
Under review as submission to TMLR

Autoencoding Reduced Order Models for Control through
the Lens of Dynamic Mode Decomposition

Anonymous authors
Paper under double-blind review

Abstract

Modeling and control of high-dimensional dynamical systems often involve some dimension-
ality reduction techniques to construct a lower-order model that makes the associated task
computationally feasible or less demanding. In recent years, two techniques have become
widely popular for analysis and model order reduction of high-dimensional dynamical sys-
tems: (1) dynamic mode decomposition and (2) deep autoencoding learning. This paper
establishes a connection between dynamic mode decomposition and autoencoding learning
for controlled dynamical systems. Specifically, we first show that an optimization objec-
tive for learning a linear autoencoding reduced order model can be formulated such that
its solution closely resembles the solution obtained by the dynamic mode decomposition
with control algorithm. The linear autoencoding architecture is then extended to a deep
autoencoding architecture to learn a nonlinear reduced order model. Finally, the learned
reduced order model is used to design a controller utilizing stability-constrained deep neural
networks. The studied framework does not require knowledge of the governing equations
of the underlying system and learns the model and controller solely from time series data
of observations and actuations. We provide empirical analysis on modeling and control of
spatiotemporal high-dimensional systems, including fluid flow control.

1 Introduction

Designing controllers for high-dimensional dynamical systems remains a challenge as many control algorithms
become computationally prohibitive in high dimensions. Typically, a reduce-then-design approach (Atwell
et al. (2001)) is used in practice, which involves two steps: (1) develop a reduced order model (ROM) using
dimensionality reduction techniques and (2) design a controller for that ROM (Figure 1a). For controlled
dynamical systems, the model order reduction (MOR) approaches either combine analytical techniques with
empirical approximation (Willcox & Peraire (2002)) or are purely data-driven (Juang & Pappa (1985);
Juang et al. (1993); Proctor et al. (2016)). Among these, the dynamic mode decomposition (DMD) based
methods have become widely popular in recent years due to a strong connection between DMD and Koopman
operator theory (Rowley et al. (2009)). Another recent research trend involves utilizing deep neural networks
(DNNs), particularly autoencoders, for modeling and control of high-dimensional dynamical systems (Lusch
et al. (2018); Erichson et al. (2019); Eivazi et al. (2020); Morton et al. (2018); Bounou et al. (2021); Chen
et al. (2021); Ping et al. (2021)).

In this paper, we provide a perspective connecting DMD and autoencoding ROMs for controlled dynamical
systems and present a framework to learn control policies for such systems by means of the DNN-based
ROMs. We first formulate an objective function for data-driven learning of controlled dynamical systems in
a linear autoencoding configuration. We analytically show that the associated objective function encourages
a linear ROM that closely resembles the lower-order model obtained using the DMD with control (DMDc)
algorithm (Proctor et al. (2016)). The linear autoencoding architecture is designed in such a way that
its components can be replaced with DNNs and the corresponding objective function can be optimized by
gradient descent to obtain a nonlinear ROM. The architecture with DNN components, DeepROM, closely
resembles the aforementioned deep autoencoding architectures used in recent literature for the prediction and
control of dynamical systems. The learned DNN-based ROM is then used in a control learning framework,

1

Under review as submission to TMLR

Physical System
Model Order

Reduction
Linear ROM

High-dimensional
state data

Control Design

Linear Autoencoding
ROM (LAROM)

Model Order Reduction

Dynamic Mode
Decomposition

Autoencoding
Learning

Control Learning
(DeepROC)

Nonlinear ROM
(DeepROM)

Stability Analysis

(a)

(b)

Figure 1: (a) Reduce-then-design paradigm for designing control for high-dimensional systems, (b): our work
in the context.

deep reduced order control (DeepROC), to design a controller for the underlying system. The control policy is
learned by jointly training two DNNs: one stability-constrained DNN predicts a target closed-loop dynamics
for the learned ROM while the other DNN serves as a controller to achieve that target dynamics. We
analytically show that keeping the joint learning objective within a sufficiently small value implies stability
for the closed-loop ROM in terms of ultimate boundededness, i.e., trajectories starting close to the desired
state stay close to the desired state. The overall workflow of this paper is shown in Figure 1(b). We provide
empirical analysis using examples of spatiotemporal physical processes such as reaction–diffusion and fluid
flow systems. In summary, our contributions are as follows:

• For controlled dynamical systems, we show that an objective function can be formulated in a linear
autoencoding configuration and optimized by gradient descent such that the corresponding linear
ROM closely resembles the ROM obtained using the DMDc algorithm.

• We extend the linear autoencoding configuration to a deep autoencoding configuration to learn a
DNN-based nonlinear ROM.

• We analytically show that a DNN controller can be trained such that the closed-loop trajectories of
the learned ROM remain ultimately bounded.

• We empirically show the similarity of the linear autoencoding ROM (LAROM) with DMDc and eval-
uate the prediction performance of DeepROM and control performance of DeepROC in experiments
with high-dimensional systems, including suppressing vortex shedding in fluid flow.

2 Related Work

In recent years, deep learning (DL) has seen widespread application in scientific and engineering problems,
including understanding complex dynamics of large-scale or high-dimensional systems and solving associated
computational tasks. The majority of the research in this area focuses on the modeling and prediction of
such complex dynamics using deep neural networks (DNNs) (Xingjian et al. (2015); Long et al. (2018); Raissi
(2018); Seo et al. (2019); Ayed et al. (2019); Donà et al. (2020)) and has found application in several fields
including fluid flow (Erichson et al. (2019); Eivazi et al. (2020); Srinivasan et al. (2019)), biochemical and
electric power systems (Yeung et al. (2019)), climate and ocean systems (Scher (2018); Ren et al. (2021);
Yang et al. (2017); De Bézenac et al. (2019)), and structural analysis Zhang et al. (2020), just to name a
few.

A second line of research, though relatively less prevalent than modeling and prediction, is utilizing DL
for controlling high-dimensional systems, particularly in fluid flow control tasks. Rabault et al. (2019);

2

Under review as submission to TMLR

Tang et al. (2020) applied deep reinforcement learning (DRL) in active flow control for vortex shedding
suppression and used a system-specific reward function involving lift and drag. Ma et al. (2018) used an
autoencoder for encoding high-dimensional fluid state to low-dimensional features and trained DRL agents
with those features to control rigid bodies in a coupled 2D system involving both fluid and rigid bodies.
Garnier et al. (2021) also used an autoencoder for feature extraction to train a DRL agent for controlling the
position of a small cylinder in a two-cylinder fluid system to reduce the total drag. Beintema et al. (2020)
used DRL with system-specific rewards to control a Rayleigh–Bénard system with the aim of reducing
convective effects. Model-free DRL methods have high sample complexity necessitating a large number
of interactions with the environment and often require system-specific reward construction. Furthermore,
running numerical solvers in every iteration to provide feedback to the agents is computationally expensive.
The same concern arises for the methods involving differentiable simulators. For example, Holl et al. (2020)
used a differentiable partial differential equation (PDE) solver to generate gradient-based feedback for a
predictor-corrector scheme to control PDE-driven high-dimensional systems. Takahashi et al. (2021) too
integrated a differentiable simulator with DNNs to learn control in coupled solid-fluid systems.

The alternative to model-free methods takes the traditional approach: develop a model first and then use
that to design controllers. Deep learning is now being used in this process by developing frameworks like
DeepMPC (Lenz et al. (2015)) which incorporates DNN features in model predictive control (MPC). Bieker
et al. (2020) and Morton et al. (2018) utilized the DeepMPC framework for fluid flow control. Bieker et al.
(2020) used a recurrent neural network (RNN) to model the dynamics of only control-relevant quantities
(i.e. lift and drag) of the system, which is then employed in an MPC framework for the flow control tasks.
Morton et al. (2018) followed the method proposed by Takeishi et al. (2017) and used DNN-based embedding
to first learn a linear reduced order model (ROM) in Koopman invariant subspace and then incorporate it
in the MPC framework. Similar approaches have been applied to other high-dimensional control tasks like
control from video input (Bounou et al. (2021)), automatic generation control in wind farms in presence
of dynamic wake effect (Chen et al. (2021)), and transient stabilization in power grids (Ping et al. (2021)).
However, Khodkar et al. (2019) showed that the linear combination of a finite number of dynamic modes may
not accurately represent the long-term nonlinear characteristics of complex dynamics and adding nonlinear
forcing terms yields better prediction accuracy (Eivazi et al. (2020)). Furthermore, optimization at every
step in the MPC framework is computationally expensive.

3 Problem and Preliminaries

3.1 Problem statement

Consider a time-invariant controlled dynamical system
dx

dt
= f(x, u), (1)

where x(t) ∈ X ⊂ Rdx , dx >> 1 and u(t) ∈ U ⊂ Rdu are the system state and the actuation (or control
input), respectively, at time t. Our objective is to learn a feedback controller u = π(x) for this high-
dimensional (dx >> 1) system of (1) to stabilize it at a desired state in a data-driven reduce-then-design
approach when the nonlinear function f : X × U → Rdx is unknown. We assume that we have observations
from the system consisting of time series data x(ti), i = 0, 1, · · · , n subjected to random values of actuations
u(ti), i = 0, 1, · · · , (n − 1).

Note, we use v (in place of v(t) for brevity) as notation for any continuous-time variable (e.g., system state,
control input), whereas v(ti) is used to denote their discrete sample at time instance ti.

3.2 Stabilization of controlled systems

Suppose the function f in (1) is locally Lipschitz and (x = 0, u = 0) is an equilibrium pair of the system,
i.e., f(0, 0) = 0. The system (1) is said to be (locally) stabilizable with respect to the equilibrium pair if
there exists a locally Lipschitz function

π : X0 → U, π(0) = 0,

3

Under review as submission to TMLR

defined on some neighborhood X0 ⊂ X of the origin x = 0 for which the closed-loop system

dx

dt
= f(x, π(x)) (2)

is locally (in state space X0) asymptotically stable (i.e. ∥x(t0)∥ < δ implies limt→∞ x(t) = 0). If X0 = X and
(2) is globally asymptotically stable, then the system (1) is said to be globally stabilizable (Sontag (2013)).

Stability of the closed-loop system dx
dt = f(x, π(x)) = h(x) (or any uncontrolled/autonomous systems in

general) at equilibrium points can be analyzed using the method of Lyapunov. Let V : X → R be a
continuously differentiable function such that

V(0) = 0, and V(x) > 0 ∀ x ∈ X \ {0}, (3)

and the time derivative of V along the trajectories

dV
dt

= ∇V(x)⊤ dx

dt
= ∇V(x)⊤h(x) ≤ 0 ∀ x ∈ X. (4)

Then, the equilibrium point x = 0 is stable (i.e., for each ϵ > 0, there exists a δ = δ(ϵ) > 0 such that
∥x(t0)∥ < δ implies ∥x(t)∥ < ϵ, ∀t > t0) and V is called a Lyapunov function. If dV

dt < 0 in X \ {0}, then
x = 0 is asymptotically stable. Moreover, if there exist positive constants c1, c2, c3 and c4 such that

c1∥x∥2 ≤ V(x) ≤ c2∥x∥2, (5)

and
∇V(x)⊤h(x) ≤ −c3∥x∥2, ∀ x ∈ X, (6)

then x = 0 is exponentially stable (i.e., there exist positive constants δ, λ and γ such that ∥x(t)∥ ≤
λ∥x(t0)∥e−γ(t−t0), ∀∥x(t0)∥ < δ) (Khalil (2002)). For global stability, we need another condition

V(x) → ∞ as ∥x∥ → ∞. (7)

The converse statements regarding the existence of a Lyapunov function with aforementioned properties for
(locally/globally, asymptotically/exponentially) stable systems hold true as well. The notation (·)⊤ in the
above discussion denotes the transpose operation.

