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Abstract

Existing studies on individual fairness focus on the
passive setting and typically require O( 1

ε2 ) labeled
instances to achieve an ε bias budget. In this paper,
we build on the elegant Approximately Metric-
Fair (AMF) learning framework and propose an
active AMF learner that can provably achieve the
same budget with only O(log 1

ε ) labeled instances.
To our knowledge, this is a first and substantial
improvement of the existing sample complexity
for achieving individual fairness. Through exper-
iments on three data sets, we show the proposed
active AMF learner improves fairness on linear and
non-linear models more efficiently than its passive
counterpart as well as state-of-the-art active learn-
ers, while maintaining a comparable accuracy. To
facilitate algorithm design and analysis, we also
design a provably equivalent form of the approxi-
mate metric fairness based on uniform continuity
instead of the existing almost Lipschitz continuity.

1 INTRODUCTION

In modern machine learning applications, an important soci-
etal concern is fairness of the machine-learned models. One
may think that model-made decisions have no discrimina-
tion against minority people, but many case studies show
otherwise e.g., Feller et al. [2016], Chan and Wang [2018].
As a result, how to attain fairness in machine-learned models
becomes an important research problem and the literature
has exploded in recent years. See e.g., some latest surveys
Chouldechova and Roth [2018], Mehrabi et al. [2021], Pes-
sach and Shmueli [2022] and references therein.

Model fairness has been studied at both group level and
individual level. Roughly speaking, group fairness requires
model outputs to have small disparity across different groups
of people, while individual fairness requires model outputs

to be similar on similar individuals. This paper focuses on
individual fairness.

Individual fairness was initially formalized as the Lipschitz
condition of a prediction model Dwork et al. [2012], and
later relaxed to a probabilistic and almost Lipschitz condi-
tion called approximate metric-fairness Yona and Rothblum
[2018]. There are many studies on different aspects of in-
dividual fairness such as how to design the fairness metric
Ilvento [2020], Mukherjee et al. [2020], how to achieve
fairness with limited resources Kim et al. [2018], Bechavod
et al. [2020], and how to combine individual fairness with
group fairness Zemel et al. [2013], Sharifi-Malvajerdi et al.
[2019]. The sample complexity for achieving individual fair-
ness in passive learning is studied in Balashankar and Lees
[2019], Shabat et al. [2020].

This paper studies a new aspect of individual fairness. We
ask can one obtain a more efficient sample complexity for
achieving individual fairness through active learning? To
our knowledge, all prior studies focus on the passive setting
and maintain an O( 1

ε2 ) sample complexity for bounding
(properly defined) individual bias by ε. See Yona and Roth-
blum [2018], Balashankar and Lees [2019], Shabat et al.
[2020] for example. In this paper, we show it can be im-
proved to O(log 1

ε ) through active learning.

To facilitate algorithm design and analysis, we first present
a new form of approximate metric-fairness (AMF) based on
uniform continuity and prove its equivalence to the original
form using an interesting connection between uniform con-
tinuity and almost Lipschitz continuity Vanderbei [1991].
Based on this, we present a passive AMF learner and prove
the generalization ability of its achieve fairness.

Building on the above, we design an active AMF learner
which labels instances that are fairly close to their neigh-
bors but receive fairly different predictions. Under proper
conditions, we prove this learner only takes O(log 1

ε ) label-
ing to bound the bias of its returned model by ε with high
probability. Our analysis assumes boundness of a specially
designed counter approximate metric-fairness coefficient,
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and we exemplify the calculation of it.

At the end, we experiment the proposed active AMF learner
on three real-world data sets. We observe it improves indi-
vidual fairness of both linear and non-linear models more
efficiently than its passive counterpart as well as state-of-the-
art active learners while maintaining a comparable accuracy,
achieving a more efficient fairness-accuracy trade-off.

The rest of this paper is organized as follows. We review re-
lated topics in Section 2 and present the proposed AMF form
and passive learner in Section 3. In section 4, we present the
proposed active AMF learner and prove its sample complex-
ity. We discuss several implementation issues in Section 5,
present experimental results in Section 6, and conclude the
study in Section 7. Proofs of certain theoretical results are
elaborated in the supplementary material.

2 BACKGROUND

2.1 FAIRNESS IN MACHINE LEARNING

Today, machine-learned models are widely used in sensi-
tive domains like healthcare and hiring, and it is impera-
tive for them to give fair assessment on human candidates.
Take hiring as an example, when a model is used to score
the qualification of job candidates, for fairness it should
give similar scores to similar candidates disregarding their
race or gender (i.e. no racial or gender discrimination). In
reality, however, many model assessments are considered
unfair Feller et al. [2016], Chan and Wang [2018]. This
has motivated intensive research on how to attain fairness
in machine-learned models e.g. Grgic-Hlaca et al. [2016],
Alabi et al. [2018], Grgić-Hlača et al. [2018], Rothblum and
Yona [2018], Mozannar et al. [2020], to name a few.

