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Abstract

Prompting-based conversational query reformu-001
lation has emerged as a powerful approach for002
conversational search, refining ambiguous user003
queries into standalone search queries. Best-004
of-N reformulation over the generated candi-005
dates via prompting shows impressive potential006
scaling capability. However, both the previ-007
ous tuning methods (training time) and adap-008
tation approaches (test time) can not fully un-009
leash their benefits. In this paper, we propose010
AdaRewriter, a novel framework for query re-011
formulation using an outcome-supervised re-012
ward model via test-time adaptation. By train-013
ing a lightweight reward model with contrastive014
ranking loss, AdaRewriter selects the most015
promising reformulation during inference. No-016
tably, it can operate effectively in black-box017
systems, including commercial LLM APIs. Ex-018
periments on five conversational search datasets019
show that AdaRewriter significantly outper-020
forms the existing methods across most set-021
tings, demonstrating the potential of test-time022
adaptation for conversational query reformula-023
tion.1024

1 Introduction025

The rapid advancement of Large Language Models026

(LLMs) has driven significant innovations in infor-027

mation retrieval (Zhao et al., 2023). Notably, con-028

versational AI search engines (e.g., Perplexity029

and SearchGPT) have attracted considerable atten-030

tion due to their potential to shape the next genera-031

tion of information retrieval (Mo et al., 2024b).032

A fundamental challenge of conversational033

search is understanding user intent by consider-034

ing the historical context and the current query, as035

user inputs are often vague, ambiguous, or incom-036

plete (Gao et al., 2023; Mo et al., 2024b). Two037

types of approaches have been proposed to tackle038

1The code are available in https://anonymous.4open.
science/r/AdaRewriter-anonymous-3177/
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Figure 1: Comparison of training time and test-
time adaptation strategies on the TopiOCQA using
LLaMA3.1-8B. Best-of-N (Oracle) refers to prompting
the model N times and selecting the best-performing
reformulation result.

this challenge: (1) Conversation dense retrieval in- 039

volves training a dense encoder to generate con- 040

versational session embeddings (Lin et al., 2021b; 041

Mo et al., 2023b, 2024c; Mao et al., 2024). How- 042

ever, it can not be compatible with sparse re- 043

trieval systems like BM25 and may suffer from 044

limited interpretability (Cheng et al., 2024). (2) 045

Conversational query reformulation is explored to 046

derive the user’s search intent by turning the conver- 047

sational context and current query into a standalone 048

query. With the advancement of LLMs, prompting- 049

based query reformulation has emerged as a pow- 050

erful way (Mao et al., 2023b; Ye et al., 2023; Mo 051

et al., 2024a). Previous studies have demonstrated 052

the strong capability of the reformulation candi- 053

dates generated through prompting, which have 054

impressive potential scaling capability (Mo et al., 055

2024a; Lai et al., 2025). 056

As illustrated in Figure 1, Best-of-N prompting- 057

based reformulation demonstrates strong scala- 058

bility. However, simply supervised fine-tuning 059

on the best reformulation at the training time 060

has not yielded consistent performance gains, as 061

described in Sec 4.4. Another approach is to 062

1

https://anonymous.4open.science/r/AdaRewriter-anonymous-3177/
https://anonymous.4open.science/r/AdaRewriter-anonymous-3177/


