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Abstract

Generative audio models, based on diffusion and autoregressive architectures, have
advanced rapidly in both quality and expressiveness. This progress, however, raises
pressing copyright concerns, as such models are often trained on vast corpora of
artistic and commercial works. A central question is whether one can reliably
verify if an artist’s material was included in training, thereby providing a means for
copyright holders to protect their content. In this work, we investigate the feasibility
of such verification through membership inference attacks (MIA) on open-source
generative audio models, which attempt to determine whether a specific audio
sample was part of the training set. Our empirical results show that membership
inference alone is of limited effectiveness at scale, as the per-sample membership
signal is weak for models trained on large and diverse datasets. However, artists
and media owners typically hold collections of works rather than isolated samples.
Building on prior work in text and vision domains, in this work we focus on dataset
inference (DI), which aggregates diverse membership evidence across multiple
samples. We find that DI is successful in the audio domain, offering a more
practical mechanism for assessing whether an artist’s works contributed to model
training. Our results suggest DI as a promising direction for copyright protection
and dataset accountability in the era of large audio generative models.

1 Introduction

Generative audio models have undergone rapid advances in recent years, driven largely by diffusion
(DMs) [ 2 3L 14]] and autoregressive architectures (ARMs) [3 [6]. These models are capable of
producing highly realistic soundscapes, speech, and music. While this progress opens exciting
opportunities in areas such as creative expression, accessibility, and interactive media, it also raises
urgent concerns about privacy, copyright, and data governance. In particular, the vast datasets required
to train such systems can contain artistic or commercial audio without transparent disclosure, leaving
creators uncertain about whether their works contributed to a model’s capabilities [7]. A central
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question in this context is whether one can reliably determine if a specific artist’s recordings were
included in training of a generative model. Addressing this question is critical both for protecting
intellectual property and for enabling accountability in machine learning practice. Similar challenges
have been investigated in computer vision [8} |9, [10] and natural language processing [[L1} [12} [13],
where MIAs [14] attempt to determine if a given sample was used in training, and DI [[15} [11} [16]
extends this idea to entire collections. However, the effectiveness of these techniques for large
generative models in the audio domain remains unclear.

In this paper, we conduct a study of membership and dataset inference attacks on large audio
generative models. We begin by evaluating the effectiveness of existing MIA strategies when applied
to open-source ARMs and DMs. Our findings reveal that single-sample membership inference is
weak in this setting, offering limited evidence of training set inclusion. Motivated by the observation
that artists and rights-holders typically possess collections of works rather than isolated samples, we
shift focus to DI. By aggregating diverse membership signals across multiple samples, DI achieves
substantially higher effectiveness, enabling more reliable detection of training set participation. Our
contributions are threefold:

* We benchmark existing MIAs on large audio ARMs and DMs, highlighting their limitations.

* We extend the existing DI methodology to audio generative models, assessing its effectiveness in
the audio domain.

* We provide an extensive empirical evaluation across several state-of-the-art audio models, demon-
strating that DI can succeed where single-sample attacks fail, and thus suggest it as a promising
mechanism for copyright protection and dataset accountability.

Our work aims to initiate a discussion on existing methods for protecting copyrighted audio samples
in large-scale generative models, while also laying the groundwork for auditing methods that empower
creators to assert control over their intellectual property.

2 Background

2.1 Identifying Training Data

Membership Inference (MIA). MIAs [14] aim to decide whether a given sample was part of a
model’s training set. They exploit overfitting: training samples typically yield lower losses than
unseen ones. Formally, the attacker constructs an attack function Ay, : X — 0,1 that predicts
membership. A standard approach is the threshold attack [[17]], which classifies z as a member if the
chosen metric is below a threshold: Ay, (z) = 1! [M(fp,x) < ~], where M is the metric and ~ the
decision threshold.

Dataset Inference (DI). DI [15] asks whether an entire dataset was used during training. Unlike
MIAs, which evaluate individual samples, DI aggregates membership signals (often based on MIAs)
across multiple points into a dataset-level statistic, thereby amplifying weak per-sample evidence.
This makes DI effective for large models and datasets where single-sample inference is unreliable.
Initially proposed for supervised models, DI extracts per-sample features, aggregates them into a
dataset score, and applies a statistical test [18]/19]. Recent work has extended DI to generative models,
including large language models (LLMs) [[L1} 20], DMs [16]], and autoregressive image models [21].
Formally, DI compares scores from a suspected member set and a non-member set via Welch’s ¢-test
at « = 0.01 with the null hypothesis Hy : mean(member scores) < mean(non-member scores).
Rejecting Hj implies the dataset was part of training. Correctness requires both sets be i.i.d.;
otherwise, distributional mismatch can bias the test. The strength of DI depends on the number of
available samples. To quantify leakage, we define P as the minimum number of samples needed to
reject Hy. Smaller P indicates stronger leakage.