Model fairness has been studied at both group and individ-
ual levels Dwork et al. [2012]. In this paper, we focus on
individual fairness which, roughly speaking, requires model
output to be similar on similar individuals.

Individual fairness is first formalized as the Lipschitz condi-
tion of the model Dwork et al. [2012], and later relaxed to a
probabilistic and almost Lipschitz condition called Approxi-
mate Metric-Fairness (AMF) Yona and Rothblum [2018]1

Many later studies are built on AMF Balashankar and Lees
[2019], Bechavod et al. [2020], Kim et al. [2018]. The active
fair learner proposed in this paper is also built on AMF, but
we present a new and provably equivalent form based on
uniform continuity instead of almost Lipschitz.

One research direction in individual fairness is to attain a
proper metric for evaluating individual similarity Ilvento
[2020], Mukherjee et al. [2020]. In this paper, we assume
a metric is given and focus on how to achieve individual

1In many following discussions, we will use AMF to represent
‘approximate metric-fairness’ or ‘approximately metric-fair’.

fairness efficiently through active learning.

Finally, to our knowledge, existing studies on individual
fairness focus on the passive setting, where training data
are randomly labeled. Their typical sample complexity for
achieving individual fairness is O( 1

ε2 ) Yona and Rothblum
[2018], Balashankar and Lees [2019], Shabat et al. [2020].
In this paper, we focus on the active setting, where training
data are strategically labeled. We show the proposed active
AMF learner admits an O(log 1

ε ) sample complexity, which
substantially improves the state-of-the-art result.

2.2 ACTIVE LEARNING

Active learning has been extensively studied in the literature
Settles [2009], Aggarwal et al. [2014], Hanneke et al. [2014].
Given a supervised learner, active learning assumes labels
of the training data are expensive to query and aims to
minimize the query cost by strategically labeling a few data
for efficiently improving model accuracy. For example, the
uncertainty-based strategy labels data with uncertain model
predictions, and the query-by-committee strategy labels data
receiving disagreed predictions from a committee of models.
Active labeling strategies have been successfully applied in
many domains and shown to improve model accuracy more
efficiently than random labeling Thompson et al. [1999],
Warmuth et al. [2003], Liu [2004], Hoi et al. [2006], Abe
et al. [2006], Zhao and Hoi [2013].

On the theory side, active labeling can allows one to learn
a model with ε error by labeling only O(log 1

ε ) instances,
and this is more efficient than random labeling which re-
quires O( 1ε ) instances to achieve the same error guarantee
Dasgupta [2005], Hanneke [2007], Balcan et al. [2010].

We notice that most active labeling strategies are designed
for classification model but very few are for regression
model Burbidge et al. [2007], Sugiyama and Nakajima
[2009], Cai et al. [2013], Yu and Kim [2010]. To our knowl-
edge, the state-of-the-art strategy for regression model is
greedy sampling Wu et al. [2019], which labels data that are
most different from the already labeled training data in both
feature space and label space.

Our study is related to active learning but differs in that
they focus on improving accuracy for traditional learners,
while we focus on improving individual fairness for AMF
learners. Despite the difference, our work is inspired by
disagreement-based active learning Hanneke [2007].

2.3 FAIRNESS IN ACTIVE LEARNING

The intersection of fairness and active learning is a fairly
new research direction, and existing studies can be roughly
grouped into active labeling Anahideh et al. [2020], Sharaf
and Daumé III [2020] and adaptive sampling Abernethy
et al. [2020], Shekhar et al. [2021]. This paper considers the



active labeling setting, but differs from the existing study as
they focus on improving group fairness for standard learner
while we focus on improving individual fairness for AMF
learner. Besides, we are the first work that shows active
learning can improve the sample complexity for individual
fairness to O(log 1

ε ), which is not presented in prior studies.

3 APPROXIMATE METRIC-FAIRNESS

In this section, we present a new form of approximate metric-
fairness (AMF) and prove its equivalence to the original
form. Then we present the corresponding passive AMF
learner and prove its generalization guarantee. Our study is
focused on the regression problem.

Let X be an instance space equipped with a metric d and
distribution D. Let H be a class of models defined on X .
The original form of AMF Yona and Rothblum [2018] is
defined based on almost Lipschitz continuity, as follows.

Definition 3.1. A model h ∈ H is said to be (ε, β) approx-
imately metric-fair with respect to d and D if

Pr
x,x′∼D

{|h(x)− h(x′)| > d(x, x′) + β} ≤ ε. (1)

To facilitate algorithm design and analysis, we propose the
following new form of AMF based on uniform continuity.