scale up during test time, leveraging increased063

computational resources to enhance model perfor-064

mance (Snell et al., 2024). Mao et al. (2023b)065

investigate mean aggregation and self-consistency066

strategy (Wang et al., 2023) during test time; they067

still exhibit a significant gap from the upper bound,068

as shown in Figure 1. This suggests the potential069

of test-time scaling has yet to be fully realized.070

Based on these empirical observations, a natural071

question arises: How to design the appropriate072

test-time scaling paradigm to unleash the power073

of prompting-based query reformulation?074

In this work, we introduce AdaRewriter, lever-075

aging an outcome-supervised reward model to un-076

leash the power of prompting-based conversational077

query reformulation. Inspired by the effectiveness078

of the reward model at test time (Uesato et al.,079

2022; Shi et al., 2024), a lightweight, BERT-sized080

reward model is proposed and trained using a con-081

trastive ranking loss as the reward of reformulation082

in CQR is implicit. During the inference stage,083

it serves as a scoring function to select the most084

promising reformulation. It should be pointed085

out that AdaRewriter can be seamlessly applied086

in black-box conversational search systems, partic-087

ularly those utilizing commercial LLMs via API088

services.089

AdaRewriter achieves excellent performance090

on five widely used conversation search datasets,091

including TopiOCQA (Adlakha et al., 2022),092

QReCC (Anantha et al., 2021), and TREC CAsT093

2019, 2020 & 2021 (Dalton et al., 2020, 2021,094

2022). Extensive experiments and analytical evalu-095

ations validate the effectiveness and robustness of096

AdaRewriter.097

The contributions of this paper are threefold:098

• To the best of our knowledge, we are the first099

to uncover and analyze the prompting-based100

query reformulation at test time under the101

Best-of-N paradigm.102

• We propose AdaRewriter, a framework to103

unleash the power of prompting-based con-104

versational query reformulation through an105

outcome-supervised reward model.106

• Extensive experiments on several bench-107

mark datasets demonstrate our proposed108

AdaRewriter outperforms existing methods109

across most settings, establishing its superior-110

ity in performance.111

2 Preliminaries 112

2.1 Task Formulation 113

Conversational search systems aim to satisfy users’ 114

information-seeking needs in a multi-turn conver- 115

sational form (Gao et al., 2023; Mo et al., 2024b). 116

Formally, given the current query qk and historical 117

context Hk−1 = {qi, ri}k−1
i=1 , the objective of these 118

systems is to generate responses using the passages 119

set Pk retrieved by an off-the-shelf retrieval system, 120

where k is the k-th turn of a conversation2. 121

The conversational query reformulation task clar- 122

ifies user intent by transforming the current query q 123

and historical context H into a standalone query 124

S. Recent advancements in LLMs have made 125

prompting-based CQR a promising approach, of- 126

fering simplicity and superior performance. In this 127

method, the reformulated query q̂ and the pseudo- 128

response r̂ are generated by LLM based on the task 129

instructions I and few-shots examples D, where 130

each example consists of the whole conversation 131

history and human-written turn-level query refor- 132

mulation: 133

{q̂, r̂} = LLM(I,D, {q,H}) (1) 134

2.2 Potential of Best-of-N in CQR 135

Oracle We concatenate the reformulated query 136

q̂ with the pseudo-response r̂ to form the reformu- 137

lation query S = q̂ ⊕ r̂, representing the user’s 138

search intent (Mo et al., 2023a). To fully explore 139

the potential of multiple candidates, we generate 140

a set of reformulation queries {S1, . . . ,SN} and 141

evaluate them using the Best-of-N paradigm, aim- 142

ing to investigate the upper bound performance 143

based on gold passage labels. Figure 1 presents our 144

preliminary results, indicating that the number of 145

candidates improves performance. 146

Training Time Fine-tuning Supervised fine- 147

tuning(SFT) with the best-performing oracle re- 148

formulation via rejection sampling is a straightfor- 149

ward approach to further enhance the performance 150

of prompting-based query reformulation. However, 151

it does not consistently lead to performance gains 152

based on our practices, as shown in Sec 4.4. 153

Test Time Adaptation Previous work (Mao 154

et al., 2023b) proposes a simple yet effective 155

method that generates multiple candidates query- 156

response pairs {q̂1, r̂1}, {q̂2, r̂2}, . . . , {q̂N , r̂N} 157

2For sake of convenience, we omit the superscript k in the
following sections.
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Figure 2: Overview of AdaRewriter.

and obtain the aggregated representation s in em-158

bedding space. Subsequently, the aggregated rep-159

resentation s, treated as the standalone query S,160

is utilized in dense retrieval systems to retrieve161

relevant passages. However, this method and self-162

consistency do not consistently lead to performance163

gains as the number of candidates increases, as164

shown in Figure 1.165

This motivates us to investigate prompting-based166

query reformulation further from the Best-of-N167

perspective. Building on these insights and re-168

cent advancements in test-time scaling, we pro-169

pose AdaRewriter, which leverages an outcome-170

supervised reward model to unleash the full poten-171

tial of prompting-based query reformulation.172

3 Methodology173

To uncover the potential of prompting-based query174

reformulation under the Best-of-N paradigm, we175

propose AdaRewriter as presented in Figure 2.176

Specifically, we leveraged a vanilla LLM to gener-177

ate reformulation candidates and construct implicit178

reward signals to train the reward model based on179

end-to-end performance assessment, as detailed180

in §3.1. §3.2 introduces the improved prompting-181

based query reformulation approach under the Best-182

of-N paradigm during inference.183

3.1 Reward Model Training184

Constrative Ranking Loss Unlike traditional185

outcome-based methods that rely on binary clas-186

sification labels, training a reward model for con-187

versational query reformulation is non-trivial due188

to the absence of binary evaluation metrics in con-189

versational search reformulation3. Without explicit190

3We considered from end-to-end retrieval performance, as
human-written labels are labor-intensive to collect and not
always lead to the best performance.

reward, we leverage contrastive ranking loss, which 191

is well-suited for tasks where relative ordering sig- 192

nals are much easier to obtain (Liu and Liu, 2021; 193

Chuang et al., 2023). Specifically, the loss func- 194

tion targets to assign higher scores to top-ranked 195

reformulations and lower scores to bottom-ranked 196

ones: 197

L =
n∑

i=1

∑
j>i

max(0, rj − ri + (j − i)× λ) (2) 198

where ri is the score of candidate reformulation Si 199

with rank i assigned by the trained reward model, 200

λ is a hyperparameter controls the margin between 201

the candidates. Despite the lack of explicit la- 202

bels, this loss function can effectively optimize 203

the model to distinguish the most promising re- 204

formulation S based on the assigned score among 205

candidate reformulations. 206

Candidates Generation To construct candi- 207

date reformulations {S1,S2, · · · ,Sn} described in 208

Eq. (2), an vanilla LLM is employed, which gen- 209

erate multiple candidtates {S(1), S(2), · · · ,S(n)} 210

conditioned on a conversational session {q,H}. 211

The generation process is guided by instructions I 212

and few-shot examples D: 213

{S(1), S(2), · · · ,S(n)} = LLM(I,D, {q,H})
(3) 214

Ranking Assessment To rank the candidates, we 215

utilize an end-to-end scoring function that com- 216

bines multiple factors into a fusion score (Cormack 217

et al., 2009; Lai et al., 2025): 218

M(S(i)) =
1

rs(S(i), p)
+

1

rd(S(i), p)
(4) 219

where rs(S(i), p) denotes the corresponding rank 220

with the gold passage p giving query S(i) in a dense 221
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retrieval system, and rs(S(i), p) represents the rank222

