information processing systems*,
 36:45259–45287, 2023.
- 635
- 636 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 637 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 638 text-to-image diffusion models with deep language understanding. *Advances in neural informa-
 639 tion processing systems*, 35:36479–36494, 2022.
- 640
- 641 Chathuri L Samarakkara, Ian Flint, and Yan Wang. Modelling the spatial dependence of multi-
 642 species point patterns. *Ecology and Evolution*, 15(3):e71066, 2025.
- 643
- 644 Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point
 645 processes. *arXiv preprint arXiv:1909.12127*, 2019.
- 646
- 647 Oleksandr Shchur, Ali Caner Türkmen, Tim Januschowski, and Stephan Günnemann. Neural tem-
 648 poral point processes: A review. *arXiv preprint arXiv:2104.03528*, 2021.
- 649
- 650 Yujee Song, Donghyun Lee, Rui Meng, and Won Hwa Kim. Decoupled marked temporal point
 651 process using neural ordinary differential equations. *arXiv preprint arXiv:2406.06149*, 2024.

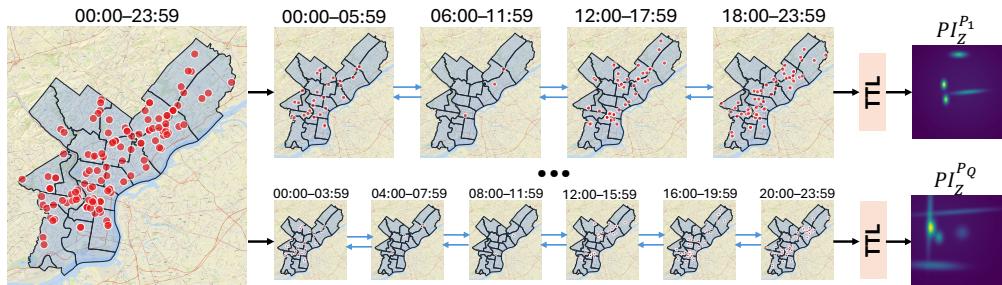
- 648 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 649 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.
- 650
- 651 Qi Wang and John E Taylor. Patterns and limitations of urban human mobility resilience under the
 652 influence of multiple types of natural disaster. *PLoS one*, 11(1):e0147299, 2016.
- 653
- 654 Yu Wang, Zhiwei Liu, Liangwei Yang, and Philip S Yu. Conditional denoising diffusion for sequen-
 655 tial recommendation. In *Pacific-Asia conference on knowledge discovery and data mining*, pp.
 656 156–169. Springer, 2024.
- 657
- 658 Tonglong Wei, Youfang Lin, Shengnan Guo, Yan Lin, Yiheng Huang, Chenyang Xiang, Yuqing Bai,
 659 and Huaiyu Wan. Diff-rntraj: A structure-aware diffusion model for road network-constrained
 660 trajectory generation. *IEEE Transactions on Knowledge and Data Engineering*, 36(12):7940–
 661 7953, 2024. doi: 10.1109/TKDE.2024.3460051.
- 662
- 663 Haomin Wen, Youfang Lin, Yutong Xia, Huaiyu Wan, Qingsong Wen, Roger Zimmermann, and
 664 Yuxuan Liang. Diffstg: Probabilistic spatio-temporal graph forecasting with denoising diffusion
 665 models. In *Proceedings of the 31st ACM international conference on advances in geographic
 666 information systems*, pp. 1–12, 2023.
- 667
- 668 Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein
 669 learning of deep generative point process models. *Advances in neural information processing
 670 systems*, 30, 2017.
- 671
- 672 Hongyi Yuan, Songchi Zhou, and Sheng Yu. Ehrdiff: Exploring realistic ehr synthesis with diffusion
 673 models. *arXiv preprint arXiv:2303.05656*, 2023a.
- 674
- 675 Yuan Yuan, Jingtao Ding, Chenyang Shao, Depeng Jin, and Yong Li. Spatio-temporal diffusion
 676 point processes. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
 677 and Data Mining*, pp. 3173–3184, 2023b.
- 678
- 679 Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive hawkes process. In
 680 *International conference on machine learning*, pp. 11183–11193. PMLR, 2020.
- 681
- 682 Shuai Zhang, Chuan Zhou, Yang Aron Liu, Peng Zhang, Xixun Lin, and Zhi-Ming Ma. Neural
 683 jump-diffusion temporal point processes. In *Forty-first International Conference on Machine
 684 Learning*, 2024.
- 685
- 686 Zhilun Zhou, Jingtao Ding, Yu Liu, Depeng Jin, and Yong Li. Towards generative modeling of
 687 urban flow through knowledge-enhanced denoising diffusion. In *Proceedings of the 31st ACM
 688 International Conference on Advances in Geographic Information Systems*, pp. 1–12, 2023.
- 689
- 690 Zihao Zhou, Xingyi Yang, Ryan Rossi, Handong Zhao, and Rose Yu. Neural point process for
 691 learning spatiotemporal event dynamics. In *Learning for Dynamics and Control Conference*, pp.
 692 777–789. PMLR, 2022.
- 693
- 694 Shixiang Zhu and Yao Xie. Spatiotemporal-textual point processes for crime linkage detection. *The
 695 Annals of Applied Statistics*, 16(2):1151–1170, 2022.
- 696
- 697 Shixiang Zhu, Shuang Li, Zhigang Peng, and Yao Xie. Interpretable deep generative spatio-temporal
 698 point processes. In *Proceedings of the NeurIPS workshop AI for earth sciences*, 2020.
- 699
- 700 Yuanshao Zhu, James Jianqiao Yu, Xiangyu Zhao, Qidong Liu, Yongchao Ye, Wei Chen, Zijian
 701 Zhang, Xuetao Wei, and Yuxuan Liang. Controltraj: Controllable trajectory generation with
 702 topology-constrained diffusion model. In *Proceedings of the 30th ACM SIGKDD Conference on
 703 Knowledge Discovery and Data Mining, KDD '24*, pp. 4676–4687, New York, NY, USA, 2024.
 704 Association for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671866.
 705 URL <https://doi.org/10.1145/3637528.3671866>.
- 706
- 707 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. In *Proceedings of the
 708 twentieth annual symposium on Computational geometry*, pp. 347–356, 2004.
- 709
- 710 Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes
 711 process. In *International conference on machine learning*, pp. 11692–11702. PMLR, 2020.