Definition 3.2. A model h ∈ H is said to be (α, β, ε)
approximately metric-fair with respect to d and D if

Pr
x,x′∼D

{d(x, x′) ≤ α, |h(x)− h(x′)| > β} ≤ ε. (2)

Intuitively, the new form models individual fairness by stat-
ing that if two individuals x and x′ are similar (in a sense
that d(x, x′) ≤ α), then their predictions should be similar
(in a sense that |h(x)− h(x′)| > β) with high probability.

Our following theorem suggests the two forms are equiva-
lent, and is inspired by an interesting discovery that uniform
continuity is almost Lipschitz Vanderbei [1991].

Theorem 3.3. Fix any α, β > 0. Any model with a convex
domain is (ε, β) approximately metric-fair with respect to
d and D if it is (α, β, ε) approximately metric-fair with
respect to metric d′ = α

2β ·d and D, and only if it is (α, 3β, ε)
approximately metric-fair with respect to d′ and D.

Proof. Let h be a model with a convex domain. Define two
sets Ψ1(β) = {(x, x′) | |h(x)−h(x′)| ≤ d(x, x′)+β} and
Ψ2(α, β) = {(x, x′) | d′(x, x′) ≤ α ⇒ |h(x) − h(x′)| ≤
β}, where ‘⇒’ means ‘imply’. We first prove

Ψ2(α, β) ⊆ Ψ1(β) ⊆ Ψ2(α, 3β). (3)

The left relation holds because, for any β, if there exists an
α such that d′(x, x′) ≤ α implies |h(x)− h(x′)| ≤ β, then

[Vanderbei, 1991, Theorem 1] implies that |h(x)−h(x′)| ≤
d(x, x′) + β, where d(x, x′) = 2β

α d′(x, x′).

The right relation follows from the fact that, if |h(x) −
h(x′)| ≤ d(x, x′)+β = 2β

α d′(x, x′)+β, then d′(x, x′) ≤ α

implies |h(x)− h(x′)| ≤ 2β
α · α+ β = 3β.

Then, by contrapositive, (3) implies

Ψ̃2(α, β) ⊇ Ψ̃1(β) ⊇ Ψ̃2(α, 3β), (4)

where Ψ̃ denotes the complement of Ψ. This further implies
Pr{Ψ̃2(α, β)} ≥ Pr{Ψ̃1(β)} ≥ Pr{Ψ̃2(α, 3β)}, and the
theorem follows by the two definitions of fairness.

Theorem 3.3 shows one form of AMF converges to the other
as β decreases, which establishes an equivalence between
them. It also suggests we can achieve one form of AMF
through the other. In the rest of this paper, we will design
and analyze AMF learners based on Definition 3.2. For con-
ciseness, we will omit the subscripts in Prx,x′∼D whenever
they are clear from the context.

3.1 AMF LEARNING WITH PERFORMANCE
GENERALIZATION GUARANTEE

In this section, we present a passive AMF learner based on
Definition 3.2 and prove its generalization guarantee.

To facilitate discussion, define the fairness measure

∆α,β(h) = Pr{d(x, x′) ≤ α, |h(x)− h(x′)| > β}. (5)

Then h is said to be (α, β, ε)-AMF if ∆α,β(h) ≤ ε.

Let S be a sample of X×X with cardinality m. An estimate
of the probability ∆α,β(h) on sample S is

∆α,β(h;S) =
1

m

∑
(x,x′)∈S

I{d(x, x′) ≤ α,

|h(x)− h(x′)| > β},
(6)

where I is an indicator function.

It is natural for AMF learning to find a model h with
small ∆α,β(h;S) and hope this could generalize to a small
∆α,β(h). In this paper, we focus on a realizable case where
H contains perfect AMF models that satisfy ∆α,β(h) = 0.
Based on this, we define the passive AMF learner as follows.

Definition 3.4. Given a hypothesis class H , a loss function
ℓ and a labeled training set L = {(x1, yn), . . . , (xn, yn)}
where xi is the ith instance and yi is its label, an AMF
learner returns a model h ∈ H by solving

min
h∈H

1

n

n∑
i=1

ℓ(h(xi), yi), s.t. ∆α,β(h;S) = 0, (7)

where S = {(xi, xj)}i,j=1,...,n.



We can show the above AMF learner has a similar gener-
alization guarantee as in Yona and Rothblum [2018] based
on the following lemma. Let Rm(·) denote the Rademacher
complexity of some hypothesis class for sample size m.

Lemma 3.5. Fix any t, β > 0. Let F : X × X → R
be a hypothesis class induced from H such that ∀f ∈ F ,
f(x, x′) = τ tβ(|h(x)− h(x′)|) where τ tβ(z) is a piecewise
model outputting 1 if z > β + 1

t , outputting 0 if z ≤ β and
t(z − β) otherwise. Then Rm(F ) ≤ 8t · Rm(H).