in a sparse retrieval system. The candidate refor-223

mulation S(i) is subsequently assigned a rank j224

based on its performance according to the metric in225

Eq. (4), with higher ranks corresponding to better226

performance.227

Therefore, the trained outcome-supervised re-228

ward model gθ based on a BERT-sized model can229

be trained by the contrastive ranking Loss. It can230

assess the quality of query S generated by LLM231

conditioned on a conversational session {q,H} and232

return a score r:233

r = gθ(S, {q,H}) (5)234

3.2 Best-of-N Inference235

Leveraging the outcome-supervised reward model236

gθ, our framework functions as a plug-and-play237

module to enhance prompting-based CQR during238

inference, adhering to the Best-of-N paradigm. Ow-239

ing to test-time scalability, this module can be seam-240

lessly integrated into a wide range of conversational241

search systems, regardless of whether the under-242

lying large language model is deployed locally or243

accessed through commercial API services.244

Specifically, given a conversational session245

{q,H}, the LLM generates multiple reformulation246

candidates {S(1), S(2), · · · ,S(N)}, as described in247

Eq. (3), where N is the budget parameter that is248

adjustable during inference. The reward model249

gθ then assigns scores to each candidate, and the250

highest-scoring candidate is selected as the most251

promising reformulation S:252

S ← S(k), k = argmax
j=1,··· ,N

gθ(S(j), {q,H}) (6)253

The selected reformulation S is subsequently254

treated as the refined representation of the user’s in-255

tent, leveraging the enhanced reasoning capabilities256

unlocked by our framework. The reformulation is257

then used to retrieve relevant passages, thereby im-258

proving the performance of conversational search259

systems.260

4 Experiments261

Datasets & Evaluation Metrics The train-262

ing data for the outcome-supervised reward model263

is derived from two widely used conversational264

search datasets: TopiOCQA (Adlakha et al., 2022)265

and QReCC (Anantha et al., 2021). For evaluation,266

we use the test sets of TopiOCQA and QReCC.267

Additionally, to assess the zero-shot reformulation268

performance of our method, we conduct experi- 269

ments on the TREC CAsT 2019, 2020, and 2021 270

datasets (Dalton et al., 2020, 2021, 2022). To 271

evaluate the reformulation results, we adopt four 272

standard metrics from information retrieval: MRR, 273

NDCG@3, and Recall@10, which align with pre- 274

vious studies (Dalton et al., 2021; Yu et al., 2021; 275

Mo et al., 2023a). Metric computation uses the 276

pytrec_eval tool (Van Gysel and de Rijke, 2018). 277

Further details about the datasets can be found in 278

the Appendix B.1. 279

Implementation Details In our prompting-based 280

conversational query reformulation approach, we 281

adopt the prompt used in Mao et al. (2023b), 282

specifically the "rewrite-and-response" setting with 283

chain-of-thought, which represents the most ad- 284

vanced configuration. For the backbone selection in 285

Sec 3.1, we utilize Llama2-7B and Llama3.1-8B 286

with a candidate size of N = 16 and a temper- 287

ature setting of 0.7, in line with previous stud- 288

ies (Mao et al., 2023b; Mo et al., 2024a). The 289

outcome-supervised reward model is based on a 290

lightweight BERT variant, deberta-v3-base. For 291

retrieval, we employ BM25 (Robertson et al., 2009) 292

for sparse retrieval and ANCE (Xiong et al., 2020) 293

for dense retrieval, consistent with prior work (Mo 294

et al., 2023a; Mao et al., 2023b). The margin param- 295

eter λ in Eq. (2) is set to 0.1, determined through 296

grid search. Further details about the implementa- 297

tion can be found in the Appendix B.2. 298

4.1 Baselines 299

We conducted the primary experiments utiliz- 300

ing open-source large language models (LLMs) 301

Llama2-7B and Llama3.1-8B to demonstrate the 302

effectiveness of AdaRewriter. 303

Our approach is compared with various conversa- 304

tional query reformulation frameworks, which can 305

be categorized into fine-tuning and prompting- 306

based methods. The fine-tuning-based meth- 307

ods include T5QR (Lin et al., 2020), CON- 308

QRR (Wu et al., 2022), EDIRCS (Mao et al., 309

2023a), ConvGQR (Mo et al., 2023a), Iter- 310

CQR (Jang et al., 2024), RetPO (Yoon et al., 311

2024), and AdaCQR (Lai et al., 2025), while 312

the prompting-based methods comprise LLM- 313

Aided (Ye et al., 2023), CHIQ (Mo et al., 2024a), 314

and LLM4CS (Mao et al., 2023b). Following Mo 315

et al. (2024a), we also compare with the framework 316

that fine-tuned LLM-based retrievers, including 317

RepLLama (Ma et al., 2024), E5-Mistral (Wang 318
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TopiOCQA QReCC
Type Framework Backbone MRR NDCG@3 R@10 MRR NDCG@3 R@10

Sp
ar

se
(B

M
25

)
T5QR T5-base 11.3 9.8 22.1 33.4 30.2 53.8
CONQRR T5-base - - - 38.3 - 60.1
EDIRCS T5-base - - - 41.2 - 62.7
ConvGQR T5-base 12.4 10.7 23.8 44.1 41.0 64.4
IterCQR T5-base 16.5 14.9 29.3 46.7 44.1 64.4
AdaCQR T5-base 17.8 15.8 34.1 52.4 49.9 70.9
RETPO Llama2-7B 28.3 26.5 48.3 50.0 47.3 69.5
AdaCQR+Expansion Llama2-7B∗ 28.3 26.5 48.9 55.1 52.5 76.5

LLM-Aided GPT3.5-Turbo - - - 49.4 46.5 67.1
CHIQ-AD Llama2-7B 22.5 20.5 40.4 53.1 50.7 77.2
CHIQ-Fusion Llama2-7B∗ 25.6 23.5 44.7 54.3 51.9 78.5
LLM4CS Llama3.1-8B 24.5 22.6 42.1 49.7 46.9 73.8
AdaRewriter (N=5) Llama3.1-8B 28.2 26.2 48.3 54.0 51.3 77.4
AdaRewriter (N=16) Llama2-7B 27.8 25.9 47.6 55.2 52.8 78.0
AdaRewriter (N=16) Llama3.1-8B 30.7† 28.8† 51.3† 56.2† 53.8† 78.8†

D
en

se
(A

N
C

E
)

T5QR T5-base 23.0 22.2 37.6 34.5 31.8 53.1
CONQRR T5-base - - - 41.8 - 65.1
EDIRCS T5-base - - - 42.1 - 65.6
IterCQR T5-base 26.3 25.1 42.6 42.9 40.2 65.5
ConvGQR T5-base 25.6 24.3 41.8 42.0 39.1 63.5
AdaCQR T5-base 32.8 31.5 54.6 45.1 42.4 66.3
RETPO Llama2-7B 30.0 28.9 49.6 44.0 41.1 66.7
AdaCQR+Expansion Llama2-7B∗ 38.5 37.6 58.4 45.8 42.9 67.3

LLM-Aided GPT3.5-Turbo - - - 43.5 41.3 65.6
CHIQ-AD Llama2-7B 33.2 32.2 53.0 47.0 44.6 70.8
CHIQ-Fusion Llama2-7B∗ 38.0 37.0 61.6 47.2 44.2 70.7
LLM4CS(N=5) Llama3.1-8B 34.6 33.5 54.3 42.6 40.0 64.0
LLM4CS(N=16) Llama2-7B 33.5 33.1 53.0 43.0 40.5 64.8
LLM4CS(N=16) Llama3.1-8B 35.4 34.5 55.1 43.2 40.7 64.6
AdaRewriter (N=5) Llama3.1-8B 38.9 37.9 59.6 46.1 43.4 69.2
AdaRewriter (N=16) Llama2-7B 38.2 37.1 58.0 47.2 44.4 69.0
AdaRewriter (N=16) Llama3.1-8B 40.3† 39.7† 61.9† 47.5 44.7† 69.8