702 THE USE OF LARGE LANGUAGE MODELS (LLMs)
703704 We only use large language models (LLMs) for rephrasing sentences and correcting grammar. It
705 is important to note that the LLMs are not involved in the data analysis, research methodology, or
706 experimental design.
707708 A MORE DETAILS
709710 **Cubical complex.** An elementary interval is a closed subset of \mathbb{R} of the form $[z, z + 1]$ with $z \in \mathbb{Z}$,
711 together with the degenerate interval $[z, z]$ (i.e., a point). An elementary cube is any Cartesian
712 product

713
$$Q = I_1 \times \cdots \times I_d,$$

714 where d is the dimension of the space; for each j we have $I_j = [z_j, z_j + 1]$ with $z_j \in \mathbb{Z}$. The
715 dimension of Q is:

716
$$\dim Q = \#\{j \in \{1, \dots, d\} : I_j \text{ is nondegenerate } ([z_j, z_j + 1])\}.$$

717 A cubical complex \mathcal{K} is a finite collection of such axis-aligned elementary cubes in some \mathbb{R}^d that
718 satisfies: if $Q \in \mathcal{K}$ and F is obtained from Q by replacing one or more nondegenerate factors
719 $[z_j, z_j + 1]$ with an endpoint $\{z_j\}$ or $\{z_j + 1\}$, then $F \in \mathcal{K}$; for any $Q, Q' \in \mathcal{K}$, the intersection
720 $Q \cap Q'$ is either empty or a (possibly degenerate) common face of both.
721722 **Persistent homology.** By utilizing a multi-scale approach to shape description, PH addresses the
723 intrinsic limitations of classical homology and allows for the retrieval of shape patterns that tend to
724 persist over multiple scales and, hence, are likelier to play an important role for a given downstream
725 task. The main idea is to select some suitable scale parameters α and then to assess changes in
726 shape (or more formally homology) that occur to an image m , which evolves with respect to α .
727 Specifically, let f be a filtration function that maps every simplex to the maximum function value
728 of its vertices (in our case the grayscale value) and let $m_\alpha = f^{-1}((-\infty, \alpha])$, $\alpha \in \mathbb{R}$. Setting an
729 increasing sequence of (dis)similarity thresholds α , i.e., $\alpha_0 < \alpha_1 < \dots < \alpha_h$, sub-images are
730 generated in a nested sequence of cubical complexes (and their connected components, loops, and
731 voids are recorded), i.e., $m_{\alpha_0} \subset m_{\alpha_1} \subset \dots \subset m_{\alpha_h}$ and we can construct the corresponding
732 sequence of complexes, i.e., $\mathcal{K}_{\alpha_0} \subset \mathcal{K}_{\alpha_1} \subset \dots \subset \mathcal{K}_{\alpha_h}$ which are referred to as the lower-star
733 filtered cubical complexes. Based on the evolution of these simplicial complexes through a sequence
734 of thresholds, the homology groups are induced as $\{H_p(\mathcal{K}_{\alpha_0}), H_p(\mathcal{K}_{\alpha_1}), \dots, H_p(\mathcal{K}_{\alpha_h})\}$, where
735 $H_p(\mathcal{K}_{\alpha_j})$ represents the p -th homology group of \mathcal{K}_{α_j} .
736737 **Zigzag persistence image generation pipeline.** Figure 2 illustrate zigzag persistence image gener-
738 ation pipeline.748 Figure 2: Pipeline for generating ZPI with different time scales.
749750 **Datasets.** In our experiments, we use five real-world STPP datasets, i.e., **Japan Earthquake**: Earth-
751 quake with a magnitude of at least 2.5 in Japan from 1990 to 2020 were sourced from the U.S. Geo-
752 logical Survey¹. It contains 91,897 events in total. Sequences are formed using sliding windows of
753 30 days. The dataset is partitioned into nonoverlapping splits containing 950 training sequences, 50
754 validation sequences, and 50 test sequences. Sequence lengths range from 22 to 554. **COVID-19**:
755756 ¹<https://earthquake.usgs.gov/earthquakes/search/>

