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ABSTRACT

We characterize the effectiveness of Sharpness-aware minimization (SAM) un-
der machine unlearning scheme, where unlearning forget signals interferes with
learning retain signals. While previous work prove that SAM improves general-
ization with noise memorization prevention, we show that SAM abandons such
denoising property when fitting the forget set, leading to altered generalization
depending on signal strength. We further characterize the signal surplus of SAM
in the order of signal strength, which enables learning from less retain signals to
maintain model performance and putting more weight on unlearning the forget
set. Empirical studies show that SAM outperforms SGD with relaxed requirement
for retain signals and can enhance various unlearning methods either as pretrain
or unlearn algorithm. Motivated by our refined characterization of SAM unlearn-
ing and observing that overfitting can benefit more stringent sample-specific un-
learning, we propose Sharp MinMax, which splits the model into two to learn
retain signals with SAM and unlearn forget signals with sharpness maximization,
achieving best performance. Extensive experiments show that SAM enhances un-
learning across varying difficulties measured by memorization, yielding decreased
feature entanglement between retain and forget sets, stronger resistance to mem-
bership inference attacks, and a flatter loss landscape. Our observations generalize
to more noised data, different optimizers, and different architectures.

1 INTRODUCTION

Deep neural networks have grown so large and complex that retraining a model from scratch to forget
even a few samples has become impractically costly in both computation and energy. This challenge
has catalyzed the study of machine unlearning: methods that efficiently remove the influence of
specific training data without full retraining, aiming to forget designated examples while preserving
overall performance. Numerous unlearning strategies have been explored – from influence-based
updates that subtract a data point’s contribution (Izzo et al., 2021), to fine-tuning with targeted weight
sparsification (Jia et al., 2023), to joint optimization approaches that explicitly balance “retain” vs.
“forget” objectives by gradient ascent/descent on different data subsets (Kurmanji et al., 2023).
However, a fundamental understanding of what makes unlearning effective remains elusive. Key
questions persist: How should we trade off forgetting unwanted data versus retaining accuracy on
the rest? How do different training algorithms influence unlearning dynamics? Why are some
samples inherently harder to forget than others? In practice, the lack of principled answers has
led to ad-hoc hyperparameter tuning and unpredictable behavior across tasks. In particular, when
a model is simultaneously fed with conflicting retain and forget signals, these signals can interfere
and even cancel out during training, hampering the unlearning process (Kurmanji et al., 2023). To
date, there are few robust solutions to mitigate this interference, underscoring the need for a deeper
theoretical foundation for machine unlearning.

Recent advances in learning theory and optimization hint at possible directions to tackle these issues.
First, a signal-versus-noise perspective has provided new insight into model behavior: for example,
Chen et al. (2023) formalize how networks learn meaningful patterns while ignoring or memorizing
label noise, and Zhao et al. (2024) empirically identify factors that make certain data points harder
to forget. Particularly relevant is the Sharpness-Aware Minimization (SAM) method (Foret et al.,
2020) that has been shown to seek flatter loss minima and thereby dramatically reduce memoriza-
tion of noisy data, leading to improved generalization in noisy-label settings (Chen et al., 2023).
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These observations suggest that a model’s ability to distinguish true signal from noise may be key
to effective unlearning. An optimizer that naturally suppresses memorization of noise might also
be better suited for forgetting specific examples when required. To investigate this hypothesis, we
quantify each sample’s memorization level using established metrics (Feldman, 2020; Feldman &
Zhang, 2020), allowing us to rank the “forget set” by difficulty. This enables a controlled study of
how different optimization algorithms perform when asked to forget data that the model has learned
to varying extents.

We present a comprehensive theoretical and empirical study of machine unlearning through the
combined lens of signal-noise decomposition and sharpness-aware optimization. We focus on the
challenging scenario where both retain and forget samples are present in each training batch with
mixed objectives, and we compare standard Stochastic Gradient Descent (SGD) to SAM in this con-
text. Building on recent theoretical frameworks for ReLU networks (Kou et al., 2023), we derive
rigorous results for a two-layer CNN that characterize the unlearning process under each optimizer.
Our analysis yields several striking findings. (1) SAM’s noise suppression can break down under
unlearning: we prove that when tasked with intentionally forgetting a set of samples (treated as
“noise”), SAM is forced by objective to abandon its usual denoising behavior – effectively over-
fitting to the forget set nearly as much as SGD does. This result challenges the expectation that
flatter-minima methods would inherently excel at unlearning. (2) We establish formal guidelines for
balancing retain vs. forget objectives: in particular, we derive the minimum retain-weighting factor
α needed to prevent catastrophic forgetting of the kept data. Our theory shows that SAM can accom-
plish successful unlearning with a significantly smaller retain weight α than SGD, meaning SAM
tolerates a stronger forgetting signal without sacrificing retained accuracy. In the regime of benign
overfitting (where the model fits even noisy data without large generalization error), we quantify the
gap in required α between SAM and SGD and prove it scales on the order of O(

√
d/n) (with d

the model dimension and n the training set size). (3) Perhaps most surprisingly, our findings call
for a re-examination of overfitting in unlearning. Contrary to conventional wisdom, we show that
deliberate overfitting – in a controlled way that limits its impact on the rest of the data – can enhance
the complete removal of those samples. This insight is especially relevant in stringent privacy or
copyright scenarios, suggesting that the strict avoidance of overfitting may not always be optimal.

Our contributions can be summarized as follows:

Theoretical Framework: We introduce a rigorous analytical framework for machine unlearning
based on signal-noise decomposition. This framework explicitly models the interplay between retain
and forget signals. Using this lens, we analyze the behaviors of SGD versus SAM and prove that
SAM’s denoising advantage “shuts off” on forget data: when SAM is asked to unlearn labeled noise,
it ends up overfitting to the forget set almost as much as SGD.

Balancing Retain vs. Forget Objectives: We derive provable guidelines for balancing the re-
tain/forget trade-off. In particular, we identify the minimal value of the weighting ratio parameter α
that guarantees sufficient retention of knowledge. We show that SAM requires a strictly smaller α
than SGD to achieve effective unlearning. In the regime of benign overfitting for both the optimizers,
we analytically bound the difference in required α on the order of O(

√
d/n).

Empirical Validation: Through extensive experiments on CIFAR-100 and ImageNet datasets, we
validate our theoretical insights. We demonstrate that incorporating SAM into state-of-the-art un-
learning methods consistently boosts forgetting efficacy while better preserving accuracy on the re-
maining data. Models optimized with SAM yield flatter loss landscapes and reduced entanglement
between retained and forgotten samples, corroborating our theory that SAM distinguishes signal
from noise better. We also observe that SAM-trained models are less vulnerable to membership
inference attacks to forget set, indicating improved unlearning.

Novel Unlearning Algorithm: Finally, inspired by our analysis, we propose Sharp MinMax, a
new unlearning approach that decouples the retain and forget objectives. Sharp MinMax splits the
model into two cooperative parts: one is trained with SAM on the retained data, while the other
performs sharpness maximization on the forget data to intentionally overfit those samples to ensure
forgottenness. This design mitigates interference between retain and forget signals. Sharp Min-
Max achieves state-of-the-art unlearning performance in our experiments, especially on challenging
high-memorization forget sets, where it significantly outperforms existing techniques in completely
erasing the target data’s influence.
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2 PRELIMINARIES

2.1 DATA AND MODEL CONSTRUCTION

We construct a practical learning scenario which distinguishes between useful and unrelated signals
from inputs. Similar constructions have been adopted in previous work (Kou et al., 2023; Chen
et al., 2023) with rich notation. For convenience, we summarize a table of notation in App. C.
Consider learning binary classification with label y ∈ {±1} using a two-layer CNN on image
training data set S = {(xi, yi)}i∈[n] ∼ D. Each image consists of P patches and assign randomly
one of them as the signal yiφ for label yi and the universal signal vector φ ∈ Rd, and represent
other patches by the noise vector ξi ∈ Rd ∼ N (0, σ2

pI). Thus, each input image is vectorized as
xi = [ξi, ..., yiφ, ..., ξi] ∈ RP×d, where yiφ can appear at any position.

The second layer of CNN is fixed as±1/m respectively for m convolutional filters. The two-classes
network can be expressed as f(W,x) = f+1(W+1,x)− f−1(W−1,x), where

fj(Wj ,x) =
1

m

m∑
r=1

P∑
p=1

σ(⟨wj,r,x⟩) =
1

m

m∑
r=1

σ(⟨wj,r, yφ⟩) + (P − 1)σ(⟨wj,r, ξ⟩). (1)

Here σ denotes ReLU activation, wj,r ∈ Rd denotes the weight for the r-th filter, and Wj is the
collection of model weights for j = ±1. We train this CNN with cross-entropy loss L(W,S).
Denote w

(t,b)
j,r for j ∈ {±1}, r ∈ [m] the convolutional filter at the b-batch of t-th epoch of SGD.

We decompose the weight update into learning signal and noise coefficients κ(t,b)
j,r , ζ

(t,b)
j,r,i for learning

the signal and the noise respectively, such that

w
(t,b)
j,r = w

(0,0)
j,r + j · κ(t,b)

j,r ·φ∥φ∥
−2
2 + (P − 1)−1

n∑
i=1

ζ
(t,b)
j,r,i · ξi∥ξi∥

−2
2 , (2)

where the learning goal is to increase κ
(t,b)
j,r and decrease ζ

(t,b)
j,r,i . This construction also extends to

multiclass classification considering one vs. all setting with K binary classification problems. For
readability, we abbreviate subscript j, r and replace superscript (t, b) with time vector t in following
sections, and leave full notation to proofs in the Appendix.

2.2 SIGNAL-TO-NOISE UNLEARNING

Given a pretrained model fT1

A by algorithm A for T1 epochs on S, machine unlearning aims to
eliminate the influence of forget set F ⊆ S to the model training, while maintain generalizability to
unseen data without compromising performance on the remaining retain setR = S \F . Denote the
unlearned model as fT2

U by unlearning algorithm U , which is initialized as fT1

A and unlearned for
T2 epochs. We consider unlearning a small portion of S with much less expense than retraining the
model from scratch onR, so |F| < |R| and T2 < T1.

Random Label (RL) (Graves et al., 2021) aims to unlearn by finetuning on S but with F ’s labels
randomly flipped in each epoch. It naturally fits into our setup as label-flipped F become the noise,
and motivates us to investigate unlearning algorithms under the same theoretical framework. The
gradient update of κt and ζti of class j can be expressed as

κt+1 = κt − η∥φ∥22
Bm

∑
i∈IRt

ℓ′ti σ
′(⟨wt, ŷiφ⟩)−

∑
i∈IFt

ℓ′ti σ
′(⟨wt, ŷiφ⟩)

 ,

ζt+1
i = ζti −

η(P − 1)2∥ξi∥22
Bm

· ℓ′ti σ′(⟨wt, ξi⟩) · sgn(yi = j),

(3)

where B, η denote the batch size and learning rate, sgn(·) denotes ±1 sign function, IRt and IFt
denote batch samples fromR and F at t, respectively. In each iteration, IFt aims to erase its signal
in κt, while ξi reinforces or decreases ζti update depending on label agreement.

Negative Gradient (NegGrad) (Kurmanji et al., 2023) unlearns F using gradient ascent while
gradient-descending on R. Unlike RL or other U that aim at random guessing, ascent-based un-
learning encourages misclassification by its objective:

LNegGrad(W,R,F) = 1

|R|
∑
i∈R

αℓ (yif (W,xi))−
1

|F|
∑
i∈F

(1− α)ℓ (yif (W,xi)) . (4)
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Minimizing LNegGrad induces competing gradients, canceling each other during κ, ζ update. α serves
as a weight coefficient that accounts for the size imbalance between R and F . To synchronously
optimize the model with retain and forget samples, we draw B samples from both subsets each batch
and train for |R|/B batches. Thus, forget samples’ signals are relatively enlarged by a fraction of
|R|/|F| due to repetition. Heuristically, α ∝ |R|/(|F|+ |R|).

2.3 DENOISING PROPERTY OF SAM

Sharpness-Aware Minimization (SAM) (Foret et al., 2020) aims to minimize a perturbed empirical
loss at the worst point in the neighborhood of W, solving the following optimization problem:

min
W
L(W,S) +

[
max

ϵ̂
L(W + ϵ̂,S)− L(W,S)

]
, (5)

for a controlled perturbation ϵ̂. It ensures a uniformly low training loss and avoids sharp landscape.
While both SGD and SAM learn a sufficient signal with κT1 = Ω(1) after T1 epochs, Chen et al.
(2023) prove that SAM outperforms SGD by noise suppression and SAM upper bounds ζT1

i by O(1)
while SGD is dimension dependent O(log d). The key difference stems from the noise memorization
prevention of SAM. Given the perturbation term ϵ̂t in SAM for class j:

ϵ̂t =
τ

m

∑
i∈It

∑
p∈[P ]

ℓ′ti j · yiσ′(⟨wt,xi,p⟩)xi,p ·
∥∥∇WL(Wt, It)

∥∥−1
F

, (6)

consider ReLU activation at any fixed iterate wt for SGD: ⟨wt, ξk⟩ ≥ 0 vs. SAM:⟨wt + ϵ̂t, ξk⟩ for
k ∈ It, j = yk. SAM’s ⟨wt + ϵ̂t, ξk⟩ expands to ⟨wt, ξk⟩ + ⟨ϵ̂t, ξk⟩, where ⟨ϵ̂t, ξk⟩ is proven to
be sufficiently negative to cancel ⟨wt, ξk⟩ by selecting a proper τ , thus deactivating the noise (Chen
et al., 2023). This effectively prevents SAM from learning from the noise which would lead to
harmful overfitting for SGD. We are curious about whether SAM improves unlearning: a flatter
landscape can make learning easier, then it should make unlearning easier too despite a reverse sign.
But is it a simple adaptation, and can we straightforwardly extend previous theories and findings to
develop unlearning algorithms?

3 SHARPNESS-AWARE UNLEARNING

We first show that the SAM’s noise memorization prevention in Sec. 2.3 does not fully hold when
SAM is used with NegGrad for gradient ascent on F . Specifically, SAM overfits to forget signals
as much as SGD, while maintaining its denoising property on R. Based on this result, we derive
refined test error bounds for SGD and SAM under NegGrad and characterize the different α thresh-
olding between SGD and SAM for unlearning. Although SAM continues to improve unlearning and
maintain generalizability, the altered activation patterns and unlearning behaviors are not captured
by previous works, as SAM is forced to fit forget signals (viewed as noise) by NegGrad objective.
This leads to divergent behaviors onR and F , which can be of independent interest.

3.1 NEGGRAD REVISITED

Unlike RL, the mutual interference between F andR under NegGrad additionally affects ζ update.
The update rules for κt and ζt under NegGrad now become:

κt+1 = κt − η∥φ∥22
Bm

α ∑
i∈IRt

∇φi
− (1− α)

∑
i∈IFt

∇φi

 ,

ζt+1 = ζt − η(P − 1)2

Bm

α ∑
i∈IRt

∇ξi
− (1− α)

∑
i∈IFt

∇ξi

 ,

(7)

where ∇φi
= ℓ′ti σ

′(⟨wt + δ, yiφ⟩),∇ξi
= sgn(yi = j)∥ξi∥22ℓ′ti σ′(⟨wt + δ, ξi⟩), and δ = ϵ̂t for

SAM and 0 for SGD. In plain words, a retain sample of class j causes a decrease in ζj , discouraging
memorizing noise for the correct class, while another retain sample of class −j causes an increase
in ζj , encouraging wj to use ξi to distinguish class j from −j. Conversely, a sample i ∈ F of
class j, which we want to predict −j in ascent-based unlearning, will increase ζj and encourage
wj to use noise ξi in a way that harms class j, and vice versa. Similar intuition also applies to κ.
The interference in ζ update will alter SAM’s behaviors towards forget signals as summarized in
Lemma 3.1.
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Lemma 3.1 (Noise memorization of F by SAM under NegGrad). Under the NegGrad scheme and
the Assumption D.1 holds, for class j we have that if for SGD: ⟨wt, ξk⟩ ≥ 0, k ∈ IRt and j = yk,
then for SAM: ⟨wt + ϵ̂t, ξk⟩ < 0. However, if for SGD: ⟨wt, ξk⟩ ≥ 0, k ∈ IFt and j = yk, then for
SAM: ⟨wt + ϵ̂t, ξk⟩ > 0.

See proof in App. D.2. Because the activation patterns on IRt and IFt diverge, SAM continues to
suppress noise memorization and leverage its sharpness-aware updates when fitting R, but “falls
back” to SGD-like behavior on F . This split yields two distinct sets of bounds on κ and ζ for R
and F , which lead to separate test errors shown in App. D.1 and D.2. However, given a pretrained
model fT1

A with κT1 > 0 to start unlearning, as long as retain signals weighted by α dominate,
the signal strength will remain sufficient and continue to grow. This is shown in Chen et al.
(2023) when the signal strength is saturated at T < T1. We can thus choose α threshold based on
this principle. With proper forget-retain size ratio, results in Chen et al. (2023) still hold: SGD’s test
error converges when signal strength is sufficient, but can’t be upper bounded otherwise; SAM’s test
error converges either way. β serves as a knob to control the convergence rate:

Theorem 3.2 (SGD test error under NegGrad). Under Assumption D.1, for any ϵ > 0 and
1 > α ≥ |R|/(|F| + |R|) := β > 0.5, then with probability at least 1 − δ, the training loss
converges: L(WT ,D) ≤ ϵ. Moreover, if ∥φ∥2 ≥ C1d

1/4n−1/4Pσp, we have the test error
Ltest(WT ,D) ≤ ϵ. If ∥φ∥2 ≤ C3d

1/4n−1/4Pσp, we have limβ→1 Ltest(WT2 ,D) ≥ 0.1, and
limβ→0.5 Ltest(WT2 ,D) ≥ 0.05.

Theorem 3.3 (SAM test error under NegGrad). Under Assumption D.1, for any ϵ > 0 and
1 > α ≥ |R|/(|F| + |R|) := β > 0.5, choose τ = Θ( m

√
B

Pσp

√
d
). Then with probability at least

1 − δ, the training loss converges: L(WT ,D) ≤ ϵ. Moreover, if ∥φ∥2 ≥ C1d
1/4n−1/4Pσp,

we have limβ→1 Ltest(WT ,D) ≤ ϵ. If Ω(1) ≤ ∥φ∥2 ≤ C3d
1/4n−1/4Pσp: we still have

limβ→1 Ltest(WT ,D) ≤ ϵ.