Table 1: Evaluation results of various retrieval system types on the QReCC and TopiOCQA. The best results among
all methods are bolded, and the second-best results are underlined. ∗ denotes including fused results from a trained
T5-based model. † denotes significant improvements with t-test at p < 0.05 over all compared baselines.

et al., 2024), and LLM-Embedder (Zhang et al.,319

2023). Additionally, we reproduce LLM4CS with320

the same LLM backbones of our method, using321

varying budget parameters N , to facilitate a fair322

and comprehensive comparison.323

The Appendix C presents comprehensive de-324

tails of all the baseline methods. We also include325

the comparison with the Conversational Dense Re-326

trieval(CDR) methods in Appendix A.3.327

4.2 Main Results328

We evaluate our method on two benchmarks,329

TopiOCQA and QReCC, under both sparse and330

dense retrieval settings. As shown in Table 1,331

AdaRewriter consistently outperforms baseline332

models across almost all scenarios.333

On TopiOCQA with sparse retrieval,334

AdaRewriter (N=16) achieves MRR of 30.7,335

significantly outperforming LLM4CS’s 24.5.336

In the dense setting (ANCE), it also surpasses337

LLM4CS with an MRR of 40.3 vs. 35.4. Perfor-338

mance further improves with larger candidate sets. 339

For example, on QReCC (sparse), MRR increases 340

from 54.0 (N=5) to 56.2 (N=16). This suggests 341

that AdaRewriter effectively utilizes candidate 342

reformulations, thereby enhancing the model’s 343

ability to select the most promising one. Similar 344

trends are observed on the Llama2-7B. 345

Overall, AdaRewriter demonstrates strong adapt- 346

ability to different retrieval conditions and bene- 347

fits from scaling the number of candidate reformu- 348

lations, offering an advantage in tasks requiring 349

broader data exploration. 350

4.3 Zero-shot Results 351

In the zero-shot experiments conducted on the 352

TREC CAsT 2019, 2020, and 2021 datasets, our 353

proposed AdaRewriter consistently outperforms ex- 354

isting baselines across various budget parameters 355

N , as shown in Table 2. 356

Specifically, AdaRewriter achieves significant 357

improvements on most metrics across all three 358
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CAsT-19 CAsT-20 CAsT-21
Framework Backbone NDCG@3 R@10 MRR NDCG@3 R@10 NDCG@3 R@10

T5QR T5-base 41.7 - 42.3 29.9 - 33.0 -
ConvGQR T5-base 43.4 - 46.5 33.1 - 27.3 -
RepLLama Llama2-7B 31.6 10.6 26.8 18.3 10.4 32.7 19.6
E5-Mistral Mistral2-7B 31.3 9.5 22.0 15.4 8.4 32.5 20.5
LLM-Embedder Llama2-7B 36.6 11.4 25.2 15.4 8.7 31.2 17.3
AdaCQR+Expansion Llama2-7B∗ 48.5 13.0 56.6 38.5 19.2 45.6 25.0

CHIQ-Fusion Llama2-7B∗ 50.5 12.9 54.0 38.0 19.3 46.5 25.2
LLM4CS (N=5) Llama3.1-8B 44.4 11.5 61.7 44.8 23.0 50.5 25.7
LLM4CS (N=10) Llama3.1-8B 45.5 11.9 61.9 46.0 23.2 51.5 25.8
AdaRewriter (N=5) Llama3.1-8B 46.6 12.6 62.0 45.6 22.6 49.5 26.5
AdaRewriter (N=10) Llama2-7B 48.0 12.7 59.3 44.5 20.2 47.7 25.9
AdaRewriter (N=10) Llama3.1-8B 48.3 13.0 63.0† 46.5† 21.6 49.7 27.2†

Table 2: Zero-shot experiment results on TREC CAsT 2019, 2020 & 2021 datasets. The best results among all
methods with similar settings are bolded, and the second-best results are underlined. ∗ denotes including fused
results from a trained T5-based model. † denotes significant improvements with t-test at p < 0.05 over all compared
baselines.

datasets. For CAsT 2021, AdaRewriter yields359

strong gains in R@10, although its NDCG@3 per-360

formance is slightly lower. Despite this, our frame-361

work continues to exhibit considerable strength and362

robustness, confirming its capability to excel in re-363

trieval performance and highlighting its robustness364

and adaptability across various datasets.365

4.4 Comparison with Training-time Tuning366

To fully investigate the benefit of test-time adap-367

tation, we compare our proposed AdaRewriter368

with two strong training-time baselines: supervised369

fine-tuning (SFT) and direct preference optimiza-370

tion(DPO) (Rafailov et al., 2023). All methods371

generate N = 16 candidate reformulations on the372

TopiOCQA dataset for a fair comparison. SFT373

employs rejection sampling by selecting the best-374

performing candidates for fine-tuning. DPO treats375

the best and worst candidates as chosen and re-376

jected samples, respectively.377

As shown in Table 3, AdaRewriter consistently378

outperforms the strong baselines in the datasets.379

Notably, on CAsT 2020, it achieves an MRR of380

63.0, compared to 59.1 for SFT and 60.7 for DPO,381

demonstrating its robustness, especially on out-382

of-domain data. These results highlight the ef-383

fectiveness of test-time adaptation and confirm384

AdaRewriter’s advantage in generating more rele-385

vant query reformulations. We provide some de-386

tails for the setup of SFT and DPO in the Ap-387

pendix B.3.388

5 Analysis389

In this section, we present a series of comprehen-390

sive experiments that aim to provide an in-depth391

TopiOCQA CAsT 19 CAsT 20
MRR R@10 R@10 R@10

SFT 39.2 59.4 70.0 59.1
DPO 39.1 59.8 66.4 60.7
AdaRewriter 40.3 61.9 71.4 63.0

Table 3: Comparison with Training-time Tuning

analysis of the proposed AdaRewriter. Specifically, 392

we investigate its effectiveness in addressing the 393

following Research Questions (RQs): 394

• RQ1: Can AdaRewriter be applied to black- 395

box commercial LLMs? 396

• RQ2: Does the conversational context H in- 397

fluence the score assigned to a reformulation 398

query S? 399

• RQ3: How do the components (e.g., ranking 400

loss, ranking assessment) impact the learning 401

objectives of AdaRewriter? 402

• RQ4: Does AdaRewriter enhance the robust- 403

ness of CQR in long conversations? 404

We also provide further discussions in Appendix A. 405

5.1 Adaptation in Black-Box Models 406

Building on the concept of test-time adaptation, 407

our proposed AdaRewriter framework seamlessly 408

integrates with conversational search systems that 409

leverage commercial black-box LLMs, particularly 410

those utilizing API services. 411

To answer RQ1, Figure 3 presents evaluation 412

results on the TopiOCQA, QReCC, and zero-shot 413

datasets to validate AdaRewriter’s effectiveness. 414

Experimental results show that AdaRewriter con- 415

sistently enhances the performance of commercial 416

LLMs, such as GPT4o-mini, across most evalua- 417

tion metrics, even when trained on data generated 418
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Figure 3: Performance comparsion on black-box model GPT4o-mini. We use N = 5 for inference.

