
A Path Towards Autonomous Machine Intelligence

Version 0.9.2, 2022-06-27

Yann LeCun
Courant Institute of Mathematical Sciences, New York University yann@cs.nyu.edu

Meta - Fundamental AI Research yann@fb.com

June 27, 2022

Abstract

How could machines learn as efficiently as humans and animals? How could ma-
chines learn to reason and plan? How could machines learn representations of percepts
and action plans at multiple levels of abstraction, enabling them to reason, predict,
and plan at multiple time horizons? This position paper proposes an architecture and
training paradigms with which to construct autonomous intelligent agents. It combines
concepts such as configurable predictive world model, behavior driven through intrinsic
motivation, and hierarchical joint embedding architectures trained with self-supervised
learning.
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1 Prologue

This document is not a technical nor scholarly paper in the traditional sense, but a position
paper expressing my vision for a path towards intelligent machines that learn more like
animals and humans, that can reason and plan, and whose behavior is driven by intrinsic
objectives, rather than by hard-wired programs, external supervision, or external rewards.
Many ideas described in this paper (almost all of them) have been formulated by many
authors in various contexts in various form. The present piece does not claim priority for
any of them but presents a proposal for how to assemble them into a consistent whole. In
particular, the piece pinpoints the challenges ahead. It also lists a number of avenues that
are likely or unlikely to succeed.

The text is written with as little jargon as possible, and using as little mathematical
prior knowledge as possible, so as to appeal to readers with a wide variety of backgrounds
including neuroscience, cognitive science, and philosophy, in addition to machine learning,
robotics, and other fields of engineering. I hope that this piece will help contextualize some
of the research in AI whose relevance is sometimes difficult to see.
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2 Introduction

Animals and humans exhibit learning abilities and understandings of the world that are far
beyond the capabilities of current AI and machine learning (ML) systems.

How is it possible for an adolescent to learn to drive a car in about 20 hours of practice
and for children to learn language with what amounts to a small exposure. How is it that
most humans will know how to act in many situation they have never encountered? By
contrast, to be reliable, current ML systems need to be trained with very large numbers of
trials so that even the rarest combination of situations will be encountered frequently during
training. Still, our best ML systems are still very far from matching human reliability in
real-world tasks such as driving, even after being fed with enormous amounts of supervisory
data from human experts, after going through millions of reinforcement learning trials in
virtual environments, and after engineers have hardwired hundreds of behaviors into them.

The answer may lie in the ability of humans and many animals to learn world models,
internal models of how the world works.

There are three main challenges that AI research must address today:

1. How can machines learn to represent the world, learn to predict, and learn to act
largely by observation?
Interactions in the real world are expensive and dangerous, intelligent agents should
learn as much as they can about the world without interaction (by observation) so
as to minimize the number of expensive and dangerous trials necessary to learn a
particular task.

2. How can machine reason and plan in ways that are compatible with gradient-based
learning?
Our best approaches to learning rely on estimating and using the gradient of a loss,
which can only be performed with differentiable architectures and is difficult to rec-
oncile with logic-based symbolic reasoning.

3. How can machines learn to represent percepts and action plans in a hierarchical man-
ner, at multiple levels of abstraction, and multiple time scales?
Humans and many animals are able to conceive multilevel abstractions with which
long-term predictions and long-term planning can be performed by decomposing com-
plex actions into sequences of lower-level ones.

The present piece proposes an architecture for intelligent agents with possible solutions to
all three challenges.

The main contributions of this paper are the following:

1. an overall cognitive architecture in which all modules are differentiable and many of
them are trainable (Section 3, Figure 2).

2. JEPA and Hierarchical JEPA: a non-generative architecture for predictive world mod-
els that learn a hierarchy of representations (Sections 4.4 and 4.6, Figures 12 and 15).

3. a non-contrastive self-supervised learning paradigm that produces representations that
are simultaneously informative and predictable (Section 4.5, Figure 13).
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4. A way to use H-JEPA as the basis of predictive world models for hierarchical planning
under uncertainty (section 4.7, Figure 16 and 17).

Impatient readers may prefer to jump directly to the aforementioned sections and figures.

2.1 Learning World Models

Human and non-human animals seem able to learn enormous amounts of background knowl-
edge about how the world works through observation and through an incomprehensibly
small amount of interactions in a task-independent, unsupervised way. It can be hypoth-
esized that this accumulated knowledge may constitute the basis for what is often called
common sense. Common sense can be seen as a collection of models of the world that
can tell an agent what is likely, what is plausible, and what is impossible. Using such
world models, animals can learn new skills with very few trials. They can predict the con-
sequences of their actions, they can reason, plan, explore, and imagine new solutions to
problems. Importantly, they can also avoid making dangerous mistakes when facing an
unknown situation.

The idea that humans, animals, and intelligent systems use world models goes back a
long time in psychology (Craik, 1943). The use of forward models that predict the next
state of the world as a function of the current state and the action being considered has been
standard procedure in optimal control since the 1950s (Bryson and Ho, 1969) and bears
the name model-predictive control. The use of differentiable world models in reinforcement
learning has long been neglected but is making a comeback (see for example (Levine, 2021))

A self-driving system for cars may require thousands of trials of reinforcement learning
to learn that driving too fast in a turn will result in a bad outcome, and to learn to slow
down to avoid skidding. By contrast, humans can draw on their intimate knowledge of
intuitive physics to predict such outcomes, and largely avoid fatal courses of action when
learning a new skill.

Common sense knowledge does not just allow animals to predict future outcomes, but
also to fill in missing information, whether temporally or spatially. It allows them to produce
interpretations of percepts that are consistent with common sense. When faced with an
ambiguous percept, common sense allows animals to dismiss interpretations that are not
consistent with their internal world model, and to pay special attention as it may indicate
a dangerous situation and an opportunity for learning a refined world model.

I submit that devising learning paradigms and architectures that would allow machines
to learn world models in an unsupervised (or self-supervised) fashion, and to use those
models to predict, to reason, and to plan is one of the main challenges of AI and ML today.
One major technical hurdle is how to devise trainable world models that can deal with
complex uncertainty in the predictions.

2.2 Humans and Animals learn Hierarchies of Models

Humans and non-human animals learn basic knowledge about how the world works in the
first days, weeks, and months of life. Although enormous quantities of such knowledge are
acquired quite quickly, the knowledge seems so basic that we take it for granted. In the
first few months of life, we learn that the world is three-dimensional. We learn that every
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Figure 1: This chart, (courtesy of Emmanuel Dupoux), indicates at what age infants generally
acquire various concepts about how the world works. It is consistent with the idea that abstract
concepts, such as the fact that objects are subject to gravity and inertia, are acquired on top of less
abstract concepts, like object permanence and the assignment of objects to broad categories. Much
of this knowledge is acquired mostly by observation, with very little direct intervention, particularly
in the first few weeks and months.

source of light, sound, and touch in the world has a distance from us. The fact that every
point in a visual percept has a distance is the best way to explain how our view of the
world changes from our left eye to our right eye, or when our head is being moved. Parallax
motion makes depth obvious, which in turn makes the notion of object obvious, as well
as the fact that objects can occlude more distant ones. Once the existence of objects is
established, they can be automatically assigned to broad categories as a function of their
appearance or behavior. On top of the notion of object comes the knowledge that objects
do not spontaneously appear, disappear, change shape, or teleport: they move smoothly
and can only be in one place at any one time. Once such concepts are acquired, it becomes
easy to learn that some objects are static, some have predictable trajectories (inanimate
objects), some behave in somewhat unpredictable ways (collective phenomena like water,
sand, tree leaves in the wind, etc), and some seem to obey different rules (animate objects).
Notions of intuitive physics such as stability, gravity, inertia, and others can emerge on top
of that. The effect of animate objects on the world (including the effects of the subject’s
own actions) can be used to deduce cause-and-effect relationships, on top of which linguistic
and social knowledge can be acquired.

Figure 1, courtesy of Emmanuel Dupoux, shows at what age infants seem to acquire
basic concepts such as object permanence, basic categories, intuitive physics, etc. Concepts
at higher levels of abstraction seem to develop on top of lower-level ones.

Equipped with this knowledge of the world, combined with simple hard-wired behav-
iors and intrinsic motivations/objectives, animals can quickly learn new tasks, predict the
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consequences of their actions and plan ahead, foreseeing successful courses of actions and
avoiding dangerous situations.

But can a human or animal brain contain all the world models that are necessary for
survival? One hypothesis in this paper is that animals and humans have only one world
model engine somewhere in their prefrontal cortex. That world model engine is dynamically
configurable for the task at hand. With a single, configurable world model engine, rather
than a separate model for every situation, knowledge about how the world works may
be shared across tasks. This may enable reasoning by analogy, by applying the model
configured for one situation to another situation.

To make things concrete, I will directly dive into a description of the proposed model.
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Figure 2: A system architecture for autonomous intelligence. All modules in this model are as-
sumed to be “differentiable”, in that a module feeding into another one (through an arrow connecting
them) can get gradient estimates of the cost’s scalar output with respect to its own output.
The configurator module takes inputs (not represented for clarity) from all other modules and
configures them to perform the task at hand.
The perception module estimates the current state of the world.
The world model module predicts possible future world states as a function of imagined actions
sequences proposed by the actor.
The cost module computes a single scalar output called “energy” that measures the level of dis-
comfort of the agent. It is composed of two sub-modules, the intrinsic cost, which is immutable (not
trainable) and computes the immediate energy of the current state (pain, pleasure, hunger, etc), and
the critic, a trainable module that predicts future values of the intrinsic cost.
The short-term memory module keeps track of the current and predicted world states and as-
sociated intrinsic costs.
The actor module computes proposals for action sequences. The world model and the critic com-
pute the possible resulting outcomes. The actor can find an optimal action sequence that minimizes
the estimated future cost, and output the first action in the optimal sequence.
See Section 3 for details.
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3 A Model Architecture for Autonomous Intelligence

The proposed architecture for autonomous intelligent agents is depicted in Figure 2.

It is composed of a number of modules whose functions are described below. Some
of the modules are configurable on the fly, i.e. their precise function is determined by the
configurator module. The role of the configurator is executive control: given a task to be
executed, it pre-configures the perception, the world model, the cost and the actor for the
task at hand. The configurator modulates the parameters of the modules it feeds into.

The configurator module takes input from all other modules and configures them for
the task at hand by modulating their parameters and their attention circuits. In particular,
the configurator may prime the perception, world model, and cost modules to fulfill a
particular goal.

The perception module receives signals from sensors and estimates the current state
of the world. For a given task, only a small subset of the perceived state of the world
is relevant and useful. The perception module may represent the state of the world in
a hierarchical fashion, with multiple levels of abstraction. The configurator primes the
perception system to extract the relevant information from the percept for the task at
hand.

The world model module constitutes the most complex piece of the architecture. Its
role is twofold: (1) estimate missing information about the state of the world not provided
by perception, (2) predict plausible future states of the world. The world model may predict
natural evolutions of the world, or may predict future world states resulting from a sequence
of actions proposed by the actor module. The world model may predict multiple plausible
world states, parameterized by latent variables that represent the uncertainty about the
world state. The world model is a kind of “simulator” of the relevant aspects of world.
What aspects of the world state is relevant depends on the task at hand. The configurator
configures the world model to handle the situation at hand. The predictions are performed
within an abstract representation space that contains information relevant to the task at
hand. Ideally, the world model would manipulate representations of the world state at
multiple levels of abstraction, allowing it to predict over multiple time scales.

A key issue is that the world model must be able to represent multiple possible predic-
tions of the world state. The natural world is not completely predictable. This is particularly
true if it contains other intelligent agents that are potentially adversarial. But it is often
true even when the world only contains inanimate objects whose behavior is chaotic, or
whose state is not fully observable.

There are two essential questions to answer when building the proposed architectures:
(1) How to allow the world model to make multiple plausible prediction and represent
uncertainty in the predictions, and (2) how to train the world model.

The cost module measures the level of “discomfort” of the agent, in the form of a
scalar quantity called the energy. The energy is the sum of two energy terms computed by
two sub-modules: the Intrinsic Cost module and the Trainable Critic module. The overall
objective of the agent is to take actions so as to remain in states that minimize the average
energy.

The Intrinsic Cost module is hard-wired (immutable, non trainable) and computes a
single scalar, the intrinsic energy that measures the instantaneous “discomfort” of the agent
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– think pain (high intrinsic energy), pleasure (low or negative intrinsic energy), hunger, etc.
The input to the module is the current state of the world, produced by the perception
module, or potential future states predicted by the world model. The ultimate goal of the
agent is minimize the intrinsic cost over the long run. This is where basic behavioral drives
and intrinsic motivations reside. The design of the intrinsic cost module determines the
nature of the agent’s behavior. Basic drives can be hard-wired in this module. This may
include feeling “good” (low energy) when standing up to motivate a legged robot to walk,
when influencing the state of the world to motivate agency, when interacting with humans
to motivate social behavior, when perceiving joy in nearby humans to motivate empathy,
when having a full energy supplies (hunger/satiety), when experiencing a new situation to
motivate curiosity and exploration, when fulfilling a particular program, etc. Conversely, the
energy would be high when facing a painful situation or an easily-recognizable dangerous
situation (proximity to extreme heat, fire, etc), or when wielding dangerous tools. The
intrinsic cost module may be modulated by the configurator, to drive different behavior at
different times.

The Trainable Critic module predicts an estimate of future intrinsic energies. Like the
intrinsic cost, its input is either the current state of the world or possible states predicted by
the world model. For training, the critic retrieves past states and subsequent intrinsic costs
stored in the associative memory module, and trains itself to predict the latter from the
former. The function of the critic module can be dynamically configured by the configurator
to direct the system towards a particular sub-goal, as part of a bigger task.

Because both sub-modules of the cost module are differentiable, the gradient of the
energy can be back-propagated through the other modules, particularly the world model,
the actor and the perception, for planning, reasoning, and learning.

The short-term memory module stores relevant information about the past, current,
and future states of the world, as well as the corresponding value of the intrinsic cost.
The world model accesses and updates the short-term memory while temporally predicting
future (or past) states of the world, and while spatially completing missing information or
correcting inconsistent information about the current world state. The world model can
send queries to the short-term memory and receive retrieved values, or store new values of
states. The critic module can be trained by retrieving past states and associated intrinsic
costs from the memory. The architecture may be similar to that of Key-Value Memory
Networks (Miller et al., 2016) This module can be seen as playing some of same roles as the
hippocampus in vertebrates.