See proofs in App. D.1 and D.2. Together, these theorems describe how SGD and SAM behave when
retain signals dominate. For SAM, if ∥φ∥2 ≤ C3d

1/4n−1/4Pσp, it will suffer harmful overfitting
to F . However, as long as α ≥ |R|/(|F| + |R|) and ∥φ∥2 ≥ Ω(1), learning on R guarantees
overall benign training and yields a bounded test error. Under the same condition, Corollary 3.3.1
concludes that while the signal coefficient continues to grow for both SGD and SAM, SGD’s noise
accumulation is loosely bounded by model dimension, while SAM’s by O(1):

Corollary 3.3.1 (κ, ζ update under NegGrad). Under the NegGrad, if α ≥ |R|/(|F|+ |R|), since
κT1 = Ω(1), both SGD and SAM continue to grow. Given the learned ζT1 , SGD continues to overfit
the noise with O(log d), while SAM overfit the noise from F with O(log d) and fromR with O(1).

See proof in App. D.3. Finally, we characterize the differed choice of α for SGD and SAM as SAM
learns signal more efficiently. We also reveal that α depends not only on forget-retain size ratio as
commonly conjectured, but also on the signal strength, and thus the dimensionality of the problem:

Lemma 3.4 (Signal-surplus of SAM under NegGrad). Under the NegGrad, for any φ where
∥φ∥2 ≥ Ω(1), SAM exhibits faster signal learning onR: ∆SAM

epochκ/∆
SGD
epochκ = Θ(∥φ∥22).

See proof in App. D.4. As a result, SAM relies on a more relaxed α threshold than SGD due to
faster signal learning. For SGD to achieve the same signal learning performance as SAM, we need
to scale up αSGD to satisfy αSGD/αSAM = Θ(∥φ∥22). If ∥φ∥2 ≥ C1d

1/4n−1/4Pσp and both SGD
and SAM achieve benign overfitting, then given the extra signal learning from R, SAM results in
faster κ update and a surplus signal of Θ(d1/2|R|−1/2P 2σ2

p) in each unlearning epoch.

3.2 SHARP MINMAX

In Sec. 3.1, we showed that SAM is provably better on out of sample test errors under NegGrad,
and we empirically verify that SAM achieves better unlearning performance in Sec. 4. But how
does the refined characterization matter, given maintained test error conclusions? Jointly with em-
pirical observations, the altered behaviors of SAM on F motivates new unlearning algorithms. Our
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experiments show that SAM+NegGrad attains higher forget accuracy than SGD+NegGrad, forget-
ting less effectively. This finding forces us to reconsider the conventional view that overfitting is
always detrimental: while overfitting indeed harms generalization, it may be beneficial when the
goal is to remove specific samples from a model. Consequently, for abstract concept forgetting we
continue to demand strong generalization; but for stringent scenarios—where exact sample removal
is mandated by privacy or compliance constraints—a model’s tendency to overfit can actually en-
hance its unlearning of those exact points. The divergent behaviors under SAM+NegGrad motivates
the following new algorithm: we can split a portion of model parameters to purposefully overfit to
F , denoted as the forget model WF , while leaving the rest as the retain model WR to maximally
maintain the model utility by leveraging SAM purely on R. Motivated by how SGD with sharper
minima tends to forget better, we propose Sharp MinMax to intentionally optimize for sharper-than-
SGD minima with the purpose of overfitting to forget signals for unlearning. Inspired by Kim et al.
(2023), we leverage sharpness maximization on WF :

min
WF
L(WF ,F)−

[
max

ϵ̂
L(WF + ϵ̂,F)− L(WF ,F)

]
, (8)

resulting in a sharper landscape that harms the generalization by overfitting. We apply weight mask-
ing based on gradient magnitudes (Fan et al., 2023) to divide our model into WR,WF during
optimization. Specifically, we pass F to fA once, accumulate gradients for each parameter, and
check top parameters with smallest magnitudes cut off by a given percentage. We then apply SAM
on WR and sharpness maximization on WF . The retain model with SAM is already characterized
by Chen et al. (2023), while WF requires a stronger signal strength than SGD to avoid harmful
overfitting. See implementation details in App. E.2.

3.3 QUANTIFYING UNLEARNING DIFFICULTY WITH MEMORIZATION

We examine the effectiveness of unlearning U based on memorization, which sufficiently reveals the
difficulty of unlearning (Zhao et al., 2024). Feldman & Zhang (2020) define the degree to which a
sample is memorized by a pretraining A on example (xi, yi) from S as the memorization score:

mem(A,S, i) := Pr
f←A(S)

[f (W,xi) = yi]− Pr
f←A(S\i)

[f (W,xi) = yi] , (9)

where S \ i denotes S with the sample (xi, yi) removed. Samples of high-memorization scores can
be atypical samples which model usually learns later in the training process after more updates to the
model than typical ones. Thus unlearning them would be harder and may require more iterations of
unlearning steps which may impact the model performance on the retain distribution. The converse
is true for samples of low-memorization scores. We can hence construct F of varying unlearning
difficulties based on memorization scores to comprehensively evaluate U .

4 EMPIRICAL STUDY

We conduct major experiments on CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Rus-
sakovsky et al., 2015) using ResNet-50 (He et al., 2016), and adopt pre-computed memorization
scores for from Feldman & Zhang (2020) to generate F of different difficulties with |F| ≈ 5%|S|,
denoted as [Fhigh,Fmid,Flow]. For both pretraining and unlearning, we adopt SAM (Foret et al.,
2020) with ρ = 0.1 and Adaptive SAM (ASAM) (Kwon et al., 2021) with ρ = [0.1, 1.0]. We ensure
same optimal hyper-paprameters for each comparable [SGD,SAM] pair. See details in App. E.

Evaluation. We follow previous work (Triantafillou et al., 2024; Zhao et al., 2024) to measure the
tug-of-war tradeoff between forgetting and retaining of fU based on accuracy Acc(θ,D), with the
retrained model fA(R) as reference:

ToW(fU ) =(1− (Acc(fA(R),R)−Acc(fU ,R))) · (1− (Acc(fU ,F)−Acc(fA(R),F)))
·(1− (Acc(fA(R),Dtest)−Acc(fU ,Dtest))), with test transforms onR,F .

(10)

Thus, we encourage high retain/test accuracies and low forget accuracy. Note that our ToW differs
from that in previous work as we measure the raw accuracy difference instead of the absolute differ-
ence, because new unlearning methods that continue to fine-tune onR can outperform fA(R) within
a conventional unlearning time T2. If using the absolute ToW, a higher test accuracy than fA(R)

will be penalized and the model performance cannot be properly measured.
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Table 1: ToW(%) ↑ of unlearning on ImageNet-1K and CIFAR-100. For each (U ,A) pair, we report
ToW of each F and compute averages. SAM consistently improves current unlearning methods.

ImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Unlearn U High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
NegGrad 78.764 84.199 88.515 83.826 78.426 83.93 86.651 83.002 78.522 83.929 89.947 84.133 78.03 84.176 88.839 83.682
+ASAM 0.1 78.52 84.113 89.188 83.94 78.366 84.07 89.098 83.845 78.762 84.267 90.579 84.536 78.083 84.062 89.973 84.039
+ASAM 1.0 78.966 83.389 92.174 84.843 78.975 83.358 91.843 84.725 78.027 83.326 92.772 84.708 77.762 83.284 92.617 84.554
+SAM 0.1 77.898 82.985 92.841 84.575 78.301 83.04 91.722 84.354 77.388 82.473 93.429 84.43 76.807 82.587 92.829 84.074

RL 74.598 86.617 86.714 82.643 74.857 86.462 86.192 82.504 74.317 86.813 87.630 82.92 74.055 86.715 88.594 83.121
+ASAM 1.0 74.951 85.581 91.069 83.867 75.221 85.473 90.425 83.707 73.950 85.393 91.516 83.62 73.579 85.494 91.74 83.604
SalUn 44.981 71.839 95.008 70.609 46.104 71.735 94.652 70.83 45.814 72.308 95.116 71.079 46.006 72.419 95.218 71.214
+ASAM 1.0 45.998 71.554 95.628 71.06 46.938 71.268 95.224 71.143 45.856 71.695 95.924 71.158 46.358 72.034 95.791 71.394

CIFAR100 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Unlearn U High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
NegGrad 78.334 83.335 83.718 81.796 79.277 86.454 88.637 84.789 77.274 78.59 85.443 80.436 67.826 74.145 76.374 72.78
+ASAM 0.1 78.131 82.846 86.78 82.586 80.336 87.539 87.671 85.182 77.331 79.074 88.039 81.482 70.054 74.158 78.087 74.1
+ASAM 1.0 80.806 81.465 87.052 83.108 82.196 84.391 90.502 85.696 78.731 79.264 93.249 83.748 72.518 75.653 86.759 78.31
+SAM 0.1 81.331 75.059 94.151 83.514 82.86 77.94 94.179 84.993 74.704 70.898 95.898 80.5 65.080 66.089 95.078 75.416

L1-Sparse 63.448 68.686 53.991 62.042 63.699 72.775 60.34 65.605 61.252 68.197 61.47 63.64 65.258 71.941 59.014 65.404
+ASAM 1.0 66.903 75.554 58.967 67.141 66.213 77.119 66.697 70.01 65.117 73.754 62.517 67.129 63.051 74.556 65.117 67.575
SCRUB 58.418 76.125 12.708 49.084 67.163 79.09 10.823 52.359 57.816 73.176 58.483 63.158 43.246 68.433 17.368 43.016
+ASAM 1.0 50.313 73.353 97.631 73.766 60.515 80.204 97.508 79.409 48.569 73.09 97.776 73.145 18.137 61.618 97.933 59.229
RL 68.464 84.395 72.4 75.086 64.518 80.215 69.711 71.481 66.689 86.411 69.677 74.259 64.391 85.481 70.55 73.474
+ASAM 1.0 69.952 86.779 74.409 77.047 66.909 86.557 69.375 74.280 69.73 91.124 80.321 80.392 72.884 88.633 78.066 79.861
SalUn 69.926 83.056 71.73 74.904 66.541 83.377 71.95 73.956 67.355 89.768 79.095 78.739 69.671 90.495 75.281 78.482
+ASAM 1.0 73.268 92.225 88.175 84.556 71.426 89.182 86.13 82.246 67.715 93.401 89.289 83.468 70.933 92.914 86.477 83.441

Table 2: MIA (%) ↓ correctness to F on CIFAR-100. We enhance each U with ASAM 1.0 and
observe consistent improvement.

A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Unlearn U High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
L1-Sparse 94.733 63.233 8.6 55.522 94.933 61.367 4.0 53.433 93.833 62.067 5.8 53.9 92.867 60.033 5.033 52.644
+ASAM 1.0 94.267 58.5 5.5 52.756 94.3 57.3 3.6 51.733 93.633 56.033 3.9 51.189 93.8 59.333 3.8 52.311
SCRUB 55.433 18.6 32.6 35.544 64.733 23.1 71.633 53.155 54.767 16.133 9.833 26.911 39.3 9.833 56.3 35.144
+ASAM 1.0 46.467 14.867 0.1 20.478 57.367 22.633 0.167 26.722 44.7 14.567 0.2 19.822 14.433 2.333 0.2 5.655
RL 90.767 62.933 10.767 54.822 91.633 68.267 13.5 57.8 89.067 63.567 15.8 56.145 89.167 61.967 8.267 53.134
+ASAM 1.0 90.3 61.3 9.467 53.689 91.6 62.667 12.7 55.656 88.0 61.3 10.667 53.322 86.3 59.833 5.833 50.655
SalUn 83.433 59.233 7.333 50.0 84.533 59.1 11.167 51.6 79.3 54.667 8.8 47.589 81.467 53.133 6.867 47.156
+ASAM 1.0 79.1 51.833 4.5 45.144 81.7 54.167 6.633 47.50 74.967 49.5 4.2 42.889 75.633 47.667 4.067 42.456
NegGrad 86.933 37.233 2.167 42.111 88.867 40.2 1.733 43.60 82.167 32.1 1.8 38.689 74.667 36.967 3.433 38.356
+ASAM 1.0 84.5 30.1 0.733 38.444 85.6 30.1 0.7 38.8 81.233 24.533 0.533 35.433 73.967 20.733 0.366 31.689

4.1 SAM CONSISTENTLY OUTPERFORMS WITH BETTER TRADEOFF

We conduct unlearning with various unlearning algorithms U given different pretrained fA. Tab. 1
reports ToW scores of U on CIFAR-100 and ImageNet. We observe that SAM consistently improves
all unlearning methods under different initializations fT1

A , suggesting that SAM can universally
enhance prevailing U . While different U exhibit varied effectiveness to [Fhigh,Fmid,Flow], we
observe that NegGrad achieves a better balance between three forget sets than other methods. We
include detailed [retain, forget, test] accuracies, further analysis and demonstration of statistical
significance in App. F. Upon close examination on those accuraices, we observe that despite SAM
outperforms SGD by better retain and test accuracies and thus better ToW, SGD can oftentimes
achieve lower forget accuracies. This aligns with our theoretical analysis where SGD overfits more
to F , and it also sparks our Sharp MinMax. Smaller experiments on CIFAR-10 and Tiny-ImageNet
in App. G yield aligned conclusions.

MIA correctness. We report correctness rates of membership inference attack (MIA) to F on
CIFAR-100 in Tab. 2. Lower correctness means better unlearning: forget samples behave more
like samples that were never in S. We find that SAM consistently improves data privacy while
unlearning more effectively. Note that NegGrad achieves better MIA correctness than RL; this is
because gradient ascent actively erases gradient signatures of F in the model. SCRUB (Kurmanji
et al., 2023) with SAM achieves best MIA performance.

Relearning attacks. We also present relearning attack experiments to demonstrate SAM’s unlearn-
ing robustness in App. G.5. We observe that SAM enhanced U are more resilient to relearning at-
tacks with smaller increases. While not our main focus, these experiments highlight the robustness
of our approach and encourage future works for deeper investigation into the role of loss landscape
geometry for robust unlearning.
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KL on margins. While ToW measures performance closeness between unlearned model and re-
trained model, Georgiev et al. (2024) propose to measure distribution closeness in output space with
KL divergence on margins (KLoM). We evaluate NegGrad w/ SGD vs. w/ SAM on CIFAR-100
using KLoM means and 95%-percentiles (tails) in App. G.7, and observe similar conclusions: on
KLoM means, SGD can outperform SAM on F , but SAM achieves better closeness onR,Dtest and
hence better KLoMs overall; on 95%-percentiles, SAM outperforms SGD for all settings, suggesting
lower variance and better stability at tails. While SAM is not targeted to resolve data dependency
issues in unlearning (Georgiev et al., 2024), it ameliorates them by its geometric properties as sug-
gested by lower entanglement and better ToW and KLoM.

Our observations further generalize. We consider structured noise unlearning, where another
source of noise is introduced during unlearning. We adopt the glass blur and snow effect from
ImageNet-C (Hendrycks & Dietterich, 2019) to corrupt R and F of CIFAR-100, and unlearn with
NegGrad and Sharp MinMax. We record experiment results in App. G.3, and observe consistent con-
clusions where SAM outperforms under both corruptions. We also experiment on ViT-Small (Doso-
vitskiy et al., 2020) with AdamW (Loshchilov & Hutter, 2017) on CIFAR-100 in App. G.4, with
NegGrad and Sharp MinMax. We continue to observe promising improvement by adding SAM,
with significant increase of ToW on Sharp MinMax. While we focus on studying the geometric
properties of SAM rather than efficiency, we are the first to demonstrate how recent efficient SAM
variants (specifically Momentum SAM (Becker et al., 2024)) can perform equivalently well as the
original SAM with much less computation overhead in App. G.6.

4.2 CONSTRAINED OVERFITTING BENEFITS UNLEARNING

Table 3: ToW(%) ↑ of Sharp MinMax on ImageNet-1K and CIFAR-100. Comparing with Tab. 1,
Sharp MinMax achieves new best ToW performance.

ImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Unlearn U High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
SGD 73.357 80.881 86.334 80.191 73.418 80.784 84.378 79.527 73.103 81.105 86.402 80.204 73.052 80.913 85.517 79.827
ASAM 0.1 78.066 87.914 87.338 84.44 79.077 87.4 86.953 84.476 70.148 88.039 87.554 81.914 78.529 87.642 86.668 84.28
ASAM 1.0 86.658 87.345 89.694 87.899 86.166 87.192 89.138 87.498 86.915 87.27 90.142 88.109 86.272 87.076 90.064 87.804
SAM 0.1 86.463 86.755 90.005 87.741 85.511 86.635 89.852 87.333 86.849 86.722 91.111 88.227 85.712 86.486 90.207 87.468

CIFAR100 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Unlearn U High Mid Low AVG High Mid Low AVG High Mid Low AVG High Mid Low AVG
SGD 70.7668 76.692 82.853 76.771 72.137 77.864 81.847 77.282 65.925 74.526 80.127 73.526 60.478 71.931 73.843 68.751
ASAM 0.1 78.895 96.027 83.473 86.132 84.968 96.451 82.883 88.101 81.825 93.786 87.151 87.587 72.897 80.104 86.659 79.887
ASAM 1.0 82.27 94.913 86.504 87.896 77.576 99.422 85.894 87.631 84.521 87.761 84.381 85.554 76.037 83.633 77.461 79.044
SAM 0.1 90.578 90.960 92.494 91.344 91.695 95.543 91.508 92.915 88.664 88.646 93.163 90.158 85.195 78.286 90.963 84.814

We present ToW of Sharp MinMax and compare to Tab. 1. Compared with NegGrad and other meth-
ods, Sharp MinMax further improves the unlearning capabilities across all settings by a noticeable
margin, especially on Fhigh, and SAM 0.1 achieves ToW > 0.9 for most settings on CIFAR-100.
The effectiveness of Sharp MinMax assures our assumptions about overfitting for sample-specific
unlearning, providing new insights for designing future unlearning algorithms. By constraining
overfitting to only a small portion of model parameters which are most salient to F , Sharp MinMax
effectively boosts unlearning performance. In App. G.5, the impact of relearning attacks to Sharp
MinMax is effectively limited to the sharp terrains as it makes retain and forget models geometrically
distinct, so the robustness against relearning attacks as well as the model performance is retained.

