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ABSTRACT

We characterize the effectiveness of Sharpness-aware minimization (SAM) un-
der machine unlearning scheme, where unlearning forget signals interferes with
learning retain signals. While previous work prove that SAM improves general-
ization with noise memorization prevention, we show that SAM abandons such
denoising property when fitting the forget set, leading to altered generalization
depending on signal strength. We further characterize the signal surplus of SAM
in the order of signal strength, which enables learning from less retain signals to
maintain model performance and putting more weight on unlearning the forget
set. Empirical studies show that SAM outperforms SGD with relaxed requirement
for retain signals and can enhance various unlearning methods either as pretrain
or unlearn algorithm. Motivated by our refined characterization of SAM unlearn-
ing and observing that overfitting can benefit more stringent sample-specific un-
learning, we propose Sharp MinMax, which splits the model into two to learn
retain signals with SAM and unlearn forget signals with sharpness maximization,
achieving best performance. Extensive experiments show that SAM enhances un-
learning across varying difficulties measured by memorization, yielding decreased
feature entanglement between retain and forget sets, stronger resistance to mem-
bership inference attacks, and a flatter loss landscape. Our observations generalize
to more noised data, different optimizers, and different architecures.

1 INTRODUCTION

Deep neural networks have grown so large and complex that retraining a model from scratch to forget
even a few samples has become impractically costly in both computation and energy. This challenge
has catalyzed the study of machine unlearning: methods that efficiently remove the influence of
specific training data without full retraining, aiming to forget designated examples while preserving
overall performance. Numerous unlearning strategies have been explored — from influence-based
updates that subtract a data point’s contribution (Izzo et al., 2021), to fine-tuning with targeted weight
sparsification (Jia et al., 2023), to joint optimization approaches that explicitly balance “retain” vs.
“forget” objectives by gradient ascent/descent on different data subsets (Kurmanji et al., 2023).
However, a fundamental understanding of what makes unlearning effective remains elusive. Key
questions persist: How should we trade off forgetting unwanted data versus retaining accuracy on
the rest? How do different training algorithms influence unlearning dynamics? Why are some
samples inherently harder to forget than others? In practice, the lack of principled answers has
led to ad-hoc hyperparameter tuning and unpredictable behavior across tasks. In particular, when
a model is simultaneously fed with conflicting retain and forget signals, these signals can interfere
and even cancel out during training, hampering the unlearning process (Kurmanji et al., 2023). To
date, there are few robust solutions to mitigate this interference, underscoring the need for a deeper
theoretical foundation for machine unlearning.

Recent advances in learning theory and optimization hint at possible directions to tackle these issues.
First, a signal-versus-noise perspective has provided new insight into model behavior: for example,
Chen et al. (2023) formalize how networks learn meaningful patterns while ignoring or memorizing
label noise, and Zhao et al. (2024) empirically identify factors that make certain data points harder
to forget. Particularly relevant is the Sharpness-Aware Minimization (SAM) method (Foret et al.,
2020) that has been shown to seek flatter loss minima and thereby dramatically reduce memoriza-
tion of noisy data, leading to improved generalization in noisy-label settings (Chen et al., 2023).
These observations suggest that a model’s ability to distinguish true signal from noise may be key
to effective unlearning. An optimizer that naturally suppresses memorization of noise might also
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be better suited for forgetting specific examples when required. To investigate this hypothesis, we
quantify each sample’s memorization level using established metrics (Feldman, 2020; Feldman &
Zhang, 2020), allowing us to rank the “forget set” by difficulty. This enables a controlled study of
how different optimization algorithms perform when asked to forget data that the model has learned
to varying extents.

We present a comprehensive theoretical and empirical study of machine unlearning through the
combined lens of signal-noise decomposition and sharpness-aware optimization. We focus on the
challenging scenario where both retain and forget samples are present in each training batch with
mixed objectives, and we compare standard Stochastic Gradient Descent (SGD) to SAM in this con-
text. Building on recent theoretical frameworks for ReLU networks (Kou et al., 2023), we derive
rigorous results for a two-layer CNN that characterize the unlearning process under each optimizer.
Our analysis yields several striking findings. (1) SAM’s noise suppression can break down under
unlearning: we prove that when tasked with intentionally forgetting a set of samples (treated as
“noise”), SAM is forced by objective to abandon its usual denoising behavior — effectively over-
fitting to the forget set nearly as much as SGD does. This result challenges the expectation that
flatter-minima methods would inherently excel at unlearning. (2) We establish formal guidelines for
balancing retain vs. forget objectives: in particular, we derive the minimum retain-weighting factor
« needed to prevent catastrophic forgetting of the kept data. Our theory shows that SAM can accom-
plish successful unlearning with a significantly smaller retain weight o than SGD, meaning SAM
tolerates a stronger forgetting signal without sacrificing retained accuracy. In the regime of benign
overfitting (where the model fits even noisy data without large generalization error), we quantify the
gap in required « between SAM and SGD and prove it scales on the order of O(1/d/n) (with d
the model dimension and n the training set size). (3) Perhaps most surprisingly, our findings call
for a re-examination of overfitting in unlearning. Contrary to conventional wisdom, we show that
deliberate overfitting — in a controlled way that limits its impact on the rest of the data — can enhance
the complete removal of those samples. This insight is especially relevant in stringent privacy or
copyright scenarios, suggesting that the strict avoidance of overfitting may not always be optimal.

Our contributions can be summarized as follows:

Theoretical Framework: We introduce a rigorous analytical framework for machine unlearning
based on signal-noise decomposition. This framework explicitly models the interplay between retain
and forget signals. Using this lens, we analyze the behaviors of SGD versus SAM and prove that
SAM’s denoising advantage “shuts off”” on forget data: when SAM is asked to unlearn labeled noise,
it ends up overfitting to the forget set almost as much as SGD.

Balancing Retain vs. Forget Objectives: We derive provable guidelines for balancing the re-
tain/forget trade-off. In particular, we identify the minimal value of the weighting ratio parameter «
that guarantees sufficient retention of knowledge. We show that SAM requires a strictly smaller «
than SGD to achieve effective unlearning. In the regime of benign overfitting for both the optimizers,

we analytically bound the difference in required « on the order of O(\/d/n).

Empirical Validation: Through extensive experiments on CIFAR-100 and ImageNet datasets, we
validate our theoretical insights. We demonstrate that incorporating SAM into state-of-the-art un-
learning methods consistently boosts forgetting efficacy while better preserving accuracy on the re-
maining data. Models optimized with SAM yield flatter loss landscapes and reduced entanglement
between retained and forgotten samples, corroborating our theory that SAM distinguishes signal
from noise better. We also observe that SAM-trained models are less vulnerable to membership
inference attacks to forget set, indicating improved unlearning.

Novel Unlearning Algorithm: Finally, inspired by our analysis, we propose Sharp MinMax, a
new unlearning approach that decouples the retain and forget objectives. Sharp MinMax splits the
model into two cooperative parts: one is trained with SAM on the retained data, while the other
performs sharpness maximization on the forget data to intentionally overfit those samples to ensure
forgottenness. This design mitigates interference between retain and forget signals. Sharp Min-
Max achieves state-of-the-art unlearning performance in our experiments, especially on challenging
high-memorization forget sets, where it significantly outperforms existing techniques in completely
erasing the target data’s influence.
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2 PRELIMINARIES

2.1 DATA AND MODEL CONSTRUCTION

We construct a practical learning scenario which distinguishes between useful and unrelated signals
from inputs. Similar constructions have been adopted in previous work (Kou et al., 2023; Chen
et al., 2023) with rich notation. For convenience, we summarize a table of notation in App. C.
Consider learning binary classification with label y € {£1} using a two-layer CNN on image
training data set S = {(X;, i) }icjn) ~ D. Each image consists of P patches and assign randomly
one of them as the signal y;¢ for label 7; and the universal signal vector ¢» € R<, and represent
other patches by the noise vector & € R? ~ N(0, af,I). Thus, each input image is vectorized as

X; = &, .., i, ..., &] € REX4 where y;¢ can appear at any position.

The second layer of CNN is fixed as +1/m respectively for m convolutional filters. The two-classes
network can be expressed as f(W,x) = f11(Wy1,%x) — f-1(W_1,x), where

(W %ZZ (W% %Z (W3 050)) + (P~ Do((w,0 ). (1)

Here o denotes ReLU activation, w; , € R4 denotes the weight for the r-th filter, and W is the
collection of model weights for j = +1. We train this CNN with cross-entropy loss L(W,S).

Denote w( ) for j € {£1},r € [m] the convolutional filter at the b-batch of ¢-th epoch of SGD.
(t b) C(t )

We decompose the weight update into learning signal and noise coefficients i

the signal and the noise respectively, such that

for learning

Wj(_’t;b) (0 0) +j K

b) - i b —
D llell? + (P - 1) - glEllZ? ®)

i=1

where the learning goal is to increase m( ) and decrease Gor (&, ) This construction also extends to
multiclass classification considering one VS all setting with K blnary classification problems.

2.2  SIGNAL-TO-NOISE UNLEARNING

Given a pretrained model f} by algorithm A for T3 epochs on &, machine unlearning aims to
eliminate the influence of forget set 7 C S to the model training, while maintain generalizability to
unseen data without compromising performance on the remaining retain set R = S\ F. Denote the
unlearned model as fu2 by unlearning algorithm U/, which is initialized as f 4 and unlearned for
T, epochs. We consider unlearning a small portion of S with much less expense than retraining the
model from scratch on R, so |F| < |R| and T, < T7.

Random Label (RL) (Graves et al., 2021) aims to unlearn by finetuning on S but with F’s labels
randomly flipped in each epoch. It naturally fits into our setup as label-flipped F become the noise,
and motivates us to investigate unlearning algorithms under the same theoretical framework. The

gradient update of /<;( ) and ¢ ](tT Z) can be expressed as

b b nie b b b ~
W) < e I | S e 0 i) — 37 g (D ) |
zEI i€L], i 3)
b1 b U(P—1)2||€‘H2 b b) .
Gt = i) = BB 00 (w2 €4)) - sem(yi = ),
m
where B, n denote the batch size and learning rate, sgn(-) denotes +1 sign function, Z%  and If b

denote batch samples from R and F, respectively. In each iteration, If aims to erase its signal in
0

k;, > While &; reinforces or decreases ( update depending on label agreement.

Negative Gradient (NegGrad) (Kurmanp et al., 2023) actively unlearns F using gradient ascent
while gradient-descending on R. The combined loss objective is defined as

LNegGrad (W, R, F) = IRI > al(yif (W,x,)) A Z FW,x). &)
1€ER i€F
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Minimizing LnegGrad induces competing gradients, canceling each other during x, ¢ update. o serves
as a weight coefficient that accounts for the size imbalance between R and F. To synchronously
optimize the model with retain and forget samples, we draw B samples from both subsets each batch
and train for |R|/B batches. Thus, forget samples’ signals are relatively enlarged by a fraction of
|R|/|F| due to repetition. Heuristically, o < |R]/( ).

2.3 DENOISING PROPERTY OF SAM

Sharpness-Aware Minimization (SAM) (Foret et al., 2020) aims to minimize a perturbed empirical
loss at the worst point in the neighborhood of W, solving the following optimization problem:

min L(W,S) + |max L(W +&,8) - LW, )], (5)

for a controlled perturbation €. It ensures a uniformly low training loss and avoids sharp landscape.
While both SGD and SAM learn a sufficient signal with nTl = Q(1) after T} epochs, Chen et al.

(2023) prove that SAM outperforms SGD by noise suppression and SAM upper bounds CJ i
O(1) while SGD is dimension dependent O(log d). The key difference stems from the noise mem-
orization prevention of SAM. Given the perturbation term €*?) in SAM:

-1
tb t,b t,b
g =% Zﬁ“ ey (W i )i [V WD T ©)

ZGIf b pE[P]

consider ReLU activation at any fixed iterate w(t ®) for SGD: < (t b) :&k) = 0 vs. SAM:(w; (t’b) +
ettt &) fork € Ty p, j = yr. SAM’s (w; (t b) + e &) expands to (w (t.6) &) + <A(t i &),

€jr €jr > Wir o
where <’§ €k is proven to be sufﬁ01ently negatlve to cancel ( W 7£k> by selecting a proper 7,
thus deactivating the noise (Chen et al., 2023). This effectively prevents SAM from learning from
the noise which would lead to harmful overfitting for SGD. We are curious about whether SAM
improves unlearning: a flatter landscape can make learning easier, then it should make unlearning
easier too despite a reverse sign. But is it a simple adaptation, and can we straightforwardly extend
previous theories and findings to develop unlearning algorithms?

3 SHARPNESS-AWARE UNLEARNING

We first show that the SAM’s noise memorization prevention in Sec. 2.3 does not fully hold when
SAM is used with NegGrad for gradient ascent on F. Specifically, SAM overfits to forget signals
as much as SGD, while maintaining its denoising property on R. Based on this result, we derive
refined test error bounds for SGD and SAM under NegGrad and characterize the different « thresh-
olding between SGD and SAM for unlearning. Although SAM continues to improve unlearning and
maintain generalizability, the altered activation patterns and unlearning behaviors are not captured
by previous works, as SAM is forced to fit forget signals (viewed as noise) by NegGrad objective.
This leads to divergent behaviors on R and F, which can be of independent interest.

3.1 NEGGRAD REVISITED

Unlike RL, the mutual interference between F and R under NegGrad additionally affects ¢ , up-
date. The update rules for ngf;b) and ¢ J<fr’b) under NegGrad now become:

t,b4+1 t,b nllel3
R = ﬂg,y-)*TmQ a Y Ve —(l—a) Y Ve,
(7)

P —1)2

Ctb-i—l C(tb) 77(37) aZV&_(l_a)ngi ;
m

where Vo, = (" o' (w1 8,5:0)), Ve, = sgn(y; = J)II&36" o' ((wlh? +6,€,)), and

0= A(t b) for SAM and 0 for SGD. In plain words, a sample ¢ € R of class j causes a decrease in
Cj,ris dlscouraglng memorizing noise for the correct class, while another sample i’ € R of class —j
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causes an increase in (. ;, encouraging wj , to use &; to distinguish class j from —j. Conversely, a
sample ¢ € F of class j, which we want to predict —j in unlearning, will increase (; r ;, encouraging
wj - to use noise &; in a way that harms class j, and vice versa. Similar intuition also applies to ;.
The interference in (; , update will alter SAM’s behaviors towards forget signals as summarized in
Lemma 3.1.

Lemma 3.1 (Noise memorization of F by SAM under NegGrad). Under the NegGrad scheme and
the Assumption D.1 holds, we have that if for SGD: <w(t’b) &) >0,k e IR and j = yy, then for

Jsr

SAM: (w;f’b) + € A(t’b) k) < 0. However, if for SGD: (w; (f b) J€k) > 0,k € I , and j = yy, then
for SAM: (w'!?) +A“ 0 g) >

g

See proof in App. D.2. Because the activation patterns on Z% % and It]:- , diverge, SAM continues
to suppress noise memorization and leverage its sharpness-aware updates when fitting R, but “falls
back” to SGD-like behavior on F. This split yields two distinct sets of bounds on «; ;- and (; ;- for
R and F i which lead to separate test errors shown in App. D.1 and D.2. However, given a pretrained
model f with m ». > 0 to start unlearning, as long as retain signals weighted by o« dominate,
the signal strength will remain sufficient and continue to grow. This is shown in Chen et al.
(2023) when the signal strength is saturated at 7' < T;. We can thus choose « threshold based on
this principle. With proper forget-retain size ratio, results in Chen et al. (2023) still hold: SGD’s test
error converges when signal strength is sufficient, but can’t be upper bounded otherwise; SAM’s test
error converges either way. [ serves as a knob to control the convergence rate:

Theorem 3.2 (SGD test error under NegGrad). Under Assumption D.I, for any ¢ > 0 and
1> a > |RI/(JF|+1|R]|) == B8 > 0.5, then with probability at least 1 — 0, the training loss
converges: L(WT D) < e. Moreover, if |p|a > C1d*/*n=4Pg,, we have the test error
LWT D) < e If |ela < C3d/*n~Y4Pao,, we have limg_,; L' (WT2 D) > 0.1, and
limg_y0.5 £(WT2, D) > 0.05.