Proof Sketch. Repeatedly apply the Rademacher complex-
ity property of composite function with Lipschitz condition
e.g. [Bartlett and Mendelson, 2002, Theorem 12] on τ tβ and
abs. See the supplementary material for details.

Based on the above, we can prove the proposed AMF learner
has generalization guarantee based on an assumption that
instances are sampled i.i.d.. The results is as follows.

Theorem 3.6. Fix any α, β, t > 0. Suppose Rm(H) ∈
O(1/

√
m). Any model h ∈ H returned by the AMF learner

satisfies ∆α,β+1/t(h) ≤ ε with probability at least 1 − δ

if m ≥ 1
ε2

(
16tc+

√
1
2 log

1
δ

)
, where m is the number of

(x, x′) ∈ S satisfying d(x, x′) ≤ α and c is a constant
inherited from O(1/

√
m).

Proof Sketch. The main challenge in our analysis is an extra
d(x, x′) ≤ α term that cannot be directly removed using
the Rademacher complexity property as in Lemma 3.5. To
tackle this, we introduce V = {(x, x′) ∈ S; d(x, x′) ≤ α}.

We will first transform the analysis of joint event |h(a) −
h(b)| > β and d(a, b) ≤ to an analysis of single event
|h(a) − h(b)| > β by narrowing the domain to V . Then,
we derive a generalization bound for the single event by
first relaxing its indicator function to the piecewise function
defined in Lemma 3.5, then applying the standard general-
ization argument with Rm(F ) e.g., Mohri et al. [2018], and
finally connecting Rm(F ) to Rm(H) using Lemma 3.5. At
the end, we transform the result for the single event back to
a result for the joint event which completes the proof. See
the supplementary material for details.

Theorem 3.6 implies one can achieve (α, β, ε) AMF with
O( 1

ε2 ) randomly labeled instances, which is consistent with
the sample complexity in Yona and Rothblum [2018]. Con-
stant c depends on the hypothesis class e.g., if H is the set
of linear models with proper constraints, we can set c to the
maximum norm of the instance Shalev-Shwartz and Ben-
David [2014]; if H is the set of kernel machines with proper
constraints, we can set c to the product of kernel function
bound and gram matrix trace Mohri et al. [2018].

In the theorem, variable t is the slope of a Lipschitz function
introduced to approximate the indicator function. Its impact

Algorithm 1 Active AMF Learning

Input: an initial labeled training set L, an unlabeled set U ,
a hypothesis class H , number k.

1: while stopping criterion is not met do
2: Learn a model h ∈ H based on sample L using the

AMF learner in Definition 3.4.
3: Pick an i.i.d. sample of k instances u ∈ U satisfying

∃u′ ∈ L, d(u, u′) ≤ α, |h(u)− h(u′)| > β. (8)

4: Label the selected instances. Then add them to sam-
ple L, and remove them from sample U .

5: end while
Output: model h.

on the error bound is interesting twofold. A smaller t leads to
a weaker fairness guarantee, in a sense that ∆α,β+1/t′ ≤ ε
implies ∆α,β+1/t ≤ ε whenever t′ ≤ t. But it also leads to
higher sample efficiency, in a sense that a smaller t implies
smaller m suffices for the generalization guarantee.

4 ACTIVE AMF LEARNING

In this section, we propose an active AMF learner based on
Definition 3.4 and derive its sample complexity.

Our key idea is to label instances that are fairly close to their
neighbors but receive fairly different predictions from some
hypothesis. We characterize such instances using a set

Cα,β(H) = {(x, x′) ∈ X ×X;∃h ∈ H,

d(x, x′) ≤ α, |h(x)− h(x′)| > β}.
(9)

Next, we design a counter AMF coefficient, which will be
used to derive the complexity.

Definition 4.1. The counter (α, β) AMF coefficient with
respect to a hypothesis class H is

ξα,β = sup
r>0

Pr{(x, x′) ∈ Cα,β(Bα,β(r))}
r

, (10)

where Bα,β(r) = {h ∈ H; ∆α,β(h) ≤ r} is the set of
hypotheses that are (α, β, r) AMF.

Intuitively, the coefficient measures the largest volume of in-
stance pairs that do not contribute to the fairness achievable
in a hypothesis class. We could expect it to be smaller if
hypotheses are more fair. For conciseness, we will omit the
subscripts in ξα,β whenever they are clear from the context.

The proposed active AMF learner is shown in Algorithm 1.
In each round, it trains model h on the labeled set using the
AMF learner, and then labels instances that are close to the
training data but receive different predictions from h. It is
clear that all labeled instances fall in Cα,β(H). The fairness



coefficients α, β are assumed preset by the problem, and we
can stop labeling when a desired AMF degree is achieved.