4.3 QUANTITATIVE ANALYSIS AND VISUALIZATIONS

Table 4: Entanglement ↓ between F andR of different memorization levels given models based on
SGD and ASAM 1.0. While EVar is hard to conclude a comparison between SGD and SAM across
different U , SAM shows less entanglement both before and after unlearning than SGD by EWp .

SGD Variance EVar Wasserstein EWp
SAM Variance EVar Wasserstein EWp

Model High Mid Low AVG High Mid Low AVG Model High Mid Low AVG High Mid Low AVG
Pretrained 30.5 95.28 32.39 52.72 59.58 66.3 63.13 63.0 Pretrained 29.56 88.43 28.91 48.97 55.86 61.74 59.84 59.15
-per class 2.5 6.71 2.51 3.91 51.21 57.11 59.64 55.99 -per class 2.88 6.66 2.71 4.08 45.45 49.88 52.46 49.26
NegGrad 18.87 37.16 22.12 26.05 51.24 52.99 56.12 53.45 NegGrad 17.78 37.49 24.47 26.58 49.87 52.36 54.93 52.39
-per class 0.56 1.8 2.69 1.68 35.22 46.91 55.93 46.02 -per class 0.66 2.03 2.88 1.86 36.42 44.71 50.83 43.99
MinMax 17.7 38.03 21.51 25.75 51.12 53.7 56.77 53.86 MinMax 16.35 32.07 20.75 23.06 51.26 51.8 55.08 52.71
-per class 0.69 2.41 2.27 1.79 38.41 49.57 57.15 48.38 -per class 0.49 1.52 2.97 1.66 33.65 44.56 52.55 43.59

Measuring entanglement. We measure the entanglement between R and F before and after un-
learning. At a coarse level, we implement variance-based entanglement from Goldblum et al. (2020);
Zhao et al. (2024): EAll

Var(R,F , f) = ( 1
|R|
∑

i∈R(ϕi−µR)2+ 1
|F|
∑

j∈F (ϕj−µF )2)/((µR−µ)2+
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Figure 1: UMAP (McInnes et al., 2018) feature analysis on Mid Mem Fmid. At all-class level, we
observe that SAM better maintains class clusters after unlearning while SGD is forming a more
evident clump of features; at classwise level, we observe that while both push away forget features,
SGD also scatters retain features further, suggesting overfitting. This also explains the larger clump
of SGD at all-class level. We observe that SAM further pushes away forget features on Fhigh and
SGD scatters more retain features on Flow, see App. H.2 for full visualizations.

(µF − µ)2), where ϕi,ϕj denote sample embedding, µR,µF denote mean embedding of R,F ,
and µ denotes mean embedding over R ∪ F . We also compute the class-wise entanglement and
report weighted averaged ECls

Var. However, EVar assumes good/convex shapes of clusters and relies
heavily on cluster means. Inspired by Optimal Transport literature, we propose a refined geometry-
aware entanglement based on Wasserstein distance to measure the separation of retain and forget
features, EAll

Wp
and ECls

Wp
, which computes the cost of transferring one shaped distribution to another

point-wisely. From Tab. 4, we observe that both SGD and SAM unlearning have decreased entan-
glement with ECls < EAll. While EVar cannot further differentiate, we observe that SAM achieves
better EWp

than SGD at all levels. Fig. 1 visualizes the feature space of A,U = ASAM 1.0 and
A,U = SGD on Fmid. For all classes, we observe forget samples are assigned to wrong class clus-
ters after unlearning, where SAM better maintains class clusters. For class-wise, we visualize the
largest class in Fmid and observe that SGD unlearning scatters more retain samples than its SAM
counterpart, suggesting overfitting. See App. H.2 for complete visualizations.

Reducing retain signal. We verify Lemma 3.4 by reducing α in NegGrad. Fig. 2 shows ToW
changes as α decreases for various A,U pairs at different memorization levels on CIFAR-100. We
observe that A,U = SGD fails the fastest and hardest, while A,U = ASAM 1.0 exhibits the best
resilience. Also note that for CIFAR-100, |R|/(|F|+ |R|) ≈ 0.93, but unlearning starts to fail at a
higher α. This supports our claim that α depends more than retain-forget ratio.
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Figure 2: As α decreases, NegGrad puts less weight on retain signals and learns more from F ,
leading to harmful overfitting. SAM exhibits more tolerance to insufficient retain signals, while
A,U = SGD collapses the fastest. Note that ToW starts failing before α = |R|/(|F| + |R|),
implying more factors affecting α threshold as we point out.
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Figure 3: Loss landscapes on Dtest and Fmid, where first row shows a SAM pretrained model and
SAM unlearned models, and second row shows SGD counterparts. While unlearning increases
sharpness as suggested by reduced basin ratios, we observe SAM unlearned models still maintain
flatter landscapes than SGD models do.

Loss landscape. We visualize loss landscapes of SGD and ASAM 1.0 by perturbing original
model along two directions with filter normalization (Li et al., 2018), and quantify more sharp-
ness by smaller basin ratio. Fig. 3 shows loss landscapes on Dtest and Fmid, where SAM unlearning
generally keeps flatter landscapes. Same observations apply to different Fexcept that we observe
SGD+NegGrad on Fhigh to achieve flatter landscape, which might indicate that unlearning can be
an implicit regularizer, we will leave it to future work. See full visualizations and more details in
App. H.1.

5 CONCLUSION

In this paper, we provide a refined characterization of SAM under NegGrad unlearning, and the-
oretical insights on bounding and choosing the weight factor to balance retain and forget signals.
Extensive studies verify our analysis and reveals more underlying properties of SAM that are de-
sired for unlearning. Based on our rethinking of overfitting, we also propose a new algorithm which
further pushes the boundary of sample-specific unlearning. Our theoretical and empirical findings
shed light on future design of unlearning algorithms.
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A RELATED WORKS

A.1 MACHINE UNLEARNING

A wide variety of unlearning algorithms have been proposed to erase the influence of specific data in
the pre-trained model. Basic approaches involve finetuning on retain set to unlearn the forget sam-
ples with catastrophic forgetting, randomly labeling forget set to force the model to ignore the noisy
forget samples, and explicitly “learning to unlearn” from the forget set via gradient ascent (Golatkar
et al., 2020; Graves et al., 2021; Warnecke et al., 2021). Recent work pushes the boundaries of each
genre with more advanced tools. L1-Sparse (Jia et al., 2023) finetunes on retain set with L1 penalty
to improve unlearning with sparsification, NegGrad and SCRUB (Kurmanji et al., 2023) combines
gradient descent on retain set and gradient ascent on forget set to jointly update the model, Influence
Unlearning and Saliency Unlearning (Izzo et al., 2021; Fan et al., 2023) aim to find model parameters
which are important to the forget set for more effective unlearning while preserving model perfor-
mance. Theoretical work in unlearning draws insights from differential privacy and characterizes
distributional closeness in (ϵ, δ)-language. Sekhari et al. (2021) studies unlearning with second-
order update which computes Hessian inverse. Langevin Unlearning (Chien et al., 2024) studies
approximate unlearning with privacy and efficiency guarantees based on projected noisy gradient
descent. Unlearning also extends to generative vision and language tasks, addressing privacy and
safety concerns, erasing concepts, and aligning with human preference (Ko et al., 2024; Wang et al.,
2024; Zhang et al., 2024; Scholten et al., 2025).

A.2 SHARPNESS AWARE MINIMIZATION

Sharpness-aware minimization (SAM) perturbs the model within a ball neighborhood to maximize
the loss. Since perturbations in sharp regions result in higher penalties, SAM learns to avoid sharp
landscapes and improve generalization with flatness. Recent work improves SAM’s flexibility and
efficiency. Adaptive SAM (Kwon et al., 2021) introduces scale-invariant adaptive sharpness to ad-
dress parameter re-scaling sensitivity. GA-SAM (Zhang & Lan, 2022) adapts the perturbation based
on gradient strength to improve generalization performance. Sparse SAM (Mi et al., 2022) shows
that adding sparsity in perturbations can preserve or even improve performance while accelerating
training. LookSAM (Liu et al., 2022) efficiently scales up SAM by only periodically computing the
inner gradient ascent. Theoretical studies of SAM focus both on the convergence analysis (Khanh
et al., 2024) and its dynamics (Bartlett et al., 2022). Chen et al. (2023) reveal the fundamental
mechanism of SAM that prevents memorizing noisy signals by deactivating neurons based on a
practical signal-to-noise analytical framework. This inspires us to investigate the intriguing proper-
ties of SAM in machine unlearning, where signals from the forget set can be naturally modeled as
the noise from the perspective of maintaining model performance with remaining samples.

A.3 DATA MEMORIZATION

Recent work aims to identify key factors that affect the difficulty of an unlearning task. Fan et al.
(2024) define and seek the “worst-case” forget set using a gradient-based adversarial approach. Car-
lini et al. (2019) investigates and quantifies the atypical-ness of data samples under a differential
privacy setting. Zhao et al. (2024) discovers that the more memorized the forget examples are, the
harder unlearning becomes. We agree with the empirical studies in Zhao et al. (2024) and study
the unlearning effectiveness under different levels of data memorization. Memorization literature
provides fundamental understanding and interpretation of learning dynamics and model behaviors,
characterizing generalization bounds and the interplay with data (Feldman & Zhang, 2020; Attias
et al., 2024). Recent studies also investigate the effects of memorization in large-scale scenarios
such as language models (Biderman et al., 2023; Prashanth et al., 2024; Li et al., 2025). Specifi-
cally, the memorization and influence scores in Feldman (2020); Feldman & Zhang (2020) provide
insights into evaluating unlearning algorithms and designing new approaches. In our study, we
have observed varied effectiveness of each unlearning method with respect to forget sets of different
memorization levels, and aim at designing unlearning methods which perform well on forgets sets
of all difficulties.
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B STATEMENTS

B.1 REPRODUCIBILITY STATEMENT

Experiment environment. Our code is built upon several open-source code bases 1 and will be
released. We perform all experiments on single NVIDIA A100/H100. We fix random seed for
all data processing, saved precomputation (e.g., indices for data subsetting, weight masks), model
splitting, pretraining and retraining for reproducible observations. For unlearning parameters and
settings, we run experiments with multiple seeds to evaluate statistical significance, see App. F.1.

Theoretical Assumptions. Our theoretical analysis follows standard, existing assumptions of model
size, data size, effective information in the data (signal) and Gaussian noise in data, which were
previously stated in Kou et al. (2023); Chen et al. (2023). In addition to mentioned common as-
sumptions, our Assumption D.1 also assumes conventional unlearning schemes: cross-entropy loss,
ReLU activation, clean labels and reasonable size of forget set (< 1/2 trainset size).

B.2 LLM USAGE STATEMENT

We use GPT to fix grammar and polish short phrases to sharpen our expression. We also use GPT
as a smart search engine to gather recent work of interest and summarize existing bug fixes. Zero
LLM usage for any core component of our work, including data processing, implementation and
experiment, theory, etc., and LLM does not guide the development of any module. No “vibe coding”
and mathematical derivation from LLM.

B.3 LIMITATIONS AND FUTURE WORK

There are a few limitations based on the signal-to-noise framework, which on the other hand inspire
us for future studies. First, there are more interference which can be modeled as noise in machine
unlearning, such as the overlap between retain set and forget set. Using hard-cutoff or random sam-
pling to build F might split two similar samples into two opposite subsets, causing interference and
impacting unlearning effectiveness. We hypothesize that less overlap between R and F results in
more effective unlearning, and vice versa. With more identified and modeled noise sources, another
limitation comes from the uncharacterized behaviors when retain signals are weak for some upper
bound. Will SAM fail into harmful overfitting under this circumstance? Theoretical and empiri-
cal studies under this situation might leverage the interplay between all signals, including different
noisy signals. Another limitation comes from the design of ascent-based unlearning like NegGrad
as discussed by a concurrent work Mavrothalassitis et al. (2025): while the objective encourages
misclassification, the targeted retrained model should treat forget samples as never seen (generaliz-
ing or guessing). This misaligned objective might cause potential imprecision and leakage. While
we show that SAM’s benefits trivially apply to randomness-based unlearning (e.g. RL in Eqn. 3),
and ascent-based unlearning is widely adopted in frontiers (LLM, diffusions), deeper studies are
expected for more robust unlearning. Last, we observe an intriguing “regularizing” effect of un-
learning using SGD via loss landscape visualization, which demands deeper investigation in future
work.

1https://github.com/kairanzhao/RUM, https://github.com/davda54/sam,
https://github.com/OPTML-Group/Unlearn-Saliency, https://pluskid.github.
io/influence-memorization/

16

https://github.com/kairanzhao/RUM
https://github.com/davda54/sam
https://github.com/OPTML-Group/Unlearn-Saliency
https://pluskid.github.io/influence-memorization/
https://pluskid.github.io/influence-memorization/


Published as a conference paper at ICLR 2026

C TABLE OF NOTATIONS

Table 5:

xi ∈ RP×d Input image of sample i, vectorized
into P patches of dimension d (one
patch holds the signal yiφ and
P−1 patches contain noise)

yi ∈ {±1} Binary class label for sample i

φ ∈ Rd Universal signal vector shared
across samples

ξi ∈ Rd Noise vector for sample i, often
drawn from N (0, σ2

pI)

P Number of patches per input image d Dimensionality of each patch and
each convolutional filter

m Number of convolutional filters per
class

wj,r ∈ Rd Weight vector for the r-th filter of
class j ∈ {±1}

Wj Collection of filters {wj,r}mr=1 for
class j

W Complete set of model parameters

f(W,x) Two-class CNN output:
f+1(W+1,x)− f−1(W−1,x)

fj(Wj ,x) Class-j output:
1
m

∑m
r=1

∑P
p=1 σ(⟨wj,r,xp⟩)

σ(·) ReLU activation function σ′(·) Derivative of ReLU used in
gradients

L(W,S) Cross-entropy loss over training set
S

ℓ
′(t,b)
i Gradient of the loss for sample i at

epoch t, batch b

w
(t,b)
j,r r-th filter of class j ∈ {±1} after t

epochs and b batches
κ
(t,b)
j,r Learned signal coefficient for filter

(j, r) at step (t, b)

ζ
(t,b)
j,r,i Learned noise coefficient from

sample i on filter (j, r) at step (t, b)
∥φ∥2, ∥ξi∥2 Euclidean norms of the signal and

noise vectors

F ⊆ S Forget set whose influence is to be
removed

R = S \ F Retain set used for continued
training

fT1
A Model after T1 epochs of training

by algorithm A
fT2
U Model after T2 epochs of

unlearning by algorithm U
T1, T2 Numbers of epochs for pretraining

and unlearning
IR
t,b, IF

t,b Mini-batch indices from R and F at
step (t, b)

B Batch size η Learning rate

sgn(·) Sign function returning ±1 α Weight in NegGrad balancing retain
and forget contributions

ϵ̂
(t,b)
j,r SAM perturbation applied to w

(t,b)
j,r τ, ρ Perturbation radius in theory and in

practice used in SAM/ASAM

δ Perturbation term: δ = ϵ̂
(t,b)
j,r for

SAM and 0 for SGD
∇φi , ∇ξi Gradient contributions for the signal

and noise in NegGrad updates

∆SAM
epochκj,r Per-epoch change of κj,r under

SAM
∆SGD

epochκj,r Per-epoch change of κj,r under
SGD

Acc(θ,D) Classification accuracy model on
dataset; θ,D are abbreviated terms
in Acc()

ToW(fU ) “Tug-of-war” metric combining
retain, forget and test accuracies

D data distribution Fhigh Forget sets of high memorization
difficulty; same for mid, low

mem(A,S, i) Memorization score:
Pr[f(S) = yi]− Pr[f(S \ i) = yi]

S \ i Training set S with sample i
removed

ϕi Feature embedding of sample i used
in entanglement analysis

µR, µF , µ Mean embeddings of retain set,
forget set and all data

Symbol Meaning / Notes Symbol Meaning / Notes

Continued on next page
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Table 5: (Continued)

EAll
Var(R,F , f) Variance-based entanglement

measure between R and F , given
model f

ECls
Var Class-wise version of the

variance-based entanglement

EAll
Wp

, ECls
Wp

Geometry-aware entanglement
measures based on Wasserstein
distance (all/class-wise)

A, U Training algorithm (e.g. SGD,
SAM) and unlearning algorithm
(e.g. NegGrad, RL, with default
SGD optimization, can be used with
SAM)

κ
(0,0)
j,r Initial signal coefficient for filter

(j, r)
ζ
(0,0)
j,r,i Initial noise coefficient for sample i

on filter (j, r)

|F|, |R| Cardinalities of the forget and retain
sets, which is size in our work

n Total number of samples (|S|)

Dtest Test dataset used for evaluation αSGD, αSAM α weight coeff for SGD and SAM,
respectively

Symbol Meaning / Notes Symbol Meaning / Notes

D DETAILED FORMULATIONS AND PROOFS

We prove our theorems and lemmas based on previous theoretical results in Kou et al. (2023); Chen
et al. (2023). Specifically, we prove that with additional yet necessary conditions for effective un-
learning, the final test errors can be preserved, while we identify and characterize the changed inter-
nal dynamics. We begin by expanding and restating κ, ζ update rule for NegGrad in Eq. 7:

κ
(t,b+1)
j,r − κ

(t,b)
j,r = −η∥φ∥22

Bm

α ∑
i∈IRt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, yiφ⟩)

−(1− α)
∑

i∈IFt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, yiφ⟩)

 ,

ζ
(t,b+1)

j,r − ζ
(t,b)

j,r = −η(P − 1)2

Bm

α ∑
i∈IRt,b

∥ξi∥22ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, ξi⟩) · 1(yi = j)

−(1− α)
∑

i∈IFt,b

∥ξi∥22ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, ξi⟩) · 1(yi = j)

 ,

ζ(t,b+1)

j,r
− ζ(t,b)

j,r
= +

η(P − 1)2

Bm

α ∑
i∈IRt,b

∥ξi∥22ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, ξi⟩) · 1(yi ̸= j)

−(1− α)
∑

i∈IFt,b

∥ξi∥22ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r +∆, ξi⟩) · 1(yi ̸= j)

 ,

(11)
where ∆ = ϵ̂

(t,b)
j,r for SAM and 0 for SGD, ζ(t,b)j,r is split into ζ

(t,b)

j,r := ζ
(t,b)
j,r 1(ζ

(t,b)
j,r ≥ 0) and

ζ(t,b)
j,r

:= ζ
(t,b)
j,r 1(ζ

(t,b)
j,r ≤ 0) based on label agreement. We summarize several reasonable assump-

tions from previous work in addition to our conditions which ensure unlearning to progress:

Assumption D.1 Suppose there exists a sufficiently large constant C, such that the following hold:

1. Sufficiently large dimension d: d ≥Cmax{nσ−2p ∥φ∥22 log(T ∗), n2 log(nm/δ)(log(T ∗))2},
for some T ∗ = Ω(η−1Bmd−1P−2σ−2p ).
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2. The size of S and the CNN width satisfy n ≥ C log(m/δ),m ≥ C log(n/δ).