by open-source LLMs. For instance, compared to419

the baseline, AdaRewriter boosts the R@10 from420

48.2 to 51.4 in sparse retrieval and from 58.0 to421

63.0 in dense retrieval on the TopiCOQA dataset.422

Additionally, our framework demonstrates robust423

improvements on zero-shot datasets using commer-424

cial LLMs, as shown in Figure 3.425

These results prove that AdaRewriter effectively426

boosts the commercial LLMs like GPT4o-mini,427

even with training data from open-source models,428

highlighting the robustness and promise of test-429

time adaptation for conversational query reformu-430

lation.431

5.2 Contextual Dependency in Scoring432

To investigate RQ2, we begin by examining the re-433

lationship between conversational history and refor-434

mulation query scoring. In conversational search435

systems, the meaning and relevance of a query436

can vary significantly depending on the context437

in which it is presented. Specifically, the conver-438

sational context H provides essential information439

about the ongoing conversation, such as user intent440

and topics, which may influence how a reformu-441

lated query is assessed.442

To assess the impact of context H in our pro-443

posed framework, we conduct an ablation study444

in Table 4 ( w/o. Context H ), in which the conver-445

sational context H is removed from the outcome-446

supervised reward model during both training and447

inference. The results reveal a significant drop in448

model performance when the context is excluded,449

showing the pivotal role of conversational context450

in guiding the outcome-supervised reward model’s451

scoring of reformulated queries.452

5.3 Influence of the Learning Objective453

To investigate the individual contributions of our454

reward model’s learning objectives as addressed in455

RQ3, we conduct an ablation study.456

Specifically, we evaluate two variants: (1)457

Type Abaltion Variants MRR R@10

Sp
ar

se

AdaRewriter (Ours) 30.7 51.3

w/o. Context H 27.3 44.9
w/o. Ranking Loss 24.6 43.0
w/o. Rank Assessment 23.8 41.8

D
en

se

AdaRewriter (Ours) 40.3 61.9

w/o. Context H 36.2 56.4
w/o. Ranking Loss 34.4 53.2
w/o. Ranking Assessment 32.8 51.5

Table 4: Ablation study for the learning objective and
contextual dependency of AdaRewriter on TopiOCQA
dataset. We use LLama3.1-8B and N = 16 for infer-
ence.

w/o Ranking Loss , where the ranking loss is re- 458

placed by a cross-entropy loss assigning the true 459

label the top rank and the false label to the bottom; 460

and (2) w/o Ranking Assessment , where candi- 461

date reformulations are randomly ordered instead 462

of ranked. 463

Table 4 shows the results of these variants. No- 464

tably, the MRR in the dense retrieval drops from 465

40.3 to 34.4 when the ranking loss is removed, and 466

also decreases to 32.8 when the ranking assessment 467

is omitted. These findings demonstrate that both 468

the contrastive loss and the ranking assessment 469

are crucial for achieving strong performance, high- 470

lighting the importance of our proposed learning 471

objectives for the reward model. 472

5.4 Robustness in Long Conversation 473

One of the primary challenges in conversational 474

search systems is sustaining performance in ex- 475

tended conversation, as highlighted by RQ4. To an- 476

swer this question, we assess the robustness of our 477

proposed method across three datasets, which in- 478

clude TopiOCQA, QReCC, and TREC CAsT 2020. 479

The results, presented in Figure 4, reveal that as the 480

length of the conversation increases, performance 481

across all methods experiences a notable decline. 482
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Figure 4: Turn-round performance comparison on TopiOCQA, QReCC, and TREC CAsT 2020.