Our following theorem shows that, under proper conditions,
Algorithm 1 can return a model satisfying (α, β, ε) AMF
through O(log 1

ε ) labeling with high probability.

Theorem 4.2. Fix any α, β > 0. If the counter (α, β) AMF
coefficient w.r.t. H is bounded, then with probability at
least 1 − δ, any h ∈ H returned by Algorithm 1 satisfies
∆α,β(h) ≤ ε after O(log 1

ε ) labeling.

Proof Sketch. Let Vq = {h ∈ H; ∆α,β(h;Sq) = 0} be
the set of ‘perfect’ AMF models at the end of q rounds of
labeling. The goal of our analysis is to show that, if we label

k = 1
4ξ2

(
32c/β +

√
1
2 log

1
δ′

)
instances in each round,

then by the generalization bound in Theorem 3.6, there is

Pr{Cα,β(Vq+1)} ≤ 1

2
Pr{Cα,β(Vq)}. (11)

with high probability. This implies Q = log2
1
ε rounds of la-

beling, which means Qk ∈ O(log 1
ε ) total labeling, suffices

for Pr{Cα,β(Vq+1)} ≤ ε. Since ∆α,β(h) ≤ Pr{Cα,β(Vq)}
for any h ∈ Vq by definition, the theorem is proved.

Let & be logic ‘AND’ and define event

Iβα(x, x
′;h) := d(x, x′) ≤ α & |h(x)− h(x′)| > β. (12)

A key to prove (11) is to split the domain of ∆α,β(h) =
Pr{Iβα(x, x′;h)} for any h ∈ Vq+1 into (x, x′) ∈ Cα,β(Vq)
and (x, x′) /∈ Cα,β(Vq). Probability on the second subdo-
main is zero, and probability on the first subdomain can
be bounded using Theorem 3.6 conditioned on the fact
that all labeled instances fall in Cα,β(Vq). That bound is
smaller than 1

2ξ by our choice of k and the definition of

ξ, therefore implying Vq+1 ⊆ B
(

Pr{Cα,β(Vq)}
2ξ

)
and thus

Pr{Cα,β(Vq+1)} ≤ Pr
{
Cα,β

(
Bα,β

(
Pr{Cα,β(Vq)}

2ξ

))}
≤

ξ · Pr{Cα,β(Vq)}
2ξ =

Pr{Cα,β(Vq)}
2 , where the second inequality

is by definition. This proves (11) and thus the theorem.

The proof of Theorem 4.2 also illuminates the key for Al-
gorithm 1 to reduce labeled instances is in Step 3, where
we label u if (u, u′) ∈ Cα,β(Vq) because only such pair
can be used to further rule out hypotheses in Vq and shrink
Cα,β(Vq), which guarantees the shrinkage of ∆α,β(h).

We should mention an implicit assumption of the derived
sample complexity is that, the unlabeled set contains at
least one instance satisfying (8) per epoch until convergence.
This is similar to the analysis of disagreement-based active
learning Hanneke et al. [2014], which assumes at least one
unlabeled instance is disagreed by the committee models per
epoch. From a practical perspective, when no valid instance
is found, we could train another model or randomly label
one instance and proceed to the next epoch.

Figure 1: Visualization of Prx(Iβα(x, 0;h)).

We should also mention the time complexity for Algorithm 1
to find an instance satisfying (8). In a centralized computing
environment, the complexity is O(|U ||L|), where |U | is
the size of unlabeled set and |L| is the size of labeled set.
Typically |L| ≪ |U |. This is higher than the complexity of
uncertainty-based strategy which is typically O(|U |), but
more comparable to the complexity of query-by-committee
which is typically O(|U |t) for t committee models. In a
distributed computing environment, the complexity can be
reduced to O(|U |) if the evaluations of an instance u ∈ U
with all u′ ∈ L can be parallelized. Nonetheless, how to
make selection more efficient remains an open challenge.

4.1 THE COUNTER AMF COEFFICIENT

An important factor in our analysis is the counter AMF
coefficient. We give an example on how to calcualte it.

Example 4.3. Fix α, β,B > 0. Let hw(x) = w · x be a
1-dimensional linear hypothesis defined on [−B,B], and
define H = {hw;w ≥ 0}. Assume instances are uniformly
distributed on [−B,B]. If B > α, then

∆α,β(h) =

{
0, if w < β

α

1− β
αw + β

Bw ln β
αw , if w ≥ β

α

, (13)

and the counter (α, β) AMF coefficient w.r.t. to H is 1.

Proof. The roadmap of this proof is as follows. We will
first derive ∆α,β(hw) through case study and show it is non-
decreasing with respect to w. Based on this, we will then
argue the probability in (10) is equivalent to

P∗ := Pr{|h∗(x)− h∗(x
′)| > β, d(x, x′) ≤ α}, (14)

where h∗ is the model satisfying ∆α,β(h∗) = r, hence
ξ = supr>0 P∗/r = supr>0 r/r = 1.