Theorem 3.3 (SAM test error under NegGrad). Under Assumption D.I, for any ¢ > 0 and

1> a>|RI/(|F|+|R|) = > 0.5, choose T = @(1;”\/\%). Then with probability at least
Ip

1 — 6, the training loss converges: L(WT,D) < e. Moreover, if ||plla > Cid"/*n=1/*Pg,,
we have limg_,; L(WT D) < e If Q1) < |ela < C3dY/*n=Y*Po,: we still have
limg_,1 L(WT D) <e

See proofs in App. D.1 and D.2. Together, these theorems describe how SGD and SAM behave when
retain signals dominate. For SAM, if |||y < C3d"/*n~1/4Pa,, it will suffer harmful overfitting
to F. However, as long as o > |R|/(|F| + |R|) and ||¢||2 > (1), learning on R guarantees
overall benign training and yields a bounded test error. Under the same condition, Corollary 3.3.1
concludes that while the signal coefficient continues to grow for both SGD and SAM, SGD’s noise
accumulation is loosely bounded by model dimension, while SAM’s by O(1):

Corollary 3.3.1 (x, update under NegGrad). Under the NegGrad, if « > |R|/( ), since

nflr = Q(1), both SGD and SAM continue to grow. Given the learned C , SGD continues to overfit

the noise with O(log d), while SAM overfit the noise from F with O(log d) and from R with O(1).

See proof in App. D.3. Finally, we characterize the differed choice of a for SGD and SAM as SAM
learns signal more efficiently. We also reveal that o depends not only on forget-retain size ratio as
commonly conjectured, but also on the signal strength, and thus the dimensionality of the problem:

Lemma 3.4 (Signal-surplus of SAM under NegGrad). Under the NegGrad, for any @ where
lplla > (1), SAM exhibits faster signal learning on R: A3, kj . [ASCY k5 = O([l]13).

epoch

See proof in App. D.4. As a result, SAM relies on a more relaxed « threshold than SGD due to
faster signal learning. For SGD to achieve the same signal learning performance as SAM, we need
to scale up aS6P to satisfy a5P /oM = O(||p]|2). If ||@|2 > C1d*/*n~1/*Ps, and both SGD
and SAM achieve benign overfitting, then given the extra signal learning from R, SAM results in
faster  update and a surplus signal of ©(d'/?|R|~'/2P202) in each unlearning epoch.
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3.2 SHARP MINMAX

In Sec. 3.1, we showed that SAM is provably better on out of sample test errors under NegGrad, and
we empirically verify that SAM achieves better unlearning performance in Sec. 4. But how does
the refined characterization matter, given maintained test error conclusions? Jointly with empirical
observations, the altered behaviors of SAM on F motivates new unlearning algorithms. Our ex-
periments show that SAM+NegGrad attains higher forget accuracy than SGD+NegGrad, forgetting
less effectively. This finding forces us to reconsider the conventional view that overfitting is always
detrimental: while overfitting indeed harms generalization, it may be beneficial when the goal is
to remove specific samples from a model. Consequently, for abstract concept forgetting we con-
tinue to demand strong generalization; but for stringent scenarios—where exact sample removal is
mandated by privacy or compliance constraints—a model’s tendency to overfit can actually enhance
its unlearning of those exact points. The divergent behaviors under SAM+NegGrad motivates the
following new algorithm: we can split a portion of model parameters to purposefully overfit to F,
while leaving the rest to maximally maintain the model utility by leveraging SAM purely on R.
Motivated by how SGD with sharper minima tends to forget better, we propose Sharp MinMax to
intentionally optimize for sharper-than-SGD minima with the purpose of overfitting to forget signals
for unlearning. Inspired by Kim et al. (2023), we leverage sharpness maximization:

H‘lni/nﬁ(W,S) — |max L(W 4+ €,5) — L(W,S) |, (8)

resulting in a sharper landscape that harms the generalization by overfitting. We then apply weight
masking based on gradient magnitudes to divide our model into two during optimization. Specif-
ically, we pass F to f4 once, accumulate gradients for each parameter, and check top parameters
with smallest magnitudes cut off by a given percentage. Smaller gradient magnitudes suggest more
fitting to the forget samples during the pretraining stage, which demands more unlearning. We then
apply SAM on the retain model and sharpness maximization on the forget model. The retain model
with SAM is already characterized by Chen et al. (2023), while the forget model requires a stronger
signal strength than SGD to avoid harmful overfitting. See implementation details in App. E.2.

3.3 QUANTIFYING UNLEARNING DIFFICULTY WITH MEMORIZATION

We examine the effectiveness of unlearning ¢/ based on memorization, which sufficiently reveals the
difficulty of unlearning (Zhao et al., 2024). Feldman & Zhang (2020) define the degree to which a
sample is memorized by a pretraining A on example (x;,y;) from S as the memorization score:

mem(A,S,i) := f<—l?4r(3) f (W, x;) =y;] — f{_E(I"S\i) f (W, x;) =y, &)

where S \ ¢ denotes S with the sample (x;, y;) removed. Samples of high-memorization scores can
be atypical samples which model usually learns later in the training process after more updates to the
model than typical ones. Thus unlearning them would be harder and may require more iterations of
unlearning steps which may impact the model performance on the retain distribution. The converse
is true for samples of low-memorization scores. We can hence construct F of varying unlearning
difficulties based on memorization scores to comprehensively evaluate /.

4 EMPIRICAL STUDY

We conduct major experiments on CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Rus-
sakovsky et al., 2015) using ResNet-50 (He et al., 2016), and adopt pre-computed memorization
scores for from Feldman & Zhang (2020) to generate F of different difficulties with |F| =~ 5%|S]|,
denoted as [Fhigh, Fmid, Flow). For both pretraining and unlearning, we adopt SAM (Foret et al.,
2020) with p = 0.1 and Adaptive SAM (ASAM) (Kwon et al., 2021) with p = [0.1, 1.0]. We ensure
same optimal hyper-paprameters for each comparable [SGD,SAM] pair. See details in App. E.

Evaluation. We follow previous work (Triantafillou et al., 2024; Zhao et al., 2024) to measure the
tug-of-war tradeoff between forgetting and retaining of f;; based on accuracy Acc(f, D), with the
retrained model f 4(r) as reference:

ToW(fu) =(1 — (Acc(far), R) — Acc(fu, R))) - (1 — (Acc(fu, F) — Acc(far), F)))

10
(1 = (Acc(far)> Diest) — Acc(fu, Drest))), with test transforms on R, F. (10)
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Table 1: ToW (%) 1 of unlearning on ImageNet- 1K and CIFAR-100. For each (i, .A) pair, we report
ToW of each F and compute averages. SAM consistently improves current unlearning methods.

ImageNet | A =SGD | A =ASAM 0.1 | A =ASAM 1.0 | A =SAMO0.1
Unlearn/ | High Mid Low AVG | High Mid Low AVG | High Mid Low AVG | High Mid Low AVG
NegGrad 78.764 84.199 88.515 83.826 | 78.426 83.93 86.651 83.002 | 78.522 83.929 89.947 84.133 | 78.03 84.176 88.839 83.682
+ASAM 0.1 7852 84.113 89.188 83.94 | 78.366 84.07 89.098 83.845 | 78.762 84.267 90.579 84.536 | 78.083 84.062 89.973 84.039
+ASAM 1.0 | 78.966 83.380 92.174 84.843 | 78975 83.358 91.843 84.725 | 78.027 83.326 92.772 84.708 | 77.762 83.284 92.617 84.554
+SAM 0.1 77.898 82985 92.841 84.575 | 78301 83.04 91.722 84.354 | 77.388 82473 93429 8443 | 76.807 82.587 92.829 84.074
RL 74.598 86.617 86.714 82.643 | 74.857 86.462 86.192 82.504 | 74.317 86.813 87.630 82.92 | 74.055 86.715 88.594 83.121
+ASAM 1.0 | 74951 85.581 91.069 83.867 | 75.221 85.473 90.425 83.707 | 73.950 85393 91.516 83.62 | 73.579 85494 91.74 83.604
SalUn 44981 71.839 95.008 70.609 | 46.104 71.735 94.652 70.83 | 45814 72308 95.116 71.079 | 46.006 72.419 95.218 71.214
+ASAM 1.0 | 45998 71.554 95.628 71.06 | 46.938 71.268 95224 71.143 | 45856 71.695 95.924 71.158 | 46.358 72.034 95.791 71.394
CIFAR100 ‘ A =SGD ‘ A =ASAM 0.1 ‘ A =ASAM 1.0 ‘ A=SAM 0.1
Unlearn /| High Mid Low AVG | High Mid Low AVG | High Mid Low AVG | High Mid Low AVG
NegGrad 78334 83335 83.718 81.796 | 79.277 86.454 88.637 84.789 | 77.274 7859 85443 80.436 | 67.826 74.145 76374 7278
+ASAM 0.1 | 78.131 82.846 86.78 82.586 | 80.336 87.539 87.671 85.182 | 77.331 79.074 88.039 81.482 | 70.054 74.158 78.087 74.1
+ASAM 1.0 | 80.806 81.465 87.052 83.108 | 82.196 84.391 90.502 85.696 | 78.731 79.264 93.249 83.748 | 72.518 75.653 86.759  78.31
+SAM 0.1 81.331 75.059 94.151 83.514 | 82.86 7794 94179 84.993 | 74.704 70.898 95.898 80.5 65.080 66.089 95.078 75.416
L1-Sparse 63.448 68.686 53991 62.042 | 63.699 72775 6034 65.605 | 61.252 68.197 61.47 63.64 | 65.258 71941 59.014 65.404
+ASAM 1.0 | 66.903 75.554 58.967 67.141 | 66.213 77.119 66.697 70.01 | 65.117 73.754 62.517 67.129 | 63.051 74.556 65.117 67.575
SCRUB 58418 76.125 12708 49.084 | 67.163  79.09 10.823 52.359 | 57.816 73.176 58.483 63.158 | 43.246 68.433 17.368 43.016
+ASAM 1.0 | 50.313 73.353 97.631 73.766 | 60.515 80.204 97.508 79.409 | 48.569 73.09 97.776 73.145 | 18.137 61.618 97.933 59.229
RL 68.464 84.395 724 75.086 | 64518 80215 69.711 71.481 | 66.689 86.411 69.677 74259 | 64391 85481 70.55 73.474
+ASAM 1.0 | 69.952 86.779 74.409 77.047 | 66.909 86.557 69.375 74280 | 69.73 91.124 80.321 80.392 | 72.884 88.633 78.066 79.861
SalUn 69.926 83.056 71.73 74904 | 66.541 83377 7195 73.956 | 67.355 89.768 79.095 78.739 | 69.671 90.495 75.281 78.482
+ASAM 1.0 | 73.268 92.225 88.175 84.556 | 71.426 89.182 86.13 82.246 | 67.715 93.401 89.289 83.468 | 70.933 92914 86.477 83.441
Table 2: MIA (%) | correctness to F on CIFAR-100. We enhance each ¢/ with ASAM 1.0 and
observe consistent improvement.
‘ A =SGD ‘ A =ASAM 0.1 ‘ A =ASAM 1.0 A =SAM 0.1
Unlearn U ‘ High Mid Low AVG ‘ High Mid Low AVG ‘ High Mid Low AVG ‘ High Mid Low AVG
L1-Sparse 94733  63.233 8.6 55.522 | 94933 61.367 4.0 53.433 | 93.833  62.067 5.8 539 92.867 60.033 5.033 52.644
+ASAM 1.0 | 94.267 58.5 55 52.756 94.3 57.3 3.6 51.733 | 93.633 56.033 39 51.189 93.8 59.333 3.8 52311
SCRUB 55.433 18.6 32.6 35.544 | 64.733 23.1 71.633 53.155 | 54767 16.133  9.833 26911 39.3 9.833 563 35.144
+ASAM 1.0 | 46.467 14.867 0.1 20478 | 57.367 22.633 0.167 26.722 | 44.7 14.567 0.2 19.822 | 14.433  2.333 0.2 5.655
90.767 62.933 10.767 54.822 | 91.633 68.267 13.5 57.8 89.067 63.567 15.8 56.145 | 89.167 61.967 8.267 53.134
+ASAM 1.0 90.3 61.3 9.467  53.689 91.6 62.667 12.7 55.656 88.0 61.3 10.667 53.322 86.3 59.833 5.833 50.655
SalUn 83.433 59.233 7.333 50.0 84.533 59.1 11.167 51.6 79.3 54.667 8.8 47.589 | 81.467 53.133 6.867 47.156
+ASAM 1.0 79.1 51.833 4.5 45.144 81.7 54.167 6.633 47.50 | 74.967 49.5 4.2 42.889 | 75.633 47.667 4.067 42.456
NegGrad 86.933 37.233 2.167 42.111 | 88.867 40.2 1.733 43.60 | 82.167 32.1 1.8 38.689 | 74.667 36.967 3.433 38.356
+ASAM 1.0 84.5 30.1 0.733  38.444 85.6 30.1 0.7 38.8 81.233 24.533  0.533 35433 | 73.967 20.733 0.366 31.689

Thus, we encourage high retain/test accuracies and low forget accuracy. Note that our ToW differs
from that in previous work as we measure the raw accuracy difference instead of the absolute differ-
ence, because new unlearning methods that continue to fine-tune on R can outperform f () within
a conventional unlearning time 75. If using the absolute ToW, a higher test accuracy than f4(r)
will be penalized and the model performance cannot be properly measured.

4.1 SAM CONSISTENTLY OUTPERFORMS WITH BETTER TRADEOFF

We conduct unlearning with various unlearning algorithms ¢/ given different pretrained f 4. Tab. 1
reports ToW scores of i/ on CIFAR-100 and ImageNet. We observe that SAM consistently improves
all unlearning methods under different initializations f;{l, suggesting that SAM can universally
enhance prevailing /. While different / exhibit varied effectiveness to []—'high,}'mid, Fiow], we
observe that NegGrad achieves a better balance between three forget sets than other methods. We
include detailed [retain, forget, test] accuracies, further analysis and demonstration of statistical
significance in App. F. Upon close examination on those accuraices, we observe that despite SAM
outperforms SGD by better retain and test accuracies and thus better ToW, SGD can oftentimes
achieve lower forget accuracies. This aligns with our theoretical analysis where SGD overfits more
to F, and it also sparks our Sharp MinMax. Smaller experiments on CIFAR-10 and Tiny-ImageNet
in App. G yield aligned conclusions.