756 COVID-19 dataset is collected from publicly released COVID19 cases in New Jersey state from
 757 March 2020 to July 2020 by The New York Times². This dataset includes 161,307 recorded cases,
 758 aggregated at the county level with a 7-day window size. It is split without overlap into 1450 training
 759 sequences, 100 validation sequences, and 100 test sequences. Sequence lengths range from 5
 760 to 287. **US Earthquake**: The US earthquake dataset³ contains 9,451 earthquake occurrences from
 761 12/27/2023 to 01/26/2024 in US, and is divided into 21 training sequences, 5 validation sequences,
 762 and 5 testing sequences. Sequences lengths range from 5 to 512. **Theft**: The theft data is collected
 763 by the Philadelphia police department (PPD)⁴ and we select 11,405 cases from the most recent theft
 764 incidents from 01/01/2025 - 04/30/2025 in Philadelphia. We use 24-hour sliding windows to form
 765 the dataset that contains 100 training sequences, 9 validation sequences, and 9 testing sequences.
 766 Sequence lengths range from 6 to 138. **311 Service**: Similar to theft data, we collect Philadelphia
 767 311 service dataset from OpenDataPhilly. In this work, we focus on 9,597 illegal dumping reports
 768 from 01/01/2025 - 06/30/2025, and split the dataset into disjoint training, validation, and test sets
 769 with 151, 15, and 15 sequences respectively. Sequence lengths range from 9 to 111.

770 **Baselines. SPP Baselines**: We evaluate methods that model continuous spatial density function. A
 771 learned parameterized conditional kernel density estimator (KDE) (Chen et al., 2018) that models
 772 $p(x|t)$ as a Gaussian mixture model conditioned on historical events. Continuous normalizing
 773 flow (CNF) (Chen et al., 2018) defines the invertible flow as a neural ODE and learns a continuous
 774 probability density over space. Time-varying Continuous normalizing flow (TVCNF) (Chen et al., 2018)
 775 extends CNF by making the flow dynamics dependent on timestamps. **TPP Baselines**: Homoge-
 776 neous Poisson process (Kingman, 1992) models the probability of an event as proportional to the
 777 time interval length. Hawkes Process (Hawkes, 1971) is a self-exciting process where the historical
 778 occurrence of events can positively influence the probability of future event occurrence. Self-
 779 correcting process (Isham & Westcott, 1979) is opposite to self-exciting processes, which means
 780 historical occurrence of events can decrease the probability of future event occurrence and the in-
 781 tensity is negatively influenced upon a new event happened. The Recurrent Marked Temporal Point
 782 Process (RMTPP) (Du et al., 2016) simultaneously model the event timings and the markers by
 783 viewing the intensity function as a nonlinear one and apply a recurrent neural network to embed the
 784 event history. Neural Hawkes Process (NHP) (Mei & Eisner, 2017) uses neurally self-modulating
 785 multivariate point process where the intensities of each event type change by a novel LSTM. Trans-
 786 former Hawkes Process (THP) (Zuo et al., 2020) replaces RNNs with self-attention mechanism to
 787 better capture long-term dependencies and keeps computational efficiency. Self-Attentive Hawkes
 788 Process (SAHP) (Zhang et al., 2020) also uses self-attention mechanism and modify positional en-
 789 coding so that time intervals become phase shifts in sinusoidal encoding, which improves the usual
 790 “order-only” encoding. Log Normal Mixture model (LogNormMix) (Shchur et al., 2019) learns
 791 probability density by a log-normal mixture model. Wasserstein GAN (WGAN) (Xiao et al., 2017)
 792 transforms nuisance processes to a target one, providing an intensity-free approach for point pro-
 793 cesses modeling. Neural Jump-Diffusion Temporal Point Process (NJDTPP) (Zhang et al., 2024)
 794 which formulates a neural jump-diffusion SDE with neural parameterizations of the drift, diffu-
 795 sion, and jump coefficient functions. **STPP Baselines**: Neural Jump Stochastic Differential Equa-
 796 tions (NJSDE) (Jia & Benson, 2019) learns hybrid continuous-discrete dynamics and generates a
 797 piecewise-continuous latent trajectory to model the temporal point processes. The spatial distribu-
 798 tion is modeled with a Gaussian mixture model. Neural Spatio-temporal Point Process (NSTPP)
 799 (Chen et al., 2020) proposed two novel neural architectures which adds event-time updates and
 800 attention for long histories non-trivially. Deep Spatio-temporal Point Process (DeepSTPP) (Zhou
 801 et al., 2022) proposes a nonparametric space-time intensity governed by a neural latent process.
 802 Spatio-temporal Diffusion Point Processes (DSTPP) (Yuan et al., 2023b) uses conditional diffusion
 803 that learns the joint distribution of next event’s time and location.

