
Iterative Approximate Cross-Validation

Yuetian Luo 1 Zhimei Ren 2 Rina Foygel Barber 2

Abstract
Cross-validation (CV) is one of the most popu-
lar tools for assessing and selecting predictive
models. However, standard CV suffers from high
computational cost when the number of folds is
large. Recently, under the empirical risk mini-
mization (ERM) framework, a line of works pro-
posed efficient methods to approximate CV based
on the solution of the ERM problem trained on
the full dataset. However, in large-scale prob-
lems, it can be hard to obtain the exact solution
of the ERM problem, either due to limited com-
putational resources or due to early stopping as a
way of preventing overfitting. In this paper, we
propose a new paradigm to efficiently approxi-
mate CV when the ERM problem is solved via
an iterative first-order algorithm, without running
until convergence. Our new method extends ex-
isting guarantees for CV approximation to hold
along the whole trajectory of the algorithm, in-
cluding at convergence, thus generalizing existing
CV approximation methods. Finally, we illustrate
the accuracy and computational efficiency of our
method through a range of empirical studies.

1. Introduction
In machine learning and statistics, cross-validation (CV)
(Allen, 1974; Stone, 1974; Geisser, 1975) is one of the
most popular methods for the tasks of assessing and se-
lecting predictive models. It is conceptually simple and
easy to implement. Among many variants of CV, one popu-
lar choice is leave-one-out CV (also called the Jackknife),
which often offers the most accurate prediction for the out-
of-sample risk in many practical and challenging scenarios
(Arlot & Celisse, 2010; Stephenson & Broderick, 2020; Rad
& Maleki, 2020). Leave-one-out CV uses n−1 out of n data

1Data Science Institute, University of Chicago, Chicago IL
60637, USA 2Department of Statistics, University of Chicago,
Chicago IL 60637, USA. Correspondence to: Yuetian Luo <yue-
tian@uchicago.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

points for training, and the remaining one for testing, and
then repeats for each of the n data points in the sample. The
resulting n cross-validation errors can be used for model
assessment or selection, tuning parameter selection, etc.

However, the superior performance of leave-one-out CV is
accompanied by high computational cost when n is large,
as the potentially complex model needs to be fitted n times.
To be able to run leave-one-out CV but avoid the high com-
putational burden, several methods have been proposed to
approximate the expensive model refitting step with an in-
expensive surrogate step, with much progress in the recent
literature particularly in the context of empirical risk min-
imization (ERM) (Obuchi & Kabashima, 2016; Beirami
et al., 2017; Giordano et al., 2019; Koh & Liang, 2017;
Wang et al., 2018; Wilson et al., 2020; Rad & Maleki, 2020;
Stephenson & Broderick, 2020).

Background: approximate CV for ERM Suppose one
aims to estimate some parameter of interest θ∗ via solving
the following regularized ERM problem:

θ̂ = argmin
θ∈Rp

F (Z; θ), (1)

where, for a dataset Z of size n,

F (Z; θ) :=

n∑
i=1

ℓ(Zi; θ) + λπ(θ).

Here ℓ(Z; θ) is the loss function for data point Z and param-
eter θ, Z = {Zi}ni=1 is the set of observed data points, π(·)
is a regularization term, and λ ≥ 0 is a tuning parameter.
Under this setting, the widely used leave-one-out CV loss
for estimating the prediction performance of θ̂ is given by

CV({θ̂−i}ni=1) =
1

n

n∑
i=1

ℓ(Zi; θ̂−i), (2)

where θ̂−i := argminθ∈Rp F (Z−i; θ) is the mini-
mizer of the leave-one-out objective F (Z−i; θ) :=∑n

j=1,j ̸=i ℓ(Zj ; θ) + λπ(θ).

Since computing θ̂−i for every i ∈ [n] := {1, . . . , n} is
often expensive, this motivates finding an approximation to
CV({θ̂−i}ni=1) that does not require fitting n many models.

1

Iterative Approximate Cross-Validation

Observe that θ̂ and θ̂−i are the solutions to two highly sim-
ilar minimization problems—they minimize F (Z; θ) and
F (Z−i; θ) = F (Z; θ) − ℓ(Zi; θ), respectively. One ap-
proach in the recent literature proposes approximating θ̂−i

by initializing at θ = θ̂ and taking a single Newton step
(NS) on the objective F (Z−i; θ) (Beirami et al., 2017; Rad
& Maleki, 2020),

θ̃NS
−i = θ̂ −

(
∇2

θF (Z−i; θ̂)
)−1

∇θF (Z−i; θ̂). (3)

Another approach is based on the infinitesimal jackknife (IJ)
(Jaeckel, 1972; Efron, 1982; Giordano et al., 2019):

θ̃IJ−i = θ̂ −
(
∇2

θF (Z; θ̂)
)−1

∇θF (Z−i; θ̂). (4)

(Here for simplicity we consider the case where F is twice
differentiable; we will discuss other settings below.)