Now we show the detailed proof. For conciseness, we will
write h for hw but with the mind that each h is associated
with a w. Also, recall the event notation Iβα(x, x

′;h) :=
d(x, x′) ≤ α & |h(x)− h(x′)| > β.

Step 1: Characterize ∆α,β(h) for any h ∈ H .



Fix any h. Consider two cases.

(i) If αw < β, simple geometric analysis shows that event
Iβα(x, x

′;h) is always false so Prx,x′{Iβα(x, x′;h)} = 0.

(ii) If αw ≥ β (which implies w ̸= 0), then α ≥ β/w. In
this case, we can properly partition the domain and have

Prx,x′{Iβα(x, x′;h)}

= Ex′∈[−B,B]

[
Prx{Iβα(x, x′;h)}

]
= 2 Ex′∈[0,B]

[
Prx{Iβα(x, x′;h)}

]
= 2

∫
x′∈[0,B−α]

Prx{Iβα(x, x′;h)} · p(x′)

+ 2

∫
x′∈(B−α,B− β

w ]

Prx{Iβα(x, x′;h)} · p(x′)

+ 2

∫
x′∈(B− β

w ,B]

Prx{Iβα(x, x′;h)} · p(x′),

(15)

where Prx{Iβα(x, x′;h)} is the probability defined for x
with a fixed x′. In (15), the first equality is by defini-
tion, and the second equality is by the observation that
Prx{Iβα(x, x′;h)} is symmetric on [−B,B] (which will be-
come more clear in later analysis). Note that p(x′) = 1

2B .

Now we study each integral separately.

(ii.a) If x′ ∈ [0, B − α], we can show

Prx{Iβα(x, x′;h)} = 1− β

wα
. (16)

To verify this, let us first fix x′ = 0 and identify the set
of x in [−α, α] that makes event Iβα(x, 0;h) true. This
case is illustrated in Figure 1. We see all targeted x fall in
[β/w, α] and (by symmetry) in [−α,−β/w]. This implies
Prx{Iβα(x, 0;h)} = 2·(α−β/w)

2·α = 1− β
αw . Since h is linear,

the above result applies to all x′ ∈ [0, B−α], which implies
(16) and thus the first integral equals to (1− β

wα )(1−
α
B ).

Note it is non-negative since αw ≥ β and B > α.

(ii.b) If x′ ∈ (B − α,B − β
w ], we can show

Prx{Iβα(x, x′;h)} = 1− β

w(B − x′)
. (17)

We can verify this in a similar way as in (ii.a), with ad-
ditional shift of the origin to x′ and constraint x ≤ B.
Then, geometric analysis suggests all targeted x fall in
[x′ + β

w , B] (shorter than interval [β/w, α] in Figure 1)

and thus Prx{Iβα(x, x′;h)} = 2(B−x′−β/w)
2(B−x′) . This implies

the second integral is 1
B (α − β

w (1 − ln β
wα )). Note it is

non-negative as (17) is non-negative by the domain of x′.

(ii.c) If x′ ∈ (B − β
w , B], it is easy to see no (x′, x) makes

event Iβα(x, x
′;h) true so Prx{Iβα(x, x′;h)} = 0. Then the

third integral is zero.

Plugging the integrals of (ii.a), (ii.b) and (ii.c) back to (15),
and combining results of cases (i) and (ii) gives (13).

Step 2: Show ∆α,β(h) is non-decreasing w.r.t. w.

All we need to show is ∆α,β(h) is non-negative and non-
decreasing when w ≥ β

α . The first property is guaranteed
since all integrals in (15) are non-negative. To see the sec-
ond property, take derivative∂∆α,β(h)

∂w =
β (B+α(ln αw

β −1))

w2 αB .
Since w ≥ β

α and B > α, we can easily show the derivative
is bigger than zero and hence ∆α,β(h) is non-decreasing.

Step 3: Equivalent Probability.

Let h∗ = w∗x be the model satisfying ∆α,β(h∗) = r. It is
not hard to show it exists for every r ∈ [0, 1) based on (13).
Then, results of Step 1 and Step 2 suggest Bα,β(r) is the set
of linear models satisfying w ≤ w∗, which implies

Pr{Cα,β(Bα,β(r))} = Pr{Iβα(x, x′;h∗)}. (18)

To verify this, we first show every (x, x′) ∈ Cα,β(Bα,β(r))
makes event Iβα(x, x

′;h∗) true. This is true because, for any
x, x′ with d(x, x′) ≤ α, if there exists an w ≤ w∗ such that
|wx − wx′| > β, then |w∗x − w∗x

′| ≥ |wx − wx′| > β.
We then show every (x, x′) that makes event Iβα(x, x

′;h∗)
true is also in Cα,β(Bα,β(r)). This is true since h∗ exists.