2.2 Audio Generative Models

We experiment on 4 models described in Table [T|representing both AR and DM famielies. Currently,
DMs dominate high-quality audio generation. AudioLDM2 [4]] unifies text-to-audio, text-to-music,
and text-to-speech within one framework. It leverages a "Language of Audio" representation, mapped
from AudioMAE [22]] features through GPT-2 [23]], to condition a UNet [24]] diffusion model over
mel-spectrogram latents. With 29.5k hours of diverse training data, it establishes a common semantic
space that supports multiple generative tasks. TANGO [1]] follows a simpler design. A frozen
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Figure 1: Dataset Inference Procedural Steps. The process consists of four main steps: o Data Preparation:
Prepare the data to verify whether the (suspected) member samples P were used to train the model. The
(confirmed) nonmember samples U, from the same distribution as P, serve as the validation set. 9 Feature
Extraction: Run each individual MIA on all inputs from {P, U} to extract membership features for all data
samples. We use our MIAs tailored to ARMs and DMs for the respective model types. 9 Score Computation:
We map extracted feature vectors into scalar membership scores for each sample. We use a scoring model for
DMs, following [16]], and feature summation [21] for ARMs (see Appendix for more details. 9 Statistical
Testing: Apply a statistical t-test to verify whether the scores obtained for the public suspect data points P are
statistically significantly higher than those for U. If so, P is marked as being part of the model’s training set.
Otherwise, the test is inconclusive and the model’s training set is considered independent of P.

Table 1: Comparison of audio generative models on which we experiment in our work.

Model Training steps Dataset Size Params  Type Input
AudioGen 200k AudioCaps + other 4k h 285M AR Audio tokens
FIGARO 100k LakhMIDI 176k files 88M AR MIDI
AudioLDM?2 800k AudioCaps + other 29.5k h 1.5B DM Mel-spec
TANGO 230k AudioCaps 46k clips 866M DM Mel-spec

FLAN-TS [23] encoder provides text embeddings that guide a latent diffusion model trained on
the AudioCaps [26] dataset. Augmentation is based on pressure-level mixing of sounds, ensuring
balanced exposure. Despite training on only 46k clips, TANGO achieves competitive generation
quality by relying on strong instruction-tuned text features.

Competing with DMs across different modalities, autoregressive approaches have also been applied
to audio generation. AudioGen [6] treats audio as a sequence of discrete codec tokens and learns a
text-conditioned Transformer decoder to generate them. The model is trained on roughly 4k hours
from ten heterogeneous audio—text corpora, and augmentations based on mixing sound sources are
used to expose it to overlapping events. FIGARO [5]] addresses symbolic music with controllable
generation. It introduces description-to-sequence learning, combining interpretable features such
as chords, instrumentation, and rhythm with learned latent codes as conditioning. Training on the
176k-file LakhMIDI dataset [27] allows the model to reconstruct bar-level sequences and to provide
global and fine-grained control.

3 Method

Membership Inference. We begin by evaluating MIAs on large audio generative models. For DMs,
we apply the attack suite explored in [16]], which exploits denoising dynamics to distinguish training
samples from non-members. For ARMs, we use the approach from Kowalczuk et al. [21], which
leverages token-level log-likelihoods and related statistics. We give more details on individual MIAs
used in our work in the Appendix. In both cases, we use the train split of each model’s dataset as the
source of members and the held-out test split as the source of non-members. This ensures that attacks
are evaluated under a realistic and controlled setting where the attacker’s candidate pool contains
both genuine training data and independent test samples.

Dataset Inference. To facilitate the task, we extend our studies to DI. We follow the methodology
introduced by [16] for DMs and [21]] for ARMs. Each candidate dataset consists of a collection of
suspected member samples P and an equal number of non-member samples ¢/ drawn from the test
split. We extract membership features for each sample using multiple MIAs, aggregate them into
scalar scores, and then apply Welch’s ¢-test to compare P and /. The null hypothesis states that



the mean score of P is no greater than that of I/, and we reject it at « = 0.01 if sufficient evidence
is found. Following standard practice, we report the minimum number of samples P required to
reject the null hypothesis, with smaller P indicating stronger information leakage. Our approach is
demonstrated on Figure|]

4 Results

In our experiments on MIAs, we report the Area Under the Curve (AUC) and the True Positive Rate
at a False Positive Rate of 1% (TPR@FPR = 1%). For AUC, a value of 0.50 corresponds to random
guessing, while for TPR@FPR = 1%, the baseline for random guessing is 0.01. For DI, we report the
minimal number of samples in P required to successfully reject the null hypothesis Hy, i.e.,, to flag
the audio samples in P as having been used in training a given model.