In this paper, we assume that the system we are aiming to stabilize (at an equilibrium) is stabilizable in the
sense of the aforementioned definition and criteria, i.e., there exists a continuously differentiable function V
and a Lipschitz continuous control law π such that criteria (3) and (4) (and possibly (5) and (7) as well) are
conformed.

Though the above formulation is for stabilization at an equilibrium point x = 0, the same can be used to
stabilize the system at any arbitrary point xss. In that case, a steady-state control input uss is required that
can maintain the equilibrium at xss, i.e., f(xss, uss) = 0. The change of variables xe = x−xss, ue = u−uss

leads to a transformed system where we can apply the aforementioned formulation of stabilization. The
overall control, in this case, u = ue + uss comprises a feedback component ue and a feedforward component
uss (Khalil (2002)).

3.3 Dynamic mode decomposition with control

DMD (Schmid (2010)) is a data-driven method that reconstructs the underlying dynamics using only a time
series of snapshots from the system. DMD computes a modal decomposition where each mode is associated
with an oscillation frequency and decay/growth rate. DMD has become a widely used technique for spectral
analysis of dynamical systems. DMDc (Proctor et al. (2016)) is an extension of DMD for dynamical systems
with control. DMDc seeks best-fit linear operators A and B between successive observed states and the
actuations:

x̂(ti+1) = Ax(ti) + Bu(ti), i = 0, 1, · · · , n − 1, (8)

4

Under review as submission to TMLR

where x̂(t) denotes an approximation of x(t), A ∈ Rdx×dx , and B ∈ Rdx×du . Direct analysis of (8) could
be computationally prohibitive for dx >> 1. DMDc leverages dimensionality reduction to compute a ROM

xR,DMDc(ti) = EDMDcx(ti), (9a)
xR,DMDc(ti+1) = AR,DMDcxR,DMDc(ti) + BR,DMDcu(ti), i = 0, 1, · · · , n − 1, (9b)

which retains the dominant dynamic modes of (8). Here, xR,DMDc(ti) ∈ Rrx is the reduced state,
where rx << dx, and EDMDc ∈ Rrx×dx , AR,DMDc ∈ Rrx×rx , BR,DMDc ∈ Rrx×du . The full state
is reconstructed from the reduced state using the transformation x̂(ti) = DDMDcxR,DMDc(ti), where
DDMDc ∈ Rdx×rx . DMDc computes truncated singular value decomposition (SVD) of the data matri-
ces Y = [x(t1), x(t2), · · · , x(tn)] ∈ Rdx×n and Ω = [ω(t0), ω(t1), · · · , ω(tn−1)] ∈ R(dx+du)×n, ω(ti) =
[x(ti)⊤, u(ti)⊤]⊤ ∈ Rdx+du as follows:

Y = ÛY Σ̂Y V̂ ⊤
Y , Ω = ÛΩΣ̂ΩV̂ ⊤

Ω , (10)

where ÛY ∈ Rdx×rx , Σ̂Y ∈ Rrx×rx , V̂Y ∈ Rn×rx , ÛΩ ∈ R(dx+du)×rxu , Σ̂Ω ∈ Rrxu×rxu , and V̂Ω ∈ Rn×rxu .
rx < min(dx, n) and rx < rxu < min(dx + du, n) denote the truncation dimensions of SVDs. Utilizing the
SVDs of (10) the parameters of the ROM (9) is obtained as

EDMDc = Û⊤
Y , DDMDc = ÛY , (11a)

AR,DMDc = Û⊤
Y Y V̂ΩΣ̂

−1
Ω Û⊤

Ω,1ÛY , BR,DMDc = Û⊤
Y Y V̂ΩΣ̂

−1
Ω Û⊤

Ω,2, (11b)

where ÛΩ,1 ∈ Rdx×rxu , ÛΩ,2 ∈ Rdu×rxu , and Û⊤
Ω = [Û⊤

Ω,1 Û⊤
Ω,2].

4 Method

As mentioned earlier, in the reduce-then-design approach, we first need to develop a ROM and then design a
controller using that ROM. A controller designed for the ROM is expected to perform well in the full system
only if the ROM effectively captures the dynamic characteristics of the underlying system. In this section,
we first describe how to design a ROM that effectively captures the relation between successive observations
and actuation. Next, we delineate the process for learning controllers utilizing the learned ROM.

4.1 Learning a reduced order model

DMDc can extract the dominant modes of underlying dynamics in a ROM Proctor et al. (2016). In order
to develop a nonlinear ROM utilizing DNNs that effectively capture the underlying dynamics, we first
investigate if we can obtain a linear ROM similar to DMDc, in a gradient descent arrangement. Specifically,
we analyze optimization objectives that encourage a DMDc-like solution for a MOR problem using linear
networks (single layer without nonlinear activation). Consider the following MOR problem

xR(ti) = Exx(ti), xR(ti+1) = ARxR(ti) + BRu(ti), x̂(ti) = DxxR(ti), i = 0, 1, · · · , n − 1, (12)

where the linear operators Ex ∈ Rrx×dx and Dx ∈ Rdx×rx projects and reconstructs back, respectively,
the high-dimensional system state to and from a low-dimensional feature xR ∈ Rrx . The linear operators
AR ∈ Rrx×rx and BR ∈ Rrx×du describe the relations between successive reduced states and actuations.

The DMDc algorithm essentially solves for G̃ ∈ Rrx×(dx+du) to minimize 1
n

∑n−1
i=0

∥∥Exx(ti+1) − G̃ω(ti)
∥∥2

for a fixed projection matrix Ex = EDMDc = Û⊤
Y . Here, ω(ti) is the concatenated vector of state and

actuation as defined in section 3.3. The optimal solution G̃opt is then partitioned as [Ã B̃] such that
Ã ∈ Rrx×dx , B̃ ∈ Rrx×du . Finally, Ã is post-multiplied with the reconstruction operator DDMDc = ÛY to
get the ROM components AR,DMDc and BR,DMDc. Details of this process along with the proofs are given in
appendix A.5. Note, the final step of this process offers dimensionality reduction only for the linear case, not
in the case when the projection and reconstruction operators are nonlinear (e.g. DNNs). Therefore, we use
an alternative formulation with the following results to design a loss function that encourages a DMDc-like
solution for (12) and also offers dimensionality reduction when nonlinear components are used.

5

Under review as submission to TMLR

Theorem 4.1.1. Consider the following objective function

Lpred(Ex, G) = 1
n

n−1∑
i=0

∥∥Exx(ti+1) − GExuω(ti)
∥∥2

, (13)

where G = [AR BR] ∈ Rrx×(rx+du), Exu =
[
Ex 0
0 Idu

]
∈ R(rx+du)×(dx+du), Idu being the identity matrix

of order du. For any fixed matrix Ex, the objective function Lpred is convex in the coefficients of G and
attains its minimum for any G satisfying

GExuΩΩ⊤E⊤
xu = ExY Ω⊤E⊤

xu, (14)

where Y and Ω are the data matrices as defined in section (3.3). If Ex has full rank rx, and ΩΩ⊤ is
non-singular, then Lpred is strictly convex and has a unique minimum for

G = [AR BR] = ExY Ω⊤E⊤
xu(ExuΩΩ⊤E⊤

xu)−1. (15)

Proof sketch. This can be proved by a method similar to the one used for deriving the solution of linear
autoencoder in (Baldi & Hornik (1989)). For any fixed Ex, the objective function of (13) can be written as
Lpred(Ex, G) =

∥∥vec(ExY) − (Ω⊤E⊤
xu ⊗ Irx)vec(G)

∥∥2, where ⊗ denotes the Kronecker product and vec(·)
denotes vectorization of a matrix. Optimizing this linear least-square problem, we get (14) and (15), given
the stated conditions are satisfied. The complete proof is given in appendix A.1.
Remark. For a unique solution, we assume that Ex has full rank. The other scenario, i.e., Ex is rank-
deficient suggests poor utilization of the hidden units of the model. In that case, the number of hidden
units (which represents the dimension of the reduced state) should be decreased. The assumption that the
covariance matrix ΩΩ⊤ is invertible can be ensured when n ≥ dx + du, by removing any linearly dependent
features in system state and actuation. When n < dx + du, the covariance matrix ΩΩ⊤ is not invertible.
However, similar results can be obtained by adding ℓ2 regularization (for the coefficients/entries of G) to
the objective function. Proof of this is given in appendix A.4.

The connection between the ROM obtained by minimizing Lpred (for a fixed Ex), i.e., (15) and the DMDc
ROM of (11b) is not readily apparent. To interpret the connection, we formulate an alternative representation
of (15) utilizing the SVD and the Moore-Penrose inverse of matrices. This alternative representation leads
to the following result.
Corollary 4.1.1.1. Consider the (full) SVD of the data matrix Ω given by Ω = UΩΣΩV ⊤

Ω , where UΩ ∈
R(dx+du)×(dx+du), ΣΩ ∈ R(dx+du)×n, and VΩ ∈ Rn×n. If Ex = Û⊤

Y and ΩΩ⊤ is non-singular, then the
solution for G = [AR BR] corresponding to the unique minimum of Lpred can be expressed as

AR = Û⊤
Y Y VΩΣ∗U⊤

Ω,1ÛY , and BR = Û⊤
Y Y VΩΣ∗U⊤

Ω,2, (16)

where [U⊤
Ω,1 U⊤

Ω,2] = U⊤
Ω with UΩ,1 ∈ Rdx×(dx+du), UΩ,2 ∈ Rdu×(dx+du), and

Σ∗ = limε→0(Σ⊤
ΩU⊤

Ω,1ÛY Û⊤
Y UΩ,1ΣΩ + Σ⊤

ΩU⊤
Ω,2UΩ,2ΣΩ + ε2In)−1Σ⊤

Ω .

Proof sketch. This can be derived by plugging Ex = Û⊤
Y into (15), and using the SVD definition and the

limit definition (Albert (1972)) of the Moore-Penrose inverse. The complete proof is given in appendix A.3
that uses some preliminary results presented in appendix A.2.
Remark. It can be verified easily that if we use the truncated SVD (as defined by 10), instead of the full
SVD, for Ω in corollary 4.1.1.1, we get an approximation of (16):

ÂR = Û⊤
Y Y V̂ΩΣ̂∗Û⊤

Ω,1ÛY , and B̂R = Û⊤
Y Y V̂ΩΣ̂∗Û⊤

Ω,2, (17)

where Σ̂∗ = limε→0(Σ̂
⊤
ΩÛ⊤

Ω,1ÛY Û⊤
Y ÛΩ,1Σ̂Ω + Σ̂

⊤
ΩÛ⊤

Ω,2ÛΩ,2Σ̂Ω + ε2Irxu)−1Σ̂
⊤
Ω . We can see that (17) has

the same form as (11b), except Σ̂
−1
Ω is replaced with Σ̂∗.