3. The signal strength satisfies ∥φ∥22 ≥ Cσ2
p log(n/δ).

4. For the Gaussian noise initialization, σ0 ≤ (Cmax{σpd/
√
n,
√
log(m/δ) · ∥φ∥2})−1.

5. The learning rate η satisfies η ≤ (Cmax{σ2
pd

3/2/(n2m
√

log(n/δ)), σ2
pd/n})−1.

6. Assume cross-entropy loss: ℓ(z) = log(1 + exp(−z)) =⇒ ℓ′ = −1/(1 + exp(z)).

7. Assume ReLU activation.

8. Assume all clean labels and F signals do not dominate: α ≥ |R|/(|F|+ |R|) := β > 0.5.

We then obtain several proven quantities from previous work, which are achieved during pretraining
and can be leveraged at the start of unlearning:

•
∑n

i=1 ζ
(t)

j,r,i/κ
(t)
j′,r′ = Θ(SNR−2), for the signal-to-noise ratio SNR = ∥φ∥2

(P−1)σp

√
d

.

•
∑n

i=1 ζ
(t)

j,r,i = Ω(n) = O(n log(T ∗)) = Θ̃(n), for some T ∗ = Ω(η−1Bmd−1P−2σ−2p ).

• maxj,r,i |ζ(t)j,r,i
| = max{O(

√
log(mn/δ) · σ0σp

√
d), O(

√
log(n/δ) log(T ∗) · n/

√
d)}.

• κ
(T∗)
j,r = Θ(κ̂), where κ̂ = n · SNR2.

D.1 PROOF TO THEOREM 3.2

Under NegGrad, we want to predict retain samples inR correctly while we count correct predictions
inF as errors, yielding same bounds for P(x,y)∼R(yf(W

(t),x) ≤ 0) and P(x,y)∼F (yf(W
(t),x) >

0) based on inverse objectives. However, when considering the test error on the model that is jointly
updated by gradient descent onR and gradient ascent on F , we still measure the error rate by wrong
predictions. In other words, fitting forget samples will reduce the generalization performance. We
can decompose the test error as follows:

P(x,y)∼D

(
y ̸= sign

(
f
(
W(t),x

)))
= P(x,y)∼D

(
yf
(
W(t),x

)
≤ 0
)

=P(x,y)∼D

(
yf
(
W(t),x

)
≤ 0, (x, y) ∈ R

)
+ P(x,y)∼D

(
yf
(
W(t),x

)
≤ 0, (x, y) ∈ F

)
=β · P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
+ (1− β) · P(x,y)∼F

(
yf
(
W(t),x

)
≤ 0
)

=β · P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
+ (1− β) ·

(
1− P(x,y)∼F

(
yf
(
W(t),x

)
> 0
))

.

(12)

Note that in practice, R and F come from training set S. During inference and evaluation, we
convert the data augmentations of R,F to test transforms, thus measuring proxy-test errors on R-
like and F-like samples. To bound the test error, first decompose yf(W(t),x) into signal and noise
learning of both positive and negative classes, considering ∆ = 0 for SGD:

yf
(
W(t),x

)
=

1

m

∑
j,r

yj
[
σ
(〈

w
(t)
j,r, yφ

〉)
+ σ

(〈
w

(t)
j,r, ξ

〉)]
=

1

m

∑
r

[
σ
(〈

w(t)
y,r, yφ

〉)
+ (P − 1)σ

(〈
w(t)

y,r, ξ
〉)]

− 1

m

∑
r

[
σ
(〈

w
(t)
−y,r, yφ

〉)
+ (P − 1)σ

(〈
w

(t)
−y,r, ξ

〉)]
.

(13)

Remark D.2 The following proof process for bounding P(x,y)∼R(yf(W
(t),x) comes from Kou

et al. (2023). We include it here for readability, since we will leverage the results when combining
R and F in the end, as well as make adaptations for proving Theorem 3.3. Our results benefit from
previous work as we consider the unlearning process as an extension of the second stage in Chen
et al. (2023).
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We begin by two lemmas that bound the signal, noise norm, and the related inner products:

Lemma D.3 (Lemma B.4 in Kou et al. (2023)). Suppose that δ > 0 and d = Ω(log(6n/δ)). Then
with probability at least 1− δ,

σ2
pd/2 ≤ ∥ξi∥

2
2 ≤ 3σ2

pd/2,

|⟨ξi, ξi′⟩| ≤ 2σ2
p ·
√

d log (6n2/δ),

|⟨ξi,φ⟩| ≤ ∥φ∥2σp ·
√
2 log(6n/δ),

for all i, i′ ∈ [n].

Lemma D.4 (Lemma B.5 in Kou et al. (2023)). Suppose that d = Ω(log(mn/δ)),m =
Ω(log(1/δ)). Then with probability at least 1− δ,

σ2
0d/2 ≤

∥∥∥w(0,0)
j,r

∥∥∥2
2
≤ 3σ2

0d/2,∣∣∣〈w(0,0)
j,r ,φ

〉∣∣∣ ≤√2 log(12m/δ) · σ0∥φ∥2,∣∣∣〈w(0,0)
j,r , ξi

〉∣∣∣ ≤ 2
√
log(12mn/δ) · σ0σp

√
d,

for all r ∈ [m], j ∈ {±1} and i ∈ [n]. Moreover,

σ0∥φ∥2/2 ≤ max
r∈[m]

j ·
〈
w

(0,0)
j,r ,φ

〉
≤
√
2 log(12m/δ) · σ0∥φ∥2,

σ0σp

√
d/4 ≤ max

r∈[m]
j ·
〈
w

(0,0)
j,r , ξi

〉
≤ 2
√

log(12mn/δ) · σ0σp

√
d,

for all j ∈ {±1} and i ∈ [n].

Plug in the weight update decomposition in Eq. 2, we can first bound the inner product for j = y:〈
w(t)

y,r, yφ
〉
=
〈
w(0)

y,r, yφ
〉
+ κ(t)

y,r

+
1

P − 1

n∑
i=1

ζ
(t)

y,r,i ∥ξi∥
−2
2 ⟨ξi, yφ⟩+

1

P − 1

n∑
i=1

ζ(t)
y,r,i
∥ξi∥−22 ⟨ξi, yφ⟩

≥ −
√

2 log(12m/δ) · σ0∥φ∥2 + κ(t)
y,r

−
√
2 log(6n/δ)

P − 1
· σp∥φ∥2 ·

(
σ2
pd/2

)−1 [ n∑
i=1

ζ
(t)

y,r,i +

n∑
i=1

| ζ(t)
y,r,i
|

]
=−Θ

(√
log(m/δ)σ0∥φ∥2

)
+ κ(t)

y,r −Θ
(√

log(n/δ) (Pσpd)
−1 ∥φ∥2

)
·Θ
(
SNR−2

)
· κ(t)

y,r

=−Θ
(√

log(m/δ) (σpd)
−1√

n∥φ∥2
)
+
[
1−Θ

(√
log(n/δ) · Pσp/∥φ∥2

)]
κ(t)
y,r

=Θ
(
κ(t)
y,r

)
,

(14)
where the inequality is by Lemma D.3 and Lemma D.4; the second equality is obtained by plug-
ging in the coefficient orders we summarized at the beginning of the section; the third equal-
ity is by σ0 ≤ C−1(σpd)

−1√n in Assumption D.1 and SNR = ∥φ∥2/((P − 1)σp

√
d). The

fourth equality is by κ
(t)
j,r = Θ(κ̂), where κ̂ = n · SNR2. Also

√
log(n/δ) · σp/∥φ∥2 ≤

1/
√
C and

√
log(m/δ)(σpd)

−1√n∥φ∥2/κ̂ =
√

log(m/δ)σp/(
√
n∥φ∥2) ≤

√
log(m/δ)/n ·

1/(
√

C log(n/δ)) ≤ 1/(C
√
log(n/δ)) holds by ∥φ∥22 ≥ C · σ2

p log(n/δ) and n ≥ C log(m/δ) in
Assumption D.1, so for sufficiently large constant C the equality holds. Similarly, we can show that
⟨w(t)
−y,r, yφ⟩ = −Θ(κ

(t)
y,r) < 0 for j ̸= y.

Next denote g(ξ) as
∑

r σ(⟨w
(t)
−y,r, ξ⟩). Since ξ ∼ N (0, σ2

pI), we can leverage the Gaussian con-
centration bound for x ≥ 0:

P(g(ξ)− Eg(ξ) ≥ x) ≤ exp

(
− cx2

σ2
p∥g∥2Lip

)
, (15)
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where c is a constant. To calculate the Lipschitz norm, we have

|g(ξ)− g (ξ′)| =

∣∣∣∣∣
m∑
r=1

σ
(〈

w
(t)
−y,r, ξ

〉)
−

m∑
r=1

σ
(〈

w
(t)
−y,r, ξ

′
〉)∣∣∣∣∣

≤
m∑
r=1

∣∣∣σ (〈w(t)
−y,r, ξ

〉)
− σ

(〈
w

(t)
−y,r, ξ

′
〉)∣∣∣

≤
m∑
r=1

∣∣∣〈w(t)
−y,r, ξ − ξ′

〉∣∣∣ ≤ m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
· ∥ξ − ξ′∥2 .

(16)

The first inequality is by triangle inequality; the second inequality is by the property of ReLU; the
last inequality is by Cauchy-Schwartz inequality. Therefore, we have ∥g∥Lip ≤

∑m
r=1 ∥w

(t)
−y,r∥2,

and since ⟨w(t)
−y,r, ξ⟩ ∼ N (0, ∥w(t)

−y,r∥22σ2
p), we can get

Eg(ξ) =
m∑
r=1

Eσ
(〈

w
(t)
−y,r, ξ

〉)
=

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
σp

√
2π

=
σp√
2π

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
. (17)

Then, we seek to upper bound the 2-norm of w(t)
j,r. First we have∥∥∥∥∥

n∑
i=1

ζ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

2

=

n∑
i=1

ζ
(t)
j,r,i

2
· ∥ξi∥−22︸ ︷︷ ︸

diagonal

+2
∑

1≤i1<i2≤n

ζ
(t)
j,r,i1

ζ
(t)
j,r,i2

· ∥ξi1∥
−2
2 ∥ξi2∥

−2
2 · ⟨ξi1 , ξi2⟩︸ ︷︷ ︸

off-diagonal

≤4σ−2p d−1
n∑

i=1

ζ
(t)
j,r,i

2 + 2
∑

1≤i1<i2≤n

∣∣∣ζ(t)j,r,i1
ζ
(t)
j,r,i2

∣∣∣ · (16σ−4p d−2
)
·
(
2σ2

p

√
d log (6n2/δ)

)

=4σ−2p d−1
n∑

i=1

ζ
(t)
j,r,i

2 + 32σ−2p d−3/2
√

log (6n2/δ)

( n∑
i=1

∣∣∣ζ(t)j,r,i

∣∣∣)2

−
n∑

i=1

ζ
(t)
j,r,i

2


=Θ

(
σ−2p d−1

) n∑
i=1

ζ
(t)
j,r,i

2 + Θ̃
(
σ−2p d−3/2

)( n∑
i=1

∣∣∣ζ(t)j,r,i

∣∣∣)2

≤
[
Θ
(
σ−2p d−1n−1

)
+ Θ̃

(
σ−2p d−3/2

)]( n∑
i=1

∣∣∣ζ(t)j,r,i

∣∣∣+ n∑
i=1

∣∣∣ζ(t)
j,r,i

∣∣∣)2

≤Θ
(
σ−2p d−1n−1

)( n∑
i=1

ζ
(t)

j,r,i

)2

.

(18)

The first inequality is by Lemma D.3; for the second inequality we used the definition of ζ, ζ; for
the second to last equation we plugged in coefficient orders. We can thus upper bound the 2-norm
of w(t)

j,r as: ∥∥∥w(t)
j,r

∥∥∥
2
≤
∥∥∥w(0)

j,r

∥∥∥
2
+ κ

(t)
j,r · ∥φ∥

−1
2 +

1

P − 1

∥∥∥∥∥
n∑

i=1

ζ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

≤
∥∥∥w(0)

j,r

∥∥∥
2
+ κ

(t)
j,r · ∥φ∥

−1
2 +Θ

(
P−1σ−1p d−1/2n−1/2

)
·

n∑
i=1

ζ
(t)

j,r,i

= Θ
(
P−1σ−1p d−1/2n−1/2

)
·

n∑
i=1

ζ
(t)

j,r,i,

(19)
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where the first inequality is due to the triangle inequality, and the equality is due to the following:

κ
(t)
j,r · ∥φ∥

−1
2

Θ
(
P−1σ−1p d−1/2n−1/2

)
·
∑n

i=1 ζ
(t)

j,r,i

= Θ
(
P−1σpd

1/2n1/2∥φ∥−12 SNR2
)

=Θ
(
P−1σ−1p d−1/2n1/2∥φ∥2

)
= O(1),

(20)

based on the coefficient order
∑n

i=1 ζ
(t)

j,r,i/κ
(t)
j,r = Θ(SNR−2), the definition of SNR, and the con-

dition for d in Assumption D.1. Similarly,∥∥∥w(0)
j,r

∥∥∥
2

Θ
(
P−1σ−1p d−1/2n−1/2

)
·
∑n

i=1 ζ
(t)

j,r,i

=
Θ
(
σ0

√
d
)

Θ
(
P−1σ−1p d−1/2n−1/2

)
·
∑n

i=1 ζ
(t)

j,r,i

=O
(
Pσ0σpdn

−1/2
)
= O(1),

(21)

based on Lemma D.4, the coefficient order
∑n

i=1 ζ
(t)

j,r,i = Ω(n), and the condition for σ0 in As-
sumption D.1. Then we can give an analysis of the following key component:

∑
r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

≥
Θ
(∑

r κ
(t)
y,r

)
Θ
(
d−1/2n−1/2

)
·
∑

r,i ζ
(t)

−y,r,i

=Θ
(
d1/2n1/2SNR2

)
= Θ

(
n1/2∥φ∥22/(P 2σ2

pd
1/2)

)
.

(22)

Then for ∥φ∥2 ≥ C
1/4
1 n−1/4Pσpd

1/4 for some large constant C1, we have

∑
r

σ
(〈

w(t)
y,r, yφ

〉)
− (P − 1)σp√

2π

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
> 0. (23)

Upper bound. Now plug in previous results to obtain

P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
≤ P(x,y)∼R

(
(P − 1)

∑
r

σ
(〈

w
(t)
−y,r, ξ

〉)
≥
∑
r

σ
(〈

w(t)
y,r, yφ

〉))

=P(x,y)∼R

(
g(ξ)− Eg(ξ) ≥ 1/(P − 1)

∑
r

σ
(〈

w(t)
y,r, yφ

〉)
− σp√

2π

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

)

≤ exp

−c
(
1/(P − 1)

∑
r σ
(〈

w
(t)
y,r, yφ

〉)
−
(
σp/
√
2π
)∑m

r=1

∥∥∥w(t)
−y,r

∥∥∥
2

)2
σ2
p

(∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

)2


=exp

−c
 ∑

r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

− 1/
√
2π

2


≤ exp(c/2π) exp

−0.5c
 ∑

r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

2
 .

(24)
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The second inequality is by Eq. 23 and plugging ∥g∥Lip ≤
∑m

r=1 ∥w
(t)
−y,r∥2 into Eq. 15; the third

inequality is due to (s− t)2 ≥ s2/2− t2, ∀s, t ≥ 0. And from Eq. 22 and Eq. 24 we have

P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
≤ exp(c/2π) exp

−0.5c
 ∑

r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

2


= exp

(
c

2π
− n∥φ∥42

C(P − 1)4σ4
pd

)
≤ exp

(
− n∥φ∥42
2C1(P − 1)4σ4

pd

)
= exp

(
− n∥φ∥42
C2(P − 1)4σ4

pd

)
= ϵ,

(25)
where C = O(1); the last inequality holds if we choose C1 ≥ cC/π; the last equality holds if we
choose C2 as 2C.

For the forget set F , we thus have

P(x,y)∼F

(
yf
(
W(t),x

)
> 0
)
≤ ϵ. (26)

Lower bound. Without loss of generality, let
∑

r κ
(t)
1,r = max

{∑
r κ

(t)
1,r,
∑

r κ
(t)
−1,r

}
. Denote

v = λ ·
∑

i 1 (yi = 1) ξi, where λ = C7SNR2 = C7∥φ∥22/
(
(P − 1)2σ2

pd
)

and C7 is a sufficiently
large constant. Since ReLU is convex, we have

σ
(〈

w
(t)
1,r, ξ + v

〉)
− σ

(〈
w

(t)
1,r, ξ

〉)
≥ σ′

(〈
w

(t)
1,r, ξ

〉)〈
w

(t)
1,r,v

〉
,

σ
(〈

w
(t)
1,r,−ξ + v

〉)
− σ

(〈
w

(t)
1,r,−ξ

〉)
≥ σ′

(〈
w

(t)
1,r,−ξ

〉)〈
w

(t)
1,r,v

〉
.

(27)

Summing the above two, we have that almost surely for all ξ

σ
(〈

w
(t)
1,r, ξ + v

〉)
− σ

(〈
w

(t)
1,r, ξ

〉)
+ σ

(〈
w

(t)
1,r,−ξ + v

〉)
− σ

(〈
w

(t)
1,r,−ξ

〉)
≥
〈
w

(t)
1,r,v

〉
≥ λ

[∑
yi=1

ζ
(t)

1,r,i − 2n
√

log(12mn/δ) · σ0σp

√
d− 5n2α

√
log (6n2/δ) /d

]
,

(28)

where the last inequality is by Lemma C.3 in Kou et al. (2023) and Lemma D.4. Additionally, since
ReLU is a Liptchitz, we also have that

σ
(〈

w
(t)
−1,r, ξ + v

〉)
− σ

(〈
w

(t)
−1,r, ξ

〉)
+ σ

(〈
w

(t)
−1,r,−ξ + v

〉)
− σ

(〈
w

(t)
−1,r,−ξ

〉)
≤ 2

∣∣∣〈w(t)
−1,r,v

〉∣∣∣
≤ 2λ

[∑
yi=1

ζ(t)−1,r,i + 2n
√

log(12mn/δ) · σ0σp

√
d+ 5n2α

√
log (6n2/δ) /d

]
.