804 **Implementation Details.** We run our experiments on 4 NVIDIA RTX A5000 GPU cards with 24GB
 805 memory. Optimization uses AdamW($\beta_1 = 0.9, \beta_2 = 0.99$) and a learning rate warm-up from 0 to
 806 a peak selected from $\{1e^{-3}, 3e^{-4}\}$ followed by linear decay to $5e^{-5}$ for 1000 epochs. Training and
 807 sampling timesteps are selected from $\{200, 500\}$. We tune the batch size over $\{32, 64\}$. We consider
 808 three losses applied to the diffusion objective: ℓ_1 loss, ℓ_2 loss, and Euclidean loss. The length of the
 809 learnable TQ vectors is selected from $\{7, 24, 30\}$. The number of attention heads is selected from

²<https://github.com/nytimes/covid-19-data>

³<https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php>

⁴<http://opendataphilly.org/>

{2, 3, 4}. For ZPI, we set the grid size to be 50×50 . For graph pretraining, we learn per-sequence graph embeddings with a graph auto-encoder (GAE) (Kipf & Welling, 2016) with graph attention network (GAT) (Veličković et al., 2017) encoder trained on each graph independently. Optimization uses Adam with a learning rate of 0.01 over 400 epochs. Evaluation metrics report spatial Euclidean distance and temporal RMSE on 3 runs with different random seeds.

Ablation studies.

Model	JPN Earthquake		COVID-19		311 Service		Theft	
	Spatial ↓	Temporal ↓	Spatial ↓	Temporal ↓	Spatial ↓	Temporal ↓	Spatial ↓	Temporal ↓
TEN-DM	6.649±0.041	0.371±0.003	0.391±0.001	0.087±0.001	0.0547±0.0002	0.792±0.026	0.0700±0.0001	0.363±0.017
W/o Graph	6.665±0.054	0.372±0.000	0.392±0.000	0.088±0.001	0.0547±0.0003	0.798±0.004	0.0701±0.0001	0.391±0.015
W/o TQ-SA	6.663±0.031	0.373±0.001	0.396±0.004	0.088±0.000	0.0548±0.0001	0.807±0.009	0.0702±0.0001	0.374±0.020
W/o TTL	6.663±0.027	0.372±0.000	0.405±0.003	0.091±0.001	0.0549±0.0002	0.816±0.004	0.0701±0.0001	0.425±0.001

Computational complexity. The computational complexity of GNN with l layers is $\mathcal{O}(\xi |\mathcal{E}| \sum_{i=1}^l d_i)$ where ξ denotes the total number of gradient descent. The computational complexity of cubical zigzag persistence for connected components and is $\mathcal{O}(U \log^2 n + U \log U)$ and $\mathcal{O}(U \log^2 n + U \log U + n \log n)$ where $U = \sum_{t=1}^T \Delta_t$, n denotes pixels per frame, and T is the number of frames. As shown in Table 3, we also report the running time (training time per epoch) of our TEN-DM model on all 5 datasets.

Table 3: Running time (in seconds (s)) per epoch.

Model	JPN Earthquake	COVID-19	US Earthquake	Theft	311 Service
TEN-DM	14.096	22.873	1.846	5.982	4.570

B PROOFS

Proof of Theorem 3.2.

Proof: The bound $\|m^{(i)} - \tilde{m}^{(i)}\|_\infty \leq \varepsilon$ implies, for every i and α ,

$$\mathcal{H}_\alpha^{(i)} \hookrightarrow \tilde{\mathcal{H}}_{\alpha+\varepsilon}^{(i)}, \quad \tilde{\mathcal{H}}_\alpha^{(i)} \hookrightarrow \mathcal{H}_{\alpha+\varepsilon}^{(i)},$$

and likewise for bridge nodes: $\mathcal{H}_\alpha^{(i,i+1)} \hookrightarrow \tilde{\mathcal{H}}_{\alpha+\varepsilon}^{(i,i+1)}$ and the reverse inclusion with tildes and non-tildes swapped. Objectwise, these inclusions assemble into morphisms of zigzags

$$I_\alpha : X_\alpha \rightarrow \tilde{X}_{\alpha+\varepsilon}, \quad J_\alpha : \tilde{X}_\alpha \rightarrow X_{\alpha+\varepsilon},$$