This suggests that long conversations still present a483

challenge for current CQR methods.484

Despite this general decline in performance,485

AdaRewriter consistently outperforms the other486

baselines across all conversation turns. Notably,487

even as the dialogue length increases, AdaRewriter488

maintains a higher performance compared to489

Mean Aggregation and Self-Consistency proposed490

by Mao et al. (2023b), which demonstrates a more491

substantial drop in effectiveness. This behavior492

suggests that AdaRewriter is more robust to the493

degradation typically observed in long conversa-494

tions.495
6 Related Works496

Conversational Query Reformulation Query497

reformulation plays a crucial role in conversational498

search systems, addressing the inherent complexity499

of user intent, which often involves semantic chal-500

lenges such as anaphora and ellipsis (Gao et al.,501

2023; Mo et al., 2024b). Current conversational502

query reformulation adopts hybrid approaches that503

combine query rewriting and query expansion, as504

exemplified by Mo et al. (2023a). In the era of505

LLMs, prompting-based query reformulation has506

garnered significant attention due to its simplic-507

ity and superior performance. Ye et al. (2023)508

treats LLMs as both query rewriters and rewrite509

editors, following a “rewrite-then-edit” paradigm510

to refine reformulations. Mao et al. (2023b) fur-511

ther explores advanced prompting strategies, such512

as few-shot learning, chain-of-thought reasoning,513

and self-consistency, demonstrating the remarkable514

efficacy of prompting-based approaches. Building515

on these developments, Mo et al. (2024a) proposed516

a two-step method that leverages the basic capabili-517

ties of open-source LLMs to enhance the conversa-518

tional history for conducting query reformulation.519

Test-time Supervision and Scaling Enhancing520

LLMs through test-time supervision and scaling521

test-time computation represents a promising direc-522

tion for building robust and self-improving agent 523

systems (Snell et al., 2024). A series of works have 524

focused on improving the reasoning capabilities 525

of LLMs by incorporating reward model supervi- 526

sion during test-time inference (Uesato et al., 2022; 527

Lightman et al., 2023). In addition to these meth- 528

ods, test-time supervision has been proposed to 529

improve the performance of LLMs in specific tar- 530

get domains using lightweight adapters (Sun et al., 531

2024b; Zhuang et al., 2024; Shi et al., 2024). For 532

example, Shi et al. (2024) employs a lightweight 533

model to rank outputs generated by LLMs in the 534

medical domain, enhancing the domain-specific 535

performance. 536

However, based on our empirical observations, 537

the ability of LLMs in the context of conversational 538

search remains insufficiently explored. To address 539

this limitation, we propose leveraging a contrastive 540

ranking loss to effectively train a lightweight re- 541

ward model, unlocking LLM’s reasoning capability 542

in conversational search. To the best of our knowl- 543

edge, we are the first to uncover and analyze the 544

prompting-based conversational query reformula- 545

tion at test time under the Best-of-N paradigm. 546

7 Conclusion 547

In this paper, we aim to unleash the power of 548

prompting-based query reformulation at test time 549

within the Best-of-N paradigm. Therefore, we 550

propose AdaRewriter, a framework that effec- 551

tively uses a lightweight outcome-supervised re- 552

ward model as a scoring function to select the most 553

promising reformulation. Extensive experimen- 554

tal evaluations across several benchmark datasets 555

demonstrate that AdaRewriter consistently outper- 556

forms existing methods in most settings. These 557

contributions advance the understanding of user in- 558

tent in conversational search systems and improve 559

the effectiveness of prompting-based query refor- 560

mulation. 561
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Limitation562

We identify the below limitations in AdaRewriter:563

Although the reward model is lightweight and564

the latency of AdaRewriter is comparable to that565

of previous work (Mao et al., 2023b), the primary566

latency bottleneck stems from the process of gen-567

erating multiple reformulation candidates using568

LLMs. Despite this, we believe that improving569

prompting-based query reformulation through test-570

time adaptation shows considerable potential, as it571

combines both simplicity and effectiveness. This572

approach may reduce the need for extensive pas-573

sage re-ranking. Additionally, test-time adapta-574

tion and scaling offer promising results, partic-575

ularly with the Best-of-N paradigm, which has576

demonstrated superior performance across various577

tasks (Snell et al., 2024).578

To further reduce latency, our method could ben-579

efit from applying existing inference acceleration580

techniques (Sun et al., 2024a; Wang et al., 2025).581

A key trade-off also exists between computational582

cost and latency, specifically when increasing the583

number of candidates N . A more efficient strategy584

may involve dynamically allocating computational585

resources based on reformulation task difficulty,586

i.e., generating more candidates for complex sce-587

narios and fewer for simpler ones.588

Lastly, due to budget constraints, while we have589

demonstrated the effectiveness of AdaRewriter on590

black-box commercial LLMs, we have been unable591

to evaluate its performance with a larger candidate592

set N .593
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A Discussion922

A.1 AdaRewriter as Reformulation Evaluator923

The evaluation of query reformulation primarily924

relies on two main approaches (Mo et al., 2024b):925

(1) lexical overlapping, which assesses the accu-926

racy of the reformulated query relative to the refer-927

ence query by computing token-level precision, re-928

call, and F1 score, and (2) end-to-end evaluation,929

which measures the effectiveness of the reformu-930

lated query based on its final retrieval performance.931

However, these evaluation methods have their lim-932

itations: while lexical overlapping is efficient, it933

provides only an indirect measure and does not934

reflect the real effectiveness of the reformulated935

queries in downstream tasks; end-to-end assess-936

ment, though comprehensive, is computationally937

intensive and may be influenced by model biases.938

In contrast, our proposed neural-based reward939

model could be a trade-off evaluation suite between940

efficiency and accuracy, demonstrating its robust-941

ness across both sparse and dense retrieval systems.942

Based on our practices, the reward model could943

serve as an effective proxy for assessing the qual-944

ity of query reformulation, with potential appli-945

cations in retrieval-augmented generation (RAG)946

systems (Wu et al., 2025), conversational search947

systems, and hard negative mining for retriever948

training.949

A.2 Comparsion with AdaCQR950

AdaCQR (Lai et al., 2025) aims to improve the951

performance of conversational query reformula-952

tion through a two-stage training paradigm. In the953

first stage, the model is trained using a large set of954

pseudo-labels generated by a large language model.955

The second stage further refines the model via iter-956

ative self-training with a contrastive ranking loss.957

Despite demonstrating effectiveness, AdaCQR958

faces two notable limitations:959

• AdaCQR exhibits a performance gap com-960

pared to LLM-based methods. To enable a961

fair comparison with such methods, an addi-962

tional query expansion step using an LLM is963

required (i.e., the AdaCQR+Expansion setting964

proposed in the original paper).965

• AdaCQR functions primarily as a training-966

time alignment approach, which restricts its967

applicability in real-world scenarios, partic-968

ularly in environments where LLMs are ac-969

cessed as black-box systems.970

To address these limitations, AdaRewriter is pro- 971

posed as a lightweight framework that employs a 972

reward model to select the most promising candi- 973

date reformulations by combining query rewriting 974

and expansion. It retains simplicity while benefit- 975

ing from the concept of test-time scaling. 976

Moreover, AdaRewriter demonstrates the poten- 977

tial of leveraging test-time scaling and test-time 978

adaptation in the context of conversational query 979

reformulation. We believe this could offer some 980

insights for future research in the field of conversa- 981

tional search. 982

A.3 Comparsion with CDR Methods 983

Conversational Dense Retrieval(CDR) represents 984

an orthogonal approach to conversational query re- 985

formulation in the context of conversational search. 986

This methodology focuses on training dense re- 987

trievers to improve the representation of both the 988

current query and its associated historical context. 989

Although a direct comparison may not be appropri- 990

ate, we present a performance comparison between 991

our proposed AdaRewriter and several CDR meth- 992

ods evaluated across the QReCC, TopiOCQA, and 993

TREC CAsT datasets, as shown in Table 5. 994

We compare AdaRewriter with the following 995

representative CDR methods: Conv-ANCE (Xiong 996

et al., 2020), ConvDR (Yu et al., 2021), Conv- 997

SPLADE (Formal et al., 2021), InstructorR- 998

ANCE (Jin et al., 2023), LeCoRE (Mao et al., 999

2023c), ConvAug (Chen et al., 2024), and ChatRe- 1000

triever (Mao et al., 2024). Among these, ChatRe- 1001

triever stands out as one of the most representative 1002

works in the era of LLMs, which fine-tunes an LLM 1003

using contrastive learning and leverages the conver- 1004

sational session’s embeddings to retrieve relevant 1005

passages. The results in Table 5 demonstrate that 1006

our proposed method achieves consistently strong 1007

performance across all five datasets, highlighting 1008

the robustness and effectiveness of AdaRewriter. 1009

Moreover, conversational query reformulation- 1010

based approaches, such as AdaRewriter, offer supe- 1011

rior explainability compared to CDR methods. This 1012

is valuable for enhancing user intent understanding 1013

and shows promise for improving conversational 1014

search systems. 1015

B Experimental Details 1016

B.1 Datasets Details 1017

This paper uses five datasets: TopiOCQA (Adlakha 1018

et al., 2022), QReCC (Anantha et al., 2021), and 1019
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Framework TopiOCQA QReCC CAsT-19 CAsT-20 CAsT-21 Avg.