(29)
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Therefore, by plugging Eq. 28 and Eq. 29, we have that

g(ξ + v)− g(ξ) + g(−ξ + v)− g(−ξ)

≥ λ

[∑
r

∑
yi=1

ζ
(t)

1,r,i − 6nm
√
log(12mn/δ) · σ0σp

√
d− 15mn2α

√
log (6n2/δ) /d

]

≥ (λ/2) ·
∑
r

∑
yi=1

ζ
(t)

1,r,i

≥ λ/2 ·Θ
(
SNR−2

)∑
r

κ
(t)
1,r

≥ 4C6

∑
r

κ
(t)
1,r,

(30)

where the second inequality is by Lemma D.1 in Kou et al. (2023) and Assumption D.1; the third
inequality is by

∑n
i=1 ζ

(t)

j,r,i/κ
(t)
j′,r′ = Θ(SNR−2). Finally, it is worth noting that the norm

∥v∥2 =

∥∥∥∥∥λ ·∑
i

1 (yi = 1) ξi

∥∥∥∥∥
2

= Θ

(√
n∥φ∥42
P 4σ4

pd

)
≤ 0.06σp. (31)

where the last inequality is by condition ∥φ∥2 ≤ C3d
1/4n−1/4Pσp with sufficiently large C3. Then

we present a Lemma which bounds the Total Variation (TV) distance between two Gaussian with
the same covariance matrix.

Lemma D.5 (Proposition 2.1 by Devroye et al. (2018)). The TV distance betweenN
(
0, σ2

pId
)

and
N
(
v, σ2

pId
)

is smaller than ∥v∥2/2σp.

Finally, we can prove the lower bound forR:

P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)

=P(x,y)∼R

(∑
r

σ
(〈

w
(t)
−y,r, ξ

〉)
−
∑
r

σ
(〈

w(t)
y,r, ξ

〉)
≥
∑
r

σ
(〈

w(t)
y,r, yφ

〉)
−
∑
r

σ
(〈

w
(t)
−y,r, yφ

〉))

≥0.5P(x,y)∼R

(∣∣∣∣∣∑
r

σ
(〈

w
(t)
−y,r, ξ

〉)
−
∑
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σ
(〈
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〉)∣∣∣∣∣ ≥ C6 max

{∑
r

κ
(t)
1,r,
∑
r

κ
(t)
−1,r

})
,

(32)
where C6 is a constant, the inequality holds since if |

∑
r σ(⟨w

(t)
1,r, ξ⟩) −

∑
r σ(⟨w

(t)
−1,r, ξ⟩)| is too

large, we can always pick a corresponding y given ξ to make a wrong prediction.

Let g(ξ) =
∑

r σ(⟨w
(t)
1,r, ξ⟩) −

∑
r σ(⟨w

(t)
−1,r, ξ⟩), and denote the set Ω := {ξ | |g(ξ)| ≥

C6 max{
∑

r κ
(t)
1,r,
∑

r κ
(t)
−1,r}}. Thus we have

P(x,y)∼R

(
yf
(
W (t),x

)
≤ 0
)
≥ 0.5P(Ω). (33)

By Lemma 5.8 of Kou et al. (2023), we have that
∑

j [g(jξ+ v)− g(jξ)] ≥ 4C6 maxj

{∑
r κ

(t)
j,r

}
.

Therefore, by pigeonhole principle, one of [ξ,−ξ, ξ+v,−ξ+v] must belong to Ω, thus Ω∪−Ω∪
Ω − {v} ∪ −Ω − {v} = Rd. Therefore, at least one of P(Ω),P(−Ω),P(Ω − {v}),P(−Ω − {v})
is greater than 1

4 . Note that P(−Ω) = P(Ω) and

|P(Ω)− P(Ω− v)| =
∣∣∣Pξ∼N(0,σ2

pId)
(ξ ∈ Ω)− Pξ∼N(v,σ2

pId)
(ξ ∈ Ω)

∣∣∣
≤ TV

(
N
(
0, σ2

pId
)
,N
(
v, σ2

pId
))

≤ ∥v∥2
2σp

≤ 0.03,

(34)
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where the first inequality is by the definition of TV distance, the second inequality is by Lemma D.5.
Hence, we have that P(Ω) ≥ 1

4 − 0.03 = 0.22, and plugging this into Eq. 33, we get

P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
≥ 0.5P(Ω) = 0.11 ≥ 0.1. (35)

Like the upper bound, the derived lower bounds also applies to P(x,y)∼F (yf(W
(t),x) > 0). Hence,

if ∥φ∥2 ≥ C1d
1/4n−1/4Pσp,

Ltest(WT2 ,D) = P(x,y)∼D
(
y ̸= sign

(
f
(
WT2 ,x

)))
=β · P(x,y)∼R

(
yf
(
WT2 ,x

)
≤ 0
)︸ ︷︷ ︸

≤ϵR

+(1− β) ·

1− P(x,y)∼F
(
yf
(
WT2 ,x

)
> 0
)︸ ︷︷ ︸

≤ϵF


=⇒ lim

β→1
Ltest(WT2 ,D) ≤ ϵR = ϵ.

(36)

On the other hand, when β → 0.5, we have limβ→0.5 Ltest(WT2 ,D) ≤ 0.5 + 0.5ϵR − 0.5ϵF = ϵ.
Depending on the size ratio of R and F , ϵ ranges from a very small constant to a minimally PAC-
learnable threshold.

For harmful overfitting where ∥φ∥2 ≤ C3d
1/4n−1/4Pσp,

Ltest(WT2 ,D) = P(x,y)∼D
(
y ̸= sign

(
f
(
WT2 ,x

)))
=β · P(x,y)∼R

(
yf
(
WT2 ,x

)
≤ 0
)︸ ︷︷ ︸

≥0.1

+(1− β) ·

1− P(x,y)∼F
(
yf
(
WT2 ,x

)
> 0
)︸ ︷︷ ︸

≥0.1


=⇒ lim

β→1
Ltest(WT2 ,D) ≥ 0.1.

(37)

On the other hand, when β → 0.5, we have limβ→0.5 Ltest(WT2 ,D) ≥ 0.05.

D.2 PROOF TO THEOREM 3.3

First we have the same decomposition for NegGrad:

Ltest(WT2 ,D) =P(x,y)∼D

(
y ̸= sign

(
f
(
W(t),x

)))
=β · P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
+ (1− β) ·

(
1− P(x,y)∼F

(
yf
(
W(t),x

)
> 0
))

;

yf
(
W(t),x

)
=

1

m

∑
j,r

yj
[
σ
(〈

w
(t)
j,r, yφ

〉)
+ σ

(〈
w

(t)
j,r, ξ

〉)]
=

1

m

∑
r

[
σ
(〈

w(t)
y,r, yφ

〉)
+ (P − 1)σ

(〈
w(t)

y,r, ξ
〉)]

− 1

m

∑
r

[
σ
(〈

w
(t)
−y,r, yφ

〉)
+ (P − 1)σ

(〈
w

(t)
−y,r, ξ

〉)]
.

(38)
However, note that for (x, y) ∼ F , SAM gives up its denoising property. We first show this by
proving Lemma 3.1.

D.2.1 PROOF TO LEMMA 3.1
Proof. Consider extending Lemma D.5 in Chen et al. (2023) to the NegGrad setting by rewriting〈
ϵ̂
(t,b)
j,r , ξk

〉
. First we have the Frobenius norm upper bounded by the same quantity:

∥∇WLIt,b(W(t,b))∥F = ∥α∇WLIRt,b(W
(t,b))− (1− α)∇WLIFt,b(W

(t,b))∥F

≤ α∥∇WLIRt,b(W
(t,b))∥F + (1− α)∥∇WLIFt,b(W

(t,b))∥F

= ∥∇WLIt,b(W(t,b))∥F ≤ 2
√
2Pσp

√
d/Bm,

(39)
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where the first inequality comes from triangle inequality; the second equality holds becauseR,F are
split from S and come from the same D, thus having the same gradient norm; the second inequality
comes from the original bounds in Chen et al. (2023). Next we expand

〈
ϵ̂
(t,b)
j,r , ξk

〉
under NegGrad:

〈
ϵ̂
(t,b)
j,r , ξk

〉
=

τ

mB

∥∥∥∇WLIt,b(W(t,b))
∥∥∥−1
F

∑
i∈It,b

∑
p∈[P ]

ℓ
′(t)
i j · yiσ′(⟨w(t)

j,r,xi,p⟩)⟨xi,p, ξk⟩

=
τ

mB

∥∥∥∇WLIt,b(W(t,b))
∥∥∥−1
F

α ∑
i∈IRt,b

∑
p∈[P ]

ℓ
′(t)
i j · yiσ′(⟨w(t)

j,r,xi,p⟩)⟨xi,p, ξk⟩

−(1− α)
∑

i∈IFt,b

∑
p∈[P ]

ℓ
′(t)
i j · yiσ′(⟨w(t)

j,r,xi,p⟩)⟨xi,p, ξk⟩

 .

(40)
Note that ⟨xi,p, ξk⟩ can be divided into three different terms:

|⟨xi,p, ξk⟩| =


∥ξk∥22 ≤ 3σ2

pd/2, if i = k, xk,p = ξk
|⟨ξi, ξk⟩| ≤ 2σ2

p

√
d log(6n2/δ), if i ̸= k, xi,p = ξi

|⟨yiφ, ξk⟩| ≤ ∥φ∥2 σp

√
2 log(6n2/δ), if xi,p = yiφ

(41)

The upper bounds come from Lemma D.3. Based on Assumption D.1 and Lemma D.4 of Chen et al.
(2023), the i = k term will dominate the upper bound and we can write

〈
ϵ̂
(t,b)
j,r , ξk

〉
≤ τ

mB · 2
√
2Pσp

√
d/Bm

[
−0.15α(P − 1)C1σ

2
pd1[k ∈ IRt,b]

+0.15(1− α)(P − 1)C1σ
2
pd1[k ∈ IFt,b]

] (42)

Thus, when k ∈ IRt,b, we can preserve the original bound with additional α:

〈
ϵ̂
(t,b)
j,r , ξk

〉
< −Cατσp

√
d

m
√
B

. (43)

Choosing τ = m
√
B

C3αPσp

√
d

will cancel with
〈
w

(t)
j,r, ξk

〉
to deactivate the neuron. When k ∈ IFt,b, the

entire ⟨w(t,b)
j,r + ϵ̂

(t,b)
j,r , ξk⟩ will remain activated:

0 ≤
〈
ϵ̂
(t,b)
j,r , ξk

〉
< C

(1− α)τσp

√
d

m
√
B

=⇒
〈
w

(t,b)
j,r + ϵ̂

(t,b)
j,r , ξk

〉
≥
〈
w

(t,b)
j,r , ξk

〉
≥ 0. (44)

This fundamentally differs SAM’s behaviors towards unlearning F from behaviors towards learning
R as how SGD differs from SAM. For gradient ascent on F under NegGrad, we now know SAM
learns from activated noise products as much as SGD. The activation patterns are further utilized to
bound products and norms of the weight, signal and noise, which characterize the final test errors.
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Our task is reduced to bounding P(x,y)∼R(yf
(
W(t),x

)
≤ 0), then use previous error bounds for

SGD in App. D.1 for P(x,y)∼F (yf(W
(t),x) > 0). The inner product with j = y can be bounded as

〈
w(t)

y,r, yφ
〉
=
〈
w(0)

y,r, yφ
〉
+ κ(t)

y,r +
1

(P − 1)

n∑
i=1

ζ
(t)

y,r,i · ∥ξi∥
−2
2 · ⟨ξi, yφ⟩

+
1

(P − 1)

n∑
i=1

ζ(t)
y,r,i
· ∥ξi∥−22 · ⟨ξi, yφ⟩

≥
〈
w(0)

y,r, yφ
〉
+ κ(t)

y,r

−
√
2 log(6n/δ)

P − 1
· σp∥φ∥2 ·

(
σ2
pd/2

)−1 [ n∑
i=1

ζ
(t)

y,r,i +

n∑
i=1

∣∣∣ζ(t)
y,r,i

∣∣∣]
=
〈
w(0)

y,r, yφ
〉
+ κ(t)

y,r −Θ
(√

log(n/δ) · (Pσpd)
−1 ∥φ∥2

)
·Θ
(
SNR−2

)
· κ(t)

y,r

=
〈
w(0)

y,r, yφ
〉
+
[
1−Θ

(√
log(n/δ) · Pσp/∥φ∥2

)]
κ(t)
y,r

=
〈
w(0)

y,r, yφ
〉
+Θ

(
κ(t)
y,r

)
= Θ(1),

(45)
where the inequality is by Lemma D.3; the second equality is obtained by plugging in the coefficient
orders we summarized; the third equality is by SNR = ∥φ∥2/(Pσp

√
d); the fourth equality is by

∥φ∥22 ≥ C · P 2σ2
p log(n/δ) in Assumption D.1 for sufficiently large constant C; the last equality is

by Lemma D.7 of Chen et al. (2023).We similarly have ⟨w(t)
y,r, yφ⟩ = −Θ(1) < 0.

Denote g(ξ) as
∑

r σ(⟨w
(t)
−y,r, ξ⟩). The results for noise learning from SGD in App. D.1 still apply:

|g(ξ)− g (ξ′)| ≤
m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
· ∥ξ − ξ′∥2 ;

Eg(ξ) =
σp√
2π

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
;

∥∥∥∥∥
n∑

i=1

ζ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

2

≤ Θ
(
σ−2p d−1n−1

)( n∑
i=1

ζ
(t)

j,r,i

)2

.

(46)

We can thus upper bound the 2-norm of w(t)
j,r as:

∥∥∥w(t)
j,r

∥∥∥
2
≤
∥∥∥w(0)

j,r

∥∥∥
2
+ κ

(t)
j,r · ∥φ∥

−1
2 +

1

P − 1

∥∥∥∥∥
n∑

i=1

ζ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi

∥∥∥∥∥
2

≤
∥∥∥w(0)

j,r

∥∥∥
2
+ κ

(t)
j,r · ∥φ∥

−1
2 +Θ

(
P−1σ−1p d−1/2n−1/2

)
·

n∑
i=1

ζ
(t)

j,r,i

= Θ(σ0

√
d) + Θ

(
P−1σ−1p d−1/2n−1/2

)
·

n∑
i=1

ζ
(t)

j,r,i,

(47)

based on SNR = ∥φ∥2/(Pσp

√
d) and

∑n
i=1 ζ

(t)

j,r,i/κ
(t)
j,r = Θ

(
SNR−2

)
, and the condition for d in

Assumption D.1, and also
∥∥∥w(0)

j,r

∥∥∥
2
= Θ

(
σ0

√
d
)

based on Lemma D.7 of Chen et al. (2023). Then
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we have

∑
r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

≥ Θ(1)

Θ
(
σ0

√
d
)
+Θ

(
P−1σ−1p d−1/2n−1/2

)
·
∑n

i=1 ζ
(t)

j,r,i

≥ Θ(1)

Θ
(
σ0

√
d
)
+O

(
P−1σ−1p d−1/2n1/2α

)
≥ min

{
Ω
(
σ−10 d−1/2

)
,Ω
(
Pσpd

1/2n−1/2α−1
)}

≥ 1

=⇒
∑
r

σ
(〈

w(t)
y,r, yφ

〉)
− (P − 1)σp√

2π

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2
> 0.

(48)

Upper bound. Now plug in previous results to obtain

P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
≤ P(x,y)∼R

(
(P − 1)

∑
r

σ
(〈

w
(t)
−y,r, ξ

〉)
≥
∑
r

σ
(〈

w(t)
y,r, yφ

〉))

=P(x,y)∼R

(
g(ξ)− Eg(ξ) ≥ 1/(P − 1)

∑
r

σ
(〈

w(t)
y,r, yφ

〉)
− σp√

2π

m∑
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

)

≤ exp

−c
(
1/(P − 1)

∑
r σ
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w
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y,r, yφ

〉)
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σp/
√
2π
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∥∥∥w(t)
−y,r

∥∥∥
2

)2
σ2
p

(∑m
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∥∥∥w(t)
−y,r

∥∥∥
2

)2

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r σ
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w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

− 1/
√
2π

2


≤ exp(c/2π) exp

−0.5c
 ∑

r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

2
 .

(49)
The second inequality is by Eq. 48 and plugging ∥g∥Lip ≤

∑m
r=1 ∥w

(t)
−y,r∥2 into Eq. 15, the third

inequality is because (s− t)2 ≥ s2/2− t2, ∀s, t ≥ 0. And we can obtain

P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
≤ exp(c/2π) exp

−0.5c
 ∑

r σ
(〈

w
(t)
y,r, yφ

〉)
(P − 1)σp

∑m
r=1

∥∥∥w(t)
−y,r

∥∥∥
2

2


≤ exp
( c

2π
− Cmin

{
σ−20 d−1, Pσ2

pdn
−1α−2

})
≤ exp

(
−0.5Cmin

{
σ−20 d−1, Pσ2

pdn
−1α−2

})
= ϵ,

(50)
where C = O(1), the last inequality holds since σ2

0 ≤ 0.5Cd−1 log(1/ϵ) and d ≥
2C−1P−1σ−2p nα2 log(1/ϵ). Now we upper bound the test error Ltest(WT2 ,D). Depending on
the strength of the unified signal vector φ, the unlearning of F can exhibit either benign or harmful
overfitting following SGD’s characterization, dividing error bounds into two cases:
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1. If ∥φ∥2 ≥ C1d
1/4n−1/4Pσp, we have benign overfitting on bothR and F . Thus,

Ltest(WT2 ,D) = P(x,y)∼D
(
y ̸= sign

(
f
(
WT2 ,x

)))
=β · P(x,y)∼R

(
yf
(
WT2 ,x

)
≤ 0
)︸ ︷︷ ︸

≤ϵR

+(1− β) ·

1− P(x,y)∼F
(
yf
(
WT2 ,x

)
> 0
)︸ ︷︷ ︸

≤ϵF


=⇒ lim

β→1
Ltest(WT2 ,D) ≤ ϵR = ϵ.