which commute with all internal arrows. Moreover, on each node,

$$\tilde{\mathcal{H}}_\alpha \hookrightarrow \mathcal{H}_{\alpha+\varepsilon} \hookrightarrow \tilde{\mathcal{H}}_{\alpha+2\varepsilon}, \quad \mathcal{H}_\alpha \hookrightarrow \tilde{\mathcal{H}}_{\alpha+\varepsilon} \hookrightarrow \mathcal{H}_{\alpha+2\varepsilon},$$

so $(\text{sh}_\varepsilon I)_\alpha \circ J_\alpha = \tilde{\iota}_\alpha$ and $(\text{sh}_\varepsilon J)_\alpha \circ I_\alpha = \iota_\alpha$, the canonical 2ε -shift inclusions of zigzags. Applying $H_p(-; \mathbb{k})$ yields natural transformations

$$\Phi_\alpha = H_p(I_\alpha) : V_\alpha \rightarrow \tilde{V}_{\alpha+\varepsilon}, \quad \Psi_\alpha = H_p(J_\alpha) : \tilde{V}_\alpha \rightarrow V_{\alpha+\varepsilon},$$

satisfying $(\text{sh}_\varepsilon \Phi)_\alpha \circ \Psi_\alpha = \tilde{\eta}_\alpha$ and $(\text{sh}_\varepsilon \Psi)_\alpha \circ \Phi_\alpha = \eta_\alpha$. Hence V and \tilde{V} are ε -interleaved, so $d_I(V, \tilde{V}) \leq \varepsilon$. Since Ω is finite, the modules are pointwise finite-dimensional and constructible; algebraic stability for zigzag persistence then gives $d_B(\text{ZPD}_p(V), \text{ZPD}_p(\tilde{V})) \leq d_I(V, \tilde{V}) \leq \varepsilon$. ■

Theorem B.1 (Lipschitz bound for topology-guided multi-head attention) *Let \tilde{z} be topology embeddings and \tilde{r} be concatenated spatial, temporal, and graph embeddings. Consider a single multi-head attention block with h heads,*

$$\text{TST-MHA}(\tilde{z}, \tilde{r}) = \bigoplus_h \left(\text{Softmax} \left(\frac{\mathbf{Q}_h(\tilde{z}) \mathbf{K}_h(\tilde{r})^\top}{\sqrt{d_k}} \right) \mathbf{V}_h(\tilde{r}) \right) \mathbf{W}^O,$$

864 where $\mathbf{Q}_h, \mathbf{K}_h, \mathbf{V}_h, \mathbf{W}^O$ are linear maps with operator norms bounded by M_Q, M_K, M_V, M_O ,
 865 and logits are uniformly bounded by B (e.g., via clipping or LayerNorm). Then the map $(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) \mapsto$
 866 TST-MHA($\tilde{\mathbf{z}}, \tilde{\mathbf{r}}$) is jointly Lipschitz:

$$868 \quad \|\text{TST-MHA}(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) - \text{TST-MHA}(\tilde{\mathbf{z}}', \tilde{\mathbf{r}}')\|_F \leq \mathcal{L} (\|\tilde{\mathbf{z}} - \tilde{\mathbf{z}}'\|_F + \|\tilde{\mathbf{r}} - \tilde{\mathbf{r}}'\|_F),$$

869 with $\mathcal{L} = c(h, B) M_O (M_Q + M_K + M_V)$ for an explicit $c(h, B)$ depending only on the number
 870 of heads and the softmax Lipschitz constant on a B -bounded domain.

872 *Proof:* For head $h \in \{1, \dots, H\}$ define

$$874 \quad \mathbf{L}_h(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) = \frac{\mathbf{Q}_h(\tilde{\mathbf{z}}) \mathbf{K}_h(\tilde{\mathbf{r}})^\top}{\sqrt{d_k}}, \quad \mathbf{S}_h(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) = \text{Softmax}(\mathbf{L}_h(\tilde{\mathbf{z}}, \tilde{\mathbf{r}})), \quad \mathbf{P}_h(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) = \mathbf{S}_h(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) \mathbf{V}_h(\tilde{\mathbf{r}}).$$

876 Then $\text{TST-MHA}(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) = (\oplus_{h=1}^H \mathbf{P}_h(\tilde{\mathbf{z}}, \tilde{\mathbf{r}})) \mathbf{W}^O$. Let $\mathbf{S}'_h = \mathbf{S}_h(\tilde{\mathbf{z}}', \tilde{\mathbf{r}}')$, $\mathbf{P}'_h = \mathbf{P}_h(\tilde{\mathbf{z}}', \tilde{\mathbf{r}}')$. By
 877 addition/subtraction,

$$879 \quad \mathbf{P}_h - \mathbf{P}'_h = (\mathbf{S}_h - \mathbf{S}'_h) \mathbf{V}_h(r') + \mathbf{S}_h(\mathbf{V}_h(r) - \mathbf{V}_h(r')).$$