The actor module computes proposals for sequences of actions and outputs actions to
the effectors. The actor proposes a sequence of actions to the world model. The world model
predicts future world state sequences from the action sequence, and feeds it to the cost.
Given a goal defined by the cost (as configured by the configurator), the cost computes the
estimated future energy associated with the proposed action sequence. Since the actor has
access to the gradient of the estimated cost with respect to the proposed action sequence, it
can compute an optimal action sequence that minimizes the estimated cost using gradient-
based methods. If the action space is discrete, dynamic programming may be used to
find an optimal action sequence. Once the optimization is completed, the actor outputs
the first action (or a short sequence of actions) to the effectors. This process is akin to
model-predictive control in optimal control (Bryson and Ho, 1969).
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Figure 3: Mode-1 perception-action episode. The perception module estimates the state of the
world s[0] = Enc(x). The actor directly computes an action, or a short sequence of actions, through
a policy module a[0] = A(s[0]).
This reactive process does not make use of the world model nor of the cost. The cost module computes
the energy of the initial state f [0] = C(s[0]) and stores the pairs (s[0], f [0]) in the short-term memory.
Optionally, it may also predict the next state using the world model s[1] = Pred(s[0], a[0]), and the
associated energy f [0] = C(s[0]) so that the world model can be adjusted once the next observation
resulting from the action taken becomes available.

The actor may comprise two components: (1) a policy module that directly produces
an action from the world state estimate produced by the perception and retrieved from the
short-term memory, and (2) the action optimizer, as described above, for model-predictive
control. The first mode is similar to Daniel Kahneman’s “System 1”, while the second mode
is similar to “System 2” (Kahneman, 2011)

In the following, we will use specific symbols to represent various components in archi-
tectural diagrams. An brief explanation is given in Appendix 8.3.3.

3.1 Typical Perception-Action Loops

There are two possible modes that the model can employ for a perception-action episode.
The first one involves no complex reasoning, and produces an action directly from the output
of the perception and a possible short-term memory access. We will call it “Mode-1”, by
analogy with Kahneman’s “System 1”. The second mode involves reasoning and planning
through the world model and the cost. It is akin to model-predictive control (MPC), a
classical planning and reasoning paradigm in optimal control and robotics. We will call
it “Mode-2” by analogy to Kahneman’s “System 2”. We use the term “reasoning” in a
broad sense here to mean constraint satisfaction (or energy minimization). Many types of
reasoning can be viewed as forms of energy minimization.

3.1.1 Mode-1: Reactive behavior

A perception-action episode for Mode-1 is depicted in Figure 3.

The perception module, through an encoder module, extracts a representation of the
state of the world s[0] = Enc(x) containing relevant information for the task at hand. A
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policy module, a component of the actor, produces an action as a function of the state
a[0] = A(s[0]). The resulting action is sent to the effectors.

The function of the policy module is modulated by the configurator, which configures
it for the task at hand.

The policy module implements a purely reactive policy that does not involve delib-
erate planning nor prediction through the world model. Yet, its structure can be quite
sophisticated. For example, in addition to the state s[0], the policy module may access the
short-term memory to acquire a more complete information about previous world states. It
may use the short-term memory for the associative retrieval of an action given the current
state.

While the cost module is differentiable, its output f [0] = C(s[0]) is indirectly influenced
by previous actions through the external world. Since the world is not differentiable, one
cannot back-propagate gradients from the cost through the chain cost ← perception ←
world ← action. In this mode, gradients of the cost f [0] with respect to actions can only
be estimated by polling the world with multiple perturbed actions, but that is slow and
potentially dangerous. This process would correspond to classical policy gradient methods
in reinforcement learning.

During Mode-1, the system can optionally adjust the world model. It runs the world
model for one step, predicting the next state s[1], then it waits for the next percept resulting
from the action taken, and uses the observed world state as a target for the predictor.

With the use of a world model, the agent can imagine courses of actions and predict
their effect and outcome, lessening the need to perform an expensive and dangerous search
for good actions and policies by trying multiple actions in the external world and measuring
the result.

3.1.2 Mode-2: reasoning and planning using the world model

A typical perception-action episode for Mode 2 is depicted in Figure 4.

1. perception: the perception system extract a representation of the current state of
the world s[0] = P (x). The cost module computes and stores the immediate cost
associated with that state.

2. action proposal: the actor proposes an initial sequence of actions to be fed to the
world model for evaluation (a[0], . . . , a[t], . . . , a[T ]).

3. simulation: the world model predicts one or several likely sequence of world state
representations resulting from the proposed action sequence (s[1], . . . , s[t], . . . , s[T ]).

4. evaluation: the cost module estimates a total cost from the predicted state sequence,
generally as a sum over time steps F (x) =

∑T
t=1C(s[t])

5. planning: the actor proposes a new action sequence with lower cost. This can be done
through a gradient-based procedure in which gradients of the cost are back-propagated
through the compute graph to the action variables. The resulting minimum-cost
action sequence is denoted (ǎ[0], . . . , ǎ[T ]). Full optimization may require iterating
steps 2-5.
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Figure 4: Mode-2 perception-action episode. The perception module estimates the state of the world
s[0]. The actor proposes a sequence of actions a[0], a[1], . . . , a[t], a[t+ 1], . . . , a[T ]. The world model
recursively predicts an estimate of the world state sequence using s[t+ 1] = Pred(s[t], a[t]). The cost
C(s[t]) computes an energy for each predicted state in the sequence, the total energy being the sum
of them. Through an optimization or search procedure, the actor infers a sequence of actions that
minimizes the total energy. It then sends the first action in the sequence (or the first few actions)
to the effectors. This is, in effect, an instance of classical model-predictive control with receding-
horizon planning. Since the cost and the model are differentiable, gradient-based methods can be
used to search for optimal action sequences as in classical optimal control. Since the total energy
is additive over time, dynamic programming can also be used, particularly when the action space is
small and discretized. Pairs of states (computed by the encoder or predicted by the predictor) and
corresponding energies from the intrinsic cost and the trainable critic are stored in the short-term
memory for subsequent training of the critic.

6. acting: after converging on a low-cost action sequence, the actor sends the first action
(or first few actions) in the low-cost sequence to the effectors. The entire process is
repeated for the next perception-action episode.

7. memory: after every action, the states and associated costs from the intrinsic cost
and the critic are stored in the short-term memory. These pairs can be used later to
train or adapt the critic.

This procedure is essentially what is known as Model-Predictive Control (MPC) with
receding horizon in the optimal control literature. The difference with classical optimal
control is that the world model and the cost function are learned.

In principle, any form of optimization strategy can be used, for step 5. While gradient-
based optimization methods can be efficient when the world model and cost are well-
behaved, situations in which the action-cost mapping has discontinuities may require to
use other optimization strategies, particularly if the state and/or action spaces can be
discretized. These strategies include dynamic programming, combinatorial optimization,
simulate annealing and other gradient-free methods, heuristic search techniques (e.g. tree
search with pruning), etc.

To simplify, the process was described in the deterministic case, i.e. when there is no
need to handle the possibility of multiple predictions for s[t + 1] resulting from a given
initial state s[t] and action a[t]. In real situations, the world is likely to be somewhat
unpredictable. Multiple states may result from a single initial state and action due to
the fact that the world is intrinsically stochastic (aleatoric uncertainty), or that the state
representation s[t] contains incomplete information about the true world state (epistemic
uncertainty), or that the world model’s prediction accuracy is imperfect due to limited
training data, representational power, or computational constraints.
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Figure 5: Training a reactive policy module from the result of Mode-2 reasoning. Using Mode-2 is
onerous, because it mobilizes all the resources of the agent for the task at hand. It involves running
the world model for multiple time steps repeatedly. This diagram depicts how to train a policy module
A(s[t]) to approximate the action that results from Mode-2 optimization. The system first operates
in Mode-2 and produces an optimal sequence of actions (ǎ[0], . . . , ǎ[T ]). Then the parameters of the
policy module are adjusted to minimize a divergence D(ǎ[t]), A(s[t])) between the optimal action and
the output of the policy module. This results in a policy module that performs amortized inference,
and produces an approximation for a good action sequence. The policy module can then be used to
produce actions reactively in Mode-1, or to initialize the action sequence prior to Mode-2 inference
and thereby accelerate the optimization.

3.1.3 From Mode-2 to Mode-1: Learning New Skills

Using Mode-2 is onerous. The agent only possesses one world model “engine”. It is config-
urable by the configurator for the task at hand, but it can only be used for a single task
at a time. Hence, similarly to humans, the agent can only focus on one complex task at a
time.

Mode-1 is considerably less onerous, since it only requires a single pass through a policy
module. The agent may possess multiple policy modules working simultaneously, each
specialized for a particular set of tasks.

The process described in Figure 5 shows how a policy module A(s[t]) can be trained
to produce approximations of the optimal actions resulting from Mode-2 reasoning. The
system is run on Mode-2, producing an optimal action sequence (ǎ[0], . . . , ǎ[t], . . . , ǎ[T ]).
Then, the parameters of the policy module A(s[t]) are updated to minimize a divergence
measure between its output and the optimal action at that time D(ǎ[t], A(s[t])). Once
properly trained, the policy module can be used to directly produce an action in Mode-1
ã[0] = A(s[0]). It can also be used to recursively compute an initial action sequence proposal
before Mode-2 optimization:

s[t+ 1] = Pred(s[t], a[t]) ; ã[t+ 1] = A(s[t+ 1])

The policy module can be seen as performing a form of amortized inference.
This process allows the agent to use the full power of its world model and reasoning

capabilities to acquire new skills that are then “compiled” into a reactive policy module
that no longer requires careful planning.

3.1.4 Reasoning as Energy Minimization

The process of elaborating a suitable action sequence in Mode-2 can be seen as a form
of reasoning. This form of reasoning is based on simulation using the world model, and
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Figure 6: Architecture of the cost module. The cost module comprises the intrinsic cost module
which is immutable ICi(s) (left) and the critic or Trainable Cost TCj(s) (right), which is trainable.
Both IC and TC are composed of multiple submodules whose output energies are linearly combined.
Each submodule imparts a particular behavioral drive in the agent. The weights in the linear com-
bination, ui and vj, are determined by the configurator module and allow the agent to focus on
different subgoals at different times.

optimization of the energy with respect to action sequences. More generally, the “actions”
can be seen as latent variables representing abstract transformations from one state to the
next. This type of planning though simulation and optimization may constitute the kind
of reasoning that is most frequent in natural intelligence.

Many classical forms of reasoning in AI can actually be formulated as optimization
problems (or constraint satisfaction problems). It is certainly the case for the kind of
probabilistic inference performed with factor graphs and probabilistic graphical models.
The proposed architecture is, in fact, a factor graph in which the cost modules are log
factors. But the kind of reasoning that the proposed architecture enables goes beyond
traditional logical and probabilistic reasoning. It allows reasoning by simulation and by
analogy.

3.2 The Cost Module as the Driver of Behavior

The overall architecture of the cost module is shown in Figure 6. It is composed of the
intrinsic cost module which is immutable ICi(s) and the critic or Trainable Cost TCj(s),
which is trainable. Both IC and TC are composed of multiple submodules whose output
energies are linearly combined

C(s) = IC(s) + TC(s) (1)

IC(s) =
k∑
i=1

uiICi(s) (2)
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TC(s) =
l∑

j=1

vjTCj(s) (3)

Each submodule imparts a particular behavioral drive to the agent. The weights in the
linear combination, ui and vj , are modulated by the configurator module and allow the
agent to focus on different subgoals at different times.

The intrinsic cost module (IC) is where the basic behavioral nature of the agent is
defined. It is where basic behaviors can be indirectly specified.

For a robot, these terms would include obvious proprioceptive measurements corre-
sponding to “pain”, “hunger”, and “instinctive fears”, measuring such things as external
force overloads, dangerous electrical, chemical, or thermal environments, excessive power
consumption, low levels of energy reserves in the power source, etc.

They may also include basic drives to help the agent learn basic skills or accomplish its
missions. For example, a legged robot may comprise an intrinsic cost to drive it to stand
up and walk. This may also include social drives such as seeking the company of humans,
finding interactions with humans and praises from them rewarding, and finding their pain
unpleasant (akin to empathy in social animals). Other intrinsic behavioral drives, such as
curiosity, or taking actions that have an observable impact, may be included to maximize
the diversity of situations with which the world model is trained (Gottlieb et al., 2013)

The IC can be seen as playing a role similar to that of the amygdala in the mammalian
brain and similar structures in other vertebrates.

To prevent a kind of behavioral collapse or an uncontrolled drift towards bad behaviors,
the IC must be immutable and not subject to learning (nor to external modifications).

The role of the critic (TC) is twofold: (1) to anticipate long-term outcomes with minimal
use of the onerous world model, and (2) to allow the configurator to make the agent focus
on accomplishing subgoals with a learned cost.

In general, the behavioral nature of an AI agent can be specified in four ways:

1. by explicitly programming a specific behavior activated when specific conditions are
met

2. by defining an objective function in such a way that the desired behavior is executed
by the agent as a result of finding action sequences that minimize the objective.

3. by training the agent to behave a certain way through direct supervision. The agent
observes the actions of an expert teacher, and trains a Mode-1 policy module to
reproduce it.

4. by training the agent through imitation learning. The agent observes expert teachers,
and infers an objective function that their behavior appears to be optimizing when
they act. This produces a critic submodule for Mode-2 behavior. This process is
sometimes called inverse reinforcement learning.

The second method is considerably simpler to engineer than the first one, because it
merely requires to design an objective, and not design a complete behavior. The second
method is also more robust: a preordained behavior may be invalidated by unexpected
conditions or a changing environment. With an objective, the agent may adapt its behavior
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Figure 7: Training the critic. During planning episodes, the intrinsic cost module stores triplets
(time, state, intrinsic energy): (τ, sτ , IC(sτ )) into the associative short-term memory. During critic
training episodes, the critic retrieves a past state vector sτ , together with an intrinsic energy at a later
time IC(sτ+δ). In the simplest scenario, the critic adjusts its parameters to minimize a divergence
measure between the target IC(stau+δ) and the predicted energy C(sτ ). In more complex schemes,
it may use combinations of future intrinsic energies as targets. Note that the state sequence may
contain information about the actions planned or taken by the agent.

to satisfy the objective despite unexpected conditions and changes in the environment. The
second method exploits the learning and inference abilities of the agent to minimize the
amount of priors hard-wired by the designer that are likely to be brittle.

3.3 Training the Critic

An essential question is how to train the critic.

The principal role of the critic is to predict future values of the intrinsic energy. To do
so, it uses the short-term memory module. This module is an associative memory in which
the intrinsic cost module stores triplets (time, state, intrinsic energy): (τ, sτ , IC(sτ )). The
stored states and corresponding intrinsic energies may correspond to a perceived state or to
a state imagined by the world model during a Mode-2 episode. The memory may retrieve
a state sτ given a time τ , and may retrieve an energy IC(sτ ) given a time τ or a state sτ .
With a suitable memory architecture, the retrieval may involve interpolations of keys and
retrieved values. The process is shown in Figure 7

The critic can be trained to predict future intrinsic energy values by retrieving a past
state vector sτ together with an intrinsic energy at a later time IC(sτ+δ). The parameters
of the critic can then be optimized to minimize a prediction loss, for example ||IC(sτ+δ)−
TC(sτ )||2. This is a simple scenario. More complex schemes can be devised to predict
expectations of discounted future energies, or distributions thereof. Note that the state
vectors may contain information about the actions taken or imagined by the actor.