Conv-ANCE (Xiong et al., 2020) 20.5 45.6 34.1 27.5 34.2 32.4
ConvDR (Yu et al., 2021) 26.4 35.7 43.9 32.4 37.4 35.2
Conv-SPLADE (Formal et al., 2021) 29.5 46.6 - 28.1 29.9 -
InstructoR-ANCE (Jin et al., 2023) 23.7 40.5 - 29.6 34.9 -
LeCoRE (Mao et al., 2023c) 32.0 51.1 42.2 37.7 50.8 42.8
ConvAug (Chen et al., 2024) 33.3 50.4 - 30.7 36.8 -
ChatRetriever (Mao et al., 2024) 40.1 52.5 52.1 40.0 49.6 46.9
AdaRewriter (LLama3.1-8B, N=5) 37.9 51.3 46.6 45.6 49.5 46.2
AdaRewriter (LLama3.1-8B, N=16) 39.7 53.8 48.3 46.5 49.7 47.6
AdaRewriter (GPT4o-mini, N=5) 40.4 51.5 49.0 47.3 52.5 48.1

Table 5: NDCG@3 performance comparison of our proposed AdaRewriter and Conversational Dense Re-
trieval(CDR) methods. The best average results among all methods are bolded, and the second-best results
are underlined.

QReCC TopiOCQA
Train Test Train Test

# Dialogues 10823 2775 3509 205
# Turns 29596 8209 45450 2514

# Collections 54M 25M

Table 6: The statistics of QReCC and TopiOCQA
datasets.

CAsT-19 CAsT-20 CAsT-21

# Dialogues 50 25 26
# Turns 479 208 239

# Collections 38M 38M 42M

Table 7: The statistics of TREC CAsT 2019, 2020, and
2021 datasets.

TREC CAsT 2019 (Dalton et al., 2020), 2020 (Dal-1020

ton et al., 2021), and 2021 (Dalton et al., 2022).1021

TopiOCQA and QReCC contain both training and1022

testing data, while TREC CAsT datasets provide1023

only testing data for zero-shot experiments.1024

The QReCC dataset consists of 14K conver-1025

sations with 80K question-answer pairs, and we1026

aim to retrieve relevant passages from a collection1027

of 54M passages. The TopiOCQA dataset con-1028

tains 3.9K topic-switching conversations with 51K1029

question-answer pairs, with a passage collection of1030

25M passages. Detailed statistics for both datasets1031

are shown in Table 6.1032

TREC CAsT 2019, 2020, and 2021 are known1033

for their complexity in conversational search under1034

a zero-shot setting. Table 7 provides more details.1035

B.2 Implementation Details 1036

All experiments are conducted on a server with four 1037

Nvidia GeForce 3090 GPUs. 1038

Our framework is implemented using the Hug- 1039

gingface Transformers4 and PyTorch Lightning5. 1040

The AdamW optimizer is used with a learning rate 1041

of 5e-6, following a cosine learning rate sched- 1042

ule with a warmup ratio of 0.1. Training is car- 1043

ried out for 10 epochs, and model checkpoints are 1044

saved at the end of each epoch. We employed the 1045

vLLM (Kwon et al., 2023) framework for candidate 1046

construction and inference, ensuring reproducibil- 1047

ity by saving the results for inference. The retrieval 1048

systems were implemented using Faiss (Johnson 1049

et al., 2019) and Pyserini (Lin et al., 2021a). For 1050

the BM25 algorithm, we set the parameters as 1051

follows: k1 = 0.82, b = 0.68 in QReCC, and 1052

k1 = 0.9, b = 0.4 in TopiOCQA. Here, k1 controls 1053

non-linear term frequency normalization, while b 1054

adjusts the scaling of the inverse document fre- 1055

quency. The query length was set to 32, and the 1056

concatenated reformulation query length was set to 1057

256, following prior works (Mao et al., 2023b). 1058

B.3 Training-time Tuning Details 1059

We use Llama-Factory (Zheng et al., 2024) to con- 1060

duct experiments on supervised fine-tuning (SFT) 1061

and direct preference optimization (DPO). To ac- 1062

commodate our hardware constraints, we adopt the 1063

LoRA technique with the rank r = 16. The train- 1064

ing is performed for 3 epochs with a learning rate 1065

of 1e-4. 1066

4https://github.com/huggingface/transformers
5https://github.com/Lightning-AI/

pytorch-lightning
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C Baseline Details1067