MIA correctness. We report correctness rates of membership inference attack (MIA) to F on
CIFAR-100 in Tab. 2. Lower correctness means better unlearning: forget samples behave more
like samples that were never in S. We find that SAM consistently improves data privacy while
unlearning more effectively. Note that NegGrad achieves better MIA correctness than RL; this is
because gradient ascent actively erases gradient signatures of F in the model. SCRUB (Kurmanji
et al., 2023) with SAM achieves best MIA performance.
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Figure 1: UMAP feature visualization of Fpign on CIFAR-100. We visualize inter-classes and intra-
class movements, and class 11 is the largest class in Fy;gn. For all classes, F are assigned to wrong
class clusters after NegGrad unlearning. For class-wsie, forget samples gather more tightly.

Our observations further generalize. We consider structured noise unlearning, where another
source of noise is introduced during unlearning. We adopt the glass blur and snow effect from
ImageNet-C (Hendrycks & Dietterich, 2019) to corrupt R and F of CIFAR-100, and unlearn with
NegGrad and Sharp MinMax. We record experiment results in App. G.3, and observe consistent con-
clusions where SAM outperforms under both corruptions. We also experiment on ViT-Small (Doso-
vitskiy et al., 2020) with AdamW (Loshchilov & Hutter, 2017) on CIFAR-100 in App. G.4, with
NegGrad and Sharp MinMax. We continue to observe promising improvement by adding SAM,
with significant increase of ToW on Sharp MinMax.

4.2 CONSTRAINED OVERFITTING BENEFITS UNLEARNING

Table 3: ToW (%) 1 of Sharp MinMax on ImageNet-1K and CIFAR-100. Comparing with Tab. 1,
Sharp MinMax achieves new best ToW performance.

TmageNet | A=SGD \ A—ASAM 0.1 \ A—ASAM 1.0 \ A—SAMO.I

Unlearn{ | High Mid Low AVG | High Mid Low AVG | High Mid Low AVG | High Mid Low AVG
SGD 73.357 80.881 86.334 80.191 | 73.418 80.784 84.378 79.527 | 73.103 81.105 86.402 80.204 | 73.052 80.913 85.517 79.827
ASAMO.1 | 78.066 87.914 87.338 84.44 | 79.077 87.4 86.953 84.476 | 70.148 88.039 87.554 81914 | 78.529 87.642 86.668 84.28
ASAM 1.0 | 86.658 87.345 89.694 87.899 | 86.166 87.192 89.138 87.498 | 86,915 87.27 90.142 88.109 | 86.272 87.076 90.064 87.804
SAM 0.1 86.463 86.755 90.005 87.741 | 85511 86.635 89.852 87.333 | 86.849 86.722 91.111 88.227 | 85.712 86.486 90.207 87.468

CIFAR100 | A =SGD | A =ASAM 0.1 | A =ASAM 1.0 A=SAM 0.1

Unlearn/ | High Mid Low AVG | High Mid Low AVG | High Mid Low AVG High Mid Low AVG
SGD 70.7668 76.692 82.853 76.771 | 72.137 77.864 81.847 77.282 | 65.925 74.526 80.127 73.526 | 60.478 71931 73.843 68.751
ASAMO.1 | 78.895 96.027 83473 86.132 | 84.968 96.451 82.883 88.101 | 81.825 93.786 87.151 87.587 | 72.897 80.104 86.659 79.887
ASAM 1.0 8227 94913 86.504 87.896 | 77.576 99.422 85.894 87.631 | 84.521 87.761 84.381 85.554 | 76.037 83.633 77.461 79.044
SAM 0.1 90.578  90.960 92.494 91.344 | 91.695 95.543 91.508 92.915 | 88.664 88.646 93.163 90.158 | 85.195 78.286 90.963 84.814

We present ToW of Sharp MinMax and compare to Tab. 1. Compared with NegGrad and other meth-
ods, Sharp MinMax further improves the unlearning capabilities across all settings by a noticeable
margin, especially on Fpign, and SAM 0.1 achieves ToW > 0.9 for most settings on CIFAR-100.
The effectiveness of Sharp MinMax assures our assumptions about overfitting for sample-specific
unlearning, providing new insights for designing future unlearning algorithms. By constraining
overfitting to only a small portion of model parameters which are most salient to /', Sharp MinMax
effectively boosts unlearning performance.

4.3 QUANTITATIVE ANALYSIS AND VISUALIZATIONS

Measuring entanglement. We measure the entanglement between R and F before and after un-
learning. At a coarse level, we implement variance-based entanglement from Goldblum et al. (2020);
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Table 4: Entanglement | between JF and R of different memorization levels given models based on
SGD and ASAM 1.0. While Ey,, is hard to conclude a comparison between SGD and SAM across
different U/, SAM shows less entanglement both before and after unlearning than SGD by Ey, .

SGD ‘ Variance Ev,, ‘ Wasserstein Eyy ‘ SAM ‘ Variance Ev,, ‘ Wasserstein Eyy

Model High Mid Low AVG High Mid Low AVG | Model High Mid Low AVG High Mid Low AVG
Pretrained  30.5 9528 3239 5272 59.58 663 63.13 63.0 | Pretrained 29.56 88.43 2891 4897 5586 61.74 59.84 59.15
-per class 25 671 251 391 5121 57.1 59.64 5599 | -perclass 2.88  6.66 271 408 4545 4988 5246 49.26
NegGrad  18.87 37.16 22.12 26.05 5124 5299 56.12 5345 | NegGrad 17.78 3749 2447 2658 49.87 5236 5493 52.39
-perclass  0.56 1.8 269 1.68 3522 4691 5593 46.02 | -perclass  0.66 2.03 2838 1.86 3642 4471 50.83 43.99
MinMax 17.7  38.03 21.51 2575 51.12 537 56.77 53.86 | MinMax 16.35 32.07 20.75 23.06 5126 51.8 5508 5271
-perclass  0.69 241 227 179 3841 4957 57.15 4838 | -perclass 049 152 297 1.66 33.65 44.56 5255 43.59

Average Across Memorization Levels Mem =5 Mem = 3 Mem =1
12 10
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Figure 2: As «a decreases, NegGrad puts less weight on retain signals and learns more from F,
leading to harmful overfitting. SAM exhibits more tolerance to insufficient retain signals, while
AU = SGD collapses the fastest. Note that ToW starts failing before o = |R|/(|F| + |R|),
implying more factors affecting « threshold as we point out.

Zhao etal. (2024): AR, F. ) = (thy Lier (bi— 1)+ 1k e (65— 1))/ (1 — 1)+
(kr — p)?), where ¢;, ¢p; denote sample embedding, pur, pr denote mean embedding of R, F,
and p denotes mean embedding over R U F. We also compute the class-wise entanglement and
report weighted averaged ES; However, Ev, assumes good/convex shapes of clusters and relies
heavily on cluster means. Inspired by Optimal Transport literature, we propose a refined geometry-
aware entanglement based on Wasserstein distance to measure the separation of retain and forget
features, E{}l,lp and ECISP, which computes the cost of transferring one shaped distribution to another
point-wisely. From Tab. 4, we observe that both SGD and SAM unlearning have decreased entan-
glement with ES < EA'. While Evar cannot further differentiate, we observe that SAM achieves
better Eyy, than SGD at all levels. Fig. 1 visualizes the feature space of A, U/ = ASAM 1.0 and
A,U = SGD on Fyigh. For all classes, we observe forget samples are assigned to wrong class clus-
ters after NegGrad. For class-wise, we visualize the largest class in Fpen and observe forget samples
to gather more tightly. See App. H.2 for complete visualizations.

Reducing retain signal. We verify Lemma 3.4 by reducing « in NegGrad. Fig. 2 shows ToW
changes as « decreases for various .4, pairs at different memorization levels on CIFAR-100. We
observe that A,U = SGD fails the fastest and hardest, while A,U{ = ASAM 1.0 exhibits the best
resilience. Also note that for CIFAR-100, |R|/(|F| + |R|) ~ 0.93, but unlearning starts to fail at a
higher a.. This verifies our claim that o depends more than retain-forget ratio.

Loss landscape. We visualize loss landscapes of SGD and ASAM 1.0 by perturbing original model
along two directions with filter normalization (Li et al., 2018). While SAM unlearning generally
keeps flatter landscapes, we observe intriguing phenomena which indicate that unlearning might be
an implicit regularizer. See full visualizations and more details in App. H.1.

5 CONCLUSION

In this paper, we provide a refined characterization of SAM under NegGrad unlearning, and the-
oretical insights on bounding and choosing the weight factor to balance retain and forget signals.
Extensive studies verify our analysis and reveals more underlying properties of SAM that are de-
sired for unlearning. Based on our rethinking of overfitting, we also propose a new algorithm which
further pushes the boundary of sample-specific unlearning. Our theoretical and empirical findings
shed light on future design of unlearning algorithms.
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A RELATED WORKS

A.1 MACHINE UNLEARNING

A wide variety of unlearning algorithms have been proposed to erase the influence of specific data in
the pre-trained model. Basic approaches involve finetuning on retain set to unlearn the forget sam-
ples with catastrophic forgetting, randomly labeling forget set to force the model to ignore the noisy
forget samples, and explicitly “learning to unlearn” from the forget set via gradient ascent (Golatkar
et al., 2020; Graves et al., 2021; Warnecke et al., 2021). Recent work pushes the boundaries of each
genre with more advanced tools. L1-Sparse (Jia et al., 2023) finetunes on retain set with L1 penalty
to improve unlearning with sparsification, NegGrad and SCRUB (Kurmanji et al., 2023) combines
gradient descent on retain set and gradient ascent on forget set to jointly update the model, Influence
Unlearning and Saliency Unlearning (Izzo et al., 2021; Fan et al., 2023) aim to find model parameters
which are important to the forget set for more effective unlearning while preserving model perfor-
mance. Theoretical work in unlearning draws insights from differential privacy and characterizes
distributional closeness in (¢, d)-language. Sekhari et al. (2021) studies unlearning with second-
order update which computes Hessian inverse. Langevin Unlearning (Chien et al., 2024) studies
approximate unlearning with privacy and efficiency guarantees based on projected noisy gradient
descent. Unlearning also extends to generative vision and language tasks, addressing privacy and
safety concerns, erasing concepts, and aligning with human preference (Ko et al., 2024; Wang et al.,
2024; Zhang et al., 2024; Scholten et al., 2025).

A.2 SHARPNESS AWARE MINIMIZATION

Sharpness-aware minimization (SAM) perturbs the model within a ball neighborhood to maximize
the loss. Since perturbations in sharp regions result in higher penalties, SAM learns to avoid sharp
landscapes and improve generalization with flatness. Recent work improves SAM’s flexibility and
efficiency. Adaptive SAM (Kwon et al., 2021) introduces scale-invariant adaptive sharpness to ad-
dress parameter re-scaling sensitivity. GA-SAM (Zhang & Lan, 2022) adapts the perturbation based
on gradient strength to improve generalization performance. Sparse SAM (Mi et al., 2022) shows
that adding sparsity in perturbations can preserve or even improve performance while accelerating
training. LookSAM (Liu et al., 2022) efficiently scales up SAM by only periodically computing the
inner gradient ascent. Theoretical studies of SAM focus both on the convergence analysis (Khanh
et al., 2024) and its dynamics (Bartlett et al., 2022). Chen et al. (2023) reveal the fundamental
mechanism of SAM that prevents memorizing noisy signals by deactivating neurons based on a
practical signal-to-noise analytical framework. This inspires us to investigate the intriguing proper-
ties of SAM in machine unlearning, where signals from the forget set can be naturally modeled as
the noise from the perspective of maintaining model performance with remaining samples.

A.3 DATA MEMORIZATION

Recent work aims to identify key factors that affect the difficulty of an unlearning task. Fan et al.
(2024) define and seek the “worst-case” forget set using a gradient-based adversarial approach. Car-
lini et al. (2019) investigates and quantifies the atypical-ness of data samples under a differential
privacy setting. Zhao et al. (2024) discovers that the more memorized the forget examples are, the
harder unlearning becomes. We agree with the empirical studies in Zhao et al. (2024) and study
the unlearning effectiveness under different levels of data memorization. Memorization literature
provides fundamental understanding and interpretation of learning dynamics and model behaviors,
characterizing generalization bounds and the interplay with data (Feldman & Zhang, 2020; Attias
et al., 2024). Recent studies also investigate the effects of memorization in large-scale scenarios
such as language models (Biderman et al., 2023; Prashanth et al., 2024; Li et al., 2025). Specifi-
cally, the memorization and influence scores in Feldman (2020); Feldman & Zhang (2020) provide
insights into evaluating unlearning algorithms and designing new approaches. In our study, we
have observed varied effectiveness of each unlearning method with respect to forget sets of different
memorization levels, and aim at designing unlearning methods which perform well on forgets sets
of all difficulties.
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B STATEMENTS

B.1 REPRODUCIBILITY STATEMENT

Experiment environment. Our code is built upon several open-source code bases ' and will be

released. We perform all experiments on single NVIDIA A100/H100. We fix random seed for
all data processing, saved precomputation (e.g., indices for data subsetting, weight masks), model
splitting, pretraining and retraining for reproducible observations. For unlearning parameters and
settings, we run experiments with multiple seeds to evaluate statistical significance, see App. F.1.

Theoretical Assumptions. Our theoretical analysis follows standard, existing assumptions of model
size, data size, effective information in the data (signal) and Gaussian noise in data, which were
previously stated in Kou et al. (2023); Chen et al. (2023). In addition to mentioned common as-
sumptions, our Assumption D.1 also assumes conventional unlearning schemes: cross-entropy loss,
ReLU activation, clean labels and reasonable size of forget set (< 1/2 trainset size).

B.2 LLM USAGE STATEMENT

We use GPT to fix grammar and polish short phrases to sharpen our expression. We also use GPT
as a smart search engine to gather recent work of interest and summarize existing bug fixes. Zero
LLM usage for any core component of our work, including data processing, implementation and
experiment, theory, etc., and LLM does not guide the development of any module. No “vibe coding”
and mathematical derivation from LLM.

B.3 LIMITATIONS AND FUTURE WORK

There are a few limitations based on the signal-to-noise framework, which on the other hand inspire
us for future studies. First, there are more interference which can be modeled as noise in machine
unlearning, such as the overlap between retain set and forget set. Using hard-cutoff or random
sampling to build F might split two similar samples into two opposite subsets, causing interference
and impacting unlearning effectiveness. We hypothesize that less overlap between R and F results
in more effective unlearning, and vice versa. With more identified and modeled noise sources,
another limitation comes from the uncharacterized behaviors when retain signals are weak for some
upper bound. Will SAM fail into harmful overfitting under this circumstance? Theoretical and
empirical studies under this situation might leverage the interplay between all signals, including
different noisy signals. From an empirical perspective, further analysis of the interactions between
« and model splitting ratio for Sharp MinMax can be developed, as both factors control the impact
of retain and forget signals. Last, we observe an intriguing “regularizing” effect of unlearning using
SGD via loss landscape visualization, which demands deeper investigation in future work.