(51)
As β → 1, |F|/n decreases so the model can better maintain its performance; as
β → 0.5, |F|/n increases and more samples are to be unlearned, making the model per-
formance reduce to a minimally PAC-learnable guarantee. Hence, when β → 0.5, we have
limβ→0.5 Ltest(WT2 ,D) ≤ 0.5 + 0.5ϵR − 0.5ϵF = ϵ.

2. If Ω(1) ≤ ∥φ∥2 ≤ C1d
1/4n−1/4Pσp, we have benign overfitting on R and harmful over-

fitting on F . Thus,

Ltest(WT2 ,D) = P(x,y)∼D

(
y ̸= sign

(
f
(
W(t),x

)))

=β · P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)

︸ ︷︷ ︸
≤ϵR

+(1− β) ·

1− P(x,y)∼F

(
yf
(
W(t),x

)
> 0
)

︸ ︷︷ ︸
≥0.1


=⇒ lim

β→1
Ltest(WT2 ,D) ≤ ϵR = ϵ.

(52)
Similarly, we have limβ→0.5 Ltest(WT2 ,D) ≤ 0.5ϵR + 0.45 = ϵ.

Remark D.6 (β-dependence of the ϵ-bound). The overall test error

Ltest(WT2 ,D) = β·P(x,y)∼R

(
yf
(
W(t),x

)
≤ 0
)
+(1−β)·

(
1− P(x,y)∼F

(
yf
(
W(t),x

)
> 0
))

can be considered as an affine function of the mixing factor β, and so its achievable range runs
from the best-case retain error ϵR (as β → 1) up to asymptotically 0.5 (as β → 0.5)—the
trivial PAC-learnability threshold. Concretely, by choosing β sufficiently close to 1, one drives
Ltest(WT2 ,D) arbitrarily close to the small “benign” error level ϵ, whereas if β remains near 0.5
then Ltest(WT2 ,D) can approach 0.5, the worst-case “minimally learnable” error. Thus, all our
bounds interpolate smoothly between these two extremes via the single parameter β, and we report
the most informative bounds in Theorem 3.2 and Theorem 3.3.

D.3 PROOF TO COROLLARY 3.3.1

Recall the update rule for κj,r. For each epoch, the interference between retain and forget signals
can be measured as

|R|/B∑
b

α
∑

i∈IRt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yiφ⟩)−
|F|/B∑

b

(1− α)
|R|
|F|

∑
i∈IFt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yiφ⟩). (53)

Similar to Lemma 3.1, the expected gradient values between retain and forget samples should not
differ. Since we cycle the forget set to synchronously train with the retain set, updates from F has
been scaled up by |R||F| . Hence,

E

|R|/B∑
b

∑
i∈IRt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yiφ⟩)

 = E

|F|/B∑
b

∑
i∈IFt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yiφ⟩)

 (54)
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Combining together, to expect κj,r to increase monotonically every epoch, we want

E

|R|/B∑
b

α
∑

i∈IRt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yiφ⟩)−
|F|/B∑

b

(1− α)
|R|
|F|

∑
i∈IFt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yiφ⟩)

 ≥ 0

=⇒ α− (1− α)
|R|
|F|
≥ 0 =⇒ α ≥ |R|

|F|+ |R|
.

(55)

D.4 PROOF TO LEMMA 3.4

By Theorem 3.3, SAM turns off noise memorization prevention mechanism when fitting F , which
leads to the same requirement on signal strength as SGD. The only difference between SAM and
SGD under NegGrad is the more effective learning onR. From Eq. 7 we have the per-batch update
of κj,r onR as

∆κj,r =
η∥φ∥22
Bm

α
∑

i∈IRt,b

ℓ
′(t,b)
i σ′(⟨w(t,b)

j,r , yiφ⟩). (56)

Let g denote the batch-average magnitude of ℓ′(t,b)i σ′(⟨w(t,b)
j,r , yiφ⟩) for convenience. We can then

express per-epoch κ update as

∆epochκj,r =
η∥φ∥22
m

α|R|g. (57)

Now, consider achieving benign overfitting on R only, where SGD requires ∥φ∥2 =
Ω(d1/4|R|−1/4Pσp) while SAM only requires ∥φ∥2 = Ω(1). That being said, given a fixed univer-
sal φ for D and a choice of α, we have SAM learning the retain signals faster than SGD:

∆epochκ
SAM
j,r

∆epochκ
SGD
j,r

= Θ(d1/2|R|−1/2P 2σ2
p) = Θ(∥φ∥22). (58)

Hence, in order to achieve the same signal learning performance as SAM onR, SGD needs to scale
up αSGD. Thus,

αSGD

αSAM = Θ(d1/2|R|−1/2P 2σ2
p) = Θ(∥φ∥22), or αSGD − αSAM = Θ(∥φ∥22). (59)

In general, since |R| = Θ(n), we can characterize the gap between αSGD and αSAM by O(
√
d/n).

E IMPLEMENTATION DETAILS

E.1 EXPERIMENT SETUP

We conduct major experiments on CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-1K (Rus-
sakovsky et al., 2015) using ResNet-50 (He et al., 2016). We adopt pre-computed memorization
scores for these two datasets from Feldman & Zhang (2020) to generate F of different memoriza-
tion levels with |F| ≈ 5%|S|. We have |F| = 3000 for CIFAR-100 and |F| = 60000 for ImageNet.
We sample high-memorization forget set Fhigh by choosing |F| samples of highest memorization
scores from S, Flow by choosing |F| samples of lowest memorization scores, and Fmid by choosing
|F| samples whose memorization scores are closest to 0.5. We also run experiments with randomly
sampled Frand on Tiny-ImageNet and CIFAR-10 in App. G. We use RandomResizedCrop and
RandomHorizontalFlip as train transforms.

Pretraining and retraining. We pretrain on S and retrain onR with the same settings. For CIFAR-
100, we train for T1 = 200 epochs, use batch size 256, learning rate η0 = 0.1 with cosine annealing,
SGD with momentum 0.9 and weight decay 5×10−4. For ImageNet, we train for T1 = 150 epochs,
use batch size 512, learning rate η0 = 0.25 with cosine annealing and 5 warm-up epochs, SGD
with momentum 0.9 and weight decay 2 × 10−5. For CIFAR-10, we train ResNet-18 for T1 = 50
epochs, use batch size 256, learning rate η0 = 0.1 with cosine annealing, SGD with momentum 0.9
and weight decay 5 × 10−4. We summarize the settings, test performance of different pretrained
models, as well as accuracies of retrain models in Tab. 6.
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Table 6: Pretraining settings and test accuracies using different A (top), as well as performance of
retrained models w.r.t different F (bottom) for CIFAR-100 and ImageNet-1K.

Dataset, Model lr+warmup Batch B Epoch T W. Decay SGD ASAM 0.1 ASAM 1.0 SAM 0.1
CIFAR100, Res50 0.1+0 256 200 5e-4 77.23 76.0 78.05 77.85
ImageNet, Res50 0.25+5 512 150 2e-5 75.04 74.94 76.53 76.18

Retrain High Mem Mid Mem Low Mem
Dataset, Model Retain Forget Test Retain Forget Test Retain Forget Test
CIFAR100, Res50 99.964 3.3 74.96 99.981 57.5 74.14 99.956 100.0 75.81
ImageNet, Res50 97.134 13.828 74.826 97.388 52.27 74.832 96.671 99.858 75.018

Table 7: Ablation on weight mask cutoff choice for Sharp MinMax on CIFAR-100 with ResNet50.
We report ToWs across different F and the averages. We observe that all choices work well: 10%
works as well as 30%, while a larger WF as 50% can further improve the performance.

A=SGD A=ASAM 1.0
Cutoff Fhigh Fmid Flow AVG Fhigh Fmid Flow AVG

10% 82.675 92.495 87.636 87.602 83.916 90.27 81.362 85.183
30% 82.27 94.913 86.504 87.896 84.521 87.761 84.381 85.554
50% 82.798 98.177 87.806 89.594 83.567 95.516 90.096 89.726

Unlearning. We conduct all unlearning methods for T2 = 10 epochs with the same batch size and
optimizer settings. For NegGrad and Sharp MinMax, we unlearn with constant learning rate 0.02.
We use α = 0.99 for CIFAR-100 and α = 0.989 for ImageNet accounting for its slightly smaller
|F|/|S| ratio. For model splitting, we empirically find that a small ratio for forget model benefits
ImageNet such as 5%, while CIFAR-100 suits a larger ratio such as 30%. For both pretraining and
unlearning, we wrap SGD with vanilla SAM (Foret et al., 2020) with ρ = 0.1, and Adaptive SAM
(ASAM) (Kwon et al., 2021) with ρ = [0.1, 1.0], while keep other hyper-parameters the same for
fair comparison.

E.2 SHARP MINMAX IMPLEMENTATION

Inspired by SalUn (Fan et al., 2023), we split the model into retain, forget models WR,WF and
update using two separate optimizers: SAM on WR and sharpness maximization on WF . We
split the model by ranking the parameters that are important to F based on the magnitude of the
gradient of the parameters after one pass on F , and choose the highest percentage where we have
5% for ImageNet and 30% for CIFAR-100. The cutoff choice is based on the over-parameterization
scheme: since ResNet50 w/ CIFAR-100 is much more over-parameterized than w/ ImageNet, there
is less overlap between retain and forget parameters and more freedom to increase size of WF for
more aggressive unlearning. We have also experimented with 10% and 50% and notice a slight
better performance of using 50% cutoff in Tab. 7. Unlike SalUn, which essentially performs RL
unlearning on the selected parameters, we update both models using opposite optimization. SalUn
also requires a larger part of the model to fine-tune with noisy, label flipped F (50%). We have
summarized our implementation for weight masking in Alg. 1, and Sharp MinMax in Alg. 2.

E.3 UNLEARNING SETUP FOR PREVIOUS WORK

We compare with state-of-the-art unlearning methods with optimized hyper-parameter settings. To
our best knowledge, several previous methods are evaluated on ImageNet for the first time. We
apply SGD and ASAM 1.0 on each U and compare the performance between SGD and SAM. For
L1-Sparse (Jia et al., 2023), we use unlearn lr= 0.02 and α = 1×10−4. For SCRUB (Kurmanji et al.,
2023), we use unlearn lr= 0.004, msteps= 8, kd T= 4, β = 0.01, and γ = 0.99. For RL (Graves
et al., 2021), we use unlearn lr= 0.06 on CIFAR-100 and 0.02 on ImageNet. For SalUn (Fan et al.,
2023), we use the unlearn lr= 0.06, 50% weight to finetune on CIFAR-100, and unlearn lr= 0.04,
30% weight to finetune on ImageNet.
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Algorithm 1 WeightMask

Require: forget loader, model, criterion, percent
1: for all (name, param) in model parameters do
2: gradients[name]← zeros like(param)
3: end for
4: for all (image, target) in forget loader do
5: loss← criterion(model(image), target)
6: optimizer.zero grad(); loss.backward()
7: accumulate parameter gradients into gradients
8: end for
9: for all name in gradients do

10: gradients[name]← |gradients[name]|
11: end for
12: all vals← cat

(
{flatten(v) | v ∈ gradients.values()}

)
13: cutoff← quantile(all vals, percent) ▷ e.g., 0.1 = bottom 10%
14: return { name 7→ (grad < cutoff) | (name, grad) ∈ gradients}

Algorithm 2 SharpMinMax

Require: x retain, y retain, x forget, y forget, model, criterion, mask, alpha, optimizer retain, op-
timizer forget

1: r loss1← α · criterion(model(x retain), y retain)
2: r loss1.backward()
3: optimizer retain.first step(zero grad=True) ▷ SAM first step
4: r loss2← α · criterion(model(x retain), y retain)
5: r loss2.backward()
6: for all (name, p) in model parameters do
7: if p.grad then
8: p.grad← p.grad⊙

(
1−mask[name]

)
▷ mask out forget grads

9: end if
10: end for
11: optimizer retain.second step(zero grad=True) ▷ sharp min
12: f loss1← −(1−α) · criterion(model(x forget), y forget)
13: f loss1.backward()
14: optimizer forget.first step(zero grad=True) ▷ SAM first step
15: f loss2← −(1−α) · criterion(model(x forget), y forget)
16: f loss2.backward()
17: for all (name, p) in model parameters do
18: if p.grad then
19: p.grad← p.grad⊙mask[name] ▷ update forget params only
20: end if
21: end for
22: optimizer forget.second step(zero grad=True) ▷ sharp max

E.4 EVALUATION DETAILS

Membership inference attack. We adopted a MIA based evaluation from Jia et al. (2023). We train
a binary classifier using the retain set R and the test set Dtest to distinguish whether a data sample
was involved in the training stage, based on the softmaxed outputs from the unlearned model. Then,
we feed the forget set F to the classifier to evaluate this unlearned model. We expect forget samples
to be classified as “non-training” data, and we evaluate the unlearning effectiveness based on MIA
correctness. A lower correctness (close to 0.5) indicates difficulty to distinguish and thus better
unlearning. This evaluation examines an unlearned model from a privacy perspective.

Entanglement computation. We compute both entanglement scores based on normalized embed-
dings of retain and forget sets from the penultimate layer of the model. We compute pair-wise
entanglement between each retain and forget embedding, either globally or within a class. For
variance-based entanglement EVar, we directly follow Zhao et al. (2024) for implementation, and
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then rescale the raw scores to [0, 1] based on the value range across global and class-wise scores.
For Wasserstein entanglement EWp

, we randomly sample an equal number of embeddings from
retain and forget embeddings and build two uniform proxy-distributions. We then use existing op-
timal transport library to compute the transport distance (cost), outputting entanglement scores as
1− distance. No clipping is needed as we observe all scores lie within [0, 1].

F DETAILED EMPIRICAL RESULTS

F.1 STATISTICAL SIGNIFICANCE

We demonstrate the statistical significance of our main empirical results by running each unlearning
experiment three times with different seeds. In Fig. 5 and Fig. 4, we report the 95% confidence
intervals (µ ± 2σ) of all unlearning methods on ImageNet and CIFAR-100, which correspond to
Tab. 1 and Tab. 3. Each single bar represents the mean over runs and has the mean ToW scores
marked on top of its error bar plotted by ±2σ. We observe that SAM consistently improves all
unlearning methods with more noticeable results on CIFAR-100. For “All methods” subplots, we
highlight the largest improvement by applying SAM to each U . On CIFAR-100, we observe a
general larger variance of SGD based unlearning, especially for SCRUB. Despite that A=SAM
0.1 seems to provide a weaker pretrained model, Adaptive SAM settings can improve unlearning
performance more steadily with lower variance, which demonstrate that SAM unlearning is more
robust. Tab. 8 also records the means and variances of the “All methods” subplots for ImageNet and
CIFAR-100. These additional insights further strengthen our findings.

Table 8: Verifying statistical significance (µ±σ) of main experiments on ImageNet and CIFAR-100.
Given various pretrained model with different A, we observe that SAM consistently improve base
unlearn methods U with higher means across multiple seeds. Moreover, we observe generally more
stable performance with SAM based on smaller variance on average.

ImageNet RL SalUn NG MinMax
Method SGD ASAM 1.0 SGD ASAM 1.0 SGD ASAM 1.0 SGD ASAM 1.0

A=SGD 82.9±0.3 83.9±0.2 70.6±0.1 71.0±0.1 83.5±0.3 84.8±0.0 80.2±0.1 87.9±0.0
A=ASAM 0.1 82.5±0.1 83.8±0.1 70.7±0.1 71.1±0.1 83.4±0.3 84.7±0.1 79.7±0.2 87.5±0.1
A=ASAM 1.0 83.2±0.4 83.8±0.2 71.1±0.0 71.2±0.0 84.1±0.0 84.6±0.2 80.1±0.2 88.0±0.1
A=SAM 0.1 82.9±0.2 83.7±0.3 71.2±0.0 71.4±0.1 83.6±0.1 84.4±0.1 79.9±0.1 87.8±0.1

CIFAR100 L1 Sparse Scrub RL SalUn NG
Method SGD ASAM 1.0 SGD ASAM 1.0 SGD ASAM 1.0 SGD ASAM 1.0 SGD ASAM 1.0

A=SGD 62.1±1.4 67.3±0.1 56.5±14.1 73.6±0.4 74.2±1.0 77.2±0.2 76.1±1.5 83.8±0.9 82.8±1.1 84.0±0.9
A=ASAM 0.1 63.6±1.7 69.3±0.6 54.3±1.8 79.3±0.8 72.1±0.9 75.8±1.3 72.9±1.6 82.5±0.4 83.9±0.8 85.5±0.6
A=ASAM 1.0 64.2±0.7 68.7±1.7 58.4±10.5 72.0±2.1 75.7±1.5 80.3±1.2 79.0±0.3 83.3±0.2 80.2±0.5 83.9±0.2
A=SAM 0.1 64.9±1.3 68.3±0.6 41.1±1.7 49.7±16.6 74.2±0.7 80.3±0.9 79.4±1.0 83.6±0.6 71.3±1.8 78.7±0.5

F.2 COMPLETE ACCURACIES

In Tab. 9, Tab. 10, and Tab. 11, we report complete results of retain, forget, and test accuracies for all
unlearning experiments, which are used to compute ToW scores in Tab. 1 and Tab. 3. As we have
mentioned in the main paper, we observe that SGD often achieves lower test accuracies, motivating
us to rethink the overfitting under a sample-specific unlearning scheme.

G ADDITIONAL EXPERIMENTS

We provide additional experiments on CIFAR-10 and Tiny-ImageNet using randomly sampled for-
get set Frand. To diversify our experiment settings, we use ResNet-34 with ImageNet-pretrained
weights for our learning and unlearning on Tiny-ImageNet. Similar to our main setup, we pretrain
and retrain using the same settings, and we have summarized basic settings and baseline performance
in Tab. 12. Since Tiny-ImageNet has 100K samples, we set |Frand| = 6000 for Tiny-ImageNet.
Tab. 13 records detailed accuracies and ToW scores of various unlearning and pretraining settings.