6

Under review as submission to TMLR

ℰ𝒙

ℰ𝒖

ℱ

State
Encoder

State
Decoder

Control
Encoder

ROM
𝒙(𝑡𝑖) 𝒙R(𝑡𝑖)

𝒖(𝑡𝑖)

ෝ𝒙R(𝑡𝑖+1)

𝒖R(𝑡𝑖) 𝒙(𝑡𝑖+1)

𝒟𝒙

ෝ𝒙(𝑡𝑖)ℒrecon

ℒpred

ℰ𝒙
𝒙R(𝑡𝑖+1)

Figure 2: Autoencoding architecture for model order reduction. The state encoder Ex and control encoder
Eu reduce the dimension of the state and actuation, respectively. The ROM F takes the current reduced
state and actuation to predict the next reduced state, which is then uplifted to the full state by the state
decoder Dx. All modules are trained together using a combined loss involving Lpred and Lrecon. The dashed
arrow indicates that the Eu is used only when du >> 1; otherwise, the actuation is used as a direct input to
ROM.

All the aforementioned results are derived for a fixed Ex and the relation to the DMDc is specific to the
case Ex = Û⊤

Y . To encourage such a choice of Ex, we include the standard autoencoder reconstruction loss,
given by

Lrecon(Ex, Dx) = 1
n

n∑
i=1

∥∥x(ti) − DxExx(ti)
∥∥2

, (18)

to the optimization objective.

Baldi & Hornik (1989) showed that all the critical points of Lrecon correspond to projections onto subspaces
associated with subsets of eigenvectors of the covariance matrix Y Y ⊤. Moreover, Lrecon has a unique
global minimum corresponding to the first rx (i.e., the desired dimension of the reduced state) number
of eigenvectors of Y Y ⊤, associated with the leading rx eigenvalues. In other words, for any invertible
matrix C ∈ Rrx×rx , Dx = UrxC and Ex = C−1U⊤

rx
globally minimizes Lrecon, where Urx denotes the

matrix containing leading rx eigenvectors of Y Y ⊤. Since the left singular vectors of Y are the eigenvectors
of Y Y ⊤, we have Urx = ÛY . Accordingly, we propose to minimize the following objective function to
encourage a DMDc-like solution for LAROM:

L(Ex, Dx, G) = Lpred(Ex, G) + β1Lrecon(Ex, Dx), (19)

where β1 > 0 is a tunable hyperparameter.

Now, we can replace all the trainable components, i.e., Ex, Dx, and G, with DNNs to establish a nonlinear
model order reduction framework utilizing gradient descent. Specifically, we use an encoding function or
encoder Ex : X → Rrx and a decoding function or decoder Dx : Rrx → X to transform the high-dimensional
system state to low-dimensional features and reconstruct it back, respectively, i.e.,

xR = Ex(x), x̂ = Dx(xR), (20)

where xR ∈ Rrx denotes the reduced state, and x̂ is the reconstruction of x. Unlike the linear case, we
use an encoder Eu : U → Rru , ru << du for the actuation as well, in cases where the control space is also

7

Under review as submission to TMLR

high-dimensional (for example, distributed control of spatiotemporal PDEs). The control encoder Eu maps
the high-dimensional actuation to a low-dimensional representation: uR = Eu(u), where uR ∈ Rru denotes
the encoded actuation. The encoded state and control are then fed to another DNN that represents the
reduced order dynamics

dxR

dt
= F(xR, uR), (21)

where F : Rrx × Rru → Rrx . Note, here the ROM is represented as a continuous-time dynamics, unlike the
linear case where we used a discrete-time model. The reason behind this choice will become apparent in the
following subsection.

Given the current reduced state xR(ti) and control input uR(ti), the next reduced state xR(ti+1) can be
computed by integrating F using standard numerical integrator or neural ODE (Chen et al. (2018)):

xR(ti+1) = xR(ti) +
∫ ti+1

ti

F
(
xR(ti), uR(ti)

)
dt

∆= G
(
xR(ti), uR(ti)

)
. (22)

We can say that G is the nonlinear counterpart of G. Figure 2 shows the overall framework for training
DeepROM.

We train Ex, Eu, Dx, and F by minimizing the following loss function, analogous to (19),

L(Ex, Eu, Dx, F) = Lpred(Ex, Eu, F) + β2Lrecon(Ex, Dx), (23)

where β2 > 0 is a tunable hyperparameter and Lpred, Lrecon are defined as follows,

Lpred(Ex, Eu, F) = 1
n

n−1∑
i=0

∥∥∥Ex

(
x(ti+1)

)
− G

(
Ex

(
x(ti)

)
, Eu

(
u(ti)

))∥∥∥2
,

Lrecon(Ex, Dx) = 1
n

n∑
i=1

∥∥x(ti) − Dx ◦ Ex

(
x(ti)

)∥∥2
. (24)

Here, the operator ◦ denotes the composition of two functions. In experiments, Lrecon also includes the
reconstruction loss of the desired state where we want to stabilize the system.

4.2 Learning control

Once we get a trained ROM of the form (21) using the method proposed in section 4.1, the next goal is
to design a controller for the system utilizing that ROM. Since our ROM is represented by DNNs, we need
a data-driven method to develop the controller. We adopt the approach presented by Saha et al. (2021)
for learning control law for nonlinear systems, represented by DNNs. The core idea of the method is to
hypothesize a target dynamics that is exponentially stable at the desired state and simultaneously learn a
control policy to realize that target dynamics in closed loop. A DNN is used to represent the vector field
Fs : Rrx → Rrx of the target dynamics dxR

dt = Fs(xR). We use another DNN to represent a controller
Π : Rrx → Rdu that provides the necessary actuation for a given reduced state xR:

u = Π(xR). (25)

This control u is then encoded by (trained) Eu to its low-dimensional representation uR. Finally, the reduced
state xR and actuation uR are fed to the (trained) ROM of (21) to get F(xR, uR). The overall framework
for learning control is shown in Figure 3.

Our training objective is to minimize the difference between F(xR, uR) and Fs(xR), i.e.,

Lctrl(Fs, Π) = 1
n

n∑
i=1

∥∥F
(
Ex(x(ti)), Eu ◦ Π ◦ Ex(x(ti))

)
− Fs ◦ Ex

(
x(ti)

)∥∥2
. (26)

8

Under review as submission to TMLR

ℰ𝒙

ℰ𝒖

ℱ

State
Encoder

Control
Encoder

ROM

Π

ℱ𝑠

𝒱R 𝒙R

ℱ(𝒙R, 𝒖R)

Controller

Target
Dynamics

𝒙 𝒙R

𝒖

𝒖R

ℱ𝑠(𝒙R)

Lyapunov Function

ℒctrl

Figure 3: The control learning process. Given a reduced state, Fs predicts a target dynamics for the closed-
loop system, and the controller Π predicts an actuation to achieve that target. Both the modules are trained
jointly using the loss function Lctrl. Parameters of the dark-shaded modules are kept fixed during this
process.

To minimize the control effort, we add a regularization loss with (26), and the overall training objective for
learning control is given by

Lctrl,reg(Fs, Π) = Lctrl(Fs, Π) + β3
1
n

n∑
i=1

∥∥Π(xR(ti))
∥∥2

, (27)

where β3 > 0 is a tunable hyperparameter. Here we jointly train the DNNs representing Π and Fs only,
whereas the previously-trained DNNs for Ex, Eu, and F are kept frozen. Once all the DNNs are trained,
we only need Ex and Π during evaluation to generate actuation for the actual system, given a full-state
observation:

u = Π ◦ Ex(x) = π(x). (28)

As we mentioned earlier, we require the target dynamics, hypothesized by a DNN, to be exponentially stable
at the desired state. Without loss of generality, we consider stability at xR = 0. As we mentioned earlier, the
system can be stabilized at any desired state by adding a feedforward component to the control. Dynamics
represented by a standard neural network is not stable at any equilibrium point, in general. Kolter & Manek
(2019) showed that it is possible to design a DNN, by means of Lyapunov functions, to represent a dynamics
that is exponentially stable at an equilibrium point. Accordingly, we represent our target dynamics as follows:

dxR

dt
= Fs(xR) = P(xR) −

ReLU
(
∇VR(xR)⊤P(xR) + αVR(xR)

)
∥∇VR(xR)∥2 ∇VR(xR), (29)

where α is a positive constant, ReLU(z) = max(0, z), z ∈ R, and VR : Rrx → R is a candidate Lyapunov
function, i.e., satisfies the criteria similar to (3) and (5). We use

VR(xR) = x⊤
RKxR, (30)

where K ∈ Rrx×rx is a positive definite matrix.

Though the efficacy of learning control by minimizing the difference with respect to a target dynamics is
experimentally demonstrated by Saha et al. (2021), the stability of the closed-loop system subjected to

9

Under review as submission to TMLR

the learned control law has not been studied analytically. Here, we present a result that shows that if we
can minimize Lctrl such that the difference between the target dynamics and the closed-loop dynamics is
sufficiently small for all xR ∈ XR ⊂ Rrx , then the trajectories of the closed-loop ROM starting sufficiently
close to the origin remains close to the origin, i.e., ultimately bounded (Khalil (2002)).
Theorem 4.2.1. Consider the target dynamics defined by (29)and the candidate Lyapunov function defined
by (30). Suppose the difference between the target dynamics and the closed-loop dynamics satisfies

∥F(xR, Eu ◦ Π(xR)) − Fs(xR)∥ ≤ δ <
αθλmin(K)
2λmax(K)

√
λmin(K)
λmax(K)η, (31)

for all xR ∈ XR = {xR ∈ Rrx | ∥xR∥ < η} and 0 < θ < 1. Then, for all initial points satisfying
∥xR(t0)∥ <

√
λmin(K)
λmax(K) η, the solution of the closed-loop ROM dxR

dt = F(xR, Eu ◦ Π(xR)) satisfies

∥xR(t)∥ ≤ λe−γ(t−t0)∥xR(t0)∥, ∀ t0 ≤ t < tc + t0 (32)

and
∥xR(t)∥ ≤ 2δ

αθ
λ3, ∀ t ≥ tc + t0 (33)

for some finite tc > 0, where

γ = α(1 − θ)λmin(K)
2λmax(K) and λ =

√
λmax(K)
λmin(K) (34)

Proof Sketch. This can be proved by first deriving the Lyapunov conditions for the target dynamics (29)
(Theorem 1, Kolter & Manek (2019)) and then applying the stability analysis of perturbed systems (Lemma
9.2, Khalil (2002)) and ultimate boundedness (Theorem 4.18, Khalil (2002)) on the closed-loop ROM. A
unified proof is provided in appendix A.6.

5 Empirical Results

For empirical analysis, we consider modeling and controlling spatiotemporal PDE-driven systems with high-
dimensional measurements over discretized space. The first example investigates a single variable actuation,
whereas distributed actuation is considered for the second example. The similarity between DMDc and
LAROM is demonstrated using the dynamic modes estimated in respective methods. The prediction per-
formance of DeepROM is compared against the baseline DMDc. We compare the control performance of
DeepROC with a baseline reduced order controller obtained by applying linear quadratic regulator (LQR)
on the ROM derived from DMDc.

5.1 Reaction–diffusion system stabilization

For the first experiment, we consider the Newell–Whitehead–Segel reaction-diffusion equation with the Neu-
mann boundary condition

∂q

∂t
= σ∇2q + q(1 − q2) + 1Ww in I × R+,

∇q(ζl, t) = ∇q(ζr, t) = 0, t ∈ R+, (35)

which is used to describe various nonlinear physical systems including Rayleigh–Bénard convection. Here,
q(ζ, t) ∈ R denotes the measurement variable such as concentration or temperature at location ζ ∈ I ⊂ R
and time t; σ denotes the diffusion coefficient; w(t) ∈ R is the actuation at time t and 1W(ζ) is the indicator
function with W ⊂ I; ζl and ζr denote the boundary points of I. (35) is a bistable system with ±1 as stable
and 0 as unstable equilibria. For the control task, we consider feedback stabilization of (35) at the unstable
equilibrium 0, as studied by Kalise & Kunisch (2018). We use I = (−1, 1),W = (−0.2, 0.2), and σ = 0.2.
Details on dataset generation, neural network architectures, and training settings are given in appendix B.