881 Assume the logits are uniformly bounded, i.e., $\|\mathbf{L}_h(\tilde{\mathbf{z}}, \tilde{\mathbf{r}})\|_\infty, \|\mathbf{L}_h(\tilde{\mathbf{z}}', \tilde{\mathbf{r}}')\|_\infty \leq B$ (e.g., via Layer-
 882 Norm/clipping). The row-wise softmax is Lipschitz on this B -bounded set: for some $\mathcal{L}_{\text{soft}}(B) > 0$,

$$884 \quad \|\mathbf{S}_h - \mathbf{S}'_h\|_F \leq \mathcal{L}_{\text{soft}}(B) \|\mathbf{L}_h(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) - \mathbf{L}_h(\tilde{\mathbf{z}}', \tilde{\mathbf{r}}')\|_F.$$

885 Moreover each \mathbf{S}_h is row-stochastic with entries controlled by B , hence $\|\mathbf{S}_h\|_2 \leq C_S(B)$ for some
 886 $C_S(B)$.

888 With operator-norm bounds $\|\mathbf{Q}_h\|_{\text{op}} \leq M_Q, \|\mathbf{K}_h\|_{\text{op}} \leq M_K, \|\mathbf{V}_h\|_{\text{op}} \leq M_V$ and submultiplicativity,
 889

$$890 \quad \|\mathbf{L}_h(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) - \mathbf{L}_h(\tilde{\mathbf{z}}', \tilde{\mathbf{r}}')\|_F \leq \frac{M_Q M_K}{\sqrt{d_k}} (\|\tilde{\mathbf{z}} - \tilde{\mathbf{z}}'\|_F + \|\tilde{\mathbf{r}} - \tilde{\mathbf{r}}'\|_F), \quad \|\mathbf{V}_h(\tilde{\mathbf{r}}) - \mathbf{V}_h(\tilde{\mathbf{r}}')\|_F \leq M_V \|\tilde{\mathbf{r}} - \tilde{\mathbf{r}}'\|_F.$$

893 Also $\|\mathbf{V}_h(\tilde{\mathbf{r}}')\|_2 \leq c(B) M_V$ for a harmless constant $c(B)$ (absorbing input-norm control due to
 894 normalization).

895 Applying these bounds to $\mathbf{P}_h - \mathbf{P}'_h = (\mathbf{S}_h - \mathbf{S}'_h) \mathbf{V}_h(\tilde{\mathbf{r}}') + \mathbf{S}_h(\mathbf{V}_h(\tilde{\mathbf{r}}) - \mathbf{V}_h(\tilde{\mathbf{r}}'))$,

$$896 \quad \begin{aligned} \|\mathbf{P}_h - \mathbf{P}'_h\|_F &\leq \|\mathbf{S}_h - \mathbf{S}'_h\|_F \|\mathbf{V}_h(\tilde{\mathbf{r}}')\|_2 + \|\mathbf{S}_h\|_2 \|\mathbf{V}_h(\tilde{\mathbf{r}}) - \mathbf{V}_h(\tilde{\mathbf{r}}')\|_F \\ &\leq c(B) M_V \mathcal{L}_{\text{soft}}(B) \frac{M_Q M_K}{\sqrt{d_k}} (\|\tilde{\mathbf{z}} - \tilde{\mathbf{z}}'\|_F + \|\tilde{\mathbf{r}} - \tilde{\mathbf{r}}'\|_F) + C_S(B) M_V \|\tilde{\mathbf{r}} - \tilde{\mathbf{r}}'\|_F. \end{aligned}$$

900 Hence, for a constant $c_1(B)$ depending only on B ,

$$902 \quad \|\mathbf{P}_h - \mathbf{P}'_h\|_F \leq c_1(B) (M_Q M_K M_V + M_V) (\|\tilde{\mathbf{z}} - \tilde{\mathbf{z}}'\|_F + \|\tilde{\mathbf{r}} - \tilde{\mathbf{r}}'\|_F).$$

905 Concatenation across heads gives

$$906 \quad \left\| \bigoplus_{h=1}^H (\mathbf{P}_h - \mathbf{P}'_h) \right\|_F \leq \sqrt{H} \max_h \|\mathbf{P}_h - \mathbf{P}'_h\|_F \leq \sqrt{H} c_1(B) (M_Q M_K M_V + M_V) (\|\tilde{\mathbf{z}} - \tilde{\mathbf{z}}'\|_F + \|\tilde{\mathbf{r}} - \tilde{\mathbf{r}}'\|_F).$$

909 Finally, multiplying by \mathbf{W}^O with $\|\mathbf{W}^O\|_{\text{op}} \leq M_O$,

$$910 \quad \|\text{TST-MHA}(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) - \text{TST-MHA}(\tilde{\mathbf{z}}', \tilde{\mathbf{r}}')\|_F \leq M_O \sqrt{H} c_1(B) (M_Q M_K M_V + M_V) (\|\tilde{\mathbf{z}} - \tilde{\mathbf{z}}'\|_F + \|\tilde{\mathbf{r}} - \tilde{\mathbf{r}}'\|_F).$$