"https://github.com/kairanzhao/RUN, https://github.com/davda54/sam,
https://github.com/OPTML-Group/Unlearn—-Saliency, https://pluskid.github.
io/influence-memorization/
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C TABLE OF NOTATIONS

Table 5:

Symbol Meaning / Notes Symbol

Meaning / Notes

x; € RP*?  Input image of sample 4, vectorized ~ y; € {1}
into P patches of dimension d (one
patch holds the signal y;¢ and
P —1 patches contain noise)

p € R? Universal signal vector shared & e R?
across samples
P Number of patches per input image d
m Number of convolutional filters per wj,» € R
class
W, Collection of filters {w; » };~, for W
class j
F(W,x) Two-class CNN output: fi(Wj,x)
fr1(Win,x) = f1(Wo,x)
a(’) ReLU activation function a'(1)
L(W,S)  Cross-entropy loss over training set Zé(t’b)
Wj(f;b) r-th filter of class j € {£1} aftert ng-f;.b )
epochs and b batches
¢ ](thB Learned noise coefficient from lell2, [[&ll2

sample ¢ on filter (4, r) at step (¢, b)
FCS Forget set whose influence is to be R=S\F

removed
ffgl Model after T epochs of training 52
by algorithm .4
11,75 Numbers of epochs for pretraining I,Zi,, If b
and unlearning
B Batch size n
sgn(-) Sign function returning +1 e
éﬁ.f;b) SAM perturbation applied to w;-f;b) T, P
0 Perturbation term: § = éf;b) for Ve, Ve,
SAM and 0 for SGD
Aeslﬁ,?hmj,r Per-epoch change of k;,, under Aesg,?hf-ej,r
SAM
Acc(0,D)  Classification accuracy model on ToW (fu)
dataset; 6, D are abbreviated terms
in Acc()
D data distribution Fhigh
mem(A, S, i) Memorization score: S\
Pr[f(8) = ] — Pr[f(S\ 1) = vi
(o)) Feature embedding of sample ¢ used pr, pr, @

in entanglement analysis

Binary class label for sample ¢

Noise vector for sample ¢, often
drawn from A/(0, o2I)

Dimensionality of each patch and
each convolutional filter

Weight vector for the 7-th filter of
class j € {£1}

Complete set of model parameters

Class-j output:

m P
o Yy o (Wi X))
Derivative of ReLLU used in
gradients

Gradient of the loss for sample ¢ at
epoch ¢, batch b

Learned signal coefficient for filter
(j.7) at step (£,0)

Euclidean norms of the signal and
noise vectors

Retain set used for continued
training

Model after 75 epochs of
unlearning by algorithm U/
Mini-batch indices from R and F at
step (t,b)

Learning rate

Weight in NegGrad balancing retain
and forget contributions

Perturbation radius in theory and in
practice used in SAM/ASAM

Gradient contributions for the signal
and noise in NegGrad updates

Per-epoch change of k. under
SGD

“Tug-of-war” metric combining
retain, forget and test accuracies

Forget sets of high memorization
difficulty; same for mid, low

Training set S with sample 4
removed

Mean embeddings of retain set,
forget set and all data
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Table 5: (Continued)

Symbol Meaning / Notes Symbol Meaning / Notes
E{L(R, F, f) Variance-based entanglement ESS Class-wise version of the
measure between R and F, given variance-based entanglement
model f
E”V“l}p, EClb Geometry-aware entanglement A U Training algorithm (e.g. SGD,
measures based on Wasserstein SAM) and unlearning algorithm
distance (all/class-wise) (e.g. NegGrad, RL, with default
SGD optimization, can be used with
SAM)
mg?;o) Initial signal coefficient for filter (jjorg) Initial noise coefficient for sample 7
(4, 7) on filter (j,7)
|Fl, IR Cardinalities of the forget and retain n Total number of samples (|S])
sets, which is size in our work
Diest Test dataset used for evaluation aSGD, aSM weight coeff for SGD and SAM,

respectively

D DETAILED FORMULATIONS AND PROOFS

We prove our theorems and lemmas based on previous theoretical results in Kou et al. (2023); Chen
et al. (2023). Specifically, we prove that with additional yet necessary conditions for effective un-
learning, the final test errors can be preserved, while we identify and characterize the changed inter-
nal dynamics. We begin by expanding and restating «,  update rule for NegGrad in Eq. 7:

2
Ii;z,,b—&-l) —ﬁgf}b) — _ngﬂz o Z gi(t,b)al (tb A, yie))
ieIZ?b
~(1—a) > e (Wi 4 Ay |
iesz
(tb41)  —(t,b) P—1)? 7
g g = 1P DT S e e (it + A6 - 1w =)
i€T],
(=) Y &30 (WD + A€ Ly =) |
i€zl
P—1)2 )
o) g = I D S e 3o (i + A, 6)) - 10y # 5)
i€T],
—(1—a) Y &3 Yo (WD + AED)) Ly # 9) |
i€zl
(11)

where A = A(t b) for SAM and 0 for SGD, C 13 C(t :b) (C(t -b) > 0) and

g;tvb) =G (¢, b) ]l({ (t:0) < 0) based on label agreement. We summarize several reasonable assump-
tions from prev1ous work in addition to our conditions which ensure unlearning to progress:

is split into ¢ .

Assumption D.1 Suppose there exists a sufficiently large constant C, such that the following hold:

1. Sufficiently large dimension d: d > C max{no, ?| ¢||3 log(T™*), n? log(nm/5)(log(T*))?},

for some T* = Q(n~'Bmd~'P~%¢,?).
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2. The size of S and the CNN width satisfy n > C'log(m/d), m > C'log(n/J).
3. The signal strength satisfies ||¢||3 > Co2log(n/é).

4. For the Gaussian noise initialization, oo < (C max{c,d//n, \/log(m/d) - ||¢ll2})~

5. The learning rate ) satisfies n < (C max{oﬁd?’ﬂ/(nzmm), old/n})~?

6. Assume cross-entropy loss: {(z) =log(1 + exp(—z)) = ¢/ = —1/(1 + exp(z)).

7. Assume ReLU activation.

8. Assume all clean labels and F signals do not dominate: o > |R|/(|F|+|R|) := 8 > 0.5.

We then obtain several proven quantities from previous work, which are achieved during pretraining
and can be leveraged at the start of unlearning:

>y Z;tl i/mgf)r, = O(SNR?), for the signal-to-noise ratio SNR = 7(1)7”;‘(‘;\/3

« Cw Q(n) = O(nlog(T*)) = O(n), for some T* = Q(n~' Bmd~'P~20,?).
*« max;,.; |§§,73‘7i\ = max{O(y/log(mn/s) - ooo,V/d), O(y/log(n/8) log(T*) - n/\/d)}.

(T7)

* K, = O(R), where & = n - SNR”.

D.1 PROOF TO THEOREM 3.2

Under NegGrad, we want to predict retain samples in R correctly while we count correct predictions
in F as errors, yielding same bounds for IP’(xw)NR(yf(W(t), x) < 0) and ]P’(x,y)w}-(yf(W(t)7 x) >
0) based on inverse objectives. However, when considering the test error on the model that is jointly
updated by gradient descent on R and gradient ascent on F, we still measure the error rate by wrong
predictions. In other words, fitting forget samples will reduce the generalization performance. We
can decompose the test error as follows:

Px,y)~D (y # sign (f (W(”,x))) = Pl y)~D (y f (W“),x) < 0)
Pixayp (uf (WO,x) 0, (x,9) € R) +Pryyon (3 (WO, x) <0, (1) € F)
=B Pixyyor (0 (W,x) <0) + (1= ) Baypr (4] (W“), x) <0)
=B Py (yf (W(t),x) < 0) Y (1-5)- (1 — Pregyor (yf (W(t),x) > 0)) .

Note that in practice, R and F come from training set S. During inference and evaluation, we
convert the data augmentations of R, F to test transforms, thus measuring proxy-test errors on R-
like and F-like samples. To bound the test error, first decompose y f (W () x) into signal and noise
learning of both positive and negative classes, considering A = 0 for SGD:

yf(W(t)7X) *ZW[ << JT’W>>+”(< JT’£>>}
LS () - v (ne))] o
LS o (o)) 0 ()]

Remark D.2 The following proof process for bounding P(x ,)~r (yf (W®), x) comes from Kou
et al. (2023). We include it here for readability, since we will leverage the results when combining
R and F in the end, as well as make adaptations for proving Theorem 3.3. Our results benefit from
previous work as we consider the unlearning process as an extension of the second stage in Chen
etal. (2023).

12)
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We begin by two lemmas that bound the signal, noise norm, and the related inner products:

Lemma D.3 (Lemma B.4 in Kou et al. (2023)). Suppose that § > 0 and d = Q(log(6n/d)). Then
with probability at least 1 — 0,

0pd/2 < ||&l; < 30742,
(&, &)| < 207 - \/dlog (6n2/6),

(&, )| < llpll20p - v/210g(6n/9),
foralli,i' € [n].

Lemma D.4 (Lemma B.5 in Kou et al. (2023)). Suppose that d = Q(log(mn/d)),m =
Q(log(1/8)). Then with probability at least 1 — 4,

2
ota2 < ||wioO|| < 30tds2,
(w22, 0)| < V2log(12m/8) - oo le,
‘<w§?r’0 ,€i> < 2y/log(12mn/d) - ooo,Vd,
forallr € [m],j € {£1} and i € [n]. Moreover,
wollela/2 < ma - (wii”, ) < v/2108(12m]0) - ool

ooopVd/4 < gﬁr)f]j . < @, 0),£z> log(12mn/d) - ooo,Vd,
forallj € {£1} andi € [n].
Plug in the weight update decomposition in Eq. 2, we can first bound the inner product for j = y:
<$%wﬁ (w0, ) + k()

+72Cyrz||£lH2 E’my(p +7ZC;2ML”£ZH2 <£’L7y(p>

210%(12771/5) aollepllz + )

2log(6n/0
—i“)g””-apnsong o2d2)” [ % +Z|gym

3

P—1

i=1

= — 0 (Viog(m/d)allellz) + 1) — © (VIog(n/3) (Poyd) " llell2) - © (SNR™?) - (1)
=~ 6 (Viog(m/) (o) Vallell2) + [1 = © (Viog(n/0) - Poy/llellz) | ")

=6 (s
(14)

where the inequality is by Lemma D.3 and Lemma D.4; the second equality is obtained by plug-
ging in the coefficient orders we summarized at the beginning of the section; the third equal-

ity is by o9 < C~'(0,d)"'y/n in Assumption D.1 and SNR = ||p||2/((P — 1)o,V/d). The
fourth equality is by n() = O(R), where & = n - SNR®.  Also +/log(n/d) - 0,/|l¢ll2 <
1V and \/Toglm]0) (opd) " Villgla/F = v/loalmiBlo/(Villpla) < /oalmi®)m -
1/(y/Clog(n/é)) < 1/(C+/log(n/é)) holds by [|¢[|3 > C - 02 log(n/d) and n > C'log(m/d) in

Assumption D.1, so for sufficiently large constant C' the equality holds. Similarly, we can show that
<W£tz!,r’ y(p) @(Kg(;t)7> < 0Oforj #y.

Next denote g(§) as > . o((w (_tl)! &) Since £ ~ N(0,02I), we can leverage the Gaussian con-
centration bound for z > 0:

cx?
P(g(§) —Eg(€) > ) <exp <2> ) (15)

o3 llgllEip
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where c is a constant. To calculate the Lipschitz norm, we have

o (40) - oo (5,€))

o (w6)) = (w6 s

(g€ =2,
r=1

The first inequality is by triangle inequality; the second inequality is by the property of ReLU the

NE

l9(&) —g (&) =

\3
Il

—
_

ﬁ
Il
-

e €l

I
—

r

last inequality is by Cauchy-Schwartz inequality. Therefore, we have ||g||Lip < > 1 ||w

|27

—Yy,r
and since <W(_t)ym,£> N(0, ||W_yr|| 07), we can get
-3 il 5
2o ((w)) - S N T
p— 2T 2m
Then, we seek to upper bound the 2-norm of W;Z First we have
2
S &l - &
=1 2
=3O el Y 63 15 (6 )
7,751 v112 ral T'LQ t1ll2 22112 117 S22
i=1 1<i) <iz<n
diagonal off-diagonal
<4072~ 12 ¢ 2 60| - (160, 2a72) - (202 /dlog (6n7/)
1<21<12<n
_ o t t (18)
=40, %d" 12 ¢\") 2 + 320, 2d7%/%\/log (6n2/5) < J”) <§3l2

(052d~" Zc]’ 240 (0,272 (i\(ﬁ?,
=1
< {@( ~2q1 *1)+€)(o;2d*3/2)} (Z]cﬁ%
@( 2d- lnfl (i ]M>2.

)

(t)

—jrz

>2

The first inequality is by Lemma D.3; for the second inequality we used the definition of ¢, ¢; for

the second to last equation we plugged in coefficient orders. We can thus upper bound the 2-norm
(t)

ofw

|, < s H + ) ellz!

t —
Oy
=1

2

- lellzt + 0 (Ploy a2 Z &0 a9
() $2.
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where the first inequality is due to the triangle inequality, and the equality is due to the following:

() “1
K-
g7 el 5 = o) (P—lgpd1/2n1/2||<p||glsNR2)
O (P-loytd-1/2n-1/2) . 30 € 20)

=6 (P10, a7 20 2 glle) = 0(1),

based on the coefficient order Y, C Py / (t) O(SNR™?), the definition of SNR, and the con-
dition for d in Assumption D.1. Slmllarly,

et

: © (70i)
O (P-loy'd-1/2n-1/2) .Eyzlzgfi)i O (P-1oy d-1/2n=1/2) . 1 1C§tiz 1)
=0 (Paoapdn_l/Q) =0(1),

based on Lemma D.4, the coefficient order ) . ; ( i = §2(n), and the condition for g in As-
sumption D.1. Then we can give an analysis of the followmg key component:

S ((wihwe)) o (3, #ii))
(P= 1o, 7 ||wW0 |, @ (@) 5, 3L (22)

=0 (@/2n!2SNR?) = © (n'2|l 3/ (P202d"/))

Then for |||, > C1/*n=1/4Pg,d'/* for some large constant C}, we have

(23)

S o ((wiwe)) - L2 ”%iuw

T

Upper bound. Now plug in previous results to obtain

Pl (1 (W013) £0) <Py (190 o (4,:6)) 2 S (i)

T T

=P(x )~ (g(ﬁ)—Eg(£)>1/(P—1)Z ((wihve)) - ZH e )

o | IE e ((wih)) - (opNiTr)z W)
L 012’ (ZT 1H Wy 2)
—exp | —c Z’U(<W§2”W>) —1/V2r
(P—l)UpZ;n1H (jz/r 9

5o ((wikve)) i

m t
(P =), X7 ||w,

<exp(c/2m)exp | —0.5¢

2
(24)
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The second inequality is by Eq. 23 and plugging ||g||rip < Y1) ||w(,t;r|\2 into Eq. 15; the third
inequality is due to (s — t)? > s2/2 — t2, Vs, t > 0. And from Eq. 22 and Eq. 24 we have

>0 <<W§f3ﬂ,y¢>)

(P —1)ay, ZT:l Hw(jg);,r

e rleld
2r C(P—1)%o,d
v (el
- 201 (P —1)*opd

e (—rlels Y
Co(P—1)%0dd) ~ ©

P y)or (yf (W(t),x> < O) < exp(c/2m)exp | —0.5¢

2

A

(25)
where C' = O(1); the last inequality holds if we choose C > ¢C/; the last equality holds if we
choose Cy as 2C.