G.1 CIFAR-10

We summarize detailed unlearning settings on CIFAR-10. For L1-Sparse, we use unlearn lr= 0.02
and α = 1 × 10−4. For SCRUB, we use unlearn lr= 0.004, msteps= 8, kd T= 3.5, β = 0.01,
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Table 9: Detailed accuracies of NegGrad on ImageNet and CIFAR-100.
ImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 88.766 25.148 71.756 78.764 88.131 24.1 70.878 78.426 89.649 26.28 71.772 78.522 89.158 26.488 71.91 78.03
+ASAM 0.1 89.487 26.407 72.08 78.52 88.640 24.77 70.988 78.366 89.767 26.542 72.236 78.762 89.816 27.422 72.328 78.083
+ASAM 1.0 90.804 28.398 73.506 78.966 90.399 27.522 72.94 78.975 91.232 29.862 73.58 78.027 91.121 30.208 73.77 77.762
+SAM 0.1 91.007 29.88 73.676 77.898 90.498 28.445 73.05 78.301 91.583 30.997 73.746 77.388 91.328 31.578 73.964 76.807

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 88.771 56.87 71.414 84.199 89.265 57.832 71.562 83.93 89.80 58.622 71.812 83.929 89.312 58.27 72.248 84.176
+ASAM 0.1 89.56 58.502 72.154 84.113 89.276 57.698 71.576 84.07 90.087 59.08 72.378 84.267 89.945 59.263 72.482 84.062
+ASAM 1.0 90.969 61.998 73.544 83.389 91.064 62.023 73.434 83.358 91.427 62.757 73.82 83.326 91.505 63.078 74.046 83.284
+SAM 0.1 91.396 63.015 73.734 82.985 91.015 62.308 73.422 83.04 91.984 64.367 74.014 82.473 91.823 64.258 74.198 82.587

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 87.775 99.617 71.942 88.515 86.592 99.505 71.042 86.651 88.847 99.663 72.41 89.947 87.847 99.625 72.228 88.839
+ASAM 0.1 88.251 99.643 72.198 89.188 88.296 99.635 72.044 89.098 89.293 99.7 72.658 90.579 88.553 99.69 72.776 89.973
+ASAM 1.0 89.903 99.818 73.844 92.174 89.704 99.808 73.69 91.843 90.432 99.79 73.896 92.772 90.042 99.813 74.166 92.617
+SAM 0.1 90.234 99.822 74.21 92.841 89.553 99.817 73.728 91.722 90.815 99.827 74.228 93.429 90.184 99.825 74.254 92.829

CIFAR100 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 92.929 12.9 68.17 78.334 94.05 11.433 66.68 79.277 94.533 15.267 67.78 77.274 91.814 22.4 66.23 67.82
+ASAM 0.1 93.736 13.467 67.71 78.131 94.852 11.633 67.32 80.336 94.633 15.333 67.82 77.331 93.674 22.9 67.94 70.054
+ASAM 1.0 96.748 15.433 69.98 80.806 96.907 13.167 69.03 82.196 96.893 17.7 69.85 78.731 96.376 24.033 69.85 72.518
+SAM 0.1 98.552 19 72.82 81.331 99.193 17.4 72.17 82.86 99.4 26.467 72.74 74.704 99.24 36.767 73.49 65.08

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 93.162 60.3 66.15 83.335 95.024 58.433 65.96 86.454 95.519 69.2 67.3 78.59 93.714 72.233 66.91 74.145
+ASAM 0.1 94.055 62.633 66.97 82.846 95.005 58.133 66.85 87.539 95.524 68.133 66.75 79.074 93.838 72.367 66.95 74.158
+ASAM 1.0 96.781 69.533 69.81 81.465 97.16 65.4 68.43 84.391 97.919 72.7 69.58 79.264 97.257 76.2 69.8 75.653
+SAM 0.1 98.938 80.133 72.18 75.059 99.007 76.133 70.87 77.94 99.448 85.1 72.59 70.898 99.169 90.033 72.9 66.089

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 91.086 97.767 65.67 83.718 95.312 98.267 67.18 88.637 93.117 98.5 66.17 85.443 85.307 96.933 62.63 76.374
+ASAM 0.1 92.736 97.767 67.3 86.78 94.676 98.5 67 87.671 94.298 97.967 67.27 88.039 86.902 96.9 62.92 78.087
+ASAM 1.0 92.824 97.8 67.53 87.052 96.267 99.1 68.94 90.502 97.883 99.533 70.59 93.249 93.517 98.7 67.35 86.759
+SAM 0.1 97.89 99.333 71.31 94.151 98.712 99.7 70.89 94.179 99.26 99.667 72.06 95.898 98.695 99.633 71.75 95.078

Table 10: Detailed accuracies of Sharp MinMax on ImageNet and CIFAR-100.
ImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 87.513 29.79 71.408 73.357 86.802 28.42 70.692 73.418 88.411 31.423 72.016 73.103 87.879 30.953 71.964 73.052
+ASAM 0.1 79.741 10.555 66.334 78.066 80.84185 11.222 66.894 79.077 73.491 8.203 61.802 70.148 80.16741 11.032 66.828 78.529
+ASAM 1.0 87.993 15.903 72.224 86.658 87.748 15.605 71.638 86.166 88.563 16.453 72.452 86.915 88.435 17.083 72.498 86.272
+SAM 0.1 88.297 16.705 72.48 86.463 87.537 16.098 71.612 85.511 89.056 17.405 72.812 86.849 88.468 17.92 72.674 85.712

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 87.089 58.915 71.418 80.881 86.757 58.372 71.1 80.784 87.217 59.095 71.734 81.105 87.461 59.677 71.848 80.913
+ASAM 0.1 86.936 50.585 71.38 87.914 86.281 49.833 70.814 87.40 87.561 51.3 71.528 88.039 87.529 52.043 71.84 87.642
+ASAM 1.0 88.679 54.642 72.834 87.345 88.588 54.548 72.666 87.192 89.12 55.377 73.018 87.27 89.092 55.733 73.192 87.076
+SAM 0.1 89.141 56.215 73.268 86.755 88.642 55.303 72.74 86.635 89.492 56.813 73.47 86.722 89.758 57.657 73.792 86.486

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 85.798 99.61 71.644 86.334 84.348 99.482 70.894 84.378 85.863 99.568 71.61 86.402 85.098 99.57 71.45 85.517
+ASAM 0.1 86.399 99.565 72.07 87.338 86.236 99.562 71.814 86.953 86.644 99.627 72.104 87.554 85.894 99.593 71.898 86.668
+ASAM 1.0 87.766 99.768 73.392 89.694 87.366 99.772 73.216 89.138 88.159 99.722 73.412 90.142 87.837 99.765 73.718 90.064
+SAM 0.1 87.836 99.777 73.666 90.005 87.745 99.76 73.58 89.852 88.706 99.783 73.94 91.111 87.974 99.792 73.752 90.207

CIFAR100 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 92.298 20.8 67.86 70.767 95.098 22.167 68.42 72.137 92.564 25.4 66.35 65.925 87.195 25.233 63.77 60.478
+ASAM 0.1 89.574 6.133 65.57 78.895 93.819 5.333 67.37 84.968 92.095 6.3 66.52 81.825 86.969 9.233 64.03 72.897
+ASAM 1.0 92.121 6.467 67.15 82.27 88.976 5.067 63.68 77.576 93.895 6.567 67.98 84.521 90.448 10.7 65.71 76.037
+SAM 0.1 97.383 7.1 71.61 90.578 98.183 6.133 71.04 91.695 97.619 8.467 70.7 88.664 98.198 14.167 72.26 85.195

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 91.433 66 65.79 76.692 91.633 63.367 64.39 77.864 92.11 69.4 65.96 74.526 85.714 62.6 62.55 71.931
+ASAM 0.1 91.16 42.7 65.88 96.027 91.4 40.233 64.11 96.451 95.26 51.2 66.74 93.786 88.074 55.867 63.61 80.104
+ASAM 1.0 92.586 46.9 66.81 94.913 94.074 43.133 66.53 99.422 89.36 47.433 63.35 87.761 93.119 60.067 66.3 83.633
+SAM 0.1 97.433 60.867 70.73 90.96 97.874 55.033 69.39 95.543 98.6 64.333 70.62 88.646 98.824 76.433 71.84 78.286

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
+SGD 89.579 97.6 66.09 82.853 89.781 97.1 64.36 81.847 88.605 97.833 64.28 80.127 81.488 94.467 61.63 73.843
+ASAM 0.1 89.026 95.067 65.12 83.473 89.874 96.033 64.47 82.883 93.748 97.167 66.17 87.151 92.967 97.433 66.65 86.659
+ASAM 1.0 91.931 96.567 66.74 86.504 92.819 97.467 66.02 85.894 91.131 96.2 64.97 84.381 85.014 95.3 62.79 77.461
+SAM 0.1 96.129 98.033 70.13 92.494 96.829 98.7 69.06 91.508 97.624 98.567 69.85 93.163 96.652 99.033 68.98 90.963

and γ = 0.99. For RL and SalUn, we use unlearn lr= 0.08, and use 50% model parameters for
SalUn. For NegGrad and Sharp MinMax, we use unlearn lr= 0.02 and α = 0.99, and use 30%
model parameters for unlearning on F and the rest for learning onR.

From the results in Tab. 12, we observe consistent improvement by using SAM except only two
cases for RL and SalUn with A = SGD. Surprisingly, Sharp MinMax is not the best algorithm on
CIFAR-10. By the nature of its design to overfit to forget signals deliberately, we hypothesize that
this approach might be aggressive for small-scale unlearning. We again observe SCRUB to be an
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Table 11: Detailed accuracies of previous methods on ImageNet and CIFAR-100.
ImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
RL 88.536 29.857 72.02 74.598 88.663 29.622 71.95 74.857 88.975 30.59 72.04 74.317 89.429 31.74 72.572 74.055
+ASAM 1.0 90.874 33.395 74.234 74.951 90.615 32.668 73.972 75.221 91.14 34.745 74.298 73.95 91.155 35.332 74.522 73.579

SalUn 93.248 67.118 75.04 44.981 93.016 65.807 74.976 46.104 93.124 66.372 75.418 45.814 92.911 66.333 75.982 46.006
+ASAM 1.0 93.123 66.217 75.496 45.998 92.963 65.058 75.28 46.938 93.134 66.472 75.712 45.856 92.855 66.032 76.172 46.358

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
RL 88.785 54.653 71.916 86.617 88.067 53.387 71.258 86.462 89.754 56.17 72.634 86.813 88.609 54.608 72.168 86.715
+ASAM 1.0 90.597 59.53 73.836 85.581 90.457 59.337 73.654 85.473 90.993 60.35 74.078 85.393 90.902 60.402 74.348 85.494

SalUn 93.174 77.258 74.816 71.839 93.072 77.222 74.728 71.735 93.078 77.118 75.382 72.308 92.825 77.167 75.868 72.419
+ASAM 1.0 93.098 77.983 75.47 71.554 92.969 77.947 75.154 71.268 93.143 78.058 75.724 71.695 92.797 77.805 76.222 72.034

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
RL 85.745 98.603 71.162 86.714 85.451 98.463 70.768 86.192 86.472 98.74 71.522 87.63 86.865 98.95 72.36 88.594
+ASAM 1.0 88.517 99.408 73.728 91.069 88.218 99.377 73.32 90.425 88.985 99.457 73.758 91.516 88.963 99.507 74.072 91.74

SalUn 91.991 99.778 74.612 95.008 91.743 99.77 74.488 94.652 91.696 99.818 75.074 95.116 91.412 99.85 75.514 95.218
+ASAM 1.0 92.095 99.85 75.224 95.628 91.882 99.818 74.992 95.224 91.967 99.857 75.676 95.924 91.579 99.873 75.964 95.791

CIFAR100 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
High Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
L1-Sparse 74.76 5.267 61.49 63.448 75.426 5.067 60.89 63.699 73.969 6.167 60.17 61.252 77.429 7.133 62.56 65.258
+ASAM 1.0 77.86 5.733 62.99 66.903 77.648 5.7 62.29 66.213 77.126 6.367 62.02 65.117 75.583 6.2 60.83 63.051

SCRUB 99.867 44.567 74.52 58.418 99.793 35.267 73.85 67.163 99.902 45.233 74.59 57.816 99.971 60.7 76.47 43.246
+ASAM 1.0 99.962 53.533 76.06 50.313 99.955 42.633 74.72 60.515 99.969 55.3 76.14 48.569 99.971 85.567 77.23 18.137

RL 82.681 9.233 62.95 68.464 79.229 8.367 60.7 64.518 82.99 10.933 61.92 66.689 81.069 10.833 60.82 64.391
+ASAM 1.0 84.012 9.7 63.88 69.952 81.519 8.4 61.41 66.909 86.195 12 63.53 69.73 89.324 13.7 65.99 72.884

SalUn 89.624 16.567 64.88 69.926 86.298 15.467 62.71 66.541 91.207 20.7 64.33 67.355 90.593 18.533 65.65 69.671
+ASAM 1.0 94.557 20.9 68.96 73.268 92.326 18.3 65.94 71.426 94.519 25.033 66.46 67.715 95.636 24.367 68.89 70.933

Mid Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
L1-Sparse 67.864 36.8 57.97 68.686 71.305 38.633 59.98 72.775 68.264 37.933 57.67 68.197 71.495 39.967 59.73 71.941
+ASAM 1.0 74.148 41.5 61.96 75.554 75.836 42.7 62.7 77.119 74.267 43.967 61.59 73.754 73.857 40.667 60.52 74.556

SCRUB 99.864 81.4 74.29 76.125 99.876 76.9 72.37 79.09 99.91 83.867 73.59 73.176 99.974 90.167 75.78 68.433
+ASAM 1.0 99.974 85.133 75.51 73.353 99.969 77.367 74.24 80.204 99.981 85.433 75.56 73.09 99.974 97.667 77.13 61.618

RL 79.262 37.067 62.53 84.395 75.757 31.733 58.31 80.215 81.955 36.433 61.21 86.411 81.905 38.033 61.48 85.481
+ASAM 1.0 81.688 38.7 63.54 86.779 81.686 37.333 62.3 86.557 85.674 38.7 63.65 91.124 84.914 40.167 63.08 88.633

SalUn 82.383 40.733 60.46 83.056 82.4 40.9 60.9 83.377 89.581 45.333 63.46 89.768 90.205 46.867 64.8 90.495
+ASAM 1.0 91.579 48.167 66.23 92.225 88.71 45.833 64.15 89.182 94.217 50.5 66.77 93.401 94.2 52.333 67.91 92.914

Low Mem Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
L1-Sparse 62.41 91.367 55.39 53.991 68.667 96 60.25 60.34 68.421 94.2 60.67 61.47 67.229 94.967 59.33 59.014
+ASAM 1.0 66.95 94.5 59.24 58.967 73.457 96.4 63.4 66.697 70.207 96.1 61.46 62.517 72.355 96.2 62.46 65.117

SCRUB 17.81 32.6 18.33 12.708 15.698 28.367 15.87 10.823 66.324 90.167 56.04 58.483 23.038 43.7 23.95 17.368
+ASAM 1.0 99.683 99.9 73.61 97.631 99.869 99.833 73.24 97.508 99.64 99.8 73.7 97.776 99.729 99.8 73.77 97.933

RL 76.376 89.233 61.34 72.4 73.283 86.5 59.57 69.711 73.495 84.2 57.63 69.677 76.79 91.733 60.62 70.55
+ASAM 1.0 78.286 90.533 62.59 74.409 73.881 87.3 59.08 69.375 82.695 89.333 63.53 80.321 83.483 94.167 64.12 78.066

SalUn 78.867 92.667 60.5 71.73 77.748 88.833 59.01 71.95 83.921 91.2 62.39 79.095 82.221 93.133 61.44 75.281
+ASAM 1.0 91.205 95.5 68.28 88.175 90.043 93.367 65.47 86.13 93.812 95.8 67.11 89.289 91.848 95.933 66.24 86.477

Table 12: Differed settings of pretrained models and their test accuracies using different A, as well
as performance of retrained models w.r.t Frand for CIFAR-10 and Tiny-ImageNet.

Dataset, Model lr+warmup Batch B Epoch T W. Decay SGD ASAM 0.1 ASAM 1.0 SAM 0.1 Retain Forget Test
CIFAR10, Res18 0.1+0 256 50 5e-4 93.02 93.26 93.7 93.38 99.943 92.567 92.49
TinyImgNt, Res34 0.003+0 256 200 1e-3 62.1 62.77 62.74 63.87 99.985 59.383 61.69

unstable algorithm which collapses when unlearning with SGD given A = SAM0.1, while SAM
helps reduce variance and stabilizes SCRUB unlearning given various pretrained models.

G.2 TINY-IMAGENET

We summarize detailed unlearning settings on Tiny-ImageNet. For L1-Sparse, we use unlearn lr=
0.002 and α = 1×10−4. For SCRUB, we use unlearn lr= 0.002, msteps= 8, kd T= 3.5, β = 0.01,
and γ = 0.99. For RL and SalUn, we use unlearn lr= 0.015, and use 30% model parameters for
SalUn. For NegGrad and Sharp MinMax, we use unlearn lr= 0.005 and α = 0.99, and use 10%
model parameters for unlearning on F and the rest for learning onR.