912 Using AM-GM to bound $M_Q M_K M_V \leq C (M_Q + M_K + M_V)$ and absorbing numeric factors into
 913 $c(H, B) = \sqrt{H} c_1(B) C$ yields the stated form

$$915 \quad \|\text{TST-MHA}(\tilde{\mathbf{z}}, \tilde{\mathbf{r}}) - \text{TST-MHA}(\tilde{\mathbf{z}}', \tilde{\mathbf{r}}')\|_F \leq c(H, B) M_O (M_Q + M_K + M_V) (\|\tilde{\mathbf{z}} - \tilde{\mathbf{z}}'\|_F + \|\tilde{\mathbf{r}} - \tilde{\mathbf{r}}'\|_F).$$

917

■

918 C ADDITIONAL EXPERIMENTS AND RUNNING TIME
919
920
921
922923 C.1 ADDITIONAL EXPERIMENTS ON NEW DATASETS
924

925 We have also run additional experiments on human mobility (during natural disasters) data (Wang
926 & Taylor, 2016), wildfire data (Mathur et al., 2025), and Twitter data (i.e., geo-tagged Tweets from
927 the United States from January 12 to 18, 2013)). As Table 4 shows, TEN-DM outperforms DSTPP
928 (the next best competitor) on both spatial and temporal dimensions but the gains vary with respect to
929 the dimension and type of the data. In particular, for the spatial dimension on mobility and wildfire
930 datasets, TEN-DM achieves more substantial gains, including significant results on the mobility
931 data (p -value ≈ 0.09 ; with *), while the difference between TEN-DM and DSTPP on the temporal
932 dimension is negligible. In turn, on the twitter data, TEN-DM outperforms DSTPP with a highly
933 statistically significant gain (p -value ≈ 0.001 ; with ***), and yield similar performance on the spatial
934 dimension. These phenomena suggest that TEN-DM captures some inherent latent higher-order
935 structural properties of STTPs that its non-topological competitors such as DSTPP cannot.

936 Table 4: Performance evaluation for predicting both time and space of the next event on human
937 mobility, wildfire, and Twitter datasets.

Model	Human Mobility		Wildfire		Twitter	
	Spatial ↓	Temporal ↓	Spatial ↓	Temporal ↓	Spatial ↓	Temporal ↓
DSTPP	5.7830 ± 0.3163	1.0149 ± 0.0030	11.4241 ± 0.0232	0.3602 ± 0.0004	0.0761 ± 0.0001	0.7102 ± 0.0153
TEN-DM	$5.5592 \pm 0.1387^*$	1.0130 ± 0.0138	11.4084 ± 0.0383	0.3600 ± 0.0001	0.0760 ± 0.0001	$0.6774 \pm 0.0091^{***}$

941 C.2 ADDITIONAL ABLATION STUDIES
942
943

944 We have conducted an additional ablation study on Theft data (Table 5 below). We observe that
945 removing GNN pre-training/temporal query-guided self-attention mechanism (TQ-SA)/temporal
946 topological learning (TTL) causes performance degradation in both spatial and temporal dimen-
947 sions. Specifically, on the temporal dimension, compared to without GNN pre-training or TTL, the
948 performance degradation is statistically significant (*).
949

950 Table 5: Additional ablation study on Theft data.
951

Model	Theft	
	Spatial ↓	Temporal ↓
TEN-DM	0.0700 ± 0.0001	0.363 ± 0.017
W/o Graph	0.0701 ± 0.0001	$*0.391 \pm 0.015$
W/o TQ-SA	0.0702 ± 0.0001	0.374 ± 0.020
W/o TTL	0.0701 ± 0.0001	$*0.425 \pm 0.001$

952 To evaluate the sensitivity of topological hyperparameters, including filtration resolution, patch
953 size, and zigzag directionality, we conducted additional ablation experiments using the 311 service
954 dataset. As Table 6 shows, replacing the original zigzag persistence configuration with an alternative
955 filtration resolution (using a smaller step increment), patch size (using the doubled the original patch
956 size), zigzag direction (using the reverse time direction), and weighted multi-scale ZIP fusion yields
957 only marginal performance changes across both temporal and spatial predictions: 0.7920 ± 0.026
958 vs. 0.7928 ± 0.0091 or 0.0547 ± 0.0002 vs. 0.0549 ± 0.0002 . These results demonstrate that
959 TEN-DM is robust to variations in topological hyperparameters, and the overall improvements from
960 these modifications are extremely small. This also suggests that our model’s performance tends to
961 be **not sensitive** to the specific choices of topological settings, which makes it particularly attractive
962 for limited data availability or sparse data regimes.