We compare AdaRewriter with the following repre-1068

sentative baselines in the CQR task:1069

• T5QR (Lin et al., 2020) is a vanilla baseline that1070

train the T5-base (Raffel et al., 2020) model to1071

perform CQR tasks.1072

• CONQRR (Wu et al., 2022) aligns the T5-base1073

reformulation model with retrievers through di-1074

rect optimization using reinforcement learning.1075

• ConvGQR (Mo et al., 2023a) improves retrieval1076

performance by utilizing two fine-tuned T5-base1077

models, with one dedicated to query reformula-1078

tion and the other to query expansion.1079

• EDIRCS (Mao et al., 2023a) effectively gen-1080

erates reformulation queries by combining non-1081

autoregressive text-selection techniques with au-1082

toregressive token generation, utilizing a fine-1083

tuned T5-base model.1084

• LLM-Aided (Ye et al., 2023) employs ChatGPT1085

(OpenAI, 2022) to conduct query reformulation1086

via a “rewrite-then-edit” prompting strategy.1087

• IterCQR (Jang et al., 2024) aligns the T5-base1088

reformulation model with the dense retriever by1089

minimizing Bayesian risk, which is driven by the1090

semantic similarity between the query and the1091

gold passage.1092

• RETPO (Yoon et al., 2024) leverages large lan-1093

guage models to produce diverse reformulations1094

through multi-perspective prompting, generates1095

binarized comparisons informed by retriever feed-1096

back, and fine-tunes LLama2-7B via direct pref-1097

erence optimization (Rafailov et al., 2023).1098

• ADACQR (Lai et al., 2025) aligns the reformu-1099

lation model with sparse and dense retrieval sys-1100

tems through a fusion metric, demonstrating the1101

effectiveness of guiding reformulation using hy-1102

brid retrieval signals. The reformulation model1103

leverages the T5-base and uses a vanilla LLama2-1104

7B for query expansion.1105

• CHIQ (Mo et al., 2024a) utilizes the fundamen-1106

tal capabilities of LLMs to improve the quality1107

of contextual history, thereby enhancing query1108

rewriting performance. For comparison, we em-1109

ploy the most advanced CHIQ-Fusion, which1110

combines reformulated queries generated by a1111

fine-tuned T5-based model and the LLama2-7B1112

model, utilizing result-level fusion techniques to1113

derive the final retrieval outcomes.1114

• LLM4CS (Mao et al., 2023b) is our primary com-1115

parison method, exploring various strategies for1116

aggregating multiple reformulation candidates to 1117

improve conversational search. The candidates 1118

are generated by a large language model through 1119

direct prompting. We employ the most advanced 1120

settings, including Rewrite-and-Response (RAR), 1121

Mean Aggregation, and Chain-of-Thought (CoT). 1122

To ensure a fair comparison, we present results 1123

based on our reproduction of the officially re- 1124

leased code. 1125

D Case Study 1126

To show the effectiveness of AdaRewriter, we pro- 1127

vide a detailed case in Table 9. 1128
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Prompt for Conversational Query Reformulation

Instruction

For an information−seeking dialog, please help reformulate the question into rewrite that can
fully express the user's information needs without the need of context, but also generate an
informative response to answer the question. I will give you several example multi−turn dialogs,
where each turn contains a question as well as a rewrite and a response that you need to
generate. The rewrite part begins with a sentence explaining the reason for the generated rewrite.

Demonstrations

Example #1:
Question: What should I consider when buying a phone?
Rewrite: This is the first turn. So the question should be rewritten as: What should I consider
when buying a phone?
Response: The design of the phone and the overall look and feel of the phone are very important.
You should be comfortable with the way the phone looks and feels when you hold it in your
hand. In addition, don't be afraid to get a phone from a different manufacturer than you're used
to. Consider an older, used, or refurbished phone to save money. Sometimes a year−old or even
a two−year−old device might give you everything you need.

Question: Cool. Which one would you recommend?
Rewrite: Based on Turn 1, you are inquiring about what should be considered when buying a
phone. So the question should be rewritten as: Cool. Which smartphone would you recommend
for me?
Response: Just because a phone has everything and the kitchen sink doesn't mean you have to
buy it − it's just an option for those who might have a larger budget. The same logic applies to
pretty much anything you can buy. If you want something more affordable, cheaper, but has the
latest in Android and that comes with 5000mAh of battery, then the Motorola Moto G7 Power is
an excellent phone to consider. If you want an Android smartphone that's cheaper and more
affordable, and you still find the Moto G7 Power a bit off your budget, then I highly recommend
the Samsung Galaxy A10e.

<— Omit Following Demonstrations —>

Annotated Sample

Context:{{current_context}}

Current Question: {{current_query}}

Now, you should give me the rewrite and response of the **Current Question** under the **
Context**. The output format should always be: "Rewrite: $Reason. So the question should be
rewritten as: $Rewrite\nResponse: $Response." Note that you should always try to rewrite it and
generate an informative response. Never ask for clarification or say you don't understand it in
the generated rewrite and response. Go ahead!

Table 8: The prompt used to obtain rewritten query q̂ and pseudo-response r̂.
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Conversation:
Q1: what is roosevelt dime?
A1: Is the current dime, or ten-cent piece, of the United States
Q2: who designed it?
A2: John R. Sinnock
Q3: who is he?
A3: Eighth Chief Engraver of the United States Mint
Q4: mention a few controversies of his?
A4: The letters "JS" actually stood not for John Sinnock, but for Joseph Stalin. The urban folk story
coincided with the Second Red Scare. Another controversy was an allegation that Sinnock copied or
borrowed the design of the President’s profile from a bronze bas relief created by sculptress Selma H.
Burke
Q5: did the aforementioned mint struck the roosevelt dime?
A5: UNANSWERABLE
Q6: who made the dime?
A6: John R. Sinnock
Q7: when was the united states mint established?
A7: The Mint was created in 1792
Q8: where is its location?
A8: In Philadelphia
Q9: what is fort knox and the mint’s relation?
A9: Its primary purpose is for storage of the United States and other countries’ gold and silver bullion
reserves.
Q10: is it a building or fort?
A10: Is a fortified vault building
Q11: any recent incident happened over there related to shooting?
A11: On 18 October 1993, Arthur Hill went on a shooting rampage, killing three and wounding two
before attempting suicide, shooting and severely wounding himself.
Q12: how does air corps utilize it?
A12: As a training base during World War II.
Q13: is it used for protecting valuable objects?
A13: For protection after the Japanese attack on Pearl Harbor in 1941, the Declaration of Independence,
the Constitution of the United States and the Gettysburg Address were all moved for safekeeping
Original Query: does it have a high school in its premises? (rank: Not Found)

Max-prob Rewritten Query: Does the United States Mint have a high school within its premises?
The United States Mint does not have...(rank: Not Found)

AdaRewriter(Ours): Does Fort Knox have a high school or educational institution within its premises?
Fort Knox does not have a high school ...(rank: 1)

Gold Passage: Fort Knox is one of only four Army posts (the others being Fort Campbell, Kentucky,
Fort Meade, Maryland, and Fort Sam Houston, Texas) that still has a high school located on-post. Fort
Knox High School was built in 1958 and has undergone only a handful of renovations...

Table 9: Successful case study on TopiOCQA (id: 126_14). The underline part shows the decontextualized
information in the reformulation query.
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