From the results in Tab. 12, we observe consistent improvement by using SAM except few cases.
SCRUB performs more steadily than on CIFAR-10. While RL and SalUn perform well on other
datasets, they do not appear to be effective on Tiny-ImageNet.
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Table 13: Detailed accuracies of previous methods on Tiny-ImageNet and CIFAR-10.
TinyImageNet A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Random Frand Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
L1-Sparse 79.247 52.233 49.61 74.669 82.722 54.217 50.81 77.545 84.63 59.583 53.01 77.143 76.005 63.017 49.56 64.372
+ASAM 1.0 89.379 59.5 54.37 82.753 90.81 60.933 54.35 82.853 92.005 63.517 53.7 81.168 94.674 74.333 55.25 75.347
SCRUB 92.112 58.117 53.65 85.793 94.315 60.75 54.58 86.425 96.268 66.5 55.01 83.457 99.801 88.233 58.99 69.101
+ASAM 1.0 97.965 57.717 56.94 94.881 98.941 61.833 58.13 93.095 99.521 68.333 57.66 86.975 99.962 97.267 61.05 61.704

RL 64.504 63.233 46.59 52.668 67.506 66.433 47.49 53.849 70.309 69.883 48.16 54.424 75.016 73.5 49.21 56.397
+ASAM 1.0 69.356 68.733 49.22 55.043 73.517 72.033 50.97 57.345 75.88 75.617 50.38 56.384 81.006 79.683 50.94 57.632
SalUn 69.39 68.45 50 55.735 70.087 68.767 49.54 55.806 73.207 71.783 50.12 56.721 82.877 81.467 53.36 59.206
+ASAM 1.0 75.013 74.333 52.65 58.042 77.101 75.917 53.16 58.876 81.039 79.233 52.89 59.248 88.021 87.417 54.81 58.998

NegGrad 84.286 47.867 50.51 83.499 87.031 48.467 51.45 86.662 86.575 52.2 51.28 83.148 99.979 99.167 62.51 60.706
+ASAM 1.0 90.907 50.45 54.47 91.894 93.681 51.35 53.66 93.094 96.343 54.167 54.31 93.902 98.031 62.767 55.21 88.59
MinMax 81.8 52.833 51.14 77.977 82.115 54.017 50.91 77.209 81.418 55.433 50.32 75.025 68.67 54.217 46.99 61.615
+ASAM 1.0 87.654 43.183 53.4 93.426 88.273 43.083 52.86 93.613 91.947 43.6 53.37 97.617 94.517 48.5 53.72 96.466

CIFAR10 A =SGD A =ASAM 0.1 A =ASAM 1.0 A =SAM 0.1
Random Frand Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW Retain Forget Test ToW
L1-Sparse 86.467 82.967 82.25 85.12 89.06 85.567 84.45 87.688 86.683 83.467 82.11 84.811 89.462 87.133 84.82 87.144
+ASAM 1.0 91.438 88.333 87.23 90.352 91.674 87.767 87.24 91.087 90.938 88.7 86.94 89.268 90.886 88.633 86.43 88.792
SCRUB 90.767 86.033 86.27 90.739 68.205 67.367 66.75 63.466 80.193 78.933 77.97 77.95 15.11 14.2 15 6.089
+ASAM 1.0 99.6 95.167 92.65 97.2 99.621 96.5 93.15 96.39 99.807 98.2 93.38 95.078 99.631 98.467 93.16 94.435
RL 92.774 86.6 87.22 93.186 90.569 84.2 85.17 91.02 91.445 84.133 85.81 92.591 88.736 82.533 84.12 89.524
+ASAM 1.0 93.295 87.733 87.66 93.138 93.262 87.233 88.31 94.187 95.098 89.033 89.44 95.512 92.588 86.567 87.4 93.206
SalUn 96.94 88.8 89.95 98.095 95.726 87.6 89.02 97.052 95.99 88.733 89.35 96.598 96.612 89.867 89.86 96.668
+ASAM 1.0 97.771 91.8 90.55 96.666 98.24 91.867 91.41 97.917 98.029 91.6 91.2 97.757 98.055 92.833 91.37 96.755
NegGrad 97.724 93.933 90.46 94.487 98.35 94.967 91.33 94.931 98.024 94.267 90.92 94.9 96.405 93.4 89.72 93.009
+ASAM 1.0 99.074 95.8 92.39 95.83 99.248 96.133 92.04 95.332 99.219 96.2 92.42 95.602 98.579 94.767 91.97 95.964
MinMax 96.85 94.133 90.29 93.291 97.652 94.933 90.6 93.594 97.881 95.1 90.5 93.558 96.498 93.533 90.22 93.451
+ASAM 1.0 98.781 94.133 91.82 96.638 98.602 94 91.79 96.565 98.755 94.4 91.65 96.186 97.981 93.367 91.17 95.97

G.3 UNLEARNING WITH STRUCTURED NOISE

We consider a noisy unlearning case where only a corrupted version of S is available, following
corruptions in ImageNet-C (Hendrycks & Dietterich, 2019) to apply glass blur and snow effect to
CIFAR-100 with medium severity for additional empirical verification, and report ToWs in Tab. 14:
We observe that SAM continues to improve base unlearning methods with even more clear margins.

Table 14: Unlearning with ImageNet-C corruptions on CIFAR-100.

Glass Blur A=SGD A=ASAM
Method High Mid Low AVG High Mid Low AVG

NG 67.760 78.824 75.931 74.172 76.152 85.534 82.556 81.414
+ASAM 73.565 80.253 84.086 79.301 74.993 86.567 86.296 82.619
SharpMinMax 66.110 76.852 73.387 72.116 66.837 79.023 78.435 74.765
+ASAM 75.327 89.859 79.104 81.430 74.089 92.737 84.921 83.916

Snow A=SGD A=ASAM
Method High Mid Low AVG High Mid Low AVG

NG 77.394 83.328 83.196 81.306 75.041 86.424 86.838 82.768
+ASAM 76.759 84.168 86.053 82.327 76.520 83.774 89.343 83.212
SharpMinMax 70.880 78.806 77.652 75.779 69.650 79.139 81.344 76.711
+ASAM 77.188 90.997 83.933 84.039 80.533 93.383 87.779 87.232

This is because that structured noise applying to the images affects the dataset’s signal and noise
vectors (φ and ξi), causing a corrupted dataset with worse initial signal-noise ratio, but it does not
affect update dynamics and the gained results under our theoretical framework, as corrupted images
are still visually recognizable, and SGD still overfits more to the added noise.

G.4 SAM WITH ADAM AND VIT

We also verify that our observations generalize to different base optimizers and architec-
tures. We experiment CIFAR-100 unlearning using ViT-Small (Dosovitskiy et al., 2020) and
AdamW (Loshchilov & Hutter, 2017), and summarize our priliminary results in Tab. 15. For pre-
training, we use AdamW with starting lr 0.0001, weight decay 0.05, and set patch size to 4 for
ViT-Small on CIFAR-100. Other experiment settings are unchanged. For unlearning, we have un-
learn lr 0.0006 for NegGrad and for Sharp MinMax. Adam demands much smaller lr than SGD and
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Table 15: Unlearning with ViT-Small and AdamW on CIFAR-100.

A=SGD A=ASAM
High Mid Low AVG High Mid Low AVG

NG 80.445 82.854 84.385 82.561 78.750 82.223 86.767 82.580
+ASAM 82.880 83.084 83.402 83.122 82.839 81.354 87.507 83.900
SharpMinMax 14.794 42.055 95.222 50.690 14.279 42.017 94.833 50.376
+ASAM 76.343 95.573 103.372 91.763 76.664 93.966 105.868 92.166

is more sensitive to unlearn lr tuning. ViTs perform worse than ResNets on smaller datasets (test
accuracies of pretrained models are 57%).

G.5 RELEARNING ATTACKS

We present relearning attack experiments in Tab. 16 to demonstrate SAM’s unlearning robustness
below. We take the unlearned models to relearn the whole F for one epoch with a small relearn-
ing lr, and measure the increase in forget accuracies. Reported are the averaged increase across
Fhigh,Fmid,Flow. We observe that SAM enhanced U are more resilient to relearning attacks with
smaller increases. We note that these experiments highlight the robustness of our approach and hope
that this encourages future works for deeper investigation into the role of loss landscape geometry
for robust unlearning.

Table 16: Average increase of forget accuracies after relearning 1 epoch on F on CIFAR-100 and
ResNet50. We observe that SAM enhanced unlearning is consistently more resilient to relearning
attacks with less increase on forget accuracy.

Relearn lr=0.002 Relearn lr=0.003 Relearn lr=0.004
A=SGD A=ASAM A=SGD A=ASAM A=SGD A=ASAM

NG 8.644 10.333 11.167 13.256 12.789 14.7
+ASAM 8.533 9.289 11.033 11.533 13.022 13.389
SharpMinMax 13.1 15.067 15.589 17.5 16.144 18.511
+ASAM 8.333 8.8 10.667 11.2 12.711 12.667
RL 7.122 8.556 8.5 9.589 9.622 10.989
+ASAM 6.222 7.378 7.444 8.489 8.367 9.467

G.6 RUNTIME AND EFFICIENT SAMS

We implement momentum SAM (MSAM) for unlearning on CIFAR-100. As shown in Tab. 17,
MSAM not only outperforms vanilla SAM by much less computation overhead but can also outper-
form by average ToWs for some unlearning methods. This is plausible, as recent efficient SAMs
reduce computation with more informative perturbation directions than stochastic by momentum
buffer, sparsity, prior gradients, sharpness-sensitive data, etc. But there is no clear theoretical jus-
tification of MSAM rather than trying to stabilize the noise and reduce overhead of SAM. This
warrants a deeper study beyond our scope – our focus is to show superiority of loss landscape based
methods for unlearning without worrying about speed (just like the original SAM paper), and we
leave deeper theoretical/algorithmic improvements and empirical evaluations for speedups for future
work. We notice that while outperforming SGD with much less computation overhead than vanilla
SAM, MSAM does not outperform ASAM on SharpMinMax and SalUn. As we also observe that
MSAM behaves differently from ASAM on different forget sets, further and deeper investigation is
needed to study the interactions between MSAM and weight masking to improve the performance.
Our results have effectively demonstrated an example of a faster SAM variant that predictably ben-
efits unlearning with less overhead.

G.7 KLOM SCORES

We follow (Georgiev et al., 2024) to compute KLoM of NegGrad with SGD and SAM and report
the KL measures on F ,R,Dtest across F of different difficulties, report means and 95%-percentiles
in Tab. 18. Given a pretrained model, we observe that SAM in unlearning also helps close the gap
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Table 17: ToWs of MSAM across different F in addition to reported results of baseline and SAM-
enhanced unlearning on CIFAR-100. We observe that MSAM not only costs much less computation
overhead than SAM but can also outperform by ToW for some settings, since it leverages a smarter
perturbation based on momentum buffer.

A=SGD A=ASAM 1.0 Runtime
Fhigh Fmid Flow AVG Fhigh Fmid Flow AVG

L1-Sparse 63.448 68.686 53.991 62.042 61.252 68.197 61.47 63.64 165.3
+ASAM 66.903 75.554 58.967 67.141 65.117 73.754 62.517 67.129 323.6
+MSAM 68.768 76.378 64.932 70.026 70.885 76.342 65.068 70.765 201.3

NG 78.334 83.335 83.718 81.796 77.274 78.59 85.443 80.436 309.5
+ASAM 80.806 81.465 87.052 83.108 78.731 79.264 93.249 83.748 610.3
+MSAM 81.811 85.568 91.176 86.185 73.291 77.43 91.691 80.804 352.4

SharpMinMax 70.767 76.692 82.853 76.771 65.925 74.526 80.127 73.526 317
+ASAM 82.27 94.913 86.504 87.896 84.521 87.761 84.381 85.554 631
+MSAM 79.079 73.057 88.157 80.098 77.034 72.944 93.819 81.266 398.1

RL 68.464 84.395 72.4 75.086 66.689 86.411 69.677 74.259 173.3
+ASAM 69.952 86.779 74.409 77.047 69.73 91.124 80.321 80.392 344.1
+MSAM 73.032 87.608 76.537 79.059 72.656 90.675 81.027 81.453 216

SalUn 69.926 83.056 71.73 74.904 67.355 89.768 79.095 78.739 172.8
+ASAM 73.268 92.225 88.175 84.556 67.715 93.401 89.289 83.468 340.9
+MSAM 70.011 89.214 81.069 80.098 68.548 92.289 82.757 81.198 213.6

between unlearned models and retrained models, even when the standard way to retrain models with
SGD does not favor SAM as they adopt different optimization dynamics. We observe similar trends
as measuring performance closeness with ToWs: while SAM does not improve KL closeness on F ,
it reduces the KL divergence on R and Dtest and often halves KL on R. Adding SAM (vs. SGD)
reduces the distance to the retrained reference across memorization levels; e.g., with SGD-retrained
reference the average distance drops from 0.0973 w/ SGD to 0.0827 w/ SAM. The reported KL at
95%-percentiles in the second table also show that SAM reduces KL even at tails (smaller variances).
We use N = 10 with 10 bins for our KLoM measurements (pretraining 10 models and retraining 30
models for each F , and unlearning 120 models for all settings).

Table 18: Mean and 95%-percentile KLoM on CIFAR-100 and ResNet50 after NegGrad unlearn-
ing. [SGD, SAM] denotes SGD-pretrained and SAM-unlearned. We observe that SAM enhanced
unlearning consistently improves KLoM across different F . Similar to what we observe with ToWs,
SAM performs better on retain and testset. Based on 95%-percentile KLoM scores, we observe that
SAM enhanced unlearning consistently improves KLoM on tails too, which also indicates the better
stability of SAM unlearning.

KLoM Mean A=SGD A=SGD A=SGD AVG
A,U Forget Retain Test Forget Retain Test Forget Retain Test

SGD, SGD 0.1294 0.0721 0.1293 0.1221 0.0669 0.1259 0.0284 0.0747 0.1271 0.0973
SGD, SAM 0.1384 0.0411 0.1076 0.1589 0.0331 0.0983 0.0163 0.0411 0.1093 0.0827
SAM, SGD 0.1549 0.0676 0.126 0.1513 0.066 0.1246 0.025 0.0658 0.1248 0.1007
SAM, SAM 0.1714 0.0264 0.095 0.2457 0.0253 0.0913 0.015 0.0311 0.1008 0.0891

KLoM 95% A=SGD A=SGD A=SGD AVG
A,U Forget Retain Test Forget Retain Test Forget Retain Test

SGD, SGD 0.3397 0.2097 0.5212 0.4959 0.2097 0.4901 0.0956 0.2097 0.4959 0.3408
SGD, SAM 0.3397 0.2097 0.4901 0.5681 0.0956 0.3723 0.0956 0.2097 0.4901 0.319
SAM, SGD 0.4901 0.2097 0.5212 0.5371 0.2097 0.4959 0.0956 0.2097 0.5212 0.3656
SAM, SAM 0.4901 0.0956 0.3723 0.8111 0.0956 0.3397 0.0956 0.0956 0.4901 0.3206
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H COMPLETE VISUALIZATIONS

In this section, we provide complete visualizations of feature space and loss landscapes of pretrained
models, NegGrad unlearned models, and Sharp MinMax unlearned models, comparing SGD with
SAM across all memorization levels. The observations are generally consistent across memorization
levels, with Fhigh being more noticeable.

H.1 LOSS LANDSCAPE

Inspired by Wu et al. (2017), we quantify the flatness by basin ratio, which is the percentage of
perturbed losses whose deviation from original loss ≤ 0.5 · stddev. Fig. 6 shows loss landscapes of
SAM and SGD before and after unlearning on Dtest and Fhigh. We observe SAM has higher basin
ratios (flatter landscape) than SGD for pretrained model and MinMax unlearned model as expected.
Surprisingly, SGD can become flatter after unlearning. We conjecture that the gradient ascent might
be implicitly regularizing SGD which had more overfitting than SAM during pretraining. We leave
the further characterization of loss landscapes to future work.

H.2 FEATURE VISUALIZATION
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Figure 4: 95% confidence intervals (µ± 2σ) of unlearning methods on ImageNet, in accordance to
Tab. 1 and Tab. 3. We run each setting three times with different seeds and compute the statistical
significance. SAM consistently improves base U , and we observe ASAM 1.0 to bring largest im-
provement steadily.

40



Published as a conference paper at ICLR 2026

L1 Sparse
+ ASAM 1.0 Scrub

+ ASAM 1.0 RL
+ ASAM 1.0 SalUn

+ ASAM 1.0 NG
+ ASAM 1.0

41.1

50.0

58.9

67.7

76.6

85.5

To
W

 (%
)

62.1

67.3

56.5

73.6 74.2
77.2 76.1

83.8 82.8 84.0

63.6

69.3

54.3

79.3

72.1

75.8
72.9

82.5
83.9

85.5

64.2

68.7

58.4

72.0

75.7

80.3
79.0

83.3
80.2

83.9

64.9
68.3

41.1

49.7

74.2

80.3 79.4

83.6

71.3

78.7

+5.7

+25.0 +6.1
+9.6

+7.3=SGD
=ASAM 0.1
=ASAM 1.0
=SAM 0.1

(a) All methods

=SGD
=ASAM 0.1

=ASAM 1.0
=SAM 0.1

71.3

74.2

77.0

79.8

82.6

85.5

To
W

 (%
)

82.8 82.8

84.0
83.5

83.9
84.8

85.5

84.4

80.2
81.0

83.9

80.6

71.3

73.8

78.7

75.5

=SGD
=ASAM 0.1
=ASAM 1.0
=SAM 0.1

(b) NegGrad

=SGD
=ASAM 0.1

=ASAM 1.0
=SAM 0.1

68.3

73.2

78.1

82.9

87.8

92.7

To
W

 (%
)

76.9

85.6

88.7

92.0

77.5

87.5

89.8
92.7

74.3

85.5

88.4 90.6

68.3

77.5

82.7 84.6

=SGD
=ASAM 0.1
=ASAM 1.0
=SAM 0.1

(c) Sharp MinMax

Figure 5: 95% confidence intervals (µ ± 2σ) of unlearning methods on CIFAR-100, in accordance
to Tab. 1 and Tab. 3. We run each setting three times with different seeds and compute the statistical
significance. SAM not only improves ToW of the based methods, but also more robust against
variance than SGD.
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Figure 6: Loss landscapes of SAM and SGD on Dtest and all F . As memorization level goes down,
F becomes easier to unlearn and SGD shows less to no “regularizing” effect as we have discussed
on Fhigh. The general trend preserves with decreasing memorization levels and SAM is generally
flatter before and after unlearning.
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Figure 7: UMAP (McInnes et al., 2018) feature analysis on High Mem Fhigh. We observe SGD
unlearning forms a more obvious clump in all-classes panels while SAM unlearning better maintains
class clusters. From classwise panels, we observe that SAM effectively pushes forget samples away
while gathering retain samples to a dense cluster, while SGD also scatters retain samples during
unlearning, suggesting overfitting.
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Figure 8: UMAP (McInnes et al., 2018) feature analysis on Mid Mem Fmid. At all-class level, we
observe that SAM better maintains class clusters after unlearning while SGD is forming a more
evident clump of features; at classwise level, we observe that while both push away forget features,
SGD also scatters retain features further, suggesting overfitting. This also explains the larger clump
of SGD at all-class level.
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Figure 9: UMAP (McInnes et al., 2018) feature analysis on Low Mem Flow. We observe SGD
unlearning forms a more obvious clump in all-classes panels while SAM unlearning better maintains
class clusters. From classwise panels, as Flow requires less unlearning and the model can generalize
to Flow, forget samples do not move much as expected. But on SGD MinMax we still observe that
SGD scatters more retain samples away.
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