963 We have also conducted additional experiments comparing the TEN-DM model using zigzag per-
964 sistence versus using standard persistent homology (PH) on the 311 service dataset. We found that
965

972
973 Table 6: Additional ablation study on topological hyperparameters.
974
975

Model	311 Service	
	Spatial ↓	Temporal ↓
TEN-DM (original)	0.0547±0.0002	0.7920±0.0260
TEN-DM with New Filtration Resolution	0.0548±0.0002	0.7928±0.0091
TEN-DM with New Patch Size	0.0549±0.0002	0.8040±0.0072
TEN-DM with Another Zigzag Directionality	0.0546±0.0002	0.7990±0.0750
TEN-DM with Weighted ZPI	0.0547±0.0001	0.8029±0.0014

981
982 TEN-DM with ZP (i.e., 0.793 ± 0.026 on the temporal dimension) outperforms TEN-DM with ordinary PH (i.e., 0.800 ± 0.008 on the temporal dimension), which can be intuitively expected. Indeed,
983 while both ZP and PH distill inherent higher-order properties of the underlying data generating
984 STPP, ZP captures the most essential topological properties along the temporal dimension.
985

986 On the spatial resolution, the optimal spatial resolution can be found by the cross-validation. Tables 7
987 shows spatio-temporal prediction performance comparison between 256×256 tiles (i.e., TEN-DM)
988 and 64×64 tiles (i.e., TEN-DM with new resolution). Overall, we have found that the results are
989 stable with respect to the considered resolutions, which indicates the overall robustness of TEN-DM.
990

991
992 Table 7: Additional ablation study on the spatial resolution.
993

Model	311 Service	
	Spatial ↓	Temporal ↓
TEN-DM (original)	0.0547±0.0002	0.7920±0.0260
TEN-DM with New Resolution	0.0548±0.0002	0.8082±0.0087

1000
1001 C.3 SENSITIVE ANALYSIS

1002 In the datasets we consider, we have 0.04% of such events in the 311 Service and 0 such events in
1003 JPN Earthquake, US Earthquake, and COVID-19. The model performance for the 311 data with
1004 or without the restriction on no duplicate events is essentially the same, while the standard errors
1005 become smaller (see Table 8 below).
1006
1007

1008 Table 8: Additional experiments on 311 service data (with and without duplicated events).
1009

Model	311 Service	
	Spatial ↓	Temporal ↓
TEN-DM w/o Duplicated Events	0.0547±0.0001	0.7920±0.013
TEN-DM	0.0547±0.0002	0.7920±0.026

1013 To find the threshold ϵ , we use the standard cross-validation argument. In the considered case studies,
1014 we have found that our results are overall stable with respect to the selected ϵ (see Table 9 with
1015 ϵ over the set $[0.1, 0.2, 0.3, 0.4, 0.5]$). However, we agree with the Reviewer that it may be a prob-
1016 lem in general. Following the line of research on information criteria, we also suggest to consider
1017 a tradeoff between the model performance and network sparsity during the cross-validation, with a
1018 penalty associated for the increased computational costs. Alternatively, optimal ϵ can be selected
1019 as Bayesian prior (i.e., “expert knowledge”). Furthermore, the aggregation weights α_r can be con-
1020 figured as fixed hyperparameters or optimized as trainable parameters during model training. The
1021 weights α_r will be updated adaptively, when treated as learnable parameters. We have conducted
1022 new experiments by adding an adjacency matrix with another threshold ϵ and set α_r to be trainable.
1023 The results on the 311 data (Table 9) indicate that adding an additional adjacency matrix and setting
1024 α_r to be trainable can improve prediction performance in the temporal dimension. In the spatial
1025 dimension, the updated model’s performance is a bit worse than the previous version, however, it is
still better than other baselines.

1026

1027

Table 9: Additional experiments on 311 service data with different ϵ .

1028

1029

1030

1031

1032

1033

1034

1035

1036

To explore this hypothesis of our TEN-DM, i.e., useful under the conditions of noisy, we randomly select 5% of the latitude and longitude coordinate pairs in the test set of the 311 service data and perturb them by adding Gaussian noise (with $\mu = 0$ and $\sigma = 0.01$). As Table 10 demonstrates, our TEN-DM outperforms DSTPP on both spatial and temporal dimensions. Specifically, on the temporal dimension, TEN-DM achieves statistically significant performance (with p -value ≈ 0.02). In fact, this is not surprising as TEN-DM is equipped with the most essential higher order properties distilled via ZP.

1044

1045

Table 10: Robustness analysis on 311 service data.

1046

1047

1048

1049

1050

1051

1052

C.4 RUNNING TIME OF ZPI GENERATION

1053

1054

Remark C.1 (Running Time of ZPI Generation). We generated the ZPI representations offline on a local CPU machine (Apple M4 Pro with 24GB memory). For instance, when working on images with a resolution of 20×20 and sequence length of 1, the average processing time of 0.00040 seconds per event. When the sequence length increases to 5 (with the same resolution), the average processing time of 0.00046 seconds per event. For images with a resolution of 50×50 and sequence length of 1, the average processing time of 0.0013 seconds per event.

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079