At a general level, this is similar to critic training methods used in such reinforcement
learning approaches as A2C.
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The short-term memory can be implemented as the memory module in a key-value
memory network ??: a query vector is compared to a number of key vectors, producing
a vector of scores. The scores are normalized and used as coefficients to output a linear
combination of the stored values. It can be seen as a “soft” associative memory capable of
interpolation. One advantage of it is that, with a proper allocation scheme of new key/value
slots, it is capable of one-shot learning, yet can interpolate between keys and is end-to-end
differentiable.

4 Designing and Training the World Model

Arguably, designing architectures and training paradigms for the world model constitute
the main obstacles towards real progress in AI over the next decades. One of the main
contributions of the present proposal is precisely a hierarchical architecture and a training
procedure for world models that can represent multiple outcomes in their predictions.

Training the world model is a prototypical example of Self-Supervised Learning (SSL),
whose basic idea is pattern completion. The prediction of future inputs (or temporarily
unobserved inputs) is a special case of pattern completion. In this work, the primary
purpose of the world model is seen as predicting future representations of the state of the
world.

There are three main issues to address. First, quite evidently, the quality of the world
model will greatly depend on the diversity of state sequences, or triplets of (state, action,
resulting state) it is able to observe while training. Second, because the world is not entirely
predictable, there may be multiple plausible world state representations that follow a given
world state representation and an action from the agent. The world model must be able to
meaningfully represent this possibly-infinite collection of plausible predictions. Third, the
world model must be able to make predictions at different time scales and different levels
of abstraction.

The first issue touches on one of the main questions surrounding learning for sequential
decision processes: the diversity of the “training set” depends on the actions taken. The
issue is discussed in Section 4.10 below.

The second issue is even more dire: the world is not entirely predictable. Hence, the
world model should be able to represent multiple plausible outcomes from a given state and
(optionally) an action. This may constitute one of the most difficult challenges to which
the present proposal brings a solution. This issue is discussed in Section 4.8 below.

The third issue relates to the problem of long-term prediction and planning. Humans
plan complex goals at an abstract level and use high-level descriptions of the world states
and actions to make predictions. High-level goals are then decomposed into sequences of
more elementary sequences of subgoals, using shorter-term prediction from the world model
to produce lower-level actions. This decomposition process is repeated all the way down
to millisecond-by-millisecond muscle control, informed by local conditions. The question of
how world models could represent action plans at multiple time scales and multiple levels
of abstraction is discussed in Section 4.6
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4.1 Self-Supervised Learning

Self-Supervised Learning (SSL) is a paradigm in which a learning system is trained to
capture the mutual dependencies between its inputs. Concretely, this often comes down to
training a system to tell us if various parts of its input are consistent with each other.

For example, in a video prediction scenario, the system is given two video clips, and
must tell us to what degree the second video clip is a plausible continuation of the first one.
In a pattern completion scenario, the system is given part of an input (image, text, audio
signal) together with a proposal for the rest of the input, and tells us whether the proposal
is a plausible completion of the first part. In the following, we will denote the observed part
of the input by x and the possibly-unobserved part by y.

Importantly, we do not impose that the model be able to predict y from x. The reason
is that there may be an infinite number of y that are compatible with a given x. In a video
prediction setting, there is an infinite number of video clips that are plausible continuations
of a given clip. It may be difficult, or intractable, to explicitly represent the set of plausible
predictions. But it seems less inconvenient to merely ask the system to tell us if a proposed
y is compatible with a given x.

A general formulation can be done with the framework of Energy-Based Models (EBM).
The system is a scalar-valued function F (x, y) that produces low energy values when x and
y are compatible and higher values when they are not. The concept is depicted in Figure 8.
Data points are black dots. The energy function produces low energy values around the data
points, and higher energies away from the regions of high data density, as symbolized by the
contour lines of the energy landscape. The EBM implicit function formulation enables the
system to represent multi-modal dependencies in which multiple values of y are compatible
with a given x. The set of y compatible with a given x may be a single point, multiple
discrete points, a manifold, or a collection of points and manifolds.

To enable Mode-2 planning, a predictive world model should be trained to capture the
dependencies between past and future percepts. It should be able to predict representations
of the future from representations of the past and present. The general learning principle
is as follows: given two inputs x and y, learn two functions that compute representations
sx = gx(x) and sy = gy(y) such that (1) sx and sy are maximally informative about x and
y and (2) sy can easily be predicted from sx. This principle ensures a trade-off between
making the evolution of the world predictable in the representation space, and capturing as
much information as possible about the world state in the representation.

What concepts could such an SSL system learn by being trained on video? Our hypoth-
esis is that a hierarchy of abstract concepts about how the world works could be acquired.

Learning a representation of a small image region such that it is predictable from neigh-
boring regions surrounding it in space and time would cause the system to extract local
edges and contours in images, and to detect moving contours in videos. Learning a repre-
sentation of images such that the representation of a scene from one viewpoint is predictable
from the representation of the same scene from a slightly different viewpoint would cause
the system to implicitly represent a depth map. A depth map is the simplest way to explain
how a view of a scene changes when the camera moves slightly. Once the notion of depth has
been learned, it would become simple for the system to identify occlusion edges, as well as
the collective motion of regions belonging to a rigid object. An implicit representation of 3D
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Figure 8: Self-Supervised Learning (SSL) and Energy-Based Models (EBM). SSL is a learning
paradigm in which a learning system is trained to “fill in the blanks”, or more precisely to capture the
dependencies between observed parts of the input and possibly unobserved parts of the input. Part of
the input signal is observed and denoted x (in pink), and part of the input signal is either observed
or unobserved and denoted y (in blue). In a temporal prediction scenario, x represents past and
present observations, and y represent future observations. In a general pattern completion scenario,
various parts of the input may be observed or unobserved at various times. The learning system is
trained to capture the dependencies between x and y through a scalar-valued energy function F (x, y)
that takes low values when x and y are consistent or compatible, and higher values if x and y are
inconsistent or incompatible. In a video prediction scenario, the system would produce a low energy
value if a video clip y is a plausible continuation of the video clip x. This energy-based model (EBM)
formulation enables the system to represent multi-modal dependencies in which multiple values of y
(perhaps an infinite set) may be compatible with a given x. In the right panel, an energy landscape
is represented in which dark discs represent data points, and closed lines represents contours (level
sets) of the energy function.

objects may spontaneously emerge. Once the notion of object emerges in the representation,
concepts like object permanence may become easy to learn: objects that disappear behind
others due to parallax motion will invariably reappear. The distinction between inanimate
and animate object would follow: inanimate object are those whose trajectories are easily
predictable. Intuitive physics concepts such as stability, gravity, momentum, may follow by
training the system to perform longer-term predictions at the object representation level.
One may imagine that through predictions at increasingly abstract levels of representation
and increasingly long time scales, more and more complex concepts about how the world
works may be acquired in a hierarchical fashion.

The idea that abstract concepts can be learned through prediction is an old one, for-
mulated in various way by many authors in cognitive science, neuroscience, and AI over
several decades. The question is how to do it, precisely.
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Figure 9: Latent-Variable Energy-Based Model (LVEBM).
To evaluate the degree of compatibility between x and y, an EBM may need the help of a latent variable
z. The latent variable can be seen as parameterizing the set of possible relationships between an x
and a set of compatible y. Latent variables represent information about y that cannot be extracted
from x. For example, if x is a view of an object, and y another view of the same object, z may
parameterize the camera displacement between the two views. Inference consists in finding the latent
that minimizes the energy ž = argminz∈Z Ew(x, y, z). The resulting energy Fw(x, y) = Ew(x, y, ž)
only depends on x and y. In the dual view example, inference finds the camera motion that best
explains how x could be transformed into y.

4.2 Handling Uncertainty with Latent Variables

As was pointed out above, one of the main issues is enabling the model to represent mul-
tiple predictions. This may require the use of a latent variable. A latent variable is an
input variable whose value is not observed but inferred. A latent variable can be seen as
parameterizing the set of possible relationships between an x and a set of compatible y.
Latent variables are used to represent information about y that cannot be extracted from
x.

Imagine a scenario in which x is a photo of a scene, and y a photo of the same scene
from a slightly different viewpoint. To tell whether x and y are indeed views from the
same scene, one may need to infer the displacement of the camera between the two views.
Similarly, if x is a picture of a car coming to a fork in the road, and y is a picture of the
same car a few seconds later on one of the branches of the fork, the compatibility between
x and y depends on a binary latent variable that can be inferred: did the car turn left or
right.

In a temporal prediction scenario, the latent variable represents what cannot be pre-
dicted about y (the future) solely from x and from past observations (the past). It should
contain all information that would be useful for the prediction, but is not observable, or
not knowable. I may not know whether the driver in front of me will turn left or right,
accelerate or brake, but I can represent those options by a latent variable.

A latent-variable EBM (LVEBM) is a parameterized energy function that depends on
x, y, and z: Ew(x, y, z). When presented with a pair (x, y) the inference procedure of the
EBM finds a value of the latent variable z that minimizes the energy

ž = argmin
z∈Z

Ew(x, y, z) (4)
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This latent-variable inference by minimization allows us to eliminate z from the energy
function:

Fw(x, y) = min
z∈Z

Ew(x, y, z) = Ew(x, y, ž) (5)

Technically, Fw(x, y) should be called a zero-temperature free energy, but we will continue
to call it the energy.

4.3 Training Energy-Based Models

Before we discuss EBM training, it is important to note that the definition of EBM does not
make any reference to probabilistic modeling. Although many EBMs can easily be turned
into probabilistic models, e.g. through a Gibbs distribution, this is not at all a necessity.
Hence the energy function is viewed as the fundamental object and is not assumed to
implicitly represent the unnormalized logarithm of a probability distribution.

Training an EBM consists in constructing an architecture (e.g. a deep neural network)
to compute the energy function Fw(x, y) parameterized with a parameter vector w. The
training process must seek a w vector that gives the right shape to the energy function.
For a given x from the training set, a well-trained Fw(x, y) will produce lower energies for
values of y that are associated with x in the training set, and higher energies to other values
of y.

Given a training sample (x, y), training an EBM comes down to devising a suitable loss
functional L(x, y, Fw(x, y)), which can be expressed directly as a function of the parameter
vector L(x, y, w), and such that minimizing this loss will make the energy of the training
sample Fw(x, y) lower than the energies Fw(x, ŷ) of any ŷ different from y.

Making the energy of the training sample low is easy: it is sufficient for the loss to be
an increasing function of the energy, and for the energy to have a lower bound.

The difficult question is how to ensure that the energies of ŷ different from y are higher
than the energy of y. Without a specific provision to ensure that Fw(x, y′) > Fw(x, y)
whenever ŷ 6= y the energy landscape may suffer a collapse: given an x the energy landscape
could become “flat”, giving essentially the same energy to all values of y.

What EBM architectures are susceptible to collapse? Whether an EBM may be
susceptible to collapse depends on its architecture. Figure 10 shows a number of standard
architectures and indicates whether they can be subject to collapse.

A regular predictive or deterministic-generative architecture (Figure 10(a)) cannot col-
lapse. For any x, a single ỹ is produced. The energy is zero whenever y = ỹ. Any y different
from ỹ will have a higher energy, as long as D(y, ỹ) is strictly larger than zero whenever y
is different from ỹ.

A generative latent-variable architecture (non-deterministic generative) (Figure 10(b))
can collapse when the latent variable has too much information capacity. When the latent
variable z varies over the set Z, the prediction ỹ varies over a set Pred(sx,Z), which must
match the set of y that are compatible with x. If Z is too “large” then the region of low-
energy y may be larger than the region of high data density. If z has the same dimension
as y, the system could very well give zero energy to the entire y space.

An auto-encoder (AE) (Figure 10(c)) can collapse when the representation sy has too
much information capacity. For example, if the dimension of sy is equal or higher than that
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d) Joint Embedding Architecture
    CAN COLLAPSE

b) Generative latent-variable Architecture
    CAN COLLAPSE

a) Prediction / regression
    NO COLLAPSE

c) Auto-Encoder
    CAN COLLAPSE

Figure 10: A few standard architectures and their capacity for collapse.
(a) Deterministic generative architecture: cannot collapse because it can only produce a single out-
put. For a given x, only one value of y may have zero energy: y = ỹ. Other values of y will have
higher energy if D(u, ỹ) is larger than zero when y 6= ỹ.
(b) Non-deterministic generative architecture: can collapse when the latent variable has excessive
information capacity. If for a given x and for all y there exists a z that produces zero prediction
energy (e.g. if z has the same or higher dimension as y), the entire y space will have low energy.
The information capacity of z should be just enough so that varying z over its set will produce all
the plausible ỹ for a given x.
(c) Auto-encoder: can collapse if the system learns the identity function or if it can correctly recon-
struct a region of y space that is much larger than the region of high data density, thereby giving low
energy to an overly large region.
(d) Simple joint embedding architecture: can collapse if the encoders ignore the inputs and produce
representations that remain constant and equal, or if the encoders are invariant over overly broad
regions of the space.

of y, the AE could learn the identity function, producing a reconstruction error equal to
zero over the entire y space.

Lastly, a Joint Embedding Architecture (JEA) (Figure 10(d)) can collapse when the
information carried by sx and/or sy are insufficient. If the encoders ignore the inputs, and
produce constant and equal codes sx = sy, the entire space will have zero energy.

These are but a few examples of architectures.

How do we design the loss to prevent collapse? There are two approaches:
contrastive methods and regularized methods. In the following, I will argue that contrastive
methods have flaws and that regularized (non contrastive) methods are much more likely
to be preferable in the long run.