For the forget set F, we thus have

Py r (y f <W(t),x) > 0) <e (26)

Lower bound. Without loss of generality, let > mﬁtl = max {Zr ngt’)r, > lﬁ(j)l’r}. Denote

v=XA-3,1(y; = 1) &, where A = C:SNR? = Cr|o||3/ ((P — 1)02d) and Cr is a sufficiently
large constant. Since ReLU is convex, we have

(o) (o11) 2 (o)) )
o (<Wj(Lt2‘7 £+ V>) -0 (<W;(Ltl7 —€>) >0 (<W§t)r7 —£>) <w§f)r,v> )

Summing the above two, we have that almost surely for all &

7 (i€ rv)) = (i) o ((wilh —€4v)) o ((wilh -6))

7V> (28)
> A lz th)m — 2n+/log(12mn/6) - ooo,Vd — 5n*ar/log (6n2/5) /d
yi=1

27)

b

where the last inequality is by Lemma C.3 in Kou et al. (2023) and Lemma D.4. Additionally, since
ReLU is a Liptchitz, we also have that

7 (g v)) = (W €)) +o (W € +v)) =0 (W05, —6)

(®)
=2 ’<W—1ﬂ"v>’ (29)
< 2A lz g(_t)lm + 2n\/log(12mn/8) - ooo,Vd + 5n’ay/log (6n2/6) /d} .
yi=1
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Therefore, by plugging Eq. 28 and Eq. 29, we have that
g€ +v)—g(&) +9(=&+v) —g(-¢§)

> A Z Z thzﬁz — 6nma/log(12mn/d) ~000p\/g — 15mn?ay/log (6n2/0) /d

r y;=1

>(/2)- 33T, (30)

o y;=1

> )/2-6 (SNR™2 Zn(t)
> 406 Z K’(lt}w

where the second inequality is by Lemma D.1 in Kou et al. (2023) and Assumption D.1; the third
inequality is by >, CM i/ K f) , = ©(SNR™?). Finally, it is worth noting that the norm

MY 1(y=1¢|| =0 nlels ) < 060 31)
=16 = Piotd ) < 0007
i 2

where the last inequality is by condition |||y < C3d/*n~'/* P, with sufficiently large C5. Then
we present a Lemma which bounds the Total Variation (TV) distance between two Gaussian with
the same covariance matrix.

[vlle =

Lemma D.5 (Proposition 2.1 by Devroye et al. (2018)). The TV distance between N (O O’QId) and
N (v,0714) is smaller than ||v||2/20).

Finally, we can prove the lower bound for R:
IP>(x,y)~72 (yf (W(t)vx) S 0)

(z (5-6)) = X ((wiih€)) = Ko ((withowe)) =X (o “w»)
Z:U«W(_t‘z”“ >)_Z (<w<t ,5>) >CGmax{Z/€1r,Z/€ ”}),

(32)

where Cj is a constant, the inequality holds since if | ). a((wgfzn, )= >, O’(<W(f)17r, })| is too
large, we can always pick a corresponding y given £ to make a wrong prediction.

Let g(¢) = zro«w?l, ) = 3, o((w!),,€)), and denote the set @ = {€ | |g(€)] >
Csmax{) nﬁfl, Yok _1 T}} Thus we have

>0.5P (3.4 R (

Ply)or (y f (W(t),x) < 0) > 0.5B(Q). (33)

r ] r
Therefore, by pigeonhole principle, one of [€, —&, & + v, —& + v] must belong to 2, thus QU —Q U
Q — {v}U—-Q — {v} = R% Therefore, at least one of P(Q2), P(—Q),P(Q — {v}),P(-Q — {v})
is greater than 1. Note that P(—(2) = P(Q) and

By Lemma 5.8 of Kou et al. (2023), we have that } - .[g(j€ + V) — g(j§)] > 4C6 max; {Z ) }

P2 = P2 = V)| = [Pesso,021) (€ € D) — Pen(voa1,) (€ € )|
<TV (J\/ (0, led) N(v,aﬁId)) (34)
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where the first inequality is by the definition of TV distance, the second inequality is by Lemma D.5.
Hence, we have that P(Q2) > 1 — 0.03 = 0.22, and plugging this into Eq. 33, we get

Pl y)or (yf (W(t),x) < 0) > 0.5P(2) = 0.11 > 0.1. (35)

Like the upper bound, the derived lower bounds also applies to P ) 7 (y.f (W® x) > 0). Hence,
if |plle > C1d*/4n=4Po,,

LE(W,D) = Py (y # sign (f (W, x)))

=6 Prxyyor (uf (WT2,x) <0)+(1=8) - | 1 =Pioyyur (uf (W2x) >0) [ (36)
<er <er
= lim L(W'2, D) < eg =«
B—1

On the other hand, when 3 — 0.5, we have limg_,o 5 L(W72, D) < 0.5 + 0.5¢g — 0.5¢x = e.
Depending on the size ratio of R and F, € ranges from a very small constant to a minimally PAC-
learnable threshold.

For harmful overfitting where ||p||2 < C3d*/*n=/*Pg,,
LYYW, D) = Py yyop (y # sign (f (W', x)))

=6 Piyor (uf (W2,x) S0) +(1 = 8) - | 1 = P yyur (vf (W2,x) > 0) | (37
>0.1 >0.1
= élm LW D) >0.1.

On the other hand, when 3 — 0.5, we have limg_,o 5 £*(W72 D) > 0.05.

D.2 PROOF TO THEOREM 3.3

First we have the same decomposition for NegGrad:
LWz D) =P(x,y)~D (y # sign (f (W(t), X)))
=B Poyyr (0 (W) <0) + (1= 8) - (1= Piyyr (v (WO,x) > 0));

1 (702) T (o) (1)
L3 o (i) + 2 (o))
LS (o) - (6]

However, note that for (x,y) ~ JF, SAM gives up its denoising property. We first show this by
proving Lemma 3.1.

D.2.1 PROOF TO LEMMA 3.1

Proof. Consider extending Lemma D.5 in Chen et al. (2023) to the NegGrad setting by rewriting
<A(t ,b)

i+ €k > First we have the Frobenius norm upper bounded by the same quantity:

IVwLz, (WD) = laVw Lz, (WD) — (1 — a)VwLlzr, (WD) |1
< aIIVwﬁng(W N E+ (1= )| VwLzr, (WD) (39)
= |[VwLz,, (W) || < 2V2P0,\/d/Bm,
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where the first inequality comes from triangle inequality; the second equality holds because R, F are
split from S and come from the same D, thus having the same gradient norm; the second inequality

comes from the original bounds in Chen et al. (2023). Next we expand <A(t b) £k> under NegGrad:

(86 =g [Twema WO 3 52 605w (oo e 0

1€Lsp pE[P
.
=g | (W H o Y 360y (W) X)) (X €k
zEIR pE[P]

—(1—a) YN 6V g (W xi ) (i )

i€Z], pE(P]
(40)
Note that (x; p, &x) can be divided into three different terms:
I€kll; < 303d/2, if i = ko = &
|(%ip, &k = § [(&is €k)| < 205/dlog(6n/6), ifi#kxip =& (41)

[(vip: &r)| < llplly op\/210g(6n2/8),  if iy = yip

The upper bounds come from Lemma D.3. Based on Assumption D.1 and Lemma D.4 of Chen et al.
(2023), the ¢ = k term will dominate the upper bound and we can write

~(t,b) T 2 R
€, < —0.15a(P — 1)Cyo2d1l[k € T,
< g 5’“> mB - 2v2Po,\/d/Bm [ ( JChopdl] t3) (42)
+0.15(1 — a)(P — 1)Crondl[k € I7,]]

Thus, when k € IZ?,), we can preserve the original bound with additional a:

(€0,6.) < oo 43)
€jr s m\/>

Choosing 7 = C;”Pi% will cancel with <W§t2, £k> to deactivate the neuron. When &k € Itﬁ, the
entire (W (t D4 AEth), &) will remain activated:

0§<%f;b),£k><0w:><w§ff) &gy > (Wi &) 0. @

This fundamentally differs SAM’s behaviors towards unlearning F from behaviors towards learning
‘R as how SGD differs from SAM. For gradient ascent on F under NegGrad, we now know SAM
learns from activated noise products as much as SGD. The activation patterns are further utilized to
bound products and norms of the weight, signal and noise, which characterize the final test errors.
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Our task is reduced to bounding P )~ % (v f (W(t) , x) < 0), then use previous error bounds for
SGD in App. D.1 for P(x’y)N;(yf(W(t), x) > 0). The inner product with j = y can be bounded as

n

Z yrz |‘£Z||;2<€l7y90>

1 —
Ty 2 S €l (& ve)

i=1

S

> <W§,‘?37 y90> + k)
5 _
- VEROD o el (o2a/2) [Z Z 1
= (Wi ye ) + ll) — © (Viog(n/) - (Popd) ™" ||<p||2) 1O (SNR™?) - syl
= (W% o)+ [1 - © (Viog(n/o) - Py /llwlz)] i)
= (w0 ve) + 0 (x1) = 000),
(45)

where the inequality is by Lemma D.3; the second equality is obtained by plugging in the coefficient
orders we summarized; the third equality is by SNR = ||¢||2/(Po,V/d); the fourth equality is by
lell3 > C - P20 log(n/§) in Assumption D.1 for sufficiently large constant C; the last equality is

by Lemma D.7 of Chen et al. (2023).We similarly have (w'/}, yo) = —0(1) < 0.

C(t)

2,10

Denote g(§) as ), a((w(_t;,r, )). The results for noise learning from SGD in App. D.1 still apply:

9(¢) fjH O, e =€,

Eg(& \/EZH Sl (46)
2 n 2
2,1 — =(t)
S el & <o (rrata (Z )
i=1 2 i=1
We can thus upper bound the 2-norm of wy}” as:
n
0 t - _
[wia, < w2, + =52 etz Ol &
=1 2
< HW H + H(t) ||<P||51 + @ (P—lo_;ld—l/Qn—l/Q) Z ]TZ (47)

= @(00\/8) + 0 (P710;1d71/2n71/2) i Ciris

based on SNR = [|¢p[|2/(Po,Vd) and 37, CJ - 1/ (t) (SNRfQ), and the condition for d in

Assumption D.1, and also Hw = (O’O \f) based on Lemma D.7 of Chen et al. (2023). Then
2
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we have

2.0 (<W§f,)r, y¢>) o(1)
<P—w%2£4\%r 6 (o0vd) +© (P-ioy d-1/2n-12) - Y0 T
e(1)
(00\[)—1—0 (P~loy 'd=1/2n1/2a)

mn{Q( “Ld- 1/2) 0 (Papdmn*l/?a*l)}

(48)

Y

Y
—_

— Yo (kb)) - S ),

T

Upper bound. Now plug in previous results to obtain

Faar (01 (W) £0) < Focon (-0 Z 0 (.6 = o (wio0) )

T T
2)

=mw%RG@wEaazww—n§)(<9Mm» C;fﬂhﬁw
r 7’:1

Smp'cQAP—nizo«w$W¢»—@um?ﬂzZJhﬁmQY
L % (Zr 1 Hnyr 2)
®) 2
g |o [ B )
(P =)o, Xy [ W,

2.0 (<W§f3ﬂ,y<ﬁ>) i
(P~ 1oy X0y [w),,

<exp(c/2m)exp | —0.5¢

2
(49)

The second inequality is by Eq. 48 and plugging ||g||lLip < >y ||w7y ~||2 into Eq. 15, the third
inequality is because (s — t)? > s2/2 — t2,Vs,t > 0. And we can obtain

o (wihe)
(P~ 1oy X0y [w),,

P, y)or (yf (W(t),x) < O) < exp(c/2m)exp | —0.5¢

2

< exp (; — C'min {ogzd_l, Pagdn_la_g})
s
< exp (—0.50 min {UO_Qd*l, Paf)dnfloFZ}) =,
(50
where C = O(1), the last inequality holds since o2 < 0.5Cd 'log(1/e) and d >

2C~'P~'o,?na?log(1/€). Now we upper bound the test error £''(W”2 D). Depending on
the strength of the unified signal vector ¢, the unlearning of F can exhibit either benign or harmful
overfitting following SGD’s characterization, dividing error bounds into two cases:
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1. If ||||2 > C1d"/*n=1/4Pg,, we have benign overfitting on both R and F. Thus,

ctest(WT27D) — P(x,y)N'D (y ;é sign (f (WT27X>>>

:ﬁ : P(x,y)NR (yf (WTQ, X) S O) +(1 - 6) ' 1- Hj)(X,y)N]: (yf (WTZ,X) > 0)

<er <er
— lim L (W2, D) < eg =
B—1
(51)
As b — 1,

B8 — 0.5, |F|/n increases and more samples are to be unlearned, making the model per-
formance reduce to a minimally PAC-learnable guarantee. Hence, when 3 — 0.5, we have
limg_,0.5 L(WT2, D) < 0.5+ 0.5er — 0.5¢7 = e.

2. Q1) < ||plla < C1d"/*n~1/4 P, we have benign overfitting on R and harmful over-
fitting on F. Thus,

Ctest(WTg7D) P(x,4)~D ( # sign (f (W(t)’ X)))

=8Py (v (WO.x) 0) +(1=8) - | 1= Pieyyor (uf (WO, x) > 0)
<er >0.1
— lim L(W™2 D) <er =e.
B—1

(52)
Similarly, we have limg_,o 5 £'*(W72, D) < 0.5ex + 0.45 = €.

Remark D.6 (3-dependence of the e-bound). The overall test error
Efest(WTz,D) — B'P(x,y)NR (yf (W(t)7x) < 0)_’_(1_3)(1 — P(x,y)~]~' (yf (W(’%x) > 0))

can be considered as an affine function of the mixing factor (8, and so its achievable range runs
from the best-case retain error eg (as  — 1) up to asymptotically 0.5 (as B — 0.5)—the
trivial PAC-learnability threshold. Concretely, by choosing [ sufficiently close to 1, one drives
L (W2 D) arbitrarily close to the small “benign” error level ¢, whereas if 3 remains near 0.5
then L''(W™2 D) can approach 0.5, the worst-case “minimally learnable” error. Thus, all our
bounds interpolate smoothly between these two extremes via the single parameter 3, and we report
the most informative bounds in Theorem 3.2 and Theorem 3.3.

D.3 PROOF TO COROLLARY 3.3.1

Recall the update rule for k. For each epoch, the interference between retain and forget signals
can be measured as

IRI/B |71/ B

R
Yo Y 4w = 30 o X A ). 69
b

€T, €Iy,

Similar to Lemma 3.1, the expected gradient values between retain and forget samples should not

differ. Since we cycle the forget set to synchronously train with the retain set, updates from J has

been scaled up by % Hence,

IR|/B |F7|/B

B| X X A | <B| Y X A )| o0

lEIR ZEI}_
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Combining together, to expect &, to increase monotonically every epoch, we want

IRI/B |71/B

b b R b b
SIDIEDIAL(URRTIEDS <1a>'|f|' S L (W )| >0
ZGIR b ieI,fb
®| ®|
= a— (1 — >0=a> ————.
o= (=g ZFATR

(55)

D.4 PROOF TO LEMMA 3.4

By Theorem 3.3, SAM turns off noise memorization prevention mechanism when fitting F, which
leads to the same requirement on signal strength as SGD. The only difference between SAM and
SGD under NegGrad is the more effective learning on R. From Eq. 7 we have the per-batch update

of K;, onR as
n 90” b b
Akj, = H 200 ) V6 (Wi i), (56)
i€L],
Let g denote the batch-average magnitude of € 1(E:0) 51 ((wgtrb), yip)) for convenience. We can then
express per-epoch « update as
2
Aepochij,r = LWHQ&IRIQ (57)
m
Now, consider achieving benign overfitting on R only, where SGD requires [|¢|2 =
Q(d**|R|~/*Pc,) while SAM only requires ||¢||2 = (1). That being said, given a fixed univer-
sal ¢ for D and a choice of a,, we have SAM learning the retain signals faster than SGD:

SAM
Aepoch R 5,

SGD
Aepoch K% g

= O(d'?|R|72P%02) = O(l¢ll3). (58)

Hence, in order to achieve the same signal learning performance as SAM on R, SGD needs to scale
up o36P. Thus,

aSGD

oSAM

= O(d'2[R|7/2P%0}) = O(lle3), or a®P — oM = ©(|l]3). (59)

In general, since |R| = ©(n), we can characterize the gap between o>P and oM by O(1/d/n).