The equivalence implies ξ = supr>0
Pr{Iβ

α(x,x′;h∗)}
r =

supr>0
r
r = 1. The proof is completed.

5 IMPLEMENTATION

In this section, we discuss three implementation issues.

The first issue is related to the AMF Learner in Definition
3.4. Directly solving (7) is not easy since ∆α,β(h) is non-
convex. We propose to approximate the solution by solving

min
h∈H

1

n

n∑
i=1

ℓ(h(xi), yi) + λ ∆̃α,β(h;S), (19)

instead, where λ is a regularization coefficient and

∆̃α,β(h;S) =
1

n2β2

n∑
i,j=1

Mij · |h(xi)− h(xj)|2, (20)

with M being an n-by-n matrix whose entries are defined
as Mij = I{d(xi, dj) ≤ α}. Such approximation can be
justified by the following relation, which implies that mini-
mizing ∆̃α,β(h;S) also minimizes ∆α,β(h;S).

Lemma 5.1. Fix any α, β > 0. We have ∆α,β(h;S) ≤
∆̃α,β(h;S) for any h ∈ S and sample S.

In practice, the approximate learner (19) may not always re-
turn a model with zero bias on training data. In this case, the
proposed algorithm remains applicable and sample-efficient



on fairness. There are two possible theoretical explanations
on the maintained efficiency. First, if the bias is sufficiently
small e.g., ∆α,β(h;S) ∈ O(ε), then the passive bound in
Theorem 3.6 can be extended to ∆α,β(h) ∈ O(ε). Plugging
this back to Theorem 4.2, we can obtain a similar com-
plexity with an additional constant factor. Second, we may
borrow ideas from agnostic active learning e.g., Dasgupta
et al. [2007], Balcan et al. [2009] and develop a new com-
plexity for the non-realizable case (i.e., when h has zero
bias). These possible extensions are left for future study.

The second implementation issue is related to the base
model. We propose to implement a linear model and a kernel
regression model approximated by Random Fourier Feature
Rahimi and Recht [2007] – we call it ‘rff model’.

For the linear model, if instances x1, . . . , xn ∈ Rp, we can
show ∆̃α,β(h;S) =

2
n2β2 ·hT [x](D−M)[x]Th, where [x]

is an n-by-p matrix with the ith row being xT
i . Further, if

squared loss is used, then solution to (19) is

h = ([x](I − 2λ

nβ2
(D −M))[x]T )−1([x][y]), (21)

where [y] ∈ Rn is a vector with the ith entry being yi and
D is an n-by-n diagonal matrix with Dii =

∑n
j=1 Mij .

For the rff model, we first calculate random features Rahimi
and Recht [2007] and then train a linear model based on
them using the AMF learner. Note random features are
only used to approximate the prediction model, and we still
measure d(x, x′) using the original features.

The last issue is related to active learning. Given a labeled
training set L and an unlabeled set U , the proposed active
AMF learner labels a candidate instance u if there exists
u′ ∈ L satisfying d(u, u′) ≤ α and |h(u)− h(u′)| > β. In
principle, we can also pair u with instances in U , as long as
the labeled instances fall in Cα,β(Vq). In practice, pairing u
with instances in L is often more efficient (since the label
set is often way smaller than the unlabeled set), and leads to
slightly better performance as we observe in experiments.

6 EXPERIMENT

We experiment on three real-world data sets. The Insurance
data setdat [a] has individual medical costs billed by health
insurance company, and the task is to predict the cost based
other attributes. The Life data setdat [b] has the life ex-
pectancy in different countries, and the task is to predict the
expectancy. We also use a data set collected from public re-
sources. It contains the COVID death rates of 3142 counties
in United States and the task is to predict the rate based on
other attributes including population density, obesity rate,
smoking rate, diabetes rate, elderly population and vaccine
rate. To learn more data sets used to evaluate algorithmic
fairness, we refer interested readers to Le Quy et al. [2022].

We encode categorical features by dummy variables, ad-
dress missing data using mean imputation and standardize
all features. For higher numerical stability, we re-scale the
labels: on the Insurance data set, we divide the medical cost
which varies from 4k to 40k by 10k; on the Life data set,
we divide the life expectancy which varies from 40 to 90
by 100; on the COVID data set, we multiply the death rate
which varies from 0 to 0.01 by 100.

We randomly split each data set into an initial training set
(assumed labeled), an unlabeled set (for query) and a testing
set. Size of the initial training set is chosen as follows: for the
linear base model, it is the feature number on the Insurance
and Life data sets, and twice that number on the COVID
data set; for the rff base model, it is half of the random
feature number. Size of the testing data is 25% of the total
data size. The remaining data are treated as unlabeled.