Contrastive methods consist in using a loss functional whose minimization has the
effect of pushing down on the energies of training samples (x, y), and pulling up on the
energies of suitably-hallucinated “contrastive” samples (x, ŷ). The contrastive sample ŷ
should be picked in such a way as to ensure that the EBM assigns higher energies to points
outside the regions of high data density. This translates into designing a loss that is an
increasing function of Fw(x, y) and a decreasing function of Fw(x, ŷ), at least whenever
Fw(x, ŷ) is not sufficiently higher than Fw(x, y). There are many such contrastive loss
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Figure 11: Contrastive and regularized methods for EBM training. A conceptual diagram of an
energy landscape is shown on the left. Training samples are blue dots. The region of low energy is
shown in orange (a level set of the energy function).
Contrastive methods (top right) push down on the energy of training samples (blue dots) and
pulls up on the energies of suitably-placed contrastive samples (green dots).
regularized methods (bottom right) push down on the energy of training samples and use a reg-
ularizer term that minimizes the volume of low-energy regions. This regularization has the effect of
“shrink-wrapping” the regions of high data density within the low-energy regions, to the extent that
the flexibility of the energy function permits it.
One issue with contrastive methods is that the energy will only be pulled up wherever contrastive
samples have been placed. One must devise methods that preferentially place contrastive samples in
regions of low energy, which is what Monte-Carlo and MCMC methods do. However, a disadvantage
of contrastive methods is that the number of contrastive samples necessary to make an energy surface
adopt a good shape may grow exponentially with the dimension of y space.

functions, some of them taking a single triplet (x, y, ŷ), others requiring a batch of positive
and contrastive values of y.

A simple example of contrastive loss functions is as follows:

L(w, x, y, ŷ) = H(Fw(x, y), Fw(x, ŷ),m(y, ŷ)) (6)

whereH is an increasing function of Fw(x, y), and a decreasing function of Fw(x, ŷ) whenever
the latter is less than the former plus a positive margin function m(y, ŷ). A simple instance
of such loss is the distance-dependent hinge loss:

L(w, x, y, ŷ) =
[
Fw(x, y)− Fw(x, ŷ) + µ||y − ŷ||2

]+
(7)

where [a]+ is the identity when a is positive and zero otherwise. This makes the energy
grow at least quadratically with the distance to the data manifold. Other contrastive loss
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functionals take multiple contrastive samples into consideration:

L(w, x, y, ŷ[1], . . . , ŷ[K]) = H(Fw(x, y), Fw(x, ŷ[1]), . . . , Fw(x, ŷ[K])) (8)

Which must be an increasing function of the first argument, and a decreasing function of
all other arguments. An example of such loss is the popular InfoNCE:

L(w, x, y, ŷ[1], . . . , ŷ[K]) = Fw(x, y) + log

[
exp(−Fw(x, y)) +

K∑
k=1

exp(−Fw(x, ŷ[k]))

]
(9)

Contrastive methods are very popular, particularly for Siamese network architectures
trained with pairs where x is a distorted or corrupted version of y and ŷ another random (or
suitably chosen) training sample. This includes such methods as the original Siamese net,
as well as more recent methods including DrLIM, PIRL, MoCO, SimCLR, CPT, and others.
Contrastive methods also include such classical methods as probabilistic models trained with
maximum likelihood that are not automatically normalized. Contrastive samples ŷ are often
produced using Monte Carlo methods, Markov-Chain Monte Carlo methods, or approximate
versions thereof, such as Contrastive Divergence. Generative Adversarial Networks can also
be seen as contrastive methods in which the ŷ are produced by the trainable generator
network. Denoising Auto-Encoders and their special case, Masked Auto-Encoders, are also
examples of contrastive training methods in which the ŷ is generated by corrupting the clean
y. A more detailed discussion of various contrastive methods is given in appendix 8.3.3.

But there are two main issues with contrastive methods. First, one has to design a
scheme to generate or pick suitable ŷ. Second, when y is in a high-dimensional space, and if
the EBM is flexible, it may require a very large number of contrastive samples to ensure that
the energy is higher in all dimensions unoccupied by the local data distribution. Because of
the curse of dimensionality, in the worst case, the number of contrastive samples may grow
exponentially with the dimension of the representation. This is the main reason why I will
argue against contrastive methods.

Regularized methods for EBM training are much more promising in the long run
than contrastive methods because they can eschew the curse of dimensionality that plagues
contrastive methods. They consist in constructing a loss functional that has the effect
of pushing down on the energies of training samples, and simultaneously minimizing the
volume of y space to which the model associates a low energy. The volume of the low-energy
region is measured by a regularization term in the energy and/or in the loss. By minimizing
this regularization term while pushing down on the energies of data points, the regions of
low energy will “shrink-wrap” the regions of high data density. The main advantage of
non-contrastive regularized methods is that they are less likely than contrastive methods
to fall victim to the curse of dimensionality. The main question is precisely how to design
such volume-minimizing regularizers. The answer depends greatly on the architecture of
the model, which is discussed in the next sections. However, non-contrastive methods have
existed for a long time. Examples include sparse modeling, sparse auto-encoders, and auto-
encoders with noisy latent variables, such as VAE.

It is important to note that contrastive and regularized methods are not incompatible
with each other, and can be used simultaneously on the same model.

How would regularized methods apply to the architectures of Figure 10(b-d)?
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In the latent-variable generative architecture, restricting the information capacity of z
will restrict the volume of y space that can take low energy. If z is discrete with possible k
values, at most k points in y space will have zero energy. if Z is a manifold of dimension d
then the region of y space with zero energy will have at most d dimensions.

Similarly, in the auto-encoder architecture, restricting the information capacity of sy
will restrict the volume of y space that can be reconstructed with low energy.

Lastly, in the Joint Embedding Architecture, Maximizing the information that sx con-
tains about x and sy contains about y will minimize the volume of y space that can take
low energy.

In the following, we will focus on an architecture for SSL the Joint Embedding Predictive
Architectures (JEPA) which can seen as a combination of the Joint Embedding Architecture
and the Latent-Variable Generative Architecture. The JEPA is non-generative in that it
does not actually predict y, but predicts the representation of y, sy from that of x, sx.

4.4 Joint Embedding Predictive Architecture (JEPA)

The centerpiece of this paper is the Joint Embedding Predictive Architecture (JEPA). JEPA
is not generative in the sense that it cannot easily be used to predict y from x. It merely
capture the dependencies between x and y without explicitly generating predictions of y.

A generic JEPA is shown in Figure 12. The two variables x and y are fed to two encoders
producing two presentations sx and sy. These two encoders may be different. They are not
required to possess the same architecture nor are they required to share their parameters.
This allows x and y to be different in nature (e.g. video and audio). A predictor module
predicts the representation of y from the representation of x. The predictor may depend
on a latent variable z. The energy is simply the prediction error in representation space:

Ew(x, y, z) = D(sy,Pred(sx, z)) (10)

The overall energy is obtained by minimizing over z:

ž = argmin
z∈Z

Ew(x, y, z) = argmin
z∈Z

D(sy,Pred(sx, z)) (11)

Fw(x, y) = min
z∈Z

Ew(x, y, z) = D(sy,Pred(sx, ž)) (12)

(13)

The main advantage of JEPA is that it performs predictions in representation space,
eschewing the need to predict every detail of y. This is enabled by the fact that the encoder
of y may choose to produce an abstract representation from which irrelevant details have
been eliminated.

But there are two ways a JEPA may represent the multiplicity of values of y compatible
with x. The first one is invariance properties of the y encoder, the second one is the latent
variable z, as explained below.

multi-modality through encoder invariance: The encoder function sy = Enc(y)
may have invariance properties. If all the y’s in a set map to the same value of sy, all those
y’s will have identical energies. With JEPA, we lose the ability to generate outputs, but we
gain a powerful way to represent multi-modal dependencies between inputs and outputs.
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Figure 12: The Joint-Embedding Predictive Architecture (JEPA) consists of two encoding branches.
The first branch computes sx, a representation of x and the second branch sy a representation of y.
The encoders do not need to be identical. A predictor module predicts sy from sx with the possible
help of a latent variable z. The energy is the prediction error. Simple variations of the JEPA may
use no predictor, forcing the two representations to be equal, or may use a fixed predictor with no
latent, or may use simple latents such as discrete variables.
The main advantage of JEPA is that it performs predictions in representation space, eschewing the
need to predict every detail of y, and enabling the elimination of irrelevant details by the encoders.
More precisely, the main advantage of this architecture for representing multi-modal dependencies is
twofold: (1) the encoder function sy = Enc(y) may possess invariance properties that will make it
produce the same sy for a set of different y. This makes the energy constant over this set and allows
the model to capture complex multi-modal dependencies; (2) The latent variable z, when varied over
a set Z, can produce a set of plausible predictions Pred(sx,Z) = {s̃y = Pred(sx, z) ∀z ∈ Z}
If x is a video clip of a car approaching a fork in the road, sx and sy may represent the position,
orientation, velocity and other characteristics of the car before and after the fork, respectively, ig-
noring irrelevant details such as the trees bordering the road or the texture of the sidewalk. z may
represent whether the car takes the left branch or the right branch of the road.

multi-modality through latent variable predictor: The predictor may use a latent
variable z to capture the information necessary to predict sy that is not present in sx. When
z is varied over a set Z, the predictor produces a set of plausible predictions Pred(sx,Z) =
{s̃y = Pred(sx, z) ∀z ∈ Z}. For example, if x is a video clip of a car approaching a fork
in the road, sx and sy may represent the past and future positions, orientations, velocities
and other characteristics of the car, ignoring irrelevant details such as the trees bordering
the road or the texture of the sidewalk. The latent z may be a binary variable indicating
whether the car takes the left branch (z = 0) or the right branch (z = 1 if the road. If the
car takes the left branch, the value z = 0 will produce a lower energy D(sy, s̃y) than z = 1.

4.5 Training a JEPA

Like any EBM, a JEPA can be trained with contrastive methods. But, as pointed out
above, contrastive methods tend to become very inefficient in high dimension. The relevant
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Figure 13: Non-contrastive training of JEPA.
The main attraction of JEPAs is that they can be trained with non-contrastive methods. The basic
principle of such training is that (1) sx should be maximally informative about x; (2) sy should
be maximally informative about y; (3) sy should be easily predictable from sx; and (4) z should
have minimal information content. Criteria 1, 2, and 4 collectively prevent a collapse of the energy
function.
Examples of such non-contrastive criteria for JEPA training include VICReg and Barlow Twins.
As with every EBM, JEPAs can also be trained with contrastive methods. But doing so runs into
the curse of dimensionality and limits the practical dimension of sy.

dimension here is that of sy, which may be considerably smaller than y, but still too high
for efficient training.

What makes JEPAs particularly interesting is that we can devise non-contrastive meth-
ods to train them. As explained in section 4.3, non-contrastive methods use regularizers
that measure the volume of space that can take low energy values. In the case of the JEPA,
this can be done through four criteria, as depicted in Figure 13:

1. maximize the information content of sx about x

2. maximize the information content of sy about y

3. make sy easily predictable from sx

4. minimize the information content of the latent variable z used in the prediction.

Criteria 1 and 2 prevent the energy surface from becoming flat by informational col-
lapse. They ensure that sx and sy carry as much information as possible about their inputs.
Without these criteria the system could choose to make sx and sy constant, or weakly in-
formative, which would make the energy constant over large swaths of the input space.
Criterion 3 is enforced by the energy term D(sy, s̃y) and ensures that y is predictable from
x in representation space.
Criterion 4 prevents the system from falling victim to another type of informational col-
lapse by forcing the model to predict sy with as little help from the latent as possible. This
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type of collapse can be understood with the following thought experiment. Imagine that
z has the same dimension as sy. Assume that the predictor is a parameterized function
(e.g. a neural net) that can choose to ignore sx and to simply copy z on its output s̃y = z.
For any sy it is possible to set ž = sy, which would make the energy D(sy, s̃y) zero. This
corresponds to a totally flat and collapsed energy surface.
How do we prevent this collapse from happening?
By limiting or minimizing the information content of the latent variable.
How can this be done?
By making z discrete, low-dimensional, sparse, or noisy, among other methods.

A few concrete examples may help build an intuitive understanding of the phenomenon.
Suppose that D(sy, s̃y) = ||sy − s̃y||2 and that z is discrete with K possible integer values
[0,K − 1]. For a given x, there can be only K possible values of s̃y:

Pred(sx, 0),Pred(sx, 1), . . . ,Pred(sx,K − 1).

Hence, these can be the only values of sy with zero energy, and there are only K of them.
Consider a point sy that starts from Pred(sx, 0) and moves towards Pred(sx, 1). Its energy
will start from zero, increase quadratically as sy moves away from Pred(sx, 0), until sy.
When sy becomes closer to Pred(sx, 1) than to Pred(sx, 0), the energy will decrease, reaching
zero when sy reaches Pred(sx, 1). In representation space, the energy will be the minimum
of K quadratic energy wells.

Similarly, imagine that z is a vector whose dimension d is lower than that of s̃y. Then,
assuming that Pred(sx, z) is a smooth function of z, the set of possible predictions will be
at most a d-dimensional manifold in the space of sy.

More to the point, imagine that the energy function is augmented by a regularization
term on z of the form R(z) = α

∑d
i=1 |zi|, i.e. the L1 norm of z. This will drive ž to be sparse.

As with classical sparse coding, this will cause the region of low energy to be approximated
by a union of low-dimensional manifolds (a union of low-dimensional linear subspaces if
Pred(sx, z) is linear in z), whose dimension will be minimized by the L1 regularizer.

Making z a stochastic sample from a distribution whose entropy is maximized will also
have a proper regularization effect. This is the basis of Variational Auto-Encoders and
similar models.

A more complete discussion of regularizers that can minimize the information content
of latent variables is beyond the scope of this paper. For now, we can mention four classes
of methods: discretization/quantification (e.g. as in VQ-VAE (Walker et al., 2021), dimen-
sionality/rank minimization (e.g. as in Implicit Rank-Minimizing AE (Jing et al., 2020),
sparsification (as in linear sparse modeling (Olshausen and Field, 1996), LISTA (Gregor
and LeCun, 2010b), and non-linear sparse modeling (Evtimova and LeCun, 2022)), and
fuzzyfication (as in noisy AE (Doi et al., 2007), VAE (Kingma and Welling, 2013), and
variants used in control problems (Henaff et al., 2019)).

The ability of the JEPA to predict in representation space makes it considerably prefer-
able to generative models that directly produce a prediction of y. In a video prediction
scenario, it is essentially impossible to predict every pixel value of every future frame. The
details of the texture on a carpet, the leaves of a tree moving in the wind, or the ripples on
a pond, cannot be predicted accurately, at least not over long time periods and not without
consuming enormous resources. A considerable advantage of JEPA is that it can choose to
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Figure 14: Training a JEPA with VICReg.
VICReg is a non sample-contrastive method for training embeddings. The information content of the
representations sx and sy is maximized by first mapping them to higher-dimensional embeddings vx
and vy through an expander (e.g. a trainable neural net with a few layers). The loss function drives
the covariance matrix of the embeddings towards the identity (e.g. computed over a batch).
VICReg can be seen as a dimension-contrastive method as opposed to sample-contrastive methods.

ignore details of the inputs that are not easily predictable. Yet, Criteria 1 and 2 will ensure
that the information content of the ignored details are kept to a minimum.