E IMPLEMENTATION DETAILS

E.1 EXPERIMENT SETUP

We conduct major experiments on CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Rus-
sakovsky et al., 2015) using ResNet-50 (He et al., 2016). We adopt pre-computed memorization
scores for these two datasets from Feldman & Zhang (2020) to generate F of different memoriza-
tion levels with | F| ~ 5%|S|. We have |F| = 3000 for CIFAR-100 and | F| = 60000 for ImageNet.
We sample high-memorization forget set Fuign by choosing | F| samples of highest memorization
scores from S, Fjow by choosing | F| samples of lowest memorization scores, and Fy,;q by choosing
| F| samples whose memorization scores are closest to 0.5. We also run experiments with randomly
sampled F,ng on Tiny-ImageNet and CIFAR-10 in App. G. We use RandomResizedCrop and
RandomHorizontalFlip as train transforms.

Pretraining and retraining. We pretrain on S and retrain on R with the same settings. For CIFAR-
100, we train for 77 = 200 epochs, use batch size 256, learning rate 179 = 0.1 with cosine annealing,
SGD with momentum 0.9 and weight decay 5 x 10~*. For ImageNet, we train for T; = 150 epochs,
use batch size 512, learning rate 779 = 0.25 with cosine annealing and 5 warm-up epochs, SGD
with momentum 0.9 and weight decay 2 x 10~5. For CIFAR-10, we train ResNet-18 for 73 = 50
epochs, use batch size 256, learning rate 790 = 0.1 with cosine annealing, SGD with momentum 0.9
and weight decay 5 x 10~%. We summarize the settings, test performance of different pretrained
models, as well as accuracies of retrain models in Tab. 6.
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Table 6: Differed settings of pretrained models and their test accuracies using different A (top), as
well as performance of retrained models w.r.t different F (bottom) for CIFAR-100 and ImageNet-
1K.

Dataset, Model | Ir+warmup Batch B EpochT W.Decay | SGD ASAMO0.1 ASAM 1.0 SAMO.1

CIFAR100, Res50 0.1+0 256 200 Se-4 77.23 76.0 78.05 77.85
ImageNet, Res50 0.25+5 512 150 2e-5 75.04 74.94 76.53 76.18
Retrain | High Mem | Mid Mem | Low Mem

Dataset, Model | Retain  Forget  Test | Retain Forget  Test | Retain Forget  Test

CIFAR100, Res50 | 99.964 33 74.96 | 99.981 57.5 74.14 | 99.956 1000  75.81
ImageNet, Res50 | 97.134 13.828 74.826 | 97.388 52.27 74.832 | 96.671 99.858 75.018

Unlearning. We conduct all unlearning methods for 75 = 10 epochs with the same batch size and
optimizer settings. For NegGrad and Sharp MinMax, we unlearn with constant learning rate 0.02.
We use o = 0.99 for CIFAR-100 and o = 0.989 for ImageNet accounting for its slightly smaller
|F|/|S| ratio. For model splitting, we empirically find that a small ratio for forget model benefits
ImageNet such as 5%, while CIFAR-100 suits a larger ratio such as 30%. For both pretraining and
unlearning, we wrap SGD with vanilla SAM (Foret et al., 2020) with p = 0.1, and Adaptive SAM
(ASAM) (Kwon et al., 2021) with p = [0.1, 1.0], while keep other hyper-parameters the same for
fair comparison.

E.2 SHARP MINMAX IMPLEMENTATION

Inspired by SalUn (Fan et al., 2023), we split the model into two and update using two separate
optimizer, SAM and shaprness maximization. We split the model by ranking the parameters that
are important to the forget set F based on the magnitude of the gradient of the parameters after
one pass on F, and choose the highest percentage where we have 5% for ImageNet and 30% for
CIFAR-100. Unlike SalUn, which essentially performs RL unlearning on the selected parameters,
we update both models using opposite optimization. SalUn also requires a larger part of the model to
fine-tune with noisy, label flipped F. When running Sharp MinMax and SalUn, we load the weight
mask corresponding to the loaded pretrained model for model splitting. We have summarized our
implementation for weight masking in Alg. 1, and Sharp MinMax in Alg. 2.

Algorithm 1 WeightMask

Require: forget loader, model, criterion, percent
1: for all (name, param) in model parameters do
2 gradients[name] < zeros_like(param)

3: end for

4: for all (image, target) in forget_loader do

5: loss < criterion(model(image), target)

6.

7

8

optimizer.zero_grad(); loss.backward()
accumulate parameter gradients into gradients
: end for
9: for all name in gradients do
10: gradients[name] < |gradients[name]|
11: end for
12: all_vals < cat ({flatten(v) | v € gradients.values()})
13: cutoff < quantile(all_vals, percent) > e.g., 0.1 = bottom 10%
14: return { name — (grad < cutoff) | (name, grad) € gradients}

E.3 UNLEARNING SETUP FOR PREVIOUS WORK

We compare with state-of-the-art unlearning methods with optimized hyper-parameter settings. To
our best knowledge, several previous methods are evaluated on ImageNet for the first time. We
apply SGD and ASAM 1.0 on each U/ and compare the performance between SGD and SAM. For
L1-Sparse (Jia et al., 2023), we use unlearn Ir= 0.02 and o = 1x10~*. For SCRUB (Kurmanji et al.,
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Algorithm 2 SharpMinMax

Require: x_retain, y_retain, x_forget, y_forget, model, criterion, mask, alpha, optimizer_retain, op-
timizer_forget
r_lossl < « - criterion(model(x_retain), y_retain)
r_lossl.backward()
optimizer_retain.first_step(zero_grad=True) > SAM first step
r_loss2 < « - criterion(model(x_retain), y_retain)
r_loss2.backward()
for all (name, p) in model parameters do
if p.grad then
p.grad < p.grad ® (1 — mask[name]) > mask out forget grads
9: end if

10: end for
11: optimizer_retain.second_step(zero_grad=True) > sharp min
12: f_lossl < —(1—a) - criterion(model(x_forget), y_forget)
13: f_lossl.backward()
14: optimizer_forget.first_step(zero_grad=True) > SAM first step
15: f_loss2 < —(1—a) - criterion(model(x_forget), y_forget)
16: f_loss2.backward()
17: for all (name, p) in model parameters do
18: if p.grad then

PRDIUN AR

19: p.grad < p.grad © mask[name] > update forget params only
20: end if

21: end for

22: optimizer_forget.second_step(zero_grad=True) > sharp max

2023), we use unlearn Ir= 0.004, msteps= 8, kd_-T= 4, § = 0.01, and v = 0.99. For RL (Graves
et al., 2021), we use unlearn Ir= 0.06 on CIFAR-100 and 0.02 on ImageNet. For SalUn (Fan et al.,
2023), we use the unlearn Ir= 0.06, 50% weight to finetune on CIFAR-100, and unlearn Ir= 0.04,
30% weight to finetune on ImageNet.

E.4 EVALUATION DETAILS

Membership inference attack. We adopted a MIA based evaluation from Jia et al. (2023). We train
a binary classifier using the retain set R and the test set Dy to distinguish whether a data sample
was involved in the training stage, based on the softmaxed outputs from the unlearned model. Then,
we feed the forget set F to the classifier to evaluate this unlearned model. We expect forget samples
to be classified as “non-training” data, and we evaluate the unlearning effectiveness based on MIA
correctness. A lower correctness (close to 0.5) indicates difficulty to distinguish and thus better
unlearning. This evaluation examines an unlearned model from a privacy perspective.

Entanglement computation. We compute both entanglement scores based on normalized embed-
dings of retain and forget sets from the penultimate layer of the model. We compute pair-wise
entanglement between each retain and forget embedding, either globally or within a class. For
variance-based entanglement Ev,., we directly follow Zhao et al. (2024) for implementation, and
then rescale the raw scores to [0, 1] based on the value range across global and class-wise scores.
For Wasserstein entanglement Eyy,, we randomly sample an equal number of embeddings from
retain and forget embeddings and build two uniform proxy-distributions. We then use existing op-
timal transport library to compute the transport distance (cost), outputting entanglement scores as
1 — distance. No clipping is needed as we observe all scores lie within [0, 1].

F DETAILED EMPIRICAL RESULTS

F.1 STATISTICAL SIGNIFICANCE

We demonstrate the statistical significance of our main empirical results by running each unlearning
experiment three times with different seeds. In Fig. 4 and Fig. 3, we report the 95% confidence
intervals (1 & 20) of all unlearning methods on ImageNet and CIFAR-100, which correspond to
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Tab. 1 and Tab. 3. Each single bar represents the mean over runs and has the mean ToW scores
marked on top of its error bar plotted by £20. We observe that SAM consistently improves all
unlearning methods with more noticeable results on CIFAR-100. For “All methods” subplots, we
highlight the largest improvement by applying SAM to each /. On CIFAR-100, we observe a
general larger variance of SGD based unlearning, especially for SCRUB. Despite that A=SAM
0.1 seems to provide a weaker pretrained model, Adaptive SAM settings can improve unlearning
performance more steadily with lower variance, which demonstrate that SAM unlearning is more
robust. Tab. 7 also records the means and variances of the “All methods” subplots for ImageNet and
CIFAR-100. These additional insights further strengthen our findings.

Table 7: Verifying statistical significance (x4 o) of main experiments on ImageNet and CIFAR-100.
Given various pretrained model with different A, we observe that SAM consistently improve base
unlearn methods ¢/ with higher means across multiple seeds. Moreover, we observe generally more
stable performance with SAM based on smaller variance on average.

ImageNet RL SalUn NG MinMax
Method SGD ASAM 1.0 SGD ASAM 1.0 SGD ASAM 1.0 SGD ASAM 1.0
A=SGD 82.9+03 83.9+0.2 | 70.6+0.1  71.0+£0.1 | 83.5+0.3 84.8+£0.0 | 80.2+0.1  87.9+0.0

A=ASAM 0.1 | 82.5+0.1 83.8+0.1 | 70.7+0.1  71.1+0.1 | 83.4+£0.3 84.7£0.1 | 79.7£0.2  87.5+0.1
A=ASAM 1.0 | 83.2+0.4 83.8+0.2 | 71.1+£0.0 = 71.24+0.0 | 84.1£0.0 84.6£0.2 | 80.1£0.2  88.0+0.1
A=SAM 0.1 82.9+0.2 83.7+0.3 | 71.2£0.0 71.4+0.1 | 83.6+0.1 84.44+0.1 | 79.9+0.1 87.8+0.1

CIFAR100 L1 Sparse Scrub RL SalUn NG
Method SGD ASAM 1.0 SGD ASAM 1.0 SGD ASAM 1.0 SGD ASAM 1.0 SGD ASAM 1.0
A=SGD 62.1+£14  67.3+0.1 | 56.5+14.1  73.6+04 | 742410 77.2402 | 76.1+1.5  83.840.9 | 82.8+1.1  84.0+0.9

A=ASAMO0.1 | 63.6£1.7 69.3+0.6 | 543+1.8  79.34+0.8 | 72.1£0.9 75.8+1.3 | 72.9+1.6 82.5+04 | 83.9+0.8 85.5+0.6
A=ASAM 1.0 | 64.2+£0.7 68.7+1.7 | 58.4£10.5 72.042.1 | 75.7£1.5 80.3+1.2 | 79.0£0.3  83.3+0.2 | 80.24+0.5 83.9+0.2
A=SAM 0.1 64.9+13 68.3+0.6 | 41.1£1.7 49.7£16.6 | 742+0.7 80.3£0.9 | 79.4+1.0 83.6+0.6 | 71.3+1.8 78.74+0.5

F.2 COMPLETE ACCURACIES

In Tab. 8, Tab. 9, and Tab. 10, we report complete results of retain, forget, and test accuracies for all
unlearning experiments, which are used to compute ToW scores in Tab. 1 and Tab. 3. As we have
mentioned in the main paper, we observe that SGD often achieves lower test accuracies, motivating
us to rethink the overfitting under a sample-specific unlearning scheme.

Table 8: Detailed accuracies of NegGrad on ImageNet and CIFAR-100.

ImageNet | A =SGD | A=ASAM 0.1 | A =ASAM 1.0 | A=SAMO.1
High Mem | Retain Forget  Test ToW | Retain  Forget  Test ToW | Retain _ Forget  Test ToW | Retain _ Forget  Test ToW
+SGD 88.766 25.148 71.756 78.764 | 88.131 24.1 70.878 78.426 | 89.649 2628  71.772 78.522 | 89.158 26.488 71.91 78.03

+ASAMO0.1 | 89.487 26.407 72.08 7852 | 88.640 24.77 70988 78.366 | 89.767 26.542 72236 78.762 | 89.816 27.422 72.328 78.083
+ASAM 1.0 | 90.804 28.398 73.506 78.966 | 90.399 27.522 7294 78975 | 91.232 29.862 73.58 78.027 | 91.121 30.208 73.77 77.762
+SAM 0.1 91.007 29.88 73.676 77.898 | 90.498 28.445 73.05 78.301 | 91.583 30.997 73.746 77.3838 | 91.328 31.578 73.964 76.807
Mid Mem | Retain Forget  Test ToW | Retain _ Forget  Test ToW | Retain _ Forget  Test ToW | Retain _ Forget  Test ToW
+SGD 88.771 56.87 71.414 84.199 | 89.265 57.832 71.562 83.93 89.80 58.622 71.812 83.929 | 89.312 58.27 72.248 84.176
+ASAM 0.1 | 89.56 58502 72.154 84.113 | 89.276 57.698 71.576 84.07 | 90.087 59.08 72.378 84.267 | 89.945 59.263 72.482 84.062
+ASAM 1.0 | 90.969 61.998 73.544 83.389 | 91.064 62.023 73.434 83358 | 91.427 62.757 73.82 83.326 | 91.505 63.078 74.046 83.284
+SAM 0.1 91.396 63.015 73.734 82985 | 91.015 62308 73.422 83.04 | 91.984 64367 74.014 82473 | 91.823 64.258 74.198 82.587

Low Mem | Retain Forget  Test ToW | Retain  Forget  Test ToW | Retain  Forget  Test ToW | Retain  Forget  Test ToW
+SGD 87.775 99.617 71.942 88.515 | 86.592 99.505 71.042 86.651 | 88.847 99.663 7241 89.947 | 87.847 99.625 72.228 88.839
+ASAM 0.1 | 88.251 99.643 72.198 89.188 | 88.296 99.635 72.044 89.098 | 89.293  99.7  72.658 90.579 | 88.553 99.69  72.776 89.973