10

Under review as submission to TMLR

5.1.1 Similarity with DMDc

To investigate the similarity DMDc, we first train the LAROM to minimize the objective (19) using gradient
descent. As mentioned earlier, Lrecon, defined by (18), is minimized for any invertible matrix C, Dx = UrxC,
and Ex = C−1U⊤

rx
. When optimized using gradient descent, it is highly unlikely to get C as the identity

matrix like DMDc. Rather, we expect a random C. We need additional constraints to encourage similarity
to DMDc. For this, we tie the matrices Ex and Dx to be the transpose of each other and add a semi-
orthogonality constraint β4∥ExE⊤

x − Irx∥, β4 > 0 to the optimization objective (19).

The dynamic modes for LAROM are computed as φi = Dxzi, where zi is the ith eigenvector of AR.
Similarly, the dynamic modes for DMDc are computed as φi,DMDc = DDMDczi,DMDc, where zi,DMDc is
the ith eigenvector of AR,DMDc. Note, these dynamic modes are similar to the ones used in the original
DMD algorithm Schmid (2010), not the exact modes obtained in Proctor et al. (2016). Exact modes cannot
be computed for LAROM since it does not involve SVD. Modes defined by φi,DMDc = DDMDczi,DMDc =
ÛY zi,DMDc are the orthogonal projection of the exact modes onto the range of Y (Theorem 3, Tu et al.
(2014)). Figure 4 compares the dynamic modes obtained using DMDc and LAROM for the case when the
dimension of the ROMs is 3. Dynamic modes of both methods are similar except for the different signs of
the first two modes.

DMDc dynamic modes LAROM dynamic modes

Figure 4: The first three dynamic modes of the reaction–diffusion system, obtained using DMDc and
LAROM.

5.1.2 Prediction performance of DeepROM

We now compare the performance of DeepROM, trained with the objective (23), and DMDc in the prediction
task. Note, this example uses low-dimensional actuation (just a single variable). Accordingly, the control
encoder Eu is not used here. Figure 5 shows the quantitative and qualitative comparison of the recursive
multi-step predictions obtained using DMDc and DeepROM. The prediction error is computed as normalized
mean squared error (NMSE) with respect to the solution obtained using the PDE solver. For DeepROM,
the prediction error plot shows the mean error and 95% confidence interval from 100 test sequences and 3
training instances, whereas the color maps are shown for one example sequence with one training instance.
Prediction error increases more quickly for DMDc than DeepROM as DMDc cannot capture the nonlinearity
present in the system.

5.1.3 Control performance of DeepROC

Figure 6 shows the control performance of DeepROC and the baseline DMDc+LQR in the task of stabilizing
the system at the unstable equilibrium 0 from an initial state 2 + cos(2πζ) cos(πζ). We use the following
metrics for comparison:

(i) mean squared error over time between the controlled solutions and the desired profile
(ii) differential magnitude that measures the differential changes between the profiles at consecutive time

steps. In the steady state, the differential magnitude should be close to zero.
(iii) the amount of actuation applied

11

Under review as submission to TMLR

Prediction error

DMDc prediction

DeepROM prediction

PDE solution

Figure 5: Prediction performance of DMDc and DeepROM in the reaction–diffusion example. For DeepROM,
the prediction error plot shows the mean error and 95% confidence interval from 100 test sequences and 3
training instances. One example sequence is used to visually compare the predictions with the solution from
a PDE solver.

Error with respect to desired profile Differential magnitude Actuation

Figure 6: Control performance of DMDc+LQR and DeepROC in the reaction–diffusion example. For Deep-
ROC, the plots show the mean values with 1-standard deviation interval from 3 training instances.

For DeepROC, the plots show the mean values with 1-standard deviation interval from 3 training instances.
Both methods show similar closed-loop error profiles. However, DeepROC requires significantly less amount
of actuation compared with DMDc+LQR to reach a similar steady-state error. DeepROC can account for the
decaying nonlinear term −q3 present in the system (35) and therefore learns to apply less actuation. Figure
7 visually compares the uncontrolled solution and the controlled solutions obtained using both methods.
When uncontrolled, the system reaches the stable equilibrium at 1, whereas the feedback-controlled system
is stabilized at the desired state 0 in both cases.

5.2 Vortex shedding suppression in fluid

In this experiment, we consider modeling and suppressing vortex shedding in two-dimensional incompressible
flow past a circular cylinder. This is a well-known problem (Schäfer et al. (1996)) and is of great importance

12

Under review as submission to TMLR

Uncontrolled solution Controlled solution (DeepROC) Controlled solution (DMDc+LQR)

Figure 7: Visual comparison of the uncontrolled solution and the controlled solutions using DeepROC and
DMDc+LQR.

for many engineering applications (Williamson (1996)). The dynamics is governed by the incompressible
Navier-Stokes equations given by

∂v

∂t
− ν∇2v + (v · ∇)v = −1

ρ
∇p + 1Ww, ∇ · v = 0 in I × R+, (36)

where v(ζ, t) ∈ R2 denotes the flow velocity at location ζ ∈ I ⊂ R2 and time t, p(ζ, t) ∈ R denotes the pres-
sure, ν denotes the kinematic viscosity and ρ denotes the density of the fluid. w(ζ, t) is the actuation/force
applied to the system and 1W(ζ) is the indicator function with W ⊂ I. We use I = (0, 2.2) × (0, 0.41) and
W = (0.11, 0.77) × (0, 0.41). Density and kinematic viscosity are chosen such that the Reynolds number is
Re = 50, which is just above the cutoff for the onset of the vortex shedding (Williamson (1996)). In this
case, vortices are created at the back of the cylinder and are shed periodically from the upper and lower
surfaces of the cylinder forming a von Kármán vortex street (Morton et al. (2018)). We use the domain W
for observation and distributed actuation. The Stokes flow is used as the desired state for the control task.
More details on the problem setup, dataset generation, neural network architectures, and training settings
are given in appendix C.

5.2.1 Similarity with DMDc

To analyze the dynamic modes, we train the LAROM by enforcing Dx = E⊤
x and adding the semi-

orthogonality constraint to the learning objective, as mentioned in subsection 5.1.1. Figure 8 compares
the first two dynamic modes obtained using DMDc and LAROM. Only the streamwise components are
shown for brevity. Also, complex modes occur in conjugate pairs and only one from each pair is shown.
Dynamic modes identified by LAROM are similar to the ones obtained from DMDc, except the real and
imaginary components of the first mode are swapped.

5.2.2 Prediction performance of DeepROM

Figure 9 shows the quantitative and qualitative comparison of the recursive multi-step predictions, starting
from t = 0.1, obtained using DMDc and DeepROM. The initial state is chosen at t = 0.1 because the
fluid does not reach the observation region W before that time. The prediction error is computed as the
mean squared error (MSE) with respect to the solution obtained using a PDE solver. For DeepROM, the
prediction error plot shows the mean error and 1-standard deviation interval from 3 training instances.
DeepROM shows lower prediction error in comparison with DMDc. Moreover, unlike DeepROM, DMDc is
unable to capture the shedding pattern in multi-step prediction as shown in the contour plots of the velocity
magnitude.

5.2.3 Control performance of DeepROC

Figure 10 shows the control performance of DeepROC and the baseline DMDc+LQR in the task of suppress-
ing vortex shedding. We use the same metrics as the previous example for comparison except for actuation.

13

Under review as submission to TMLR

DMDc mode 1 LAROM mode 1 DMDc mode 2 LAROM mode 2

R
e
a
l

Im
a
g
in

a
ry

Figure 8: The first two dynamic modes obtained using DMDc and LAROM for the flow past a cylinder
system.

Prediction error

PDE solution at step 2500DMDc prediction at step 2500

DeepROM prediction at step 2500

Figure 9: Prediction performance of DMDc and DeepROM in the fluid flow example. For DeepROM, the
prediction error plot shows the mean error and 1-standard deviation interval from 3 training instances.
Predictions at time step 2500 for the test sequence are visually compared with the solution from a PDE
solver. vm denotes the velocity magnitude.

Since distributed control is applied in this case, we use the magnitude of the actuation here. For DeepROC,
the plots show the mean values with 1-standard deviation interval from 3 training instances. To reach a
similar steady-state error, DeepROC takes a longer time but uses less amount of actuation. Figure 11 shows
the velocity magnitude of the controlled flow for DeepROC and DMDc+LQR at different times, starting
from a von Kármán vortex street pattern. Both methods accomplish a similar steady-state flow pattern
where vortex shedding has been suppressed.

6 Conclusion

We presented a framework for autoencoder-based modeling and control learning for high-dimensional dy-
namical systems. We showed that autoencoding ROMs are capable of capturing the dominant modes that
are essential in analyzing and designing control for the underlying systems. With gradient descent-based

14

Under review as submission to TMLR

Error with respect to desired profile Differential magnitude Actuation magnitude

Figure 10: Control performance of DMDc+LQR and DeepROC in the vortex shedding suppression task.
For DeepROC, the plots show the mean values with 1-standard deviation interval from 3 training instances.

𝑡
=
0
.5

𝑡
=
1
.0

𝑡
=
6
.0

𝑡
=
0
.0

DeepROC DMDc + LQR

Figure 11: Visual comparison of the velocity magnitude of the flow over time subjected to the controllers
obtained using DeepROC and DMDc+LQR.

optimization, LAROM can be used to approximate modal decomposition for high-dimensional systems where
computing SVD is expensive. As we showed in experiments, DeepROM offers better prediction accuracy
than a linear ROM over a relatively longer prediction horizon when applied to nonlinear systems. However,
this advantage does not always translate to significant improvement in control performance. Though the
used control learning method theoretically ensures ultimate boundedness for the closed-loop ROM solution,
data-driven optimization of the learning objective often makes the models susceptible to distribution shift
which can impact the control performance. The control learning process in the DeepROC framework can
easily be replaced with other methods like model-based RL or MPC. It would be interesting for future work
to investigate whether updating both the reduced model and the controller in the MPC framework ensures
robustness under distribution shift and offers better control performance. Designing controllers for DNN-
based models is a challenging task due to the standard difficulties associated with non-convex optimization.
Nevertheless, we envision great prospects in solving many problems of control design for high-dimensional
systems utilizing autoencoder-based models as they continue to demonstrate their effectiveness in the analysis
and prediction of such systems.

15

Under review as submission to TMLR

References
Arthur Albert. Regression and the Moore-Penrose Pseudoinverse. Academic Press, 1972.

Jeanne A Atwell, Jeffrey T Borggaard, and Belinda B King. Reduced order controllers for burgers’ equation
with a nonlinear observer. International Journal of Applied Mathematics and Computer Science, 11(6):
1311–1330, 2001.

Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and Patrick Gallinari. Learning dy-
namical systems from partial observations. arXiv preprint arXiv:1902.11136, 2019.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from examples
without local minima. Neural networks, 2(1):53–58, 1989.

Gerben Beintema, Alessandro Corbetta, Luca Biferale, and Federico Toschi. Controlling rayleigh–bénard
convection via reinforcement learning. Journal of Turbulence, 21(9-10):585–605, 2020.