How can we implement Criteria 1 and 2?
In other words, given a parameterized deterministic encoding function sy = Encw(y), how
do we maximize the information content of sy?
If Encw(y) is invertible, sy contains all the information about y, but that may be sub-
optimal for Criterion 3, as sy will contain many irrelevant or hard-to-predict details about
y. More precisely, sy is maximally informative about y if the function Encw(y) is minimally
surjective, i.e. if the volume of sets of y that map to the same sy is minimal. The same
reasoning applies to the x encoder. To turn this criterion into a differentiable loss, we need
to make some assumptions.

4.5.1 VICReg

The VICReg method (Bardes et al., 2021) makes a few assumptions about the distributions
of sx and sy. A graphical representation is shown in Figure 14. To maximize the information
content of sx, VICReg uses the following two sub-criteria: (1) the components of sx must not
be constant, (2) the components of sx must be as independent of each other as possible. This
is approximated by first non-linearly mapping sx and sy to higher-dimensional embeddings
vx and vy through a trainable expander module (e.g. a neural net with a few layers), and
using a loss function with two differentiable loss terms computed over a batch of samples:

28



1. Variance: a hinge loss that maintains the standard deviation of each component of
sy and vy above a threshold over a batch.

2. Covariance: a covariance loss in which the covariance between pairs of different
components of vy are pushed towards zero. This has the effect of decorrelating the
components of vy, which will in turn make the components of sy somewhat indepen-
dent.

The same criteria are applied to sx and vx separately.

The third criterion of VICReg is the representation prediction error D(sy, s̃y). In the
simplest implementations of VICReg, the predictor is constant (equal to the identity func-
tion), making the representations invariant to the transformation that turns x into y. In
more sophisticated versions, the predictor may have no latent variable, or may depend on
a latent variable that is either discrete, low dimensional, or stochastic.

The fourth criterion is necessary when the predictor uses a latent variable whose infor-
mation content must be minimized, for example a vector whose dimension approaches or
surpasses that of s̃y.

A simple instantiation of VICReg to learn invariant representations consists in making
x and y be different views (or distorted versions) of the same content, setting the predictor
to the identity function, and defining D(sy, s̃y) = D(sy, sx) = ||sy − sx||2.

Inferring the latent variable through gradient-based methods may be onerous. But the
computational cost can be greatly reduced by using amortized inference, as explained in
Appendix 8.3.3.

While contrastive methods ensure that representations of different inputs in a batch
are different, VICReg ensures that different components of representations over a batch are
different. VICReg is contrastive over components, while traditional contrastive methods
are contrastive over vectors, which requires a large number of contrastive samples.

But the most promising aspect of JEPA trained with VICReg and similar non-contrastive
methods is for learning hierarchical predictive world models, as we examine in the next sec-
tion.

4.5.2 Biasing a JEPA towards learning “useful” representations

With the training criteria listed above, the JEPA finds a trade-off between the completeness
and the predictability of the representations. What is predictable and what does not get
represented is determined implicitly by the architectures of the encoders and predictor.
They determine a inductive bias that defines what information is predictable or not.

But it would be useful to have a way to bias the system towards representations that
contain information relevant to a class of tasks. This can be done by adding prediction
heads that take s̃y as input and are trained to predict variables that are easily derived from
the data and known to be relevant to the task.

4.6 Hierarchical JEPA (H-JEPA)

JEPA models trained non-contrastively may constitute our best tool for learning world
models that are able to learn relevant abstractions. When trained with VICReg and similar

29



x y

JEPA-1

JEPA-2

Figure 15: Hierarchical JEPA (H-JEPA)
The ability of the JEPA to learn abstract representations in which accurate prediction can be per-
formed allows hierarchical stacking. In this diagram JEPA-1 extracts low-level representations and
performs short-term predictions. JEPA-2 takes the representations extracted by JEPA-1 as inputs
and extracts higher-level representations with which longer-term predictions can be performed. More
abstract representations ignore details of the inputs that are difficult to predict in the long term,
enabling them to perform longer-term predictions with coarser descriptions of the world state.

criteria, a JEPA can choose to train its encoders to eliminate irrelevant details of the inputs
so as to make the representations more predictable. In other words, a JEPA will learn
abstract representations that make the world predictable. Unpredictable details will be
eliminated by the invariance properties of the encoder, or will be pushed into the predictor’s
latent variable. The amount of information thereby ignored will be minimized by the
training criteria and by the latent variable regularizer.

It is important to note that generative latent-variable models are not capable of elimi-
nating irrelevant details, other than by pushing them into a latent variable. This is because
they do not produce abstract (and invariant) representations of y. This is why we advocate
against the use of generative architectures.

The capacity of JEPA to learn abstractions suggests an extension of the architecture to
handle prediction at multiple time scales and multiple levels of abstraction. Intuitively, low-
level representations contain a lot of details about the input, and can be used to predict in
the short term. But it may be difficult to produce accurate long-term predictions with the
same level of details. Conversely high-level, abstract representation may enable long-term
predictions, but at the cost of eliminating a lot of details.
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Let’s take a concrete example. When driving a car, given a proposed sequence of actions
on the steering wheel and pedals over the next several seconds, drivers can accurately
predict the trajectory of their car over the same period. The details of the trajectory over
longer periods are harder to predict because they may depend on other cars, traffic lights,
pedestrians, and other external events that are somewhat unpredictable. But the driver
can still make accurate predictions at a higher level of abstraction: ignoring the details of
trajectories, other cars, traffic signals, etc, the car will probably arrive at its destination
within a predictable time frame. The detailed trajectory will be absent from this level of
description. But the approximate trajectory, as drawn on a map, is represented. A discrete
latent variable may be used to represent multiple alternative routes.

Figure 15 shows a possible architecture for multilevel, multi-scale world state prediction.
Variables x0, x1, x2 represent a sequence of observations. The first-level network, denoted
JEPA-1 performs short-term predictions using low-level representations. The second-level
network JEPA-2 performs longer-term predictions using higher-level representations. One
can envision architectures of this type with many levels, possibly using convolutional and
other modules, and using temporal pooling between levels to coarse-grain the representation
and perform longer-term predictions. Training can be performed level-wise or globally, using
any non-contrastive method for JEPA.

I submit that the ability to represent sequences of world states at several levels of
abstraction is essential to intelligent behavior. With multi-level representations of world
states and actions, a complex task can be decomposed into successively more detailed sub-
tasks, instantiated into actions sequences when informed by local conditions. For example,
planning a complex task, like commuting to work, can be decomposed into driving to the
train station, catching a train, etc. Driving to the train station can be decomposed into
walking out of the house, starting the car, and driving. Getting out of the house requires
standing up, walking to the door, opening the door, etc. This decomposition descends all
the way down to millisecond-by-millisecond muscle controls, which can only be instantiated
when the relevant environmental conditions are perceived (obstacles, traffic lights, moving
objects, etc).

4.7 Hierarchical Planning

If our world model can perform predictions hierarchically, can it be used to perform Mode-2
reasoning and planning hierarchically?

Hierarchical planning is a difficult topic with few solutions, most of which require that
the intermediate vocabulary of actions be predefined. But if one abides by the deep learning
philosophy, those intermediate representations of action plans should also be learned.

Figure 16 shows a possible architecture for hierarchical Mode-2 planning that can exploit
the hierarchical nature of a multi-scale world model.

A percept is encoded into representations at multiple levels of abstractions by a cascade
of encoders:

s[0] = Enc1(x); s2[0] = Enc2(s[0]); . . . (14)

Prediction takes place at all levels. Higher levels perform longer-term prediction, while lower
levels perform shorter-term predictions. The overall task is defined by a high-level objective,
depicted as C(s2[4]) in the diagram. The top level infers a sequence of high-level actions
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Figure 16: Hierarchical JEPA for Mode-2 hierarchical planning.
A complex task is defined by a high-level cost computed from a high-level world-state representation
C(s2[4]). A sequence of high-level abstract actions (a2[2], a2[4]) is inferred that minimizes C(s2[4]).
The inferred abstract actions are fed to lower-level cost modules C(s[2]), C(s[4]) which define subgoals
for the lower layer. The lower layer then infers an action sequence that minimizes the subgoal costs.
Although only a 2-layer hierarchy is shown here, it is straightforward to extend the concept to multiple
levels.
The process described here is sequential top-down, but a better approach would be to perform a joint
optimization of the actions in all the layers.

(a2[2], a2[4]) to optimize this objective. These high-level “actions” are not real actions but
targets for the lower level predicted states. One can think of them as conditions that the
lower-level state must satisfy in order for the high-level predictions to be accurate. Whether
these conditions are satisfied can be computed by cost modules C(s[2]) and C(s[4]). They
take a lower-level state s[2] and a high-level condition a2[2] and measure to what extent
the state satisfies the condition. With these subgoals defined, the lower level can perform
inference and find a low-level action sequence that minimizes the mid-level subgoals C(s[2])
and C(s[4]).

The process just described is top down and greedy. But one may advantageously iterate
the optimization so that high level and low-level action sequences are optimized jointly. The
cost modules may be configured by the configurator for the situation at hand.

The idea that an action is merely a condition to be satisfied by the level below is actually
an old one in control theory. For a example, a classical proportional servomechanism can be
seen as being given a target state. A quadratic cost measures the squared distance between
the target and the current state, and the control is simply proportional to the negative
gradient of the cost with respect to the action variables.

4.8 Handling uncertainty

The real world is not entirely predictable. Uncertainty in predictions of future world states
may be due to a number of reasons:

• the world is intrinsically stochastic (aleatoric uncertainty, type 1)
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Figure 17: Hierarchical JEPA for Mode-2 hierarchical planning in an uncertain environment.
Realistic environments are not entirely predictable, even when using highly-abstract representations.
Uncertainty about predictions can be handled by predictors with latent variables. The latent variables
(red circles) contain information about the prediction that cannot be derived from the prior observa-
tion. The latent variables must be regularized to prevent an energy collapse and to force the system
to predict as much as possible without the help of it.
At planning time, latent variables are sampled from distributions obtained by applying a Gibbs dis-
tribution to the regularizers. Each sample leads to a different prediction. To produce consistent
latent sequences, the parameters of the regularizer can be functions of previous states and retrieved
memories.
As the prediction progresses, the number of generated state trajectories may grow exponentially. If
each latent variable has k possible discrete values, the number of possible trajectories will grow as
kt, where t is the number of time steps. Directed search and pruning strategies must be employed.
With multiple predicted trajectories, optimal action sequences can be computed that minimize the
average cost, or a combination of average and variance of the cost so as to minimize risk.

• the world is deterministic but chaotic, hence difficult to predict without infinitely
precise perception (aleatoric uncertainty, type 2)

• the world is deterministic but partially observable (aleatoric uncertainty type 3).

• the world is fully observable, but the sensors only give partial information about the
world state (epistemic uncertainty, type 1)

• the representation of the world state extracted by the perception module does not
contain the full information necessary for accurate prediction (epistemic uncertainty,
type 2).

• the world model is inaccurate due to limitations of its representational power (bounded
rationality or epistemic uncertainty, type 3).
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• the world model is inaccurate due to it having been trained with limited amount of
data (epistemic uncertainty, type 4).

Much of the literature in reinforcement learning is focused on dealing with the stochastic
nature of the environment. It is often assumed from the start that models, critics and
policies must represent distributions. In the present work, we push the possible stochasticity
of a predicted variable into a latent variable, which may be optimized, predicted, or sampled.
This is what is often referred to in the ML literature as “the reparameterization trick”. We
do not need to use this trick here, since we view the latent-variable parameterization of the
predictions as fundamental.

Figure 17 represents a hierachical planning episode in the presence of uncertainty.

A prediction at a given level and time step, e.g. s2[2] requires a sample of the corre-
sponding latent variable z2[2]. The sample may come from the distribution whose negative
logarithm is the regularizer R2(z2[2])). The parameters of the regularizer may be constant
(e.g. fixed Gaussian), predicted from currently-available data using amortized inference (e.g.
a multinomial or Gaussian whose parameters are computed from s2[0]) or produced by the
configurator. Using previous predictions to configure the latent regularizer biases the system
towards generating “good” trajectories.

As the prediction progresses, the number of generated state trajectories may grow ex-
ponentially: if each latent variable has k possible discrete values, the number of possible
trajectories will grow as kt, where t is the number of time steps. Directed search and prun-
ing strategies can be employed, as in classical Monte-Carlo Tree Search (MCTS). In the case
of continuous latents, one may sample latents from the continuous distributions defined by
the regularizer.

Given a sample of all the latents, the optimal action sequences at every levels can be
inferred. However, the prediction process may need to be repeated for multiple drawings
of the latents, so as to cover the set of plausible outcomes. The inference process may be
used for multiple predictions to produce an action that does not just minimize the expected
cost, but also minimizes the uncertainty on the expected cost.

4.8.1 World Model Architecture

The details of the architecture of the world model should depend on the type of environment
the agent evolves in.

It is likely that the best module architectures in a JEPA should include some sort of
gating or dynamic routing mechanism.

For example, the best way to handle low-level, short-term predictions in videos is by
extracting simple local feature vectors and displacing those feature vectors from one frame
to the next, depending on predicted motions. The latent variables may encode a map of
displacements, which can modulate routing connections between one frame and the next.

For longer-term prediction at a higher level of abstraction, the relevant features are
objects and their interactions. The evolution may be best modeled by a transformer ar-
chitecture, which has the property of being equivariant to permutation and is appropriate
to capture interactions between discrete objects (Vaswani et al., 2017; Carion et al., 2020;
Battaglia et al., 2016).
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Separating the World Model from the Ego Model: The natural world is complex
and somewhat unpredictable, requiring a powerful model with latent variables to account
for the unpredictability.

On the other hand, the agent itself is somewhat more predictable: a particular ac-
tion on effector will produce a motion that can often be predicted deterministically. This
suggests that the agent should possess a separate model of itself, perhaps without latent
variables (Sobal et al., 2022) as the effect of actions on proprioception somewhat easier to
predict than the evolution of the external world or the effect of actions on it.

In turn, the ego-model that the agent has of itself can be used as a template for a model
of other agents in a multi-agent scenario.

4.9 Keeping track of the state of the world

Traditionally, modules in deep learning architectures communicate states through vectors
or multi-dimensional arrays. But this tends to be a very inefficient method when the state
of the object being modeled only changes in minor ways from one time to the next.

A typical action of an agent will only modify a small portion of the state of the world.
If a bottle is being moved from the kitchen to the dining room, the states of the bottle, the
kitchen, and the dining room will be modified. But the rest of the world will be unaffected.

This suggests that the state of the world should be maintained in some sort of writable
memory. Whenever an event occurs, only the part of the world-state memory affected by
the event is to be updated, while the rest is to be left unchanged.

A conventional key-value associative memory can be used for this purpose, similar to
what has been proposed in the context of memory-augmented networks (Bordes et al., 2015;
Sukhbaatar et al., 2015; Miller et al., 2016), and entity networks (Henaff et al., 2017).