Table 2] presents the AUC values and

TPR@1% for MIAs on ARMs. For Typle 2: MIA results for Autoregressive Models. We report
both AudioGen and FIGARO, the AUC and TPR@FPR=1%.

results remain close to 50% AUC,

indicating chance-level performance. AUC TPR@1%

This suggests thatlsmgle-sal'nple mem- Attack AudioGen  FIGARO  AudioGen FIGARO
bership inference is ineffective against Loss [T7] 52.8540.00 50.2840.61 0.6840.00 1.18=0.11
SOTA audio ARMs, trained on larger Zlib [28] 50.464+0.00 49.3740.61 0.7440.00 1.1140.22
datasets, as they do not leak strong Hinge [29] 54.4240.00 50.054+0.60 1.42+0.00 1.1240.21

_ . . _ Min-K% [13] 55.34£0.00 50.284+0.58 1.13+0.00 1.13+0.20
per sample Slgnals' Similar observa Min-K% "+ [30] 50.864-0.00 49.6540.56 0.97+40.00 1.0140.19

tion can be seen with TPR at a fixed CAMIA 3] 51.8640.00 51.68+0.53 1.3540.00 1.0740.21
FPR of 1%, where the values are con-
sistently low, rarely exceeding 1%,
which confirms that MIAs provide limited evidence for distinguishing members from non-members
in SOTA audio ARMs.

For DMs, Table [3] shows AUC and Table 3: MIA results for Diffusion Models. We report AUC
TPR@ 1% values for a range of MIA and TPR@FPR=1%.
strategies. AudioLDM?2 again yields

performance near chance, with AUCs AUC TPR@1%
around 50-55%. In contrast, TANGO  Attack AudioLDM2  Tango  AudioLDM2  Tango
ShOWS_ a detectable membe_rsh1p SIZ= Loss [10] 522940.54 70.5240.87 0.00£0.00 16.03£2.21
nal, with AUC values reaching nearly  Gradient Masking [16] 49.154£0.56 51.06+£0.99 0.124£029  3.18+£0.78
70%. This difference likely ari Multiple Loss [16] 54.83+0.53 69.474+0.83 3494026 16.68+2.17
0% s difference likely se,s NoiseOpt [16] 52.44:0.55 51.694£0.98 0.004£0.00 1.0640.29
from the smaller scale of TANGO’s  pip ) 50.0040.56 52.2940.93 0.0040.00 1.7840.35
training set, which makes overfit- PIAN [8] 51.69+£0.55 50.90+£0.95 0.00+0.01  2.18+0.48

ting more apparent. Results with

TPR @FPR=1%, makes this distinction even clearer: for AudioLDM?2 the detection rate is es-
sentially zero across all attacks, while for TANGO it reaches 16—17% for the best-performing MIAs
are feasible only for smaller DMs, but scale poorly to models trained on larger datasets.

Finally, Table[d reports the number of samples required for DI  Table 4: results for Dataset infer-
to reach statistical significance. Here, the advantage of DI over  ence. Minimum number of samples
MIA becomes clear. AudioGen requires around 900 samples  required to achieve mean p < 0.01.

to reject the null hypothesis, while FIGARO and AudioLDM?2

require only 300 samples. Most strikingly, TANGO requires Model # Samples
just 20 samples, showing that DI can detect training set usage AudioGen 900
with very small collections. Overall, these results highlight FIGARO 300

AudioLDM2 300

that single-sample MIAs are limited when applied to models Tango 20

trained on larger audio datasets, but DI provides strong and
scalable evidence, making it a more practical tool for auditing
the training sets of generative audio models. However, for most models, DI requires more samples
than an individual artist is likely to possess, especially given the fact that the lenght of AudioCaps
sample is 10 secods. These requirements remain attainable for media owners, but highlight the need
for further methodological development.