Katharina Bieker, Sebastian Peitz, Steven L Brunton, J Nathan Kutz, and Michael Dellnitz. Deep model
predictive flow control with limited sensor data and online learning. Theoretical and computational fluid
dynamics, 34:577–591, 2020.

Oumayma Bounou, Jean Ponce, and Justin Carpentier. Online learning and control of dynamical systems
from sensory input. In NeurIPS 2021-Thirty-fifth Conference on Neural Information Processing Systems
Year, 2021.

Kaixuan Chen, Jin Lin, Yiwei Qiu, Feng Liu, and Yonghua Song. Deep learning-aided model predictive
control of wind farms for agc considering the dynamic wake effect. Control Engineering Practice, 116:
104925, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

Emmanuel De Bézenac, Arthur Pajot, and Patrick Gallinari. Deep learning for physical processes: Incor-
porating prior scientific knowledge. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):
124009, 2019.

Jérémie Donà, Jean-Yves Franceschi, Sylvain Lamprier, and Patrick Gallinari. Pde-driven spatiotemporal
disentanglement. arXiv preprint arXiv:2008.01352, 2020.

Hamidreza Eivazi, Hadi Veisi, Mohammad Hossein Naderi, and Vahid Esfahanian. Deep neural networks for
nonlinear model order reduction of unsteady flows. Physics of Fluids, 32(10):105104, 2020.

N Benjamin Erichson, Michael Muehlebach, and Michael W Mahoney. Physics-informed autoencoders for
lyapunov-stable fluid flow prediction. arXiv preprint arXiv:1905.10866, 2019.

Paul Garnier, Jonathan Viquerat, Jean Rabault, Aurélien Larcher, Alexander Kuhnle, and Elie Hachem. A
review on deep reinforcement learning for fluid mechanics. Computers & Fluids, 225:104973, 2021.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. Learning to control pdes with differentiable physics. In
International Conference on Learning Representations, 2020.

Jer-Nan Juang and Richard S Pappa. An eigensystem realization algorithm for modal parameter identifica-
tion and model reduction. Journal of guidance, control, and dynamics, 8(5):620–627, 1985.

Jer-Nan Juang, Minh Phan, Lucas G Horta, and Richard W Longman. Identification of observer/kalman
filter markov parameters-theory and experiments. Journal of Guidance, Control, and Dynamics, 16(2):
320–329, 1993.

Dante Kalise and Karl Kunisch. Polynomial approximation of high-dimensional hamilton–jacobi–bellman
equations and applications to feedback control of semilinear parabolic pdes. SIAM Journal on Scientific
Computing, 40(2):A629–A652, 2018.

16

Under review as submission to TMLR

Hassan K. Khalil. Nonlinear systems. Prentice Hall, third edition, 2002.

Mohammad Amin Khodkar, Pedram Hassanzadeh, and Athanasios Antoulas. A koopman-based framework
for forecasting the spatiotemporal evolution of chaotic dynamics with nonlinearities modeled as exogenous
forcings. arXiv preprint arXiv:1909.00076, 2019.

J Zico Kolter and Gaurav Manek. Learning stable deep dynamics models. Advances in neural information
processing systems, 32, 2019.

Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for model
predictive control. In Robotics: Science and Systems, volume 10. Rome, Italy, 2015.

Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations by the
finite element method: The FEniCS book, volume 84. Springer Science & Business Media, 2012.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In International
Conference on Machine Learning, pp. 3208–3216. PMLR, 2018.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings of
nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Pingchuan Ma, Yunsheng Tian, Zherong Pan, Bo Ren, and Dinesh Manocha. Fluid directed rigid body
control using deep reinforcement learning. ACM Transactions on Graphics (TOG), 37(4):1–11, 2018.

Jan R Magnus and Heinz Neudecker. Symmetry, 0-1 matrices and jacobians: A review. Econometric Theory,
2(2):157–190, 1986.

George Matsaglia and George PH Styan. Equalities and inequalities for ranks of matrices. Linear and
multilinear Algebra, 2(3):269–292, 1974.

Jeremy Morton, Antony Jameson, Mykel J Kochenderfer, and Freddie Witherden. Deep dynamical modeling
and control of unsteady fluid flows. Advances in Neural Information Processing Systems, 31, 2018.

Zuowei Ping, Zhun Yin, Xiuting Li, Yefeng Liu, and Tao Yang. Deep koopman model predictive control for
enhancing transient stability in power grids. International Journal of Robust and Nonlinear Control, 31
(6):1964–1978, 2021.

Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decomposition with control. SIAM
Journal on Applied Dynamical Systems, 15(1):142–161, 2016.

Jean Rabault, Miroslav Kuchta, Atle Jensen, Ulysse Réglade, and Nicolas Cerardi. Artificial neural networks
trained through deep reinforcement learning discover control strategies for active flow control. Journal of
fluid mechanics, 865:281–302, 2019.

Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations. The
Journal of Machine Learning Research, 19(1):932–955, 2018.

Xiaoli Ren, Xiaoyong Li, Kaijun Ren, Junqiang Song, Zichen Xu, Kefeng Deng, and Xiang Wang. Deep
learning-based weather prediction: a survey. Big Data Research, 23:100178, 2021.

Clarence W Rowley, Igor Mezić, Shervin Bagheri, Philipp Schlatter, and Dan S Henningson. Spectral analysis
of nonlinear flows. Journal of fluid mechanics, 641:115–127, 2009.

Priyabrata Saha, Magnus Egerstedt, and Saibal Mukhopadhyay. Neural identification for control. IEEE
Robotics and Automation Letters, 6(3):4648–4655, 2021.

Michael Schäfer, Stefan Turek, Franz Durst, Egon Krause, and Rolf Rannacher. Benchmark computations
of laminar flow around a cylinder. Springer, 1996.

Sebastian Scher. Toward data-driven weather and climate forecasting: Approximating a simple general
circulation model with deep learning. Geophysical Research Letters, 45(22):12–616, 2018.

17

Under review as submission to TMLR

Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of fluid me-
chanics, 656:5–28, 2010.

Sungyong Seo, Chuizheng Meng, and Yan Liu. Physics-aware difference graph networks for sparsely-observed
dynamics. In International Conference on Learning Representations, 2019.

Eduardo D Sontag. Mathematical control theory: deterministic finite dimensional systems, volume 6. Springer
Science & Business Media, 2013.

Prem A Srinivasan, L Guastoni, Hossein Azizpour, PHILIPP Schlatter, and Ricardo Vinuesa. Predictions
of turbulent shear flows using deep neural networks. Physical Review Fluids, 4(5):054603, 2019.

Tetsuya Takahashi, Junbang Liang, Yi-Ling Qiao, and Ming C Lin. Differentiable fluids with solid coupling
for learning and control. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35(7),
pp. 6138–6146, 2021.

Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invariant subspaces for dy-
namic mode decomposition. Advances in neural information processing systems, 30, 2017.

Hongwei Tang, Jean Rabault, Alexander Kuhnle, Yan Wang, and Tongguang Wang. Robust active flow con-
trol over a range of reynolds numbers using an artificial neural network trained through deep reinforcement
learning. Physics of Fluids, 32(5):053605, 2020.

Jonathan H. Tu, , Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and J. Nathan Kutz and.
On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):
391–421, 2014. doi: 10.3934/jcd.2014.1.391.

Karen Willcox and Jaime Peraire. Balanced model reduction via the proper orthogonal decomposition. AIAA
journal, 40(11):2323–2330, 2002.

Charles HK Williamson. Vortex dynamics in the cylinder wake. Annual review of fluid mechanics, 28(1):
477–539, 1996.

SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convo-
lutional lstm network: A machine learning approach for precipitation nowcasting. In Advances in neural
information processing systems, pp. 802–810, 2015.

Yuting Yang, Junyu Dong, Xin Sun, Estanislau Lima, Quanquan Mu, and Xinhua Wang. A cfcc-lstm model
for sea surface temperature prediction. IEEE Geoscience and Remote Sensing Letters, 15(2):207–211,
2017.

Enoch Yeung, Soumya Kundu, and Nathan Hodas. Learning deep neural network representations for koop-
man operators of nonlinear dynamical systems. In 2019 American Control Conference (ACC), pp. 4832–
4839. IEEE, 2019.

Ruiyang Zhang, Yang Liu, and Hao Sun. Physics-informed multi-lstm networks for metamodeling of nonlinear
structures. Computer Methods in Applied Mechanics and Engineering, 369:113226, 2020.

18

Under review as submission to TMLR

Appendices

A Proofs

This section details the proofs for the results presented in section 4. The proof of theorem 4.1.1 uses the
following properties of the rank (denoted by rank(·)), the Kronecker product (denoted by ⊗) and vectorization
of matrices (denoted by vec(·)). All the definitions and properties are presented in the context of matrices
over real numbers.

For any conformable matrices D and E such that E has full row-rank,

rank(DE) = rank(D). (37a)

For any real matrix D,

rank(D⊤D) = rank(DD⊤) = rank(D⊤) = rank(D). (37b)

For any matrices (of compatible dimensions) D, E, F , and H,

vec(DEF ⊤) = (F ⊗ D)vec(E), (38a)
(D ⊗ E)⊤ = D⊤ ⊗ E⊤, (38b)

(D ⊗ E)(F ⊗ H) = (DF ⊗ EH), (38c)

whenever these quantities are defined. Furthermore, if D and E are symmetric and positive semidefinite
(resp. positive definite), then D ⊗ E is symmetric and positive semidefinite (resp. positive definite), i.e.,

D ⪰ 0, E ⪰ 0 =⇒ (D ⊗ E) ⪰ 0; D ≻ 0, E ≻ 0 =⇒ (D ⊗ E) ≻ 0. (38d)

Proofs of (37) and (38) can be found in (Matsaglia & PH Styan (1974)) and (Magnus & Neudecker (1986)),
respectively.

To derive the results presented in corollary (4.1.1.1), we use the following definitions of the Moore-Penrose
inverse of a matrix (denoted by (·)+). For any matrix D and its (full) SVD, i.e., D = UDΣDV ⊤

D ,

D+ = (D⊤D)−1D⊤, when (D⊤D)−1 exists, (39a)
D+ = D⊤(DD⊤)−1, when (DD⊤)−1 exists, (39b)
D+ = VDΣ+

DU⊤
D, (39c)

D+ = lim
ε→0

(D⊤D + ε2I)−1D⊤ = lim
ε→0

D⊤(DD⊤ + ε2I)−1, (39d)

where I is the identity matrix of compatible dimension. The proof of (39d) can be found in (Albert (1972)).

To prove Theorem 4.1.1, we use some well-known results, summarized as the following lemma in (Baldi &
Hornik (1989)), for linear least-squares optimization.
Lemma A.0.1. The quadratic function L(z) = ∥y − Mz∥2 = y⊤y − 2y⊤Mz + z⊤M⊤Mz is convex, and
a point z globally minimizes L if and only if ∇L(z) = 0, or equivalently, M⊤Mz = M⊤y. Furthermore,
if M⊤M ≻ 0, i.e., positive definite, then L is strictly convex and reaches its unique minimum for z =
(M⊤M)−1M⊤y.