The output of the world model at a given time step is a set of query-value pairs (q[i], v[i]),
which are used to modify existing entries in the world-state memory, or to add new entries.

Given a query q, the world-state memory returns

Mem(q) =
∑
j

cjvj (15)

c̃j = Match(kj , q) (16)

c = Normalize(c̃) (17)

where the kj are keys, the vj are stored values, function Match(k, q) measures a divergence
or dissimilarity between a key and a query, vector c contains scalar coefficients cj , and
function Normalize(c̃) performs some sort of competitive normalization or thresholding,
such as the commonly-used cj = exp(c̃j)/[γ +

∑
k exp(c̃k)], where γ is a positive constant.

Writing a value r using query (or address) q into the memory can be done by updating
existing entries:

c̃j = Match(kj , q) (18)

c = Normalize(c̃) (19)

vj = Update(r, vj , cj) (20)

Function Update(r, v, c) may be as simple as cr + (1− c)v.
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If the query is distant from all keys, the memory may allocate a new entry whose key is
q and corresponding value is r. The γ constant in the example Normalize function above
may serve as a threshold for acceptable key-query divergence.

One can view each entry as representing the state of an entity in the world. In the
above example of the bottle, the world model may contain keys kbottle, kkitchen, kdining−room
respectively representing the bottle, the kitchen and the dining room. The initial value of
vbottle encodes its location as “kitchen”, the inital value of vkitchen encodes its content as
including the bottle, and the initial value of vdining−room encodes its content as not including
the bottle. After the event, the location and contents are updated.

All of these operations can be done in a differentiable manner, and would hence allow
to back-propagate gradients through them.

4.10 Data Streams

Much knowledge about the world is learnable through pure observation. The laws of mo-
tion of physical objects can, in principle, be derived from observation, without a need for
intervention. But training a world model efficiently may require more active or “agentive”
information gathering.

One can list five modes of information gathering with which an agent can learn about
how the world works:

1. passive observation: the agent is being fed a sensor stream (e.g. video, audio, etc)

2. active foveation: the agent is being fed a stream within which the focus of attention
can be directed without affecting the environment. For example, watching a scene
while being able to orient the vision and sound sensors, or being being fed a wide-
angle, high resolution video and/or audio stream within which the focus of attention
can be directed.

3. passive agency: sensory streams in which another agent acting on the environment
is being observed, enabling the inference of causal effects of agent actions on the state
of the environment.

4. active egomotion: the agent receives sensory streams from a real or virtual environ-
ment within which the position of the sensors can be modified without significantly
affecting the environment. This may include steerable active sensors (e.g. range sen-
sors, heat sensors, chemical sensors) as well as touch sensors.

5. active agency: sensory streams that are influenced by the agent’s actions. This
enables the establishment of causal models in which the agent can learn to predict the
consequences of its actions. This mode brings the exploration-exploitation dilemma
to the forefront.

In a complex environment, it may not be practical to collect enough passive data for the
world model to capture a sufficient portion of the environment’s behavior. Mode 2, 4, and
5 allow the agent to collect information that maximizes its understanding of the environ-
ment. But to do so may require intrinsic motivation modules that drive attention, curiosity,
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and exploration into corners of the state space in which the world model’s prediction are
currently inexact or uncertain.

The main open question is how much can be learned using passive observation (modes
1, 2, 4), how much requires egomotion (mode 3), and how much requires full agency (mode
5).

5 Designing and Training the Actor

The role of the actor module is threefold:

1. inferring optimal action sequences that minimize the cost, given the predictions pro-
duced by the world model for Mode-2 actions.

2. producing multiple configurations of latent variables that represent the portion of the
world state the agent does not know.

3. training policy networks for producing Mode-1 actions.

There is no conceptual difference between an action and a latent variable. The configurations
of both sets of variables must be explored by the actor. For latent variables, configurations
must be explored to plan under uncertainty. For action variables configurations must be
explored to produce an optimal one that minimizes the cost. In adversarial scenarios (such
as games), the latent configurations must be explored that maximize the cost. In effect, the
actor plays the role of an optimizer and explorer.

When the world model and the cost are well-behaved, the actor module can use a
gradient-based optimization process to infer an optimal action sequence. To do so, it receives
estimates of the gradient of the cost computed by backpropagating gradients through the
cost and the unfolded world model. It uses those estimates to update the action sequence.

When the world model or the cost are not so well-behaved, a gradient-based search
for an optimal action sequence may fail. In this case another search/planning method
may be applied. If the action space is discrete or can be discretized, one can use dynamic
programming methods or approximate dynamic programming methods such as beam search
or Monte-Carlo tree search. In effect, any planning method developed in the context of
optimal control, robotic, or “classical” AI may be used in this context.

Once an optimal action sequence is obtained through the planning / inference / opti-
mization process, one can use the actions as targets to train a policy network. The policy
network may subsequently be used to act quickly, or merely to initialize the proposed action
sequence to a good starting point before the optimization phase. Multiple policy networks
can be trained for multiple tasks.

The actor also produces configurations of latent variables. These latent variables repre-
sent the portion of the world state that the agent does not know. Ideally, the actor would
systematically explore likely configurations of the latents. Ideally, the regularizer for the
latents, R1 and R2 in Figure 17, would represent log-priors from which the latent could be
sampled. But in a similar way as the policy network, one may devise a latent amortized
inference module that learns distributions of latent variables. Good distributions would
produce predictions that are plausible. The distribution primate’s may depend on all the
variables available at that time.
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6 Designing the Configurator

The configurator is the main controller of the agent. It takes input from all other modules
and modulates their parameters and connection graphs. The modulation can route signals,
activate sub-networks, focus attention, etc. In a scenario in which the predictor and the
upper layers of the perception encoder are transformer blocks, the configurator outputs
may constitute extra input tokens to these transformer blocks, thereby modulating their
connection graphs and functions.

The configurator module is necessary for two reasons: hardware reuse, and knowledge
sharing. There is an obvious advantage to be able to reuse the same circuit for multiple
tasks, particularly if the tasks can be accomplished sequentially, and if the amount of
resources (e.g. parameter memory) is limited. But there is another advantage: knowledge
reuse. A reasonable hypothesis is that a world model trained for a given environment can be
used for a range of different tasks with minor changes. One can imagine a “generic” world
model for the environment with a small portion of the parameters being modulated by the
configurator for the task at hand. This would be more data efficient and computationally
efficient than having separate world models for each skill. The disadvantage is that the
agent can only accomplish one task at a time.

The configurator may prime the perception module for a particular task by modulating
the parameters at various levels. The human perceptual system can be primed for a par-
ticular task, such as detecting an item in a cluttered drawer, detecting fruits or preys in a
forest, reading, counting certain events, assembling two parts, etc. For tasks that require a
rapid detection of simple motifs, the configurator may modulate the weights of low-level lay-
ers in a convolutional architecture. For tasks that involve satisfying relationships between
objects (such as assembling two parts with screws) the configuration may be performed by
modulating tokens in high-level transformer modules.

The predictor part of the world model must be able to perform a wide range of functions
depending on the task at hand. For predictors performing short-term predictions at a
low level of abstraction, configuration may mean dynamic signal routing. In a low-level
retinotopic feature array representation, prediction may be reduced to local displacements
of individual feature vectors, accompanied with small transformations of those vectors.
This may be advantageously implemented with local gating/routing circuits. For longer-
term prediction at higher-levels of abstraction, it may be preferable to use a transformer
architecture. Transformer blocks are particularly appropriate for object-based reasoning in
which objects interact. The reason is that the function of transformer blocks is equivariant
to permutation. Thanks to that property, one does not need to worry about which object
is assigned to which input token: the result will be identical and consistent with the input
assignment. Recent work in model-based robotics have proposed to use a transformer
operating at the level of an entire trajectory, imposing constraints on the attention circuits
to configure the predictor for causal prediction or other tasks (Janner et al., 2021).

Conveniently, the function of a transformer block is easy to configure by adding extra
input tokens. Those extra inputs have the effect of modulating the connection graph used
by the rest of the network, thereby allowing the specification of a wide range of input-output
functions.
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Perhaps the most important function of the configurator is to set subgoals for the agent
and to configure the cost module for this subgoal. As mentioned in Section 3.2, a simple
way to make the cost configurable is by modulating the weights of a linear combination of
elementary cost sub-modules. This may be appropriate for the immutable Intrinsic Cost
submodule: allowing for a complex modulation of the Intrinsic Cost may make the basic
drives of the agent difficult to control, including cost terms that implement safety guardrails.
In contrast, one can imagine more sophisticated architectures allowing the Trainable Critic
part of the cost to be flexibly modulated. As with the predictor, if the high-level cost is
formulated as a set of desired relationships between objects (“is the nut set on the screw?”)
one may use a transformer architecture trained to measure to what extent the state of the
world diverges from the condition to be satisfied. As with the predictor, extra token inputs
can be used to modulate the function.

One question that is left unanswered is how the configurator can learn to decompose
a complex task into a sequence of subgoals that can individually be accomplished by the
agent. I shall leave this question open for future investigation.

7 Related Work

Most of the ideas presented in the paper are not new, and have been discussed at length in
various forms in cognitive science, neuroscience, optimal control, robotics, AI, and machine
learning, particularly in reinforcement learning.

Perhaps the main original contributions of the paper reside in

• an overall cognitive architecture in which all modules are differentiable and many of
them are trainable.

• H-JEPA: a non-generative hierarchical architecture for predictive world models that
learn representations at multiple levels of abstraction and multiple time scales.

• a family of non-contrastive self-supervised learning paradigm that produces represen-
tations that are simultaneously informative and predictable.

• A way to use H-JEPA as the basis of predictive world models for hierarchical planning
under uncertainty.

Below is an attempt to connect the present proposal with relevant prior work. Given
the scope of the proposal, the references cannot possibly be exhaustive.

7.1 Trained World Models, Model-Predictive Control, Hierarchical PLan-
ning

The use of models in optimal control goes back to the early days with the Kelley-Bryson
method (see (Bryson and Ho, 1969) and reference therein, or the review (Morari and Lee,
1997)). Some methods allowed for online system identification (Richalet et al., 1978).

Using neural networks to learn models for control is an old idea, going back to the early
1990s (Jordan and Rumelhart, 1992; Narendra and Parthasarathy, 1990; Miller et al., 1995).
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In the context of optimal control, learning a Mode-1 like policy network is known as direct
inverse control.

The idea of Mode-2 style inference over actions using a predictive model in the context
of reinforcement learning is also an old idea with, for example, Sutton’s Dyna architec-
ture (Sutton, 1991). See (Bertsekas, 2019) for an extensive review.

The idea of learnable models has recently enjoyed a renewal of interest in various con-
texts (Ha and Schmidhuber, 2018b; Ha and Schmidhuber, 2018a; Hafner et al., 2018; Hafner
et al., 2020) (see (Moerland et al., 2020) for a recent survey of model-based reinforcement
learning).

Learning world models is particularly important in the context of robotics, especially
for grasping and manipulation where sample efficiency is paramount and simulation is often
inaccurate. In fact, because classical reinforcement learning approaches require too many
trials for real-world applications, interesting advances in learned model for control have
emerged from ML-based robotics research (Agrawal et al., 2016; Finn and Levine, 2017;
Chua et al., 2018; Srinivas et al., 2018; Yu et al., 2020; Yarats et al., 2021). For a recent
review, see (Levine, 2021) and references therein.

A difficult setting is one in which the main input is visual, and a world model must be
learned from video. Early attempts to train predictive models without latent variables from
simple video produced blurry predictions (Lerer et al., 2016). To handle uncertainty in the
predictions, one can use various flavors of latent variable models such as generative adver-
sarial networks (GAN) (Goodfellow et al., 2014), variational auto-encoders (VAE) (Kingma
and Welling, 2013) vector-quantized VAE (VQ-VAE) (van den Oord et al., 2017). Vari-
ations of these methods have been applied to video prediction and help represent multi-
modal outputs and reduce blurriness using GAN (Mathieu et al., 2015; Luc et al., 2020),
VAE (Babaeizadeh et al., 2017; Denton and Fergus, 2018; Henaff et al., 2019), or VQ-
VAE (Walker et al., 2021). Although many of these methods have not been applied to
control problems, some have been applied to vehicle trajectory prediction for autonomous
driving (Henaff et al., 2019; Mercat et al., 2020), or various robot control tasks (Oh et al.,
2015; Fragkiadaki et al., 2015; Agrawal et al., 2016; Finn et al., 2016; Nagabandi et al.,
2017; Babaeizadeh et al., 2017; Srinivas et al., 2018). Unlike the proposed JEPA, these
models are generative. The key issue of how to represent uncertainty in the prediction
remains.

The alternative to regularized latent-variable models is constrative methods, such as
Contrastive Predictive Coding (CPC) (Hénaff et al., 2019), which has been applied to
learning visual representations through video prediction (van den Oord et al., 2018).

To solve the multi-modality/blurriness problem, other works have proposed to perform
video prediction in representations spaces. In some works, the representation space is
obtained from a vision pipeline that has been trained in supervised mode, for example to
perform semantic segmentation (Luc et al., 2017; Luc et al., 2018). Unfortunately, the
requirement for a pre-trained vision pipeline reduces the general usability of these methods
for learning world models by observation.

In the same spirit as JEPA, there have been proposals for automatically learning rep-
resentations of video frames so they can be easily predicted. These proposals are generally
limited to learning low-level features, and often use reconstruction through a decoder as a
way to prevent collapse (Goroshin et al., 2015a; Srivastava et al., 2015). Some authors have
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proposed to use temporal invariance (or consistency) to separate the content of an image
region from its instantiation parameters (Wiskott and Sejnowski, 2002; Gregor and LeCun,
2010a; Goroshin et al., 2015b).

At least one recent work has applied non-contrastive SSL methods to a joint embedding
architecture for robotics control with some success (Pari et al., 2021; ?).

Contrastive methods applied to joint-embedding and prediction have been applied suc-
cessfully to speech recognition (Baevski et al., 2020) (see (Mohamed et al., 2022) for a recent
review of SSL to speech).

To perform state trajectory predictions, recent works have advocated the use of trans-
formers, as proposed in the present paper. Transformers are ideal to represent the dynamics
of discrete objects in interaction, and have successfully been applied to the prediction of
car trajectories (Mercat et al., 2020).

An interesting proposal is the trajectory transformer architecture in which a transformer
is fed with the sequence of predicted states over an entire episode (Janner et al., 2021). The
pattern of attention can be constrained so as to force the system to only attend to the
past so it can be operated in a causal manner (without looking at the future), and trained
to predict the next state, actions, and cost from previously observed or predicted states,
actions, and costs.