5 Discussion and Conclusions

Our study demonstrates that membership inference alone is not a reliable mechanism for verifying
whether individual audio samples contributed to the training of large audio generative models.
However, when aggregated via dataset inference, the weak per-sample signals accumulate to provide
statistically significant evidence of training set inclusion, even with relatively small collections. This
highlights DI as a promising tool for creators and auditors seeking to verify copyright misuse.

An important implication of our findings is the responsibility of model providers in enabling mean-
ingful auditing. Currently, many released models do not disclose clear train—test splits or maintain
accessible held-out evaluation sets. This lack of transparency makes it challenging to fairly assess
privacy leakage, data governance, and copyright compliance. We argue that providers of generative
models should adopt the practice of reporting well-defined train/test partitions and reserving clean
held-out sets that remain unused during training. Such held-out data would allow independent
researchers to systematically study privacy risks, monitor overfitting, and develop robust detection
techniques without ambiguity about data provenance.
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A Details on Membership Inference for Autoregressive Models

Autoregressive Modeling for Audio and Symbolic Music. Autoregressive generators in the audio domain
operate on compact discrete sequences rather than raw waveforms. Two prevalent instantiations are: (i)
tokenized time—frequency representations, where a vector-quantized encoder (e.g., VQ-VAE/VQ-GAN) maps a
mel-spectrogram Mel(x) to a low-resolution latent grid and quantizes each cell to a codebook index; and (ii)
symbolic music representations (e.g., MIDI or piano-roll), where events such as NOTE-ON, NOTE-OFF, pitch,
velocity, instrument, bar/beat markers, and control changes are serialized into a discrete token stream. In both
cases, the 2D structure (time—frequency for mel tokens; hierarchical/bar—beat—event for MIDI) is linearized into a
1D sequence ¢ = (c1,. .., cn) using a fixed, deterministic ordering (typically time-major; optional bar/measure
delimiters for music).

The generative objective models next-token probabilities:

N
pe) = [Iplenlern .. enn), )
n=1

optimized via maximum likelihood over the training distribution:

Lar = Eonpyy [~ logp(c(2))], )

where c(z) denotes either codebook indices derived from Mel(x) or a serialized symbolic/MIDI event stream
for x.

This token-first formulation shortens effective sequence length and exposes strong discrete structure (repetition,
meter, harmony), enabling high-fidelity generation with tractable context windows. At inference, tokens ¢ are
sampled autoregressively from Eq. E} For mel-token systems, a quantized decoder reconstructs a mel-spectrogram
Mel that is rendered to waveform via a vocoder. For symbolic systems (e.g., FIGARO), the sampled event
stream is rendered to audio by a MIDI synthesizer or mapped back to a structured score, optionally honoring
controllable conditioning tokens (e.g., chords, instrumentation, rhythm descriptors) embedded in the same
sequence.

Kowalczuk et al. [21] introduce the first comprehensive MIA suite for image autoregressive models by adapting
well-established, token-level attacks from the LLM literature (e.g., Loss, Zlib, Hinge, Min-K%, Min-K%*+,
SURP, CAMIA) to visual next-token prediction. A key observation in their work is that many IARs are trained
with classifier-free guidance [32], i.e., the forward pass processes each example both with conditioning (e.g., a
class label or text prompt) and without it. Building on CLiD [33]], they exploit this extra supervision signal by
contrasting the conditional and unconditional paths: instead of feeding raw per-token logits into MIAs, they use
the guidance-difference statistic

A(x,c) = p($ ‘ C) - p(:lj | Cnull),

where c is the conditioning input and cnui denotes the null (unconditional) condition. This replacement amplifies
membership signal relative to LLM-style attacks that lack such conditioning, and it avoids relying solely on
per-token probabilities.

Because audio autoregressive models also operate on discrete token sequences, either time—frequency codes
(e.g., codec/VQ tokens) or symbolic music events (e.g., MIDI as in FIGARO), the same LLM-derived MIAs are
directly applicable in the audio domain. When audio ARMs are trained with explicit conditioning (e.g., captions,
tags, control tokens) and employ classifier-free guidance, the CLiD-style conditional-unconditional contrast
A(z, ¢) can be computed analogously on audio tokens and used as the primary MIA feature.

Threshold-based attack. A simple and widely used approach to infer membership is to compare a scalar
diagnostic to a fixed cutoff. Let M be a per-sample metric such as the negative log-likelihood or loss. A sample
x is declared a member whenever the metric falls below a threshold ~:

Afs(x) = 1[M(f9,l’) <’7]7 (3)

where ~ is selected on a validation split. The rationale is that training items typically attain lower loss than points
not seen during training.