The challenge: iterative algorithms The accuracy of the
estimators in (3) and (4) relies heavily on the assumption
that θ̂ can be computed exactly, which may not be the case
in many scenarios. For example, when (1) is solved via an
iterative algorithm such as gradient descent (GD), we may
not be able to run the algorithm into convergence due to the
limited computational resources. Other algorithms we might
use have a very slow rate of convergence, such as stochastic
gradient descent (SGD). Another important example is that,
in some settings, we may intentionally stop training early to
avoid overfitting in learning machine learning models (see
e.g. (Jabbar & Khan, 2015)).

Figure 1 shows a simple simulation that illustrates the loss of
accuracy suffered by the NS and IJ methods, when run with
an estimate of θ̂ obtained before convergence. Specifically,
consider logistic regression with a ridge penalty, with the
estimator obtained by running GD or SGD for t steps—that
is, we would like to estimate CV({θ̂(t)−i}ni=1), where θ̂

(t)
−i is

the solution after t steps of GD or SGD on the objective
function F (Z−i; θ). θ̂

(t)
−i is then approximated by running

either NS (3) or IJ (4), but with θ̂(t) (the tth step of GD or
SGD on the full objective function F (Z; θ)) in place of the
exact minimizer θ̂. We see highly inaccurate approxima-
tions of NS and IJ methods to the leave-one-out CV loss
CV({θ̂(t)−i}ni=1) during the early iterations of GD, and even
after 1000 iterations for SGD. Details of this simulation are
given in Section 6.

Our contribution: iterative approximate CV The cen-
tral question of our paper is this:

Can we develop new approximation schemes to leave-one-
out CV when θ̂ is not known exactly, but is estimated with
an iterative algorithm that is not run to convergence?

1e−1

1e−3

1e−5

1e−7

1 102 104

Iter Num (log scale)

E
rr

or

1e−1

1e−3

1e−5

1e−7

1 102 104

Iter Num (log scale)

Method
NS
IJ
IACV

Figure 1. The red and blue lines show the error in estimating
CV({θ̂(t)−i}

n
i=1) for the NS and IJ methods, run with θ̂(t) as an ap-

proximation to the exact solution θ̂, while the black line shows the
error for our proposed method, iterative approximate CV (IACV).
The objective function is given by logistic regression plus a ridge
penalty, solved iteratively with GD (left, n = 1000) and SGD
(right, n = 1000, batch-size = 400). Solid lines represent the
median value over 100 repetitions and the shaded area shows the
region between lower and upper quartiles.

In this work, we provide a positive answer to this ques-
tion. We find that before the convergence of the iterative
algorithm, efficient leave-one-out CV approximation can
still be possible if we can leverage information about the
iterative nature of the algorithm. In Figure 1, we see that
our proposed method, Iterative Approximate CV (IACV),
achieves an accurate approximation to leave-one-out CV
loss CV({θ̂(t)−i}ni=1) across all iterations t, even far before
convergence; at convergence, IACV yields the same re-
sults as NS. Theoretically, we are able to show that, un-
der some regularity conditions, IACV enjoys guaranteed
CV approximation along the whole trajectory of the algo-
rithm, and moreover, at convergence, IACV recovers the NS
method (3).

1.1. Additional Related Literature

In addition to the NS and IJ methods, described earlier,
many other works in the literature also offer methods and
theories for the problem of approximating leave-one-out
CV. The closest to ours is the work by Koh & Liang (2017);
Ghosh et al. (2020), which also considers the problem of
approximating CV with an inexact θ̂, but with results of a
very different flavor—this line of work assumes that θ̂(t)

is already an accurate estimate of θ̂ (i.e., t is large and the
iterative algorithm is near convergence), and bounds the
error in approximating the leave-one-out models θ̂−i as a
function of this convergence error ∥θ̂(t) − θ̂∥2. In contrast,
our work instead estimates the models θ̂

(t)
−i (i.e., at each

time t rather than at convergence), and does not assume that
∥θ̂(t) − θ̂∥2 is small.

Another recent line of work studies the problem of efficient

2

Iterative Approximate Cross-Validation

data deletion in a trained model under the ERM framework,
where the aim is to provide an estimator of θ that is approxi-
mately independent of data point i, for the sake of the ith
individual’s privacy. These problems are often referred to
as “data deletion”, “machine unlearning”, or “decremental
learning” in the literature (Tsai et al., 2