Hierarchical planning is a largely unsolved problem. Wayne and Abbott proposed an
architecture that uses a stack of trained forward models that specify intermediate goals for
the lower layers (Wayne and Abbott, 2014). Some recent works specify intermediate goals
for robots in terms of pose parameters (Gehring et al., 2021). A more recent proposal is
the Director system (Hafner et al., 2022) which contains a hierarchical world model and
planning architecture trained end-to-end through reinforcement learning.

The idea of intrinsic motivation to train an agent has been studied in the context of
robotics (Gottlieb et al., 2013). The presence of an Intrinsic Cost provides a differentiable
and efficient way to direct the agent to follow certain behaviors and to learn certain skills.

7.2 Energy-Based Models and Joint-Embedding Architectures

For many authors, Energy-Based Model (EBM) designates a probabilistic model whose
distribution is the normalized negative exponential of an energy function.

In this paper, EBM designates a much broader category of models that treat the energy
function as fundamental, and directly manipulate its landscape through learning. Many
methods have been proposed in the past that directly manipulate the energy. In fact, all
traditional optimization-based learning methods can be interpreted as energy-based meth-
ods (LeCun et al., 2006). In particular, discriminative training methods for structure pre-
diction problems can be formulated as EBM (LeCun et al., 1998; LeCun et al., 2006).

Most EBM approaches for unsupervised or self-supervised learning have been con-
trastive. The earliest example is the Boltzmann Machine (Hinton and Sejnowski, 1983),
which is a probabilistic generative energy-based model trained contrastively.

Joint Embedding Architectures (JEA) trained with contrastive methods and mutual
information maximization methods have a long history. The first non-contrastive JEA
was (Becker and Hinton, 1992) which was based on maximizing a measure of mutual in-
formation between the representations from two branches seeing to different views of the
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same scene. Perhaps the first contrastive method for JEA is the so-called “Siamese Net-
work” (Bromley et al., 1994). This was trained contrastively for the purpose of verifying
signatures handwritten on a pen tablet.

The idea of JEA remained largely untouched for over a decade, until it was revived in
a series of papers from my group (Chopra et al., 2005; Hadsell et al., 2006), and Geoffrey
Hinton’s group (Goldberger et al., 2005). Following the rebirth of deep learning, a few
papers used JEA for fine-grained recognition, including face recognition (Taigman et al.,
2014).

With the emergence of SSL approaches, the use of JEA trained contrastively has ex-
ploded in the last few years with methods such as PIRL (Misra and Maaten, 2020), MoCo
and MoCo-v2 (He et al., 2020; Chen et al., 2020b), and SimCLR (Chen et al., 2020a).

Some methods can be seen as “distillation” approaches in which one branch of the
Siamese network is a teacher whose output are used as targets for the other branch. This
includes methods in which the output vectors are quantized to discrete cluster prototypes
(see (Caron et al., 2020) and predecessors).

In recent years, a number of new non-contrastive methods have appeared, such as
BYOL (Grill et al., 2020). But the class of non-contrastive methods advocated in the
present proposal prevent collapse by maximizing the information content of the embed-
dings. This includes Barlow Twins (Zbontar et al., 2021), VICReg (Bardes et al., 2021),
whitening-based methods (Ermolov et al., 2021), and Maximum Coding Rate Reduction
methods (see (Dai et al., 2022) and references therein).

7.3 Human and animal cognition

The limitations of current approaches to machine learning when compared with human
learning are obvious (Lake et al., 2017a; Zaadnoordijk et al., 2022).

Young children quickly learn abstract concepts (Murphy, 2002), and models that allow
them to navigate, to form goals, and to plan complex action sequences to fulfill them (Gopnik
and Meltzoff, 1997; Spelke and Kinzler, 2007; Carey, 2009; Gopnik et al., 2001).

In cognitive science, the idea that the brain builds predictive world models is a common
one, and have inspired attempt to reproduce the process in machines (Lake et al., 2017b;
Orhan et al., 2020). Some efforts have been devoted to building video datasets to test
intuitive physics common sense in machines and infants (Riochet et al., 2019).

The ability to plan is a well-studied feature of human intelligence (Mattar and Lengyel,
2022). There is evidence that people construct simplified representations of the world for
planning in which irrelevant details are abstracted away (Ho et al., 2022)

Consciousness is a rather speculative topic, owing to the difficulty of defining what con-
sciousness is. I will not speculate about whether some version of the proposed architecture
could possess a property assimilable to consciousness, but will only mention the work of
Dehaene and collaborators who have proposed two types of consciousness that they call
C1 and C2. C1 is largely related with the modulation of attention, while C2 requires a
self-monitoring ability, perhaps assimilable to what the configurator module needs to do in
the present proposal (Dehaene et al., 2021).
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8 Discussion, Limitations, Broader Relevance

Constructing the cognitive architecture of the present proposal, instantiating all the details,
and making the system work for non-trivial tasks will not be an easy task. The path to
success is likely riddled with unforeseen obstacles. It will probably take many years to work
them all out.

8.1 What is missing from the Proposed Model?

A lot of hard work needs to be done to instantiate the proposed architecture and turn it
into a functional system. There may be flaws and pitfalls that may appear to be unsolvable
within the specifications of the proposed architecture.

The first question is whether a Hierarchical JEPA can be built and trained from videos.
Could it learn the type of abstract concept hierarchy mentioned in section 4.1?

One somewhat open question relative to the JEPA is how precisely to regularize the
latent variable so as to minimize its information content. A number of possible mechanisms
are proposed: making the latent variable discrete, low-dimensional, sparse, or stochastic.
But it is not clear which approach will ultimately be the best.

The current proposal does not prescribe a particular way for the actor to infer latent
variable instantiations and optimal action sequences. While the differentiability of all the
modules makes it possible in principle to use gradient-based optimization to infer optimal
action sequences, the optimization problem may be very difficult in practice. In particular,
when the action space is discrete, or when the function from actions to cost is highly non
smooth, gradient-based method may be ineffective, requiring to use other (gradient-free)
search methods (dynamic programming, belief propagation, MCTS, SAT, etc).

Instantiating multiple configurations of latent variables in Mode-2 planning/reasoning
may require additional mechanisms not described in the present proposal. Humans seem
to be endowed with an ability to spontaneously cycle through alternative interpretations
of a percept, as demonstrated by the Necker cube and other visual illusions that have
several equally-plausible interpretations. In the context of the present model, different
interpretation of an ambiguous percept may be represented by different values of a latent
variable. While one could imagine a number of exploratory mechanisms to systematically
explore the space of possible latent variable values, no such mechanism is described here.

The present proposal does not specify the details of the architecture of the various
modules. For example, it is probable that the predictor will require some sort of dynamic
routing and gating circuits in its micro-architecture. Predictors for low-level representation
may have to be specialized to represent the kind of small transformations of the repre-
sentation that can occur in the short term. Predictor modules dealing with higher level
representations may require more generic architectures that manipulate objects and their
relationships. But none of this is specified in the present proposal.

Similarly, the precise architecture and function of the short-term memory and how it
may be used to represent beliefs about the state of the world are somewhat fuzzy. The
original Memory Network system and its successors contained the idea that a neural net
could use an associative memory as a working memory to store and retrieve beliefs about
the state of the world between compute cycles (Bordes et al., 2015; Sukhbaatar et al.,
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2015). But getting such an architecture to work for complex planning and control may
prove difficult.

Of all the least understood aspects of the current proposal, the configurator module is the
most mysterious. In particular, while planning a complex task, the configurator is supposed
to identify sequences of subgoals and configure the agent to successively accomplish those
subgoals. Precisely how to do that is not specified.

This is merely a list of foreseeable questions, but many questions and problems will
inevitably surface as instances of the proposed systems are put together.

8.2 Broader Relevance of the Proposed Approach

Although the proposed architecture is not specifically designed to model autonomous intel-
ligence, reasoning, and learning in humans and other animals, one can draw some parallels.

The following is somewhat speculative and provided as a way to connect some concepts
in cognitive science and neuroscience that have inspired the present work.

8.2.1 Could this Architecture be the Basis of a Model of Animal Intelligence?

Many of the modules in the proposed architecture have counterparts in the mammalian
brain that perform similar functions.

The perception module corresponds to the visual, auditory, and other sensory areas
of the cortex, as well as some of the association areas. The world model and the critic
correspond to various part of the prefrontal cortex. The intrinsic cost module corresponds
to structures in the basal ganglia involved in rewards, including the amygdala. The trainable
critic may correspond to part of the prefrontal cortex involved in reward prediction. The
function of the short-term memory overlaps with what is known of the hippocampus. The
configurator may correspond to structures in the prefrontal cortex that perform executive
control and modulate attention. The actor regroups areas in the pre-motor cortex that
elaborate and encode motor plans.

The idea of predictive world model has long been a prominent concept in cognitive
science, and the idea of predictive coding has been a prominent concept in neuroscience. The
JEPA architecture and the corresponding non-sample-contrastive self-supervised learning
method are somewhat consistent with ideas of predictive coding and efficient coding.

The proposed architecture has a single world model engine that can be configured for
the task at hand by the configurator. I have argued that this may not only confer a
computational advantage through hardware reuse, but also allow knowledge to be shared
across multiple tasks. The hypothesis of a single, configurable world model engine in the
human brain may explain why humans can essentially perform a single “conscious” reasoning
and planning task at a time. A highly-speculative idea is that the illusion of consciouness
may be a side-effect of a configurator-like module in the brain that oversees the function
of the rest of brain and configures it for the task at hand. Perhaps if the brain were large
enough to contain many independent, non-configurable world models, a configurator would
be unnecessary, and the illusion of consciousness would disappear.

What is the substrate of emotions in animals and humans? Instantaneous emotions (e.g.
pain, pleasure, hunger, etc) may be the result of brain structures that play a role similar
to the Intrinsic Cost module in the proposed architecture. Other emotions such as fear or
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elation may be the result of anticipation of outcome by brain structures whose function is
similar to the Trainable Critic.

The presence of a cost module that drives the behavior of the agent by searching for
optimal actions suggests that autonomous intelligent agents of the type proposed here will
inevitably possess the equivalent of emotions. In an analogous way to animal and humans,
machine emotions will be the product of an intrinsic cost, or the anticipation of outcomes
from a trainable critic.

8.2.2 Could this be a Path towards Machine Common Sense?

It is a widely-held opinion that none of the current AI systems possess any level of common
sense, even at the level that can be observed in a house cat. Animals seem to be able to
acquire enough background knowledge about how the world works to exhibit some level
of common sense. By contrast, AI systems, even when (pre-)trained with self-supervised
mode (e.g. from text) seem to exhibit very limited levels of common sense, making them
somewhat brittle.

For example, Large language models (LLMs) seem to possess a surprisingly large amount
of background knowledge extracted from written text. But much of human common-sense
knowledge is not represented in any text and results from our interaction with the physical
world. Because LLMs have no direct experience with an underlying reality, the type of
common-sense knowledge they exhibit is very shallow and can be disconnected from reality.

A possible characterization of common sense is the ability to use models of the world
to fill in blanks, for example predicting the future, or more generally filling in information
about the world that is unavailable from perception or from memory. With this definition,
common sense is an ability that emerges from a collection of models of the world or from
a single model engine configurable to handle the situation at hand. This view of common
sense sits squarely in the camp of “grounded intelligence”: common sense is a collection of
models from low-levels of abstraction to high levels, all the way up to knowledge acquired
through language.

Could SSL applied to configurable H-JEPA constitute the substrate of machine common
sense? Could a properly-trained and configured H-JEPA embed enough predictive knowl-
edge and capture enough dependencies about the world to exhibit some level of common
sense?

I speculate that common sense may emerge from learning world models that capture the
self-consistency and mutual dependencies of observations in the world, allowing an agent to
fill in missing information and detect violations of its world model.

8.3 Is it all about scaling? Is reward really enough?

The section reviews a few potential paths towards human-level intelligence that have been
proposed in recent years. The surprising power of large transformer architectures trained
to predict text and other modalities have led some to claim that we merely need to scale up
those models (Brown et al., 2020; Brown et al., 2020). The surprising power of reinforcement
learning for games and other simple environments have led other to claim that reward is
enough (Silver et al., 2021). finally, the limitations of current deep-learning systems when it
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comes to reasoning have led some to claim that deep learning systems need to be augmented
by hard-wired circuitry to enable symbol manipulation (Marcus and Davis, 2019)

8.3.1 Scaling is not enough

Large Language Models (LLMs), and more generally, large-scale transformer architectures
trained with a form of generative self-supervised learning, have been astonishingly successful
at capturing knowledge present in text. This has led to a debate in the AI community as
to whether human-level AI can be attained by scaling up these architectures. My position
in this debate is that I do not believe that scaling is enough for two main reasons.

First, current models operate on “tokenized” data and are generative. Every input
modality must be turned into a sequence (or a collection) of “tokens” encoded as vectors.
While this works well for text, which is already a sequence of discrete tokens, it is less
suitable for continuous, high dimensional signals such as video. The type of SSL training
used for LLM-style models can be seen as a particular kind of latent-free generative model
trained with a particular kind of contrastive method called denoising auto-encoder (Vincent
et al., 2010), or in this case masked auto-encoder (Devlin et al., 2018). Hence, they are
subject to the limitations of generative models, latent-variable free models, and contrastive
methods. Generative models have difficulty representing complex uncertainties in contin-
uous spaces. LLMs simplify the representation of uncertainty in the prediction by only
dealing with discrete objects from a finite collection (e.g. words from a dictionary). Repre-
senting uncertainty about a word being predicted comes down to producing a vector whose
components are scores or probabilities for each word (or discrete token) in the dictionary.
But this approach doesn’t work for high-dimensional continuous modalities, such as video.
To represent such data, it is necessary to eliminate irrelevant information about the variable
to be modeled through an encoder, as in the JEPA. Furthermore, the high-dimensionality
of the signal precludes the representation of uncertainty through a normalized distribution.

Second, current models are only capable of very limited forms of reasoning. The absence
of abstract latent variables in these models precludes the exploration of multiple interpre-
tations of a percept and the search for optimal courses of action to achieve a goal. In fact,
dynamically specifying a goal in such models is essentially impossible.

8.3.2 Reward is not enough

The proposed architecture is designed to minimize the number of actions a system needs
to take in the real world to learn a task. It does so by learning a world model that capture
as much knowledge about the world as possible without taking actions in the world. It uses
intrinsic costs that are differentiable functions of measured or predicted world states. This
makes the proposal more similar to optimal control than to reinforcement learning. In the
proposed model, much of learning takes place at the level of the world model (perceptual
encoder and predictor). In this context, what is the role of reinforcement learning (RL)?