MIN-K % PROB metric. To reduce the influence of highly predictable positions, (author?) [[13] focus the
decision rule on the least likely part of the sequence. For an input z and a fraction K € {10, 20, 30, 40, 50},
MIN-K% PROB computes the average negative log-likelihood over the bottom K % tokens under the model fj.
Membership is predicted by thresholding this average:

Ay, (z) = 1Min-K%(z) < 7].

Reporting the best result over a small sweep of K makes the attack less sensitive to the choice of this hyperpa-
rameter.



MIN-K % PROB ++. MIN-K% PROB ++ refines MIN-K% PROB by normalizing token log-probabilities and
testing whether low-probability positions behave like local modes of the learned distribution. Given a sequence
z = (x1,...,z7), define

1 1 — Uz
SMin-K%++(m) = m Z ng(xt | 'T<t) = <ta (4)

o
tes o<t

where S is the subset containing the bottom K % tokens, and fiz<+, 0z<: are the mean and standard deviation of
token log-probabilities over the entire vocabulary at position ¢. A sample is flagged as a member if

Af9 (x) = 1[8Min-1<%++ (m) > ’Y] . Q)
As with MIN-K% PROB, performance is reported for the best K € {10, 20, 30, 40, 50}.
Zlib ratio attack. This baseline relates model fit to a model-agnostic compressibility proxy [34]]. Let Py, (x)

denote the perplexity (or exponentiated average negative log-likelihood) and zlib(z) be the compressed size of
z under the zlib codec. The statistic
Piy (2)

zlib(zx)
tends to be smaller for members, since model perplexity is lower on training data while zlib compression does

not benefit from any model-specific memorization. Membership is then inferred by comparing this ratio to a
threshold.

CAMIA. Context-aware MIA [31] augments raw loss features with temporal descriptors of the token-wise loss
sequence. Several signals are used: a slope feature that captures how quickly losses decline across positions;
approximate entropy, which measures regularity by the prevalence of repeating patterns; Lempel—Ziv complexity,
which quantifies diversity in the loss trajectory via the count of distinct substrings; a count-below statistic, the
fraction of tokens with loss below a preset cutoff; and a repeated-sequence amplification feature that measures
the reduction in loss when the same input is repeated. Non-members typically display higher irregularity and
larger gains from repetition, while members show more stable, low-loss segments.

Surprising Tokens Attack (SURP). SURP targets positions where the model is confident overall but assigns
low probability to the true token. For each position ¢, let H; be the Shannon entropy of the predictive distribution
and p(x: | <) the probability of the ground-truth token. Define the surprising set

S = {t| Ht < €e, plat | x<t) < 71 }, 6)

where €. € {2,4,8,16} controls the entropy threshold and 74 is the k-th percentile probability with k& €
{10, 20, 30,40, 50}. The SURP score averages the probabilities on this set:

1
SSURP(x) = E Zp(xt | $<t)~ @)
tes
Membership is decided by thresholding Ssurp():
Agy(z) = 1[Ssure(z) =] ®)

In practice, the best-performing pair (k, €. ) from the specified grids is selected to summarize results.

B Details on Membership Inference for Diffusion Models

Diffusion Models [35]] are generative models trained by progressively adding noise to the data and then learning
to reverse this corruption. In the forward diffusion process, Gaussian noise € ~ A(0, I) is added to a clean
sample x to obtain a noised sample z; < /o © + /1 — ot €, where ¢ € [0, T is the diffusion timestep and
at € [0, 1] is a monotonically decreasing schedule with cg = 1 and ey = 0. The denoiser fy is trained to
predict e across timesteps by minimizing % > i Ete L(zi,t, € fo), where N is the training set size and

L(z,t,€ fo) = lle — folze, t)]l3 - ©

Sampling proceeds by iteratively removing predicted noise fo(x¢,t) from x; fort = T,7 — 1,...,0, starting
from z7 ~ N(0,1) to obtain a generated sample z:—o. For conditional generation, an additional input y
(conditioning signal) is provided to fy.

Latent diffusion models [36] perform the diffusion process in a learned latent space to improve efficiency. An
encoder £ maps z to a latent z = £(x), and the objective in Eq. E]becomes

L(z,t,€ fo) = lle — folze, t)]]3 - (10)

Denoising Loss. Early membership inference attacks for diffusion models [[10] assess sample membership by
directly using the denoising loss as a statistic. The key observation is that the loss at intermediate timesteps



provides the strongest separation between training members and non-members. In particular, ¢ ~ 100 often
yields the most discriminative signal: very small ¢ makes the task too easy (the noised input remains close to
the original), whereas very large ¢ collapses the input toward pure noise, making prediction uniformly hard. A
sample is classified as a member if its loss at the chosen timestep falls below a threshold selected on a validation
split.