On a data set, we run an active learner for 20 random trials
and report the average model performance on the testing sets.
Model bias is measured by ∆α,β(h;Sn) defined in (6), with
(α, β) set to (2, 0.1) on Insurance, (10, 0.2) on Life and (1.5,
0.001) on COVID. We also experimented with other fairness
coefficients and observed similar comparative performance.
Model error is measured by the root-mean-squared-error.

We evaluate the proposed active labeling strategy on the lin-
ear base model and rff base model respectively, and compare
its performance with the following three strategies.

– Random: It randomly selects instances to label.

– Query-by-Committee (QBC): It labels instances which re-
ceive the largest prediction variance from a committee of
models. Following Burbidge et al. [2007], we construct a
committee of five models and train each one using a boot-
strap sample of the training data, with sample size equals to
the training set size divided by the committee size.

– Uncertainty: It labels instances which are most different
from the training data in both feature space and label space
Wu et al. [2019]. To our knowledge, this is a state-of-the-art
active labeling method for regression model.

– Cluster: It is a clustering based baseline method that relies
on the distance between instances. It first identifies the top
m uncertain instances in the candidate pool using the above
method, then runs k-means clustering to identify their k
centers, and finally labels the identified instances.

For the metric-fair learner, we pick its regularization coef-
ficient λ that strikes a good balance between fairness and
accuracy. For the linear base model, λ is set to 1 on Insur-
ance and Life and 0.1 on COVID; for the rff base model, λ
is set to 1 on Insurance, 5 on Life and 0.5 on COVID.

For the rff base model, we generate the random features
that approximate Gaussian kernel Rahimi and Recht [2007].
The random feature number is set to 100 on Insurance, 400
on Life and 200 on COVID. The gamma coefficient is set
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Figure 2: Results of Sensitivity Analysis

to 1e-4 on Insurance, 1e-9 on Life and 1e-2 on COVID. In
practice, we observe these configurations lead to good and
stable performance of active metric-fair learning. For the
clustering based baseline method, we set m = 10 and k = 3
as they give consistently good performance (except k is set
to 10 for linear model on the Life dataset).

6.1 RESULTS AND DISCUSSIONS

Results of the experimented strategies on both base models
across three data sets are shown in Figure 3.

In Figure 3 (a-f), we see the proposed active AMF learner re-
duces model bias more efficiently than other learners, which
empirically verifies its efficient sample complexity. We no-
tice it achieves almost zero bias in all cases, supporting
our assumption on the realizable case. (And note this is
not achieved at the cost of significantly deteriorating accu-
racy, as explained in the next paragraph.) There seems no
consistent pattern on the efficiency of other learners. We
notice QBC and uncertainty are often less efficient than
random, implying the importance of (efficiently) achieving
individual fairness by design, as presented in this study.

In Figure 3 (g-l), it is not surprising to see that uncertainty
based labeling reduces error faster than other strategies.
Comparatively, the proposed active AMF learner manages
to achieve a comparable reduction rate, suggesting its has
an efficient fairness-accuracy trade-off.

We also perform sensitivity analysis on the proposed strategy
and present results in Figure 2. Figures 2 (a-b) show the
performance versus regularization coefficient λ. We both
training and testing δ decrease as λ increases. This suggests
the metric-fair learner can effectively reduce bias and the
reduction is generalizable, which supports Theorem 3.6.
We also see model error first decreases and then increases,
exhibiting an overfitting phenomenon.

Figures 2 (c-d) show the performance versus different
choices of (α, β) when selecting instances in Step 3 of
Algorithm 1. (But all δ’s are evaluated based on the same
(α, β) for fair comparison.) We see using smaller α to select
instances leads to faster convergence of δ but more slowly
convergence of RMSE. There seems no clear pattern on the

impact of β. Overall, we see one can balance fairness and
accuracy of the proposed strategy through adjusting α.

7 CONCLUSION

In this paper, we propose the first active approximate metric-
fair (AMF) learner and prove it can achieve an ε bias budget
by labeling only O(log 1

ε ) instances. To our knowledge, this
result is a first and substantial improvement over the ex-
isting O( 1

ε2 ) sample complexity for achieving individual
fairness by the passive learners. Through extensive experi-
ments across three public data sets, we show the proposed
active AMF learner improves fairness of two regression
models more efficiently than its passive counterpart as well
as state-of-the-art active learners, while being able to main-
tain comparable accuracy. Another contribution of this study
is to present a provably equivalent form of AMF based on
uniform continuity instead of the existing almost Lipschitz.
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Figure 3: Performance of Different Active Labeling Strategies on Three Data Sets. (a-c) and (d-f) show the bias of linear and
rff base models respectively; (g-i) and (j-l) show the rmse of linear and rff base models respectively.
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