+ASAM 1.0 | 89.903 99.818 73.844 92.174 | 89.704 99.808 73.69 91.843 | 90.432 99.79  73.896 92.772 | 90.042 99.813 74.166 92.617
+SAM 0.1 90.234  99.822  74.21 92.841 | 89.553 99.817 73.728 91.722 | 90.815 99.827 74.228 93.429 | 90.184 99.825 74.254 92.829

CIFAR100 | A =SGD | A =ASAM 0.1 | A =ASAM 1.0 | A =SAM 0.1
High Mem | Retain  Forget  Test ToW | Retain  Forget  Test ToW | Retain  Forget  Test ToW | Retain Forget  Test ToW

+SGD 92.929 129 68.17 78334 | 94.05 11433 66.68 79.277 | 94.533 15267 67.78 77.274 | 91.814 224  66.23 67.82
+ASAM 0.1 | 93736 13.467 67.71 78.131 | 94.852 11.633 67.32 80.336 | 94.633 15.333 67.82 77.331 | 93.674 229 67.94 70.054
+ASAM 1.0 | 96.748 15433 69.98 80.806 | 96.907 13.167 69.03 82.196 | 96.893 177 69.85 78.731 | 96.376 24.033 69.85 72518
+SAM 0.1 98.552 19 72.82 81331 | 99.193 174 7217 82.86 99.4 26467 7274 74704 | 99.24 36.767 73.49 65.08

Mid Mem Retain ~ Forget  Test ToW | Retain  Forget  Test ToW | Retain  Forget  Test ToW | Retain  Forget  Test ToW

+SGD 93.162 603  66.15 83.335|95.024 58433 6596 86.454 | 95519 69.2 67.3 7859 | 93.714 72233 6691 74.145
+ASAM 0.1 | 94.055 62.633 6697 82.846 | 95.005 58.133 66.85 87.539 | 95524 68.133 66.75 79.074 | 93.838 72367 66.95 74.158
+ASAM 1.0 | 96.781 69.533 69.81 81.465 | 97.16 654 6843 84391 | 97919 727  69.58 79.264 | 97.257 762 69.8  75.653
+SAM 0.1 98.938 80.133 72.18 75.059 | 99.007 76.133 70.87 77.94 | 99.448  85.1 72.59 70.898 | 99.169 90.033 729  66.089
Low Mem Retain  Forget  Test ToW ‘ Retain  Forget  Test ToW ‘ Retain  Forget  Test ToW | Retain Forget  Test ToW

+SGD 91.086 97.767 65.67 83.718 | 95312 98267 67.18 88.637 | 93.117 985  66.17 85.443 | 85307 96.933 62.63 76.374
+ASAM 0.1 | 92.736 97.767 673  86.78 | 94.676  98.5 67 87.671 | 94298 97967 67.27 88.039 | 86.902 969  62.92 78.087
+ASAM 1.0 | 92.824  97.8  67.53 87.052 | 96.267  99.1 68.94 90.502 | 97.883 99.533 70.59 93249 | 93.517 987  67.35 86.759
+SAM 0.1 97.89  99.333  71.31 94.151 | 98.712  99.7  70.89 94.179 | 99.26 99.667 72.06 95.898 | 98.695 99.633 71.75 95.078
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Table 9: Detailed accuracies of Sharp MinMax on ImageNet and CIFAR-100.

ImageNet | A =SGD | A =ASAM 0.1 | A =ASAM 1.0 | A =SAM 0.1

High Mem | Retain _ Forget  Test ToW | Retain  Forget  Test ToW | Retain _ Forget  Test ToW | Retain  Forget  Test ToW
+SGD 87.513 29.79 71408 73357 | 86.802 2842 70.692 73.418 | 88411 31423 72016 73.103 87.879  30.953 71.964 73.052
+ASAM 0.1 | 79.741 10.555 66.334 78.066 | 80.84185 11.222 66.894 79.077 | 73.491 8203 61.802 70.148 | 80.16741 11.032 66.828 78.529

+ASAM 1.0 | 87.993 15903 72.224 86.658 | 87.748 15.605 71.638 86.166 | 88.563 16.453 72.452 86.915 | 88.435 17.083 72.498 86.272
+SAM 0.1 88.297 16.705 72.48 86.463 | 87.537 16.098 71.612 85.511 | 89.056 17.405 72.812 86.849 | 88.468 17.92  72.674 85.712

Mid Mem ‘ Retain  Forget Test ToW Retain Forget Test ToW ‘ Retain  Forget Test ToW Retain Forget Test ToW
+SGD 87.089 58915 71.418 80.881 86.757 58372  71.1 80.784 | 87.217 59.095 71.734 81.105 | 87.461 59.677 71.848 80.913
+ASAMO0.1 | 86.936 50.585 71.38 87914 | 86.281  49.833 70.814 87.40 | 87.561 51.3  71.528 88.039 | 87.529  52.043 71.84 87.642

+ASAM 1.0 | 88.679 54.642 72.834 87.345 | 88.588  54.548 72.666 87.192 | 89.12 55377 73.018 87.27 89.092  55.733 73.192 87.076
+SAM 0.1 89.141 56.215 73.268 86.755 | 88.642 55303 7274 86.635 | 89.492 56.813 7347 86.722 | 89.758  57.657 73.792 86.486

Low Mem | Retain _ Forget Test ToW Retain Forget Test ToW | Retain _ Forget Test ToW Retain Forget Test ToW

+SGD 85.798 99.61 71.644 86.334 84.348 99.482 70.894 84.378 | 85.863 99.568 71.61  86.402 85.098 99.57 7145  85.517
+ASAMO0.1 | 86399 99.565 72.07 87338 | 86.236  99.562 71.814 86.953 | 86.644 99.627 72.104 87.554 | 85894  99.593 71.898 86.668
+ASAM 1.0 | 87.766 99.768 73.392 89.694 | 87.366  99.772 73216 89.138 | 88.159 99.722 73.412 90.142 | 87.837  99.765 73.718 90.064
+SAM 0.1 87.836  99.777 73.666 90.005 | 87.745 99.76  73.58 89.852 | 88.706 99.783  73.94 91111 | 87.974  99.792 73752 90.207

CIFAR100 ‘ A =SGD ‘ A =ASAM 0.1 ‘ A =ASAM 1.0 ‘ A =SAM 0.1
High Mem | Retain  Forget Test  ToW | Retain Forget Test ToW | Retain Forget Test ToW | Retain Forget Test  ToW
+SGD 92.298 20.8 67.86  70.767 | 95.098 22.167 68.42 72.137 | 92.564 254  66.35 65.925 | 87.195 25233 63.77 60.478

+ASAMO0.1 | 89.574 6.133  65.57 78.895 | 93.819 5.333 67.37 84.968 | 92.095 6.3 66.52  81.825 | 86.969 9.233  64.03 72.897
+ASAM 1.0 | 92.121  6.467 67.15 8227 | 88976 5.067 63.68 77.576 | 93.895 6.567 67.98 84.521 | 90.448 10.7 6571 76.037
+SAM 0.1 97.383 7.1 71.61 90.578 | 98.183  6.133  71.04 91.695 | 97.619 8.467  70.7 88.664 | 98.198 14.167 72.26 85.195

Mid Mem Retain  Forget  Test ToW | Retain Forget  Test ToW | Retain Forget  Test ToW | Retain Forget  Test ToW

+SGD 91.433 66 6579 76.692 | 91.633 63.367 64.39 77.864 | 92.11 69.4 6596 74.526 | 85714 62.6  62.55 71.931
+ASAM 0.1 | 91.16 427 6588 96.027 | 914 40233 64.11 96451 | 9526 512 66.74 93.786 | 88.074 55.867 63.61 80.104
+ASAM 1.0 | 92.586 469  66.81 94913 | 94.074 43.133 66.53 99.422 | 89.36 47.433 63.35 87.761 | 93.119 60.067 66.3 83.633
+SAM 0.1 97433  60.867 70.73  90.96 | 97.874 55.033 69.39 95543 | 98.6 64333 70.62 88.646 | 98.824 76.433 71.84 78.286
Low Mem Retain  Forget  Test ToW | Retain Forget  Test ToW | Retain Forget  Test ToW | Retain Forget  Test ToW

+SGD 89.579 97.6  66.09 82853 | 89.781 97.1 6436 81.847 | 88.605 97.833 64.28 80.127 | 81.488 94.467 61.63 73.843
+ASAM 0.1 | 89.026 95.067 65.12 83.473 | 89.874 96.033 64.47 82.883 | 93.748 97.167 66.17 87.151 | 92.967 97.433 66.65 86.659
+ASAM 1.0 | 91.931 96.567 66.74 86.504 | 92.819 97.467 66.02 85894 | 91.131 962  64.97 84381 | 85.014 953 6279 77.461
+SAM 0.1 96.129  98.033 70.13 92.494 | 96.829  98.7  69.06 91.508 | 97.624 98.567 69.85 93.163 | 96.652 99.033 68.98 90.963

G ADDITIONAL EXPERIMENTS

We provide additional experiments on CIFAR-10 and Tiny-ImageNet using randomly sampled for-
get set Frung. To diversify our experiment settings, we use ResNet-34 with ImageNet-pretrained
weights for our learning and unlearning on Tiny-ImageNet. Similar to our main setup, we pretrain
and retrain using the same settings, and we have summarized basic settings and baseline performance
in Tab. 11. Since Tiny-ImageNet has 100K samples, we set |Fra| = 6000 for Tiny-ImageNet.
Tab. 12 records detailed accuracies and ToW scores of various unlearning and pretraining settings.

G.1 CIFAR-10

We summarize detailed unlearning settings on CIFAR-10. For L1-Sparse, we use unlearn Ir= 0.02
and o = 1 x 10~%. For SCRUB, we use unlearn Ir= 0.004, msteps= 8, kd_T= 3.5, 3 = 0.01,
and v = 0.99. For RL and SalUn, we use unlearn Ir= 0.08, and use 50% model parameters for
SalUn. For NegGrad and Sharp MinMax, we use unlearn Ir= 0.02 and o = 0.99, and use 30%
model parameters for unlearning on F and the rest for learning on ‘R.

From the results in Tab. 11, we observe consistent improvement by using SAM except only two
cases for RL and SalUn with A = SGD. Surprisingly, Sharp MinMax is not the best algorithm on
CIFAR-10. By the nature of its design to overfit to forget signals deliberately, we hypothesize that
this approach might be aggressive for small-scale unlearning. We again observe SCRUB to be an
unstable algorithm which collapses when unlearning with SGD given A = SAMO0.1, while SAM
helps reduce variance and stabilizes SCRUB unlearning given various pretrained models.

G.2 TINY-IMAGENET

We summarize detailed unlearning settings on Tiny-ImageNet. For L1-Sparse, we use unlearn Ir=
0.002 and @ = 1 x 10~*. For SCRUB, we use unlearn Ir= 0.002, msteps= 8, kd_T= 3.5, 3 = 0.01,
and v = 0.99. For RL and SalUn, we use unlearn Ir= 0.015, and use 30% model parameters for
SalUn. For NegGrad and Sharp MinMax, we use unlearn Ir= 0.005 and @ = 0.99, and use 10%
model parameters for unlearning on F and the rest for learning on R.

From the results in Tab. 11, we observe consistent improvement by using SAM except few cases.
SCRUB performs more steadily than on CIFAR-10. While RL and SalUn perform well on other
datasets, they do not appear to be effective on Tiny-ImageNet.
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Table 10: Detailed accuracies of previous methods on ImageNet and CIFAR-100.

TmageNet | A=SGD | A=ASAM 0.1 | A=ASAM 1.0 | A=SAMO.1
High Mem | Retain Forget  Test ToW | Retain  Forget  Test ToW | Retain  Forget  Test ToW | Retain _ Forget  Test ToW
RL 88.536  29.857 72.02 74.598 | 88.663 29.622 71.95 74.857 | 88.975 30.59  72.04 74317 | 89.429 31.74 72.572 74.055

+ASAM 1.0 | 90.874 33.395 74.234 74951 | 90.615 32.668 73972 75.221 | 91.14 34.745 74298 7395 | 91.155 35332 74.522 73.579

SalUn 93.248 67.118 75.04 44981 | 93.016 65.807 74976 46.104 | 93.124 66.372 75418 45.814 | 92911 66.333 75982 46.006
+ASAM 1.0 | 93.123 66217 75496 45998 | 92.963 65.058 7528 46.938 | 93.134 66472 75.712 45856 | 92.855 66.032 76.172 46.358

Mid Mem | Retain Forget  Test ToW | Retain _ Forget  Test ToW | Retain _ Forget  Test ToW | Retain _ Forget  Test ToW

RL 88.785 54.653 71916 86.617 | 88.067 53.387 71.258 86.462 | 89.754 56.17 72.634 86.813 | 88.609 54.608 72.168 86.715
+ASAM 1.0 | 90.597 59.53 73.836 85.581 | 90.457 59.337 73.654 85473 | 90.993 60.35 74.078 85.393 | 90.902 60.402 74348 85.494
SalUn 93.174 77258 74.816 71.839 | 93.072 77.222 74728 71.735 | 93.078 77.118 75.382 72308 | 92.825 77.167 75.868 72.419
+ASAM 1.0 | 93.098 77.983 7547 71.554 | 92.969 77.947 75.154 71.268 | 93.143 78.058 75.724 71.695 | 92.797 77.805 76.222 72.034
Low Mem | Retain Forget  Test ToW | Retain  Forget  Test ToW | Retain  Forget  Test ToW | Retain  Forget  Test ToW
RL 85.745 98.603 71.162 86.714 | 85451 98.463 70.768 86.192 | 86.472 98.74 71.522 87.63 | 86.865 9895 7236 88.594
+ASAM 1.0 | 88.517 99.408 73.728 91.069 | 88.218 99.377 7332 90.425 | 88.985 99.457 73.758 91.516 | 88.963 99.507 74.072 91.74

SalUn 91.991  99.778 74.612 95.008 | 91.743  99.77  74.488 94.652 | 91.696 99.818 75.074 95.116 | 91.412 99.85 75514 95218
+ASAM 1.0 | 92.095 99.85 75224 95.628 | 91.882 99.818 74.992 95.224 | 91.967 99.857 75.676 95924 | 91.579 99.873 75.964 95.791

CIFAR100 ‘ A =SGD ‘ A =ASAM 0.1 ‘ A =ASAM 1.0 ‘ A =SAM 0.1
High Mem | Retain Forget Test ToW | Retain Forget Test ToW | Retain Forget Test ToW | Retain Forget Test  ToW

L1-Sparse 7476 5.267 6149 63.448 | 75426 5.067 60.89 63.699 | 73.969 6.167 60.17 61252 | 77.429 7.133  62.56 65.258
+ASAM 1.0 | 77.86  5.733  62.99 66.903 | 77.648 57 6229 66213 | 77.126  6.367 62.02 65.117 | 75.583 6.2 60.83  63.051

SCRUB
+ASAM 1.0

99.867 44.567 74.52 58418

99.793 35267 73.85 67.163
99.962 53.533 76.06 50.313 | 99.955 42.633 74.72 60.515