Multiple Loss. A multi-timestep variant aggregates information from several diffusion steps to improve
robustness of the signal. This attack evaluates Eq.at a fixed grid of timesteps (e.g., t € {0, 100,...,900})
and combines the resulting losses into a single score, for example by summation or a weighted average. The
aggregate loss serves as the decision statistic, again thresholded to yield a membership prediction. Using multiple
timesteps reduces variance and can capture complementary difficulty regimes of the denoising task.

Proximal Initialization Attack (PIA). The PIA family [8] compares the model’s noise predictions when
initialized from different proximity states to the data. A canonical instantiation evaluates the prediction error at a
clean (or minimally noised) state, such as ¢ = 0, and at a moderately noised state, typically around ¢ = 200
where separability is reported to be strong. The difference (or ratio) between these errors is used as the attack
feature. Intuitively, training samples induce more confident and stable predictions across nearby states of the
diffusion process, leading to a lower feature value for members than for non-members.

PIAN. An adaptation of PIA, denoted PIAN [§]], normalizes the denoiser’s output to enforce approximately
Gaussian behavior in the predicted noise, thereby reducing scale effects that may confound raw error magnitudes.
The membership statistic is computed analogously to PIA after normalization. As with PIA, members are
expected to yield smaller scores because the model’s predictions align more consistently with the true noise on
training data.

Gradient Masking. The gradient-masking attack [[16]] targets semantically critical regions of the latent
representation that most influence the denoising loss. For a given z:, the gradient g = |V, L(2¢,t, €; fo)|
is computed, and a binary mask M is formed by selecting the top-percentile (e.g., top 20%) entries of g. A
perturbed latent 2; = € - M + z; - =M is then created by replacing the most influential coordinates with random
noise and leaving the remainder unchanged. The attack feature is the reconstruction error restricted to the masked
region, |[(e — z¢) - M — fo(Z¢,1) - MHS, optionally aggregated across multiple timesteps. Because models tend
to memorize salient structure in training samples, members exhibit lower masked-region reconstruction error
than non-members.

Noise Optimization. The central premise of noise-optimisation attack [16] is that stronger (or more effective)
perturbations are required to significantly reduce the denoising loss for training members, reflecting higher
confidence and tighter fit on seen data. Concretely, starting from z; at an intermediate timestep (e.g., ¢ = 100),
an unconstrained optimization seeks a perturbation & that minimizes the objective mins ||e — fo(2¢ + 6, ¢)||3,
using 5 L-BFGS steps. Two complementary features arise: the minimized prediction error ||e — fo(2¢ + 6, ¢)||3
and the perturbation magnitude ||5]|3. Members typically achieve lower final error yet require larger or more
targeted adjustments, producing distinctive signatures relative to non-members.

C Details on Dataset Inference

DI generalizes MIAs from individual samples to sets. Its central research question is: was the collection of
suspect samples P used to train the model, as opposed to being independent test data? To answer this, DI
compares P against a reference set U drawn from the same distribution but known to be excluded from training.
In both DMs and IARs the procedure consists of three steps: (i) extract a suite of per-sample MIA features, (ii)
map these features into scalar membership scores, and (iii) perform a statistical test comparing the distributions
of scores for P and U. The null hypothesis Ho : mean(s(P)) < mean(s(U)) is tested with Welch’s ¢-test at
a = 0.01.

Diffusion models. For DMs, the CDI methodology [16] employs a broad feature set, which we describe in
Appendix B. Rather than aggregating these features directly, CDI fits a logistic regression scorer on disjoint
control splits of P and U, yielding a calibrated mapping from feature vectors to scalar scores. The test is then
applied to scores on held-out subsets. To reduce variance, CDI repeats this process across multiple random
partitions and averages the resulting p-values.

Image autoregressive models. For IARs, the approach of [21] follows the same overall structure but makes use
of a different feature suite, tailored to token-level modeling. These features, described in Appendix A, capture
variations in token probabilities and loss trajectories that arise in autoregressive generation. Each feature is
normalized, and the per-sample scalar score is obtained by summing across all features. This lighter-weight
procedure that nevertheless suffices in practice for autoregressive token-based models. The resulting scores for
P and U are then compared using the same statistical test as above.
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