A.1 Proof of theorem 4.1.1

Theorem 4.1.1. Consider the following objective function

Lpred(Ex, G) = 1
n

n−1∑
i=0

∥∥Exx(ti+1) − GExuω(ti)
∥∥2

, (13)

19

Under review as submission to TMLR

where G = [AR BR] ∈ Rrx×(rx+du), Exu =
[
Ex 0
0 Idu

]
∈ R(rx+du)×(dx+du), Idu being the identity matrix

of order du. For any fixed matrix Ex, the objective function Lpred is convex in the coefficients of G and
attains its minimum for any G satisfying

GExuΩΩ⊤E⊤
xu = ExY Ω⊤E⊤

xu, (14)

where Y and Ω are the data matrices as defined in section (3.3). If Ex has full rank rx, and ΩΩ⊤ is
non-singular, then Lpred is strictly convex and has a unique minimum for

G = [AR BR] = ExY Ω⊤E⊤
xu(ExuΩΩ⊤E⊤

xu)−1. (15)

Proof. We can write Lpred(Ex, G) as follows,

Lpred(Ex, G) = 1
n

n−1∑
i=0

∥∥Exx(ti+1) − GExuω(ti)
∥∥2

=
∥∥vec(ExY) − vec(GExuΩ)

∥∥2

=
∥∥vec(ExY) − (Ω⊤E⊤

xu ⊗ Irx)vec(G)
∥∥2

. (40)

The third equality is obtained using (38a). For fixed Ex, we can apply Lemma A.0.1 to (40): (40) is convex
in coefficient of G, and G corresponds to a global minimum of Lpred if and only if

(Ω⊤E⊤
xu ⊗ Irx)⊤(Ω⊤E⊤

xu ⊗ Irx)vec(G) = (Ω⊤E⊤
xu ⊗ Irx)⊤vec(ExY). (41)

Using (38b) and (38c), we can write (41) as

(ExuΩΩ⊤E⊤
xu ⊗ Irx)vec(G) = (ExuΩ ⊗ Irx)vec(ExY). (42)

Applying (38a) on (42), we get GExuΩΩ⊤E⊤
xu = ExY Ω⊤E⊤

xu, i.e., (14).

If Ex has full rank rx, then Exu =
[
Ex 0
0 Idu

]
∈ R(rx+du)×(dx+du) has full rank (rx + du). If ΩΩ⊤ ∈

R(dx+du)×(dx+du) is non-singular, then Ω has full row-rank (dx + du). Consequently, using (37a) and (37b),
we have

rank(ExuΩΩ⊤E⊤
xu) = rank(ExuΩ) = rank(Exu) = rx + du. (43)

Hence the symmetric positive semidefinite matrix ExuΩΩ⊤E⊤
xu has full rank and therefore positive definite.

Using (38b), (38c), and (38d), we can see that (Ω⊤E⊤
xu ⊗ Irx)⊤(Ω⊤E⊤

xu ⊗ Irx) = (ExuΩΩ⊤E⊤
xu ⊗ Irx) is

positive definite as well. Therefore, by Lemma A.0.1, (40) is strictly convex in the coefficients of G and has
a unique minimum. Since ExuΩΩ⊤E⊤

xu ≻ 0, it is invertible. Hence, from (14), we can say that the unique
minimum of (40) is reached at G = ExY Ω⊤E⊤

xu(ExuΩΩ⊤E⊤
xu)−1, i.e., (15). ■

A.2 An alternative representation of (15)

Here we provide a possible alternative representation of (15) required to prove corollary 4.1.1.1.
Lemma A.2.1. Consider the (full) SVD of the data matrix Ω given by Ω = UΩΣΩV ⊤

Ω , where UΩ ∈
R(dx+du)×(dx+du), ΣΩ ∈ R(dx+du)×n, and VΩ ∈ Rn×n. (15) can be expressed as

G = lim
ε→0

ExY VΩ(Σ⊤
ΩU⊤

Ω E⊤
xuExuUΩΣΩ + ε2In)−1Σ⊤

ΩU⊤
Ω E⊤

xu. (44)

Proof. Replacing Ω with its SVD in (15) we get,

G = ExY VΩΣ⊤
ΩU⊤

Ω E⊤
xu(ExuUΩΣΩV ⊤

Ω VΩΣ⊤
ΩU⊤

Ω E⊤
xu)−1

= ExY VΩΣ⊤
ΩU⊤

Ω E⊤
xu(ExuUΩΣΩΣ⊤

ΩU⊤
Ω E⊤

xu)−1

= ExY VΩ(ExuUΩΣΩ)+ (45)

20

Under review as submission to TMLR

The second equality is due to the orthogonality of VΩ . The third equality is obtained using (39b). Substi-
tuting (ExuUΩΣΩ)+ with the limit definition (39d) of the Moore-Penrose inverse, we get

G = lim
ε→0

ExY VΩ(Σ⊤
ΩU⊤

Ω E⊤
xuExuUΩΣΩ + ε2In)−1Σ⊤

ΩU⊤
Ω E⊤

xu. (46)

■

A.3 Proof of Corollary 4.1.1.1

Corollary 4.1.1.1. Consider the (full) SVD of the data matrix Ω given by Ω = UΩΣΩV ⊤
Ω , where UΩ ∈

R(dx+du)×(dx+du), ΣΩ ∈ R(dx+du)×n, and VΩ ∈ Rn×n. If Ex = Û⊤
Y and ΩΩ⊤ is non-singular, then the

solution for G = [AR BR] corresponding to the unique minimum of Lpred can be expressed as

AR = Û⊤
Y Y VΩΣ∗U⊤

Ω,1ÛY , and BR = Û⊤
Y Y VΩΣ∗U⊤

Ω,2, (16)

where [U⊤
Ω,1 U⊤

Ω,2] = U⊤
Ω with UΩ,1 ∈ Rdx×(dx+du), UΩ,2 ∈ Rdu×(dx+du), and

Σ∗ = limε→0(Σ⊤
ΩU⊤

Ω,1ÛY Û⊤
Y UΩ,1ΣΩ + Σ⊤

ΩU⊤
Ω,2UΩ,2ΣΩ + ε2In)−1Σ⊤

Ω .

Proof. By the definition of truncated SVD, the columns of ÛY are orthonormal. Therefore, Û⊤
Y has full

row-rank rx. Hence, by theorem 4.1.1 and lemma A.2.1, if Ex = Û⊤
Y , and ΩΩ⊤ is non-singular, then the

unique minimum of Lpred, is reached when

G = Û⊤
Y Y VΩ(ExuUΩΣΩ)+ = lim

ε→0
Û⊤

Y Y VΩ(Σ⊤
ΩU⊤

Ω E⊤
xuExuUΩΣΩ + ε2In)−1Σ⊤

ΩU⊤
Ω E⊤

xu. (47)

Now, substituting Ex = Û⊤
Y in Exu, and using the partition U⊤

Ω = [U⊤
Ω,1 U⊤

Ω,2], where UΩ,1 ∈
Rdx×(dx+du), UΩ,2 ∈ Rdu×(dx+du), we get

ExuUΩ =
[
Û⊤

Y 0
0 Idu

] [
UΩ,1
UΩ,2

]
=
[
Û⊤

Y UΩ,1
UΩ,2

]
, (48)

and
U⊤

Ω E⊤
xuExuUΩ =

[
U⊤

Ω,1ÛY U⊤
Ω,2

] [
Û⊤

Y UΩ,1
UΩ,2

]
= U⊤

Ω,1ÛY Û⊤
Y UΩ,1 + U⊤

Ω,2UΩ,2. (49)

Plugging (48) and (49) into (47) leads to

G = lim
ε→0

Û⊤
Y Y VΩ(Σ⊤

ΩU⊤
Ω,1ÛY Û⊤

Y UΩ,1ΣΩ + Σ⊤
ΩU⊤

Ω,2UΩ,2ΣΩ + ε2In)−1Σ⊤
Ω

[
U⊤

Ω,1ÛY U⊤
Ω,2

]
. (50)

Defining Σ∗ ∆= limε→0(Σ⊤
ΩU⊤

Ω,1ÛY Û⊤
Y UΩ,1ΣΩ + Σ⊤

ΩU⊤
Ω,2UΩ,2ΣΩ + ε2In)−1Σ⊤

Ω , we can split (50) into

AR = Û⊤
Y Y VΩΣ∗U⊤

Ω,1ÛY , and BR = Û⊤
Y Y VΩΣ∗U⊤

Ω,2,

which is (16). ■

A.4 The case when ΩΩ⊤not invertible

When the covariance matrix ΩΩ⊤ is not invertible, which is always true if n < dx + du, the matrix
ExuΩΩ⊤E⊤

xu is not guaranteed to be invertible. In that case, the minimum of Lpred corresponds to infinitely
many solutions for G. However, minimizing Lpred with added ℓ2 regularization, i.e., Lpred,reg(Ex, G) =
Lpred(Ex, G) + β∥vec(G)∥2 provides a unique solution for G, for a fixed Ex. We have the following result.

Theorem A.4.1. For any fixed matrix Ex and β > 0, the objective function Lpred,reg(Ex, G) =
Lpred(Ex, G) + β∥vec(G)∥2 is strictly convex in the coefficients of G, and the global minimum of Lpred,reg
corresponds to the unique solution for G, given by

G = ExY Ω⊤E⊤
xu(ExuΩΩ⊤E⊤

xu + βIrx+du)−1. (51)

21

Under review as submission to TMLR

Proof. Lpred,reg(Ex, G) can be written as, using (38a-c),

Lpred,reg(Ex, G) =
∥∥vec(ExY) − (Ω⊤E⊤

xu ⊗ Irx)vec(G)
∥∥2 + β∥vec(G)∥2

= vec(ExY)⊤vec(ExY) − 2vec(ExY)⊤(Ω⊤E⊤
xu ⊗ Irx)vec(G)

+ vec(G)⊤(ExuΩΩ⊤E⊤
xu ⊗ Irx + βIrx(rx+du))vec(G)

ExuΩΩ⊤E⊤
xu is a symmetric positive semidefinite matrix, irrespective of whether it has full rank or not.

Hence, by (38d), ExuΩΩ⊤E⊤
xu ⊗ Irx is symmetric positive semidefinite. Consequently, for any β > 0,

ExuΩΩ⊤E⊤
xu ⊗ Irx + βIrx(rx+du) is positive definite. According to lemma A.0.1, Lpred,reg is therefore

strictly convex in the coefficients of G and globally minimized when ∇Lpred,reg = 0. The unique solution of
(51) can be derived in the same manner as theorem 4.1.1. ■

Remark. Replacing Ω with its SVD in (51) we get,

G = ExY VΩΣ⊤
ΩU⊤

Ω E⊤
xu(ExuUΩΣΩΣ⊤

ΩU⊤
Ω E⊤

xu + βIrx+du)−1. (52)

In the limit β → 0+, (52) converges to (45).

A.5 DMDc through a linear autoencoding structure

Here we present a linear autoencoding structure that leads to a linear ROM exactly resembling the DMDc so-
lution when Ex = Û⊤

Y . However, its DNN-based nonlinear counterpart does not actually offer dimensionality
reduction.
Theorem A.5.1. Consider the following objective function

Lpred,alt(Ex, G̃) = 1
n

n−1∑
i=0

∥∥Exx(ti+1) − G̃ω(ti)
∥∥2

, (53)

where G̃ ∈ Rrx×(dx+du). For any fixed matrix Ex, the objective function Lpred,alt is convex in the coefficients
of G̃ and attains its minimum for any G̃ satisfying

G̃ΩΩ⊤ = ExY Ω⊤, (54)

where Y and Ω are the data matrices as defined in section (3.3). If ΩΩ⊤ is non-singular, then Lpred,alt is
strictly convex and has a unique minimum for

G̃ = ExY Ω⊤(ΩΩ⊤)−1. (55)

Proof. The proof is very similar to the proof of theorem 4.1.1. Using (38a), we can write Lpred,alt(Ex, G̃) as
follows,

Lpred,alt(Ex, G̃) = 1
n

n−1∑
i=0

∥∥Exx(ti+1) − G̃ω(ti)
∥∥2

=
∥∥vec(ExY) − vec(G̃Ω)

∥∥2

=
∥∥vec(ExY) − (Ω⊤ ⊗ Irx)vec(G̃)

∥∥2
. (56)

For fixed Ex, applying Lemma A.0.1 to (56), we can say Lpred,alt is convex in the coefficients of G̃, and G̃
corresponds to a global minimum of Lpred,alt if and only if

(Ω⊤ ⊗ Irx)⊤(Ω⊤ ⊗ Irx)vec(G̃) = (Ω⊤ ⊗ Irx)⊤vec(ExY). (57)

Using (38a-c), we can write (57) as G̃ΩΩ⊤ = ExY Ω⊤, which is (54).