99.902 45233 7459 57.816
99.969 553  76.14 48.569

‘ 99.971  60.7 7647 43246
79.229 8367  60.7 644518‘ 8299 10933 61.92 66.689
|

99.971 85.567 77.23 18.137

81.069 10.833 60.82 64.391
89.324 137 6599 72.884

90.593 18.533  65.65 69.671
95.636  24.367 68.89 70.933

Retain  Forget  Test ToW
71.495 39.967 59.73 71.941

82.681 9.233 6295 68.464
+ASAM 1.0

SalUn
+ASAM 1.0

Mid Mem Retain  Forget  Test ToW | Retain  Forget  Test ToW | Retain Forget  Test ToW

‘ 84.012 9.7 63.88  69.952
|
L1-Sparse ‘67864 36.8 5797 68.686 ‘ 71.305 38.633 59.98 72775 ‘ 68.264 37.933 57.67 68.197

81.519 8.4 61.41 66.909 | 86.195 12 63.53  69.73

89.624 16.567 64.88 69.926‘86298 15467 6271 66.541 | 91.207  20.7 6433 67.355

94.557 209 6896 73.268 | 92.326 183 6594 71.426 | 94519 25.033 66.46 67.715

+ASAM 1.0 | 74.148 415 6196 75554 | 75.836  42.7 62.7 77119 | 74267 43.967 61.59 73.754 | 73.857 40.667 60.52 74.556
SCRUB 99.864  81.4 7429 76.125|99.876 769 7237 79.09 | 99.91 83.867 73.59 73.176 | 99.974 90.167 7578 68.433
+ASAM 1.0 | 99.974 85.133 7551 73.353 | 99.969 77.367 7424 80.204 | 99.981 85433 7556 73.09 | 99.974 97.667 77.13 61.618
+ASAM 1.0 | 81.688 387 63.54 86.779 | 81.686 37.333 623 86.557 | 85.674 387  63.65 91.124 | 84914 40.167 63.08 88.633
SalUn 82.383 40.733 60.46 83.056 | 82.4 40.9 60.9 83.377 | 89.581 45333 63.46 89.768 | 90.205 46.867 64.8  90.495
+ASAM 1.0 | 91.579 48.167 6623 92.225 | 88.71 45.833 64.15 89.182 | 94217  50.5 66.77 93.401 942 52333 6791 92914

Low Mem | Retain  Forget Test ToW | Retain Forget Test  ToW | Retain Forget Test  ToW

L1-Sparse
+ASAM 1.0 | 66.95 945 5924 58.967

SCRUB ‘ 17.81 32.6 1833 12708

Retain  Forget  Test ToW

67.229 94967 59.33 59.014
72.355 962 6246 65.117

23.038 437 2395 17.368
99.729  99.8  73.77 97.933

76.79 91.733 60.62  70.55

62.41  91.367 55.39 53.991 ‘68,667 96 60.25  60.34 ‘68,421 942 60.67 6147

73457  96.4 63.4  66.697 | 70.207  96.1  61.46 62.517

15.698 28367 15.87 10.823 | 66.324 90.167 56.04 58.483

+ASAM 1.0 | 99.683 999  73.61 97.631 ‘ 99.869 99.833 73.24 97.508 ‘ 99.64 99.8 737 91776
76.376 89233 61.34 724 ‘ 73.283 865 59.57 69.711 ‘ 73495 842  57.63 69.677

|
79.262  37.067 62.53 84.395‘75.757 31.733 5831 80.2I5‘8|.955 36433 61.21 86.411 ‘8I.905 38.033 61.48 85.481
|

+ASAM 1.0 | 78.286 90.533 62.59 74.409 | 73.881 873  59.08 69.375 | 82.695 89.333 63.53 80.321 | 83.483 94.167 64.12 78.066
SalUn 78.867 92.667 60.5  71.73 | 77.748 88.833 59.01 7195 | 83921 912 6239 79.095 | 82221 93.133 61.44 75.281
+ASAM 1.0 | 91205 955 6828 88.175 | 90.043 93.367 6547 86.13 | 93.812 958  67.11 89.289 | 91.848 95933 66.24 86.477

Table 11: Differed settings of pretrained models and their test accuracies using different A4, as well
as performance of retrained models w.r.t Fianq for CIFAR-10 and Tiny-ImageNet.

Dataset, Model | Ir+warmup Batch B Epoch T W.Decay | SGD ASAM 0.1 ASAM 1.0 SAMO.1 | Retain Forget  Test

CIFARI10, Res18 0.1+0 256 50 Se-4 93.02 93.26 93.7 93.38 99.943  92.567 92.49
TinyImgNt, Res34 | 0.003+0 256 200 le-3 62.1 62.77 62.74 63.87 99.985 59.383 61.69

G.3 UNLEARNING WITH STRUCTURED NOISE

We consider a noisy unlearning case where only a corrupted version of S is available, following
corruptions in ImageNet-C (Hendrycks & Dietterich, 2019) to apply glass blur and snow effect to
CIFAR-100 with medium severity for additional empirical verification, and report ToWs in Tab. 13:
We observe that SAM continues to improve base unlearning methods with even more clear margins.
This is because that structured noise applying to the images affects the dataset’s signal and noise
vectors (¢ and &;), causing a corrupted dataset with worse initial signal-noise ratio, but it does not
affect update dynamics and the gained results under our theoretical framework, as corrupted images
are still visually recognizable, and SGD still overfits more to the added noise.

G.4 SAM WITH ADAM AND VIT

We also verify that our observations generalize to different base optimizers and architec-
tures. We experiment CIFAR-100 unlearning using ViT-Small (Dosovitskiy et al., 2020) and
AdamW (Loshchilov & Hutter, 2017), and summarize our priliminary results in Tab. 14. For pre-
training, we use AdamW with starting Ir 0.0001, weight decay 0.05, and set patch size to 4 for
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Table 12: Detailed accuracies of previous methods on Tiny-ImageNet and CIFAR-10.

70.087 68.767 49.54 55.806

TinyImageNet | A=SGD | A=ASAMO.1 | A=ASAM 1.0 | A=SAM 0.1
Random Fiana | Retain  Forget  Test ToW | Retain  Forget  Test ToW | Retain  Forget  Test ToW | Retain  Forget  Test ToW
L1-Sparse 79.247 52233 49.61 74.669 | 82.722 54217 50.81 77.545 | 84.63 59.583 53.01 77.143 | 76.005 63.017 49.56 64.372
+ASAM 1.0 89.379 595 5437 82753 | 90.81 60933 5435 82.853 | 92.005 63.517 53.7 81.168 | 94.674 74333 5525 75.347
SCRUB 92.112 58.117 53.65 85.793 | 94315 60.75 54.58 86.425 | 96.268  66.5 55.01 83.457 | 99.801 88.233 58.99 69.101
+ASAM 1.0 97.965 57717 5694 94.881 | 98.941 61.833 58.13 93.095 | 99.521 68.333 57.66 86.975 | 99.962 97.267 61.05 61.704
64.504 63.233  46.59 52.668 | 67.506 66.433 47.49 53.849 | 70.309 69.883 48.16 54.424 | 75.016 735 49.21 56.397
+ASAM 1.0 69.356 68.733 49.22 55.043 | 73.517 72.033 5097 57.345 | 7588 75.617 50.38 56.384 | 81.006 79.683 50.94 57.632

SalUn ‘6‘)‘39 68.45 50 55.735 73.207 71.783 50.12 56.721‘82,877 81.467 5336 59.206

+ASAM 1.0 75.013 74333 52.65 58.042 | 77.101 75917 53.16 58.876 ‘ 81.039 79.233 52.89 59.248 | 88.021 87.417 54.81 58.998
NegGrad 84.286 47.867 50.51 83.499 | 87.031 48.467 51.45 86.662 | 86.575 522 51.28 83.148 | 99.979 99.167 62.51 60.706
+ASAM 1.0 90.907 5045 54.47 91.894 | 93.681 51.35 53.66 93.094 | 96.343 54.167 5431 93.902 | 98.031 62.767 5521 88.59
MinMax 81.8 52.833 51.14 77977 | 82.115 54.017 5091 77.209 | 81.418 55433 50.32 75.025 | 68.67 54217 4699 61.615
+ASAM 1.0 87.654 43.183 534 93.426 | 88.273 43.083 52.86 93.613 | 91.947 43.6 5337 97.617 | 94517 485 5372 96.466
CIFAR10 ‘ A =SGD ‘ A =ASAM 0.1 ‘ A =ASAM 1.0 ‘ A =SAM 0.1
Random Frang | Retain  Forget  Test  ToW | Retain Forget Test  ToW | Retain Forget Test  ToW | Retain Forget Test  ToW
L1-Sparse 86.467 82.967 8225 85.12 89.06 85.567 84.45 87.683 | 86.683 83.467 82.11 84.811 | 89.462 87.133 84.82 87.144
+ASAM 1.0 91.438 88333 87.23 90.352 | 91.674 87.767 87.24 91.087 | 90.938 88.7 86.94 89.268 | 90.886 88.633 86.43 88.792
SCRUB 90.767 86.033 86.27 90.739 | 68.205 67.367 66.75 63.466 | 80.193 78.933 7797 71.95 15.11 14.2 15 6.089
+ASAM 1.0 99.6 95.167 92.65 97.2 99.621 96.5 93.15  96.39 | 99.807 98.2 93.38  95.078 | 99.631 98.467 93.16 94.435
92.774 86.6 87.22  93.186 | 90.569 84.2 85.17 91.02 | 91.445 84.133 8581 92.591 | 88.736 82.533 84.12 89.524
+ASAM 1.0 93.295 87.733 87.66 93.138 | 93.262 87.233 88.31 94.187 | 95.098 89.033 89.44 95512 | 92.588 86.567 87.4 93.206

95726  87.6  89.02 97.052 | 9599 88733 89.35 96.598 | 96.612 89.867 89.86 96.668

SalUn ‘ 96.94 88.8  89.95 98.095

+ASAM 1.0 97.771 91.8 90.55 96.666‘ 98.24 91.867 9141 97917 ‘ 98.029 91.6 91.2 97757 | 98.055 92.833 91.37 96.755
NegGrad 97.724  93.933 90.46 94,487‘ 98.35 94967 91.33 94.931 ‘9&024 94267 90.92 949 ‘96,405 934  89.72 93.009
+ASAM 1.0 99.074 958 9239 95.83 | 99.248 96.133 92.04 95.332 | 99.219 962 9242 95.602 | 98.579 94.767 9197 95.964
MinMax 96.85 94.133  90.29 93.291 | 97.652 94.933 90.6 93.594 | 97.881 95.1 90.5 93.558 | 96.498 93.533 90.22 93.451
+ASAM 1.0 98.781 94.133 91.82 96.638 ‘ 98.602 94 91.79  96.565 ‘ 98.755 944  91.65 96.186 ‘ 97.981 93367 91.17 9597
Table 13: Unlearning with ImageNet-C corruptions on CIFAR-100.
Glass Blur A=SGD A=ASAM
Method High Mid Low AVG High Mid Low AVG
NG 67.760 78.824 75931 74.172 | 76.152 85.534 82.556 81.414
+ASAM 73.565 80.253 84.086 79.301 | 74993 86.567 86.296 82.619
SharpMinMax | 66.110 76.852 73.387 72.116 | 66.837 79.023 78.435 74.765
+ASAM 75.327 89.859 79.104 81.430 | 74.089 92.737 84.921 83.916
Snow A=SGD A=ASAM
Method High Mid Low AVG High Mid Low AVG
NG 77.394 83.328 83.196 81.306 | 75.041 86.424 86.838 82.768
+ASAM 76.759 84.168 86.053 82.327 | 76.520 83.774 89.343  83.212
SharpMinMax | 70.880 78.806 77.652 75.779 | 69.650 79.139 81.344 76.711
+ASAM 77.188 90.997 83.933 84.039 | 80.533 93.383 87.779 87.232

ViT-Small on CIFAR-100. Other experiment settings are unchanged. For unlearning, we have un-
learn Ir 0.0006 for NegGrad and for Sharp MinMax. Adam demands much smaller Ir than SGD and
is more sensitive to unlearn Ir tuning. ViTs perform worse than ResNets on smaller datasets (test
accuracies of pretrained models are 57%).

H COMPLETE VISUALIZATIONS

In this section, we provide complete visualizations of feature space and loss landscapes of pretrained
models, NegGrad unlearned models, and Sharp MinMax unlearned models, comparing SGD with
SAM across all memorization levels. The observations are generally consistent across memorization
levels, with Fy;g, being more noticeable.

H.1 Loss LANDSCAPE

Inspired by Wu et al. (2017), we quantify the flatness by basin ratio, which is the percentage of
perturbed losses whose deviation from original loss < 0.5 - stddev. Fig. 5 shows loss landscapes of
SAM and SGD before and after unlearning on Dieg; and Fpign. We observe SAM has higher basin
ratios (flatter landscape) than SGD for pretrained model and MinMax unlearned model as expected.
Surprisingly, SGD can become flatter after unlearning. We conjecture that the gradient ascent might
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Table 14: Unlearning with ViT-Small and AdamW on CIFAR-100.

A=SGD A=ASAM
High Mid Low AVG High Mid Low AVG
NG 80.445 82.854 84.385 82,561 78.750 82.223  86.767  82.580
+ASAM 82.880 83.084 83.402  83.122 82.839 81354 87.507 83.900
SharpMinMax 14.794 42.055 95222 50.690 14279 42.017 94.833  50.376
+ASAM 76.343 95573 103.372 91.763 76.664 93.966 105.868 92.166

be implicitly regularizing SGD which had more overfitting than SAM during pretraining. We leave
the further characterization of loss landscapes to future work.

H.2 FEATURE VISUALIZATION

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

A=SGD
. A=ASAM 0.1
88.0{ WM A=ASAM 1.0
Em 4=SAM 0.1
+1.3
84.84.B4
84.5 +1.3 8395, 83.53.7 4 ®a.4
82.9 9 I
I
9 81.0 80.39 $0.79.9
z
=775
74.1

+0.4
70€Q71FL2 71.01.71.
70.6 1 = =

I\ 1.0 \un 1.0 NG 1.0 IRV VS 1.0
N R Sa N pshM . pShM WM . pSAM
(a) All methods

A=SGD
. A=ASAM 0.1
I A=ASAM 1.0

. 4=SAM 0.1
84.8

84.7

v PCA > pC > oo 0
(b) NegGrad
A=SGD
m A=ASAM 0.1
= A=ASAM 1.0 88.1

88.0
] HEl A=SAMO0.1 87.9 . 87.8

U‘sSGD

pwn 0> U%ASN“XQ pu 0>

(c) Sharp MinMax

= PSS =95

Figure 3: 95% confidence intervals (u & 20) of unlearning methods on ImageNet, in accordance to
Tab. 1 and Tab. 3. We run each setting three times with different seeds and compute the statistical
significance. SAM consistently improves base U/, and we observe ASAM 1.0 to bring largest im-
provement steadily.
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Figure 4: 95% confidence intervals (p & 20) of unlearning methods on CIFAR-100, in accordance
to Tab. 1 and Tab. 3. We run each setting three times with different seeds and compute the statistical
significance. SAM not only improves ToW of the based methods, but also more robust against
variance than SGD.
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Figure 5: Loss landscapes of SAM and SGD on Dy and all F. As memorization level goes down,
F becomes easier to unlearn and SGD shows less to no “regularizing” effect as we have discussed
on Fyign. The general trend preserves with decreasing memorization levels and SAM is generally
flatter before and after unlearning.
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