In most RL settings the reward (or the cost, which is a negative reward) is fed to the
agent by the environment. In other words, Intrinsic Cost module is the environment itself,
and is therefore an unknown function. The value of the function can be probed by observing
the state of the world, taking an action, and observing the resulting reward. The gradient
of the reward with respect to the action or the state is unknown and must be estimated by
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multiple action trials as in policy gradient methods. In Actor-Critic methods, the reward
function is approximated by a critic module that is trained to approximate expected future
values of the reward. The critic provides a differentiable approximation of the reward
function.

But model-free RL is extremely sample-inefficient, at least when compared with human
and animal learning, requiring very large numbers of trials to learn a skill. Scalar rewards
provide low-information feedback to a learning system. As a consequence, a pure RL system
requires a very large number of trials to learn even relatively simple tasks. Model-based
RL clearly has the potential of being considerably more sample efficient. But the question
becomes how to train the world model: is it trained from taking actions and getting rewards,
or is it trained by predicting the world state? In the latter case, reward is clearly not enough:
most of the parameters in the systems are trained to predict large amounts of observations
in the world. Contrary to the title of a recent position paper by Silver et al. (Silver et al.,
2021), the reward plays a relatively minor role in this scenario.

8.3.3 Do We Need Symbols for Reasoning?

In the proposed architecture, reasoning comes down to energy minimization or constraint
satisfaction by the actor using various search methods to find a suitable combination of
actions and latent variables, as stated in Section 3.1.4.

If the actions and latent variables are continuous, and if the predictor and the cost
modules are differentiable and relatively well behaved, one can use gradient-based methods
to perform the search. But there may be situations where the predictor output changes
quickly as a function of the action, and where the action space is essentially discontinuous.
This is likely to occur at high levels of abstractions where choices are more likely to be
qualitative. A high-level decision for a self-driving car may correspond to “turning left or
right at the fork”, while the low-level version would be a sequence of wheel angles.

If the action space is discrete with low cardinality, the actor may use exhaustive search
methods. If the action set cardinality, and hence the branching factor, are too large, the
actor may have to resort to heuristic search methods, including Monte-Carlo Tree Search,
or other gradient-free methods. If the cost function satisfied Bellman’s equations, one may
use dynamic programming.

But the efficiency advantage of gradient-based search methods over gradient-free search
methods motivates us to find ways for the world-model training procedure to find hierar-
chical representations with which the planning/reasoning problem constitutes a continuous
relaxation of an otherwise discrete problem.

A remain question is whether the type of reasoning proposed here can encompass all
forms of reasoning that humans and animals are capable of.
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Figure 18: Symbols used in architectural diagrams.
Architectural diagrams use symbols commonly used to draw factor graphs – circles for variables,
rectangles for factors – plus rounded rectangles to represent deterministic functions. Filled circles
represent observed variables, or variables that are outputs of deterministic functions.
Hollow circles represent latent variables, i.e. variables that must be inferred by minimizing some
cost, or sampled from a distribution.
Red rectangles represent energy terms. These modules have an implicit scalar output that contributes
additively to the total energy of the system. This is similar to the convention used for factor graphs.
Rounded rectangles represent deterministic functions, which may have one or several inputs. Given
a set of inputs, the output is assumed to be easily computable and unique. The function is generally
assumed to be differentiable. It may contain trainable parameters.
Non-deterministic functions are represented as shown on the right. They are composed of a deter-
ministic function g(x, z) in which one of the inputs is a latent variabl z. The latent variable is seen
as varying within a level set of a regularizing energy term R(z). When z varies in the level set
Zh = {z|R(z) < h}, the output ỹ will vary over the set Yh = {y|y = g(x, z),∀z ∈ Zh}.
In some cases, the energy term can be transformed into a probability distribution (see text).

Appendix: Symbols and Notations

Architectural diagrams in this paper use the symbols shown in Figure 18.

We use symbols that are somewhat similar to the representation of factor graphs: circles
for variables, rectangles for factors. There are two major differences, however. First, the
factors represent additive energy terms, not multiplicative probability factors. Second, we
use an additional symbol, rounded rectangles, to represent deterministic functions with a
clear directionality from inputs to outputs.

More precisely:

• Filled circles represent observed variables, or variables that are outputs of determin-
istic functions.

• Hollow circles represent latent variables, i.e. variables that must be inferred by mini-
mizing some cost, varied over a set, or sampled from a distribution.

• Red rectangles represent energy terms. These modules have an implicit scalar output
that contributes additively to the total energy of the system.

• Rounded rectangles represent deterministic functions, which may have one or sev-
eral inputs. Given a set of inputs, the output is assumed to be easily computable
and unique. The function is generally assumed to be differentiable. It may contain
trainable parameters. Such a module is typically implemented as a deep neural net.
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Non-deterministic functions do not have a dedicated symbol, but must be represented
as a combination of deterministic functions, energy modules, and latent variables. An
example is shown on the right of Figure 18. A non-deterministic function is represented
by a deterministic function ỹ = g(x, z) whose output depends on a latent variable z. The
latent variable is fed to a regularizing energy term R(z). We first define Zh as the level set
of z, i.e. the set of z for which R(z) is less than a threshold h:

Zh = {z/R(z) < h} (21)

As z varies over Zh, the output will vary over the set:

Yh = {y|y = g(x, z),∀z ∈ Zh} (22)

In some cases, this setup may be used to represent probability distributions. Forst,
the energy term is transformed into a probability distribution using a Gibbs-Boltzmann
formula:

P (z) =
exp(−R(z))∫
z′ exp(−R(z′))

(23)

Drawing the latent variable from this distribution implies a distribution over y:

P (y|x) =

∫
z
δ(y − g(x, z))P (z) (24)

where δ() is the Dirac delta function.
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Figure 19: Amortized Inference with an EBM. An encoder is trained to produce z̃ = Enc(sx, y)
to approximate the value of the latent that minimizes the energy ž = argminz∈Z Ew(x, y, z). The
regularizer R(z) plays the essential role of limiting the information that z contains about y. This
is particularly important here because the system has access to y and can “cheat” by carrying the
complete information about y through the encoder.

Appendix: Amortized Inference for Latent Variables

Inference in latent variable models consists in performing the optimization
ž = argminz∈Z Ew(x, y, z). When z is continuous, this may be best performed through
a gradient-based optimization that involves backpropagating gradients through the model
dowen to z for multiple iterations. In generative architectures, this may be expensive,
requiring to back-propagate through the decoder and the predictor. One way to reduce the
cost of inference is to use amortized inference. The idea is to train a neural net to predict
an approximate solution to the inference optimization problem.

The architecture is depicted in Figure 20. An encoder z̃ = Enc(sx, y) is trained to
minimize a divergence measure H(ž, z̃) between the encoder output and the optimal latent
variable ž = argminz∈Z Ew(x, y, z). Once trained, the prediction z̃ may be use as an
estimate of ž or as an initial value for the inference optimization.
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Figure 20: Amortized Inference with a Regularized Generative Latent-Variable EBM architecture.
An encoder is trained to produce z̃ = Enc(sx, y) to approximate the value ž that minimizes the
energy. The regularizer R(z) plays the essential role of limiting the information that z contains
about y. This is particularly important here because the system has access to y and can “cheat” by
carrying the complete information about y through the encoder.

The regularizer R(z) is even more important than in the regular inference case because
the prediction pathway has access to y and can “cheat” by carrying the complete information
about y through the encoder. Without an information-limiting regularizer This would cause
a collapse of the energy function, since it would allow any y to be reconstructed perfectly.
The regularizer is there to minimize the information that ž may contains about y.

Variational Auto-Encoders, and LISTA-style sparse Auto-Encoders belong to the family
of Regularized GLVEBM with amortized inference. Most of those models are unconditional
and do not possess an x nor an Enc(x) module.
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Appendix: Loss functions for Contrastive Training of EBM

Much can be said about contrastive methods. Table 1 lists a few examples of contrastive
methods, together with their strategy for picking contrastive samples ŷ and their loss func-
tional.

Rows 1-2 in the table are exact maximum likelihood methods. They assume that the
gradient of the log partition function can be computed exactly. Rows 2-4 are approxi-
mate maximum likelihood methods. Rows 5-10 are not interpretable within a probabilistic
framework.

Row 1: Maximum Conditional Likelihood for discrete y is used whenever the
energy needs to be turned into a probability distribution. through a Gibbs formula P (y|x) =
exp(−Fw(x, y))/

∑
y′∈Y exp(−Fw(x, y′). The loss is the negative log conditional likelihood.

This is the prevalent approach when y is a discrete variable within a finite set (e.g. for
classification).

Row 2 and 3: Maximum Conditional Likelihood is used for any model that should
produce probability estimates. Row 2 only applies to tractable models in which the integral
in the contrastive term (or its gradient) can be computed analytically. Row 3 applies to
situations where the integral is intractable and its gradient must be approximated by Monte
Carlo sampling methods. It then comes down to devising good methods to sample ŷ values
from the model’s Gibbs distribution: Pw(y|x) = exp(−βFw(x, y)/

∫
y′ exp(−βFw(x, y′).

Row 4: Contrastive Divergence. MCMC sampling methods for Row 3 may take a
long time to mix. One may start from a training sample and let the Markov chain evolve
for a short time, and then accept or reject the resulting sample so as to satisfy detailed
balance (Carreira-Perpiñán and Hinton, 2005).

Row 5: Pairwise hinge, also known as triplet loss, drives the energy of the correct
output to be lower than the energy of the contrastive output by at least a margin m(y, ŷ)
which may grow with a measure of divergence between y and ŷ. The difficulty is to find
suitable contrastive samples whose energy is low and “threatening”, a task sometimes called
“hard negative mining”.

Rows 6-8: Min-hinge, Square-hinge, Square-exp. Assumes that the energy has
a lower bound. minimizes the energy of the correct output and pushes the energy of con-
trastive outputs above a margin equal to m(y, ŷ) for rows 6 and 7, and infinite for row
8.

Row 8: Logistic. As with the pairwise hinge, the logistic loss maximizes the difference
between the energies of the contrastive output and the correct output. Unlike the pairwise
hinge, the difference is pushed to infinity, but with a force that decreases quickly.

Row 9: GAN. A GAN differs from other contrastive methods in the way contrastive
samples are generated. The contrastive samples are produced by a generator network that
is trained preferentially generate samples that have low energy according to the model. In
principle, any loss function can be used, as long as it increases with the energy of the correct
output, and decreases with the energy of the contrastive sample.

Row 10: Denoising Auto-Encoder. A denoising AE produces contrastive samples
by corrupting outputs from training samples. The corruption can be performed by adding
noise or by masking parts of the output. The energy function is the reconstruction error,
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hence the energy is trained to be zero on the data manifold, and to grow with D(y, ŷ) as ŷ
moves away from y on the data manifold.

Method Energy ŷ Generation Loss

1 Max Likelihood discrete y exhaustive Fw(x, y) + log
∑
y′∈Y exp(−Fw(x, y′))

2 Max Likelihood tractable exhaustive Fw(x, y) + log
∫
y′∈Y exp(−Fw(x, y′))

3 Max likelihood any MC or MCMC Fw(x, y)− Fw(x, ŷ)
4 Contr. Divergence any trunc’d MCMC Fw(x, y)− Fw(x, ŷ)

5 Pairwise Hinge any most offending [Fw(x, y)− Fw(x, ŷ) +m(y, ŷ)]+

6 Min-Hinge positive most offending Fw(x, y) + [m(y, ŷ)− Fw(x, ŷ)]+

6 Square-Hinge divergence most offending Fw(x, y)2 +
(
[m(y, ŷ)− Fw(x, ŷ)]+

)2
7 Square-Exp any most offending Fw(x, y)2 + exp(−βFw(x, ŷ))
8 Logistic any most offending log(1 + exp(Fw(x, y)− Fw(x, ŷ))
9 GAN any ŷ = gu(z) H(Fw(x, y), Fw(x, ŷ),m(y, ŷ))

10 Denoising AE D(y, gw(y)) ŷ = N(y) D(y, gw(ŷ)

Table 1: A of list of contrastive methods and loss functions to train energy-based models. They
are all use loss functions with two terms, one that pushes down on the energy of a training sample,
and one the pulls up the energies of one or several contrastive samples.
They differ by the strategy they employ to generate contrastive samples, and by the precise form of
the loss function.
Exact or approximate Maximum Likelihood methods (rows 1-4) are used whenever the model needs to
produce probability estimates. When the second term is intractable, its gradient may be approximated
through Monte-Carlo methods, which can be seen as particular ways to produce ŷ. Many contrastive
self-supervised methods for joint embedding architectures (Siamese nets) use Row 1 (InfoNCE).
A number of contrastive methods (Rows 5-8) are based on finding a ŷ that is “highly offending”,
meaning different from the desired y, yet given a low energy by the model. Pairs of energies for y
and ŷ are fed to a loss function that pushes the former to low values and the latter to higher values.
This can be done with a variety of losses including hinge loss.
GANs (row 9) are contrastive methods in which the contrastive samples are produced by a generator
network whose input is a random vector. The generator is trained to produce samples to which the
model currently attributes a low energy, but should attribute a high energy.
Denoising Auto-Encoders (row 10) apply a corruption process to training samples to produce con-
trastive samples ŷ = N(y). The energy function is the reconstruction error Fw(y) = D(y, gw(y))
where D() is a symmetric divergence measure and gw(y) a parameterized function. By training gw()
to map ŷ to y, the energy for ŷ is trained to be equal to D(ŷ, y), while the energy of y is trained to
be zero.

62


	Prologue
	Introduction
	Learning World Models
	Humans and Animals learn Hierarchies of Models

	A Model Architecture for Autonomous Intelligence
	Typical Perception-Action Loops
	Mode-1: Reactive behavior
	Mode-2: reasoning and planning using the world model
	From Mode-2 to Mode-1: Learning New Skills
	Reasoning as Energy Minimization

	The Cost Module as the Driver of Behavior
	Training the Critic

	Designing and Training the World Model
	Self-Supervised Learning
	Handling Uncertainty with Latent Variables
	Training Energy-Based Models
	Joint Embedding Predictive Architecture (JEPA)
	Training a JEPA
	VICReg
	Biasing a JEPA towards learning ``useful'' representations

	Hierarchical JEPA (H-JEPA)
	Hierarchical Planning
	Handling uncertainty
	World Model Architecture

	Keeping track of the state of the world
	Data Streams

	Designing and Training the Actor
	Designing the Configurator
	Related Work
	Trained World Models, Model-Predictive Control, Hierarchical PLanning
	Energy-Based Models and Joint-Embedding Architectures
	Human and animal cognition

	Discussion, Limitations, Broader Relevance
	What is missing from the Proposed Model?
	Broader Relevance of the Proposed Approach
	Could this Architecture be the Basis of a Model of Animal Intelligence?
	Could this be a Path towards Machine Common Sense?

	Is it all about scaling? Is reward really enough?
	Scaling is not enough
	Reward is not enough
	Do We Need Symbols for Reasoning?