22

Under review as submission to TMLR

If ΩΩ⊤ is non-singular, then it is symmetric positive definite. Using (38b-d), we can see that
(Ω⊤ ⊗ Irx)⊤(Ω⊤ ⊗ Irx) = (ΩΩ⊤ ⊗ Irx) is positive definite as well. Therefore, by Lemma A.0.1,
(56) is strictly convex in coefficient in G̃ and has a unique minimum. In that case, from (54), we can say
that the unique minimum of (56) is reached at G̃ = ExY Ω⊤(ΩΩ⊤)−1, i.e., (55). ■

Corollary A.5.1.1. Consider the (full) SVD of the data matrix Ω given by Ω = UΩΣΩV ⊤
Ω , where UΩ ∈

R(dx+du)×(dx+du), ΣΩ ∈ R(dx+du)×n, and VΩ ∈ Rn×n. If Ex = Û⊤
Y and ΩΩ⊤ is non-singular, then the

solution for G̃ corresponding to the unique minimum of Lpred,alt can be expressed as

G̃ = Û⊤
Y Y VΩΣ+

ΩU⊤
Ω . (58)

Proof. By theorem A.5.1, if Ex = Û⊤
Y , and ΩΩ⊤ is non-singular, then the unique minimum of Lpred,alt is

reached when
G̃ = Û⊤

Y Y Ω⊤(ΩΩ⊤)−1 = Û⊤
Y Y Ω+ (59)

The second equality is due to (39b). Substituting Ω+ with its SVD definition (39c) into (59), we get
Û⊤

Y Y VΩΣ+
ΩU⊤

Ω , which is (58). ■

Remark. From (53), it can be seen that G̃ maps the concatenated vector, ω(ti), of full state and actuation
to the next reduce state xR(ti+1). We can partition (58) as G̃ = Û⊤

Y Y VΩΣ+
Ω [U⊤

Ω,1 U⊤
Ω,2] = [Ã B̃] to

separate out the blocks corresponding to state and actuation. Here, UΩ,1, UΩ,2 are the same as defined in
corollary 4.1.1.1, and Ã ∈ Rrx×dx , B̃ ∈ Rrx×du . Now, if we post-multiply Ã with E⊤

x = ÛY ∈ Rdx×rx , we
get a ROM

ÃR = ÃÛY = Û⊤
Y Y VΩΣ+

ΩU⊤
Ω,1ÛY , B̃R = B̃ = Û⊤

Y Y VΩΣ+
ΩU⊤

Ω,2, (60)

which maps the current reduced state xR(ti) and actuation u(ti) to the next reduced state xR(ti+1). It can
be verified easily that if we use the truncated SVD (as defined by 10), instead of the full SVD, for Ω in (59)
and follow the similar steps afterward, we get an approximation of (60):

ÂR = Û⊤
Y Y V̂ΩΣ̂−1

Ω Û⊤
Ω,1ÛY = AR,DMDc; B̂R = Û⊤

Y Y V̂ΩΣ̂−1
Ω Û⊤

Ω,2 = BR,DMDc.

In summary, the aforementioned method can be carried out using gradient descent-based optimization and
leads to the same ROM as DMDc, when Ex = Û⊤

Y . However, in this method, the benefit of dimensionality
reduction is realized only when linear networks are used. A nonlinear counterpart (a DNN in the context
of this paper) of ÃR, i.e., a nonlinear mapping from Rrx to Rrx , cannot be pre-computed from a nonlinear
counterpart of G̃, unlike the linear case (60). Consequently, we lose the benefit of dimensionality reduction
when nonlinear networks are used.

A.6 Proof of theorem 4.2.1

Theorem 4.2.1. Consider the target dynamics defined by (29)and the candidate Lyapunov function defined
by (30). Suppose the difference between the target dynamics and the closed-loop dynamics satisfies

∥F(xR, Eu ◦ Π(xR)) − Fs(xR)∥ ≤ δ <
αθλmin(K)
2λmax(K)

√
λmin(K)
λmax(K)η, (31)

for all xR ∈ XR = {xR ∈ Rrx | ∥xR∥ < η} and 0 < θ < 1. Then, for all initial points satisfying
∥xR(t0)∥ <

√
λmin(K)
λmax(K) η, the solution of the closed-loop ROM dxR

dt = F(xR, Eu ◦ Π(xR)) satisfies

∥xR(t)∥ ≤ λe−γ(t−t0)∥xR(t0)∥, ∀ t0 ≤ t < tc + t0 (32)

and
∥xR(t)∥ ≤ 2δ

αθ
λ3, ∀ t ≥ tc + t0 (33)

23

Under review as submission to TMLR

for some finite tc > 0, where

γ = α(1 − θ)λmin(K)
2λmax(K) and λ =

√
λmax(K)
λmin(K) (34)

Proof. From the definition of VR, we have

λmin(K)∥xR∥2 ≤ VR(xR) ≤ λmax(K)∥xR∥2, ∀ xR ∈ Rrx , (61)

where λmin(K) and λmax(K) denote the smallest and largest eigenvalues, respectively, of K and have positive
values since the matrix K is positive definite. Moreover, the definition of the target dynamics (29) implies

∇VR(xR)⊤Fs(xR) =
{

∇VR(xR)⊤P(xR), if ∇VR(xR)⊤P(xR) ≤ −αVR(xR)
∇VR(xR)⊤P(xR) − ∇VR(xR)⊤ ∇VR(xR)⊤P(xR)+αVR(xR)

∥∇VR(xR)∥2 ∇VR(xR), otherwise

=
{

∇VR(xR)⊤P(xR), if ∇VR(xR)⊤P(xR) ≤ −αVR(xR)
−αVR(xR), otherwise

≤ −αVR(xR)
≤ −αλmin(K)∥xR∥2, ∀ xR ∈ Rrx . (62)

The last inequality is due to (61).

Now, assume F(xR, Eu ◦Π(xR)) = H(xR) = Fs(xR)+J (xR) for some function J : Rrx → Rrx and consider
VR(xR) = x⊤

RKxR as a candidate Lyapunov function for

dxR

dt
= H(xR) = Fs(xR) + J (xR). (63)

We have ∥∇VR(xR)∥ = ∥2KxR∥ ≤ 2λmax(K)∥xR∥. The time-derivative of VR along the trajectories of (63)
satisfies

dVR

dt
= ∇VR(xR)⊤Fs(xR) + ∇VR(xR)⊤J (xR)

≤ −αλmin(K)∥xR∥2 + ∥∇VR(xR)∥∥J (xR)∥
≤ −αλmin(K)∥xR∥2 + 2λmax(K)∥xR∥δ, ∀ ∥xR∥ < η

= −α(1 − θ)λmin(K)∥xR∥2 − αθλmin(K)∥xR∥2 + 2λmax(K)∥xR∥δ, 0 < θ < 1, ∀ ∥xR∥ < η

≤ −α(1 − θ)λmin(K)∥xR∥2 < 0, when η > ∥xR∥ ≥ 2δλmax(K)
αθλmin(K)

∆= µ. (64)

The second inequality is obtained using (62) and the third inequality is obtained using (31). Clearly, we
have a non-empty region where dVR

dt < 0 only when

δ <
αθλmin(K)
2λmax(K) η. (65)

Let b = λmin(K)η2 and c = λmax(K)µ2. Consider the sublevel sets χb = {xR ∈ Rrx | VR(xR) < b} and
χc = {xR ∈ Rrx | VR(xR) ≤ c}. It can be easily verified that if δ < αθλmin(K)

2λmax(K)

√
λmin(K)
λmax(K) η, then c < b, which

implies χc ⊂ χb. Note, this condition satisfies the necessary condition (65) for the non-empty region since
λmin(K) ≤ λmax(K).

For any xR inside χb, using (61), we have

λmin(K)∥xR∥2 ≤ VR(xR) < b = λmin(K)η2, (66)

24

Under review as submission to TMLR

implying ∥xR∥ < η. Similarly, for any xR on the boundary or outside of χc, we have

λmax(K)µ2 = c ≤ VR(xR) ≤ λmax(K)∥xR∥2, (67)

which implies ∥xR∥ ≥ µ.

Combining (66) and (67) we can say for any xR outside (including the boundary) of χc, but inside χb, (64)
holds true. For such xR (i.e. xR ∈ χb \ χc) we have

dVR

dt
≤ −α(1 − θ)λmin(K)

λmax(K) VR(xR) ∆= −2γVR(xR), (68)

using (61) and (64).

If the initial point (at time t0) satisfies ∥xR(t0)∥ <
√

λmin(K)
λmax(K) η, then by (61),

b = λmin(K)η2 > λmax(K)∥xR(t0)∥2 ≥ VR(xR(t0)),

which implies the initial point xR(t0) is inside χb. Assuming an initial point in χb \ χc, and integrating (68)
in time interval [t0, t], we get

VR(xR(t)) ≤ VR(xR(t0))e−2γ(t−t0). (69)

Hence, λmin(K)∥xR(t)∥2 ≤ VR(xR(t)) ≤ VR(xR(t0))e−2γ(t−t0) ≤ λmax(K)∥xR(t0)∥2e−2γ(t−t0) as long as
xR(t) remains outside of χc. Since dVR

dt is always negative outside of χc, any trajectory starting outside of it,
must enter χc in finite time. Let the trajectory starting at xR(t0) enters χc for the first time at time tc + t0.
Then, we have

∥xR(t)∥ ≤

√
λmax(K)
λmin(K) e−γ(t−t0)∥xR(t0)∥ = λe−γ(t−t0)∥xR(t0)∥, ∀ t0 ≤ t < tc + t0. (70)

Once a trajectory enters χc, it cannot escape χc because dVR
dt is negative on the boundary. Therefore, all

points of a trajectory after t ≥ tc + t0 satisfies λmin(K)∥xR(t)∥2 ≤ VR(xR(t)) ≤ c, equivalently,

∥xR(t)∥ ≤

√
λmax(K)
λmin(K) µ = 2δ

αθ

(
λmax(K)
λmin(K)

)3/2

= 2δ

αθ
λ3, ∀ t ≥ tc + t0. (71)

From (68), (70) and (71), we have γ = α(1−θ)λmin(K)
2λmax(K) and λ =

√
λmax(K)
λmin(K) . ■

B Details on reaction–diffusion system experiment

B.1 Dataset

We use FEniCS (Logg et al. (2012)), an open-source computing platform for solving PDEs using the finite
element method, with Python interface to generate the dataset. For the reaction-diffusion system of (35),
we generate 100 training sequences of length 50 with time step size 0.01 and 256 nodes in I. The initial
conditions and actuations of these sequences are given by

q(ζ, 0) = |a|
4∑

k=0
bkTk(ζ), ζ ∈ I, (72)

and
w(ti) = 10gi max

ζ
|q(ζ, ti−1)|, i = 1, 2, · · · , 49, (73)

where Tk denotes the kth Chebyshev polynomial of the first kind, and a ∼ N (0, 1), bk, gi ∼ U(−1, 1)
are chosen randomly. Similarly, 100 sequences are generated for the test set to evaluate the prediction
performance.

25

Under review as submission to TMLR

C
o

n
v-

1
D

, k
:3

, n
:3

2
, s

:2

R
eL

U

C
o

n
v-

1
D

, k
:3

, n
:2

, s
:2

FC
, n

:6
4

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

FC
, n

:6
4

C
o

n
vT

-1
D

, k
:3

, n
:3

2
, s

:2

C
o

n
vT

-1
D

, k
:3

, n
:1

, s
:2

FC
, n

:1
2

8

R
eL

U

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x

C
o

n
ca

t

C
o

n
ca

t

Copy

+

+

+

−ze
ro

s

ac
tu

at
io

n

fu
ll

st
at

e

re
d

u
ce

d

st
at

e

State Encoder State Decoder

ROM

ℰ𝒙 𝒟𝒙

ℱ

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

re
d

u
ce

d
 s

ta
te

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:1

re
d

u
ce

d
 s

ta
te

ta
rg

et
 t

im
e

d
er

iv
at

iv
e

ac
tu

at
io

n

Controller Π

St
ab

ili
ty

 C
ri

te
ri

o
n

Target Dynamics ℱ𝑠
In

te
gr

at
o

r

Conv-1D : 1D convolution
ConvT-1D : 1D transposed convolution
FC: fully connected
k : kernel size
n : # features (for FC) or feature maps (for Conv)
s : stride

1
×
𝑟 𝑥

1
×
𝑟 𝑥

1
×
𝑟 𝑥

1
×
1

1
×
1

1
×
1

1
×
2
5
6

1
×
2
5
6

n
ex

t
fu

ll
st

at
e

1
×
𝑟 𝑥

Figure 12: Architectures for all the DNN modules used in the reaction–diffusion experiment. The ‘Copy’
operation denotes the reuse of the same DNN block for zero and nonzero actuation. The ‘Concat’ operator
concatenates the input features along the last dimension. The ‘Integrator’ performs the numerical integration
for (22). The ‘Stability Criterion’ block implements (29).

B.2 DNN architectures

Figure 12 shows the DNN architectures used for different modules in the reaction–diffusion experiment.
The state encoder comprises 1D convolutional layers, followed by fully connected layers. The state decoder
has the reversed order with convolutional layers replaced by transposed convolutional layers. The ROM is
designed by breaking the function F into two components: F

(
xR, uR

)
= Fauto

(
xR
)

+ Fforced
(
xR, uR

)
−

Fforced
(
xR, 0

)
. Fauto represents the autonomous dynamics that does not depend on the actuation, whereas

Fforced is responsible for the impact of actuation on dynamics. Two multilayer perceptions (MLPs) are used
to implement Fauto and Fforced. The output of the ROM is integrated using a numerical integrator to get
the next state. The controller is implemented using an MLP. The target dynamics is implemented using
another MLP, followed by a stability criterion in the form of (29).

B.3 Training settings

We use rx = 5 in the prediction task and rx = 2 in the control task for both DeepROM and DMDc. All
modules are implemented in PyTorch. In both of the learning phases, learning ROM and learning controller,
we use the Adam optimizer with an initial learning rate of 0.001 and apply an exponential scheduler with a
decay of 0.99. Modules are trained for 100 epochs in mini-batches of size 32. 10% of the training data is used
for validation to choose the best set of models. For DeepROM training, we use β2 = 1 in (23). For learning
control, we use β3 = 0.2 in (27), α = 0.2 in (29), and K = 0.5Irx in (30). Since the learned ROMs from one
training instance to another can vary, the hyperparameter pair (α, β3) may require re-tuning accordingly.

26

Under review as submission to TMLR

C Details on vortex shedding suppression experiment

C.1 Dataset

For the flow past a circular cylinder problem, the geometry and physical parameters of the system are taken
from the DFG 2D-2 benchmark (Schäfer et al. (1996)). The geometry is shown in Figure 13. We use the
blue-shaded region for observation and actuation. Following the DFG 2D-2 benchmark, we use the no-slip
boundary condition of zero velocity for the walls and the cylinder boundary, zero outlet pressure, and the
inflow velocity profile (at the inlet) as

v(ζ, t) =
(

1.54ζ2(0.41 − ζ2)
0.412 , 0

)
, (74)

where ζ1 and ζ2 denote the horizontal and vertical coordinates, respectively, of ζ. We use kinematic viscosity
ν = 0.002 and density ρ = 1 leading to the Reynolds number Re = 50. The training sequence of length 5000
is generated in FEniCS with a time step size 0.001 and applying actuations

w(ζ, t) = a

4∑
k=0

[
sin(kπ(ζ1 − 0.11)/0.66) sin(kπζ2/0.41)

] [bk,1,1 bk,2,1
bk,1,2 bk,2,2

]
, ζ ∈ W, (75)

where a ∼ U(0, 1) and bk,i,j ∼ U(−1, 1), i, j = 1, 2 are chosen randomly. Similarly, a test sequence is
generated to evaluate the prediction performance. For learning control, we use the Stokes flow or creeping
flow as the desired state, which can be obtained by solving the Stokes equations

ν∇2v − 1
ρ

∇p = 0, ∇ · v = 0 in I × R+. (76)

For training, the flow velocity data from the observation region (blue shaded in Figure 13) are interpolated
onto a rectangular uniform grid of size 32 × 48 so that it can be used in standard CNNs.

2.2

0.41

0.2

0.2

0.11 0.66

0.1

in
le
t

o
u
tl
et

wall

wall

Figure 13: Geometry of the flow past a circular cylinder set-up.

C.2 DNN architectures

Figure 14 shows the DNN architectures used for different modules in the vortex shedding control experiment.
The architectures for the ROM and target dynamics are the same as in the previous example. Moreover, the
state encoder and decoder have similar architectures as the previous example except for the 1D convolutions
and transposed convolutions are replaced by their 2D counterparts. Here, an additional module is used:
the control encoder for encoding the distributed control/actuation. It has the same architecture as the
state encoder. To learn the distributed actuation, we design the controller as a linear combination of space-
dependent polynomial basis functions. One MLP is used to learn these space-dependent polynomial basis
functions given the locations of the actuation nodes and another MLP is used to learn the corresponding
coefficients. We use this architecture instead of a standard convolutional one because the PDE solver takes the
actuation input in a triangular mesh, not in a uniform rectangular grid. The polynomial basis architecture
can be used to compute actuation in both uniform rectangular grid during training and triangular mesh
during evaluation.

27

Under review as submission to TMLR

C
o

n
v-

2
D

, k
:3

, n
:3

2
, s

:2

R
eL

U

C
o

n
v-

2
D

, k
:3

, n
:2

, s
:1

FC
, n

:6
4

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

FC
, n

:6
4

C
o

n
vT

-2
D

, k
:3

, n
:3

2
, s

:2

C
o

n
vT

-2
D

, k
:3

, n
:2

, s
:2

FC
, n

:1
9

2

R
eL

U

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x

C
o

n
ca

t
Copy

+

+

+

−
re

d
u

ce
d

st

at
e

State Encoder State Decoderℰ𝒙 𝒟𝒙

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
x,

 n
o

 b
ia

s

re
d

u
ce

d
 s

ta
te

FC
, n

:1
0

0

R
eL

U

FC
, n

:1
0

0

R
eL

U

FC
, n

:r
u

re
d

u
ce

d
 s

ta
te

ta
rg

et
 t

im
e

d
er

iv
at

iv
e

co
ef

s

Controller Π

St
ab

ili
ty

 C
ri

te
ri

o
n

Target Dynamics ℱ𝑠
In

te
gr

at
o

r

C
o

n
v-

2
D

, k
:3

, n
:3

2
, s

:2

R
eL

U

C
o

n
vT

-2
D

, k
:3

, n
:3

2
, s

:1

R
eL

U

C
o

n
v-

2
D

, k
:3

, n
:3

2
, s

:2

R
eL

U

C
o

n
v-

2
D

, k
:3

, n
:2

, s
:1

FC
, n

:6
4

R
eL

U

FC
, n

:r
u
, n

o
 b

ia
s

fu
ll

ac
tu

at
io

n

Control Encoder ℰ𝒖

C
o

n
v-

2
D

, k
:3

, n
:3

2
, s

:2

R
eL

U re
d

u
ce

d

ac
tu

at
io

n

C
o

n
ca

t

ze
ro

s

re
d

u
ce

d

st
at

e

ROMℱ

FC
, n

:6
4

R
eL

U

FC
, n

:6
4

R
eL

U

FC
, n

:2
r u

Sp
lit

⊙

⊙

fu
ll

ac
tu

at
io

n

co
ef

s

C
o

n
ca

t

ac
tu

at
io

n
 n

o
d

es

Conv-2D : 2D convolution
ConvT-2D : 2D transposed convolution
FC: fully connected
k : kernel size
n : # features (for FC) or feature maps (for Conv)
s : stride
N : # actuation nodes

: dot product⊙

2
×
3
2
×
4
8

fu
ll

st
at

e
2
×
3
2
×
4
8

2
×
3
2
×
4
8

2
×
3
2
×
4
8

n
ex

t
fu

ll
st

at
e

1
×
𝑟 𝑥

1
×
𝑟 𝑥

1
×
𝑟 𝑥

1
×
𝑟 𝑢

1
×
𝑟 𝑥1
×
𝑟 𝑢

𝑁
×
2

1
×
𝑟 𝑥

Figure 14: Architectures for all the DNN modules used in the fluid flow experiment. The ‘Split’ operator
splits the input features into two vectors, along the last dimension.

C.3 Training settings

We use rx = 5 in both the prediction task and control task for both DeepROM and DMDc. All modules
are implemented in PyTorch. In both of the learning phases, learning ROM and learning controller, we use
the Adam optimizer with an initial learning rate of 0.001 and apply an exponential scheduler with a decay
of 0.99. Modules are trained for 100 epochs in mini-batches of size 32. 10% of the training data is used for
validation to choose the best set of models. For DeepROM training, we use β2 = 1 in (23). For learning
control, we use β3 = 2 in (27), α = 0.1 in (29), and K = 0.5Irx in (30). Since the learned ROMs from one
training instance to another can vary, the hyperparameter pair (α, β3) may require re-tuning accordingly.

28

	Introduction
	Related Work
	Problem and Preliminaries
	Problem statement
	Stabilization of controlled systems
	Dynamic mode decomposition with control

	Method
	Learning a reduced order model
	Learning control

	Empirical Results
	Reaction–diffusion system stabilization
	Similarity with DMDc
	Prediction performance of DeepROM
	Control performance of DeepROC

	Vortex shedding suppression in fluid
	Similarity with DMDc
	Prediction performance of DeepROM
	Control performance of DeepROC

	Conclusion
	Proofs
	Proof of theorem 4.1.1
	An alternative representation of (15)
	Proof of Corollary 4.1.1.1
	The case when mathexpnot invertible
	DMDc through a linear autoencoding structure
	Proof of theorem 4.2.1

	Details on reaction–diffusion system experiment
	Dataset
	DNN architectures
	Training settings

	Details on vortex shedding suppression experiment
	Dataset
	DNN architectures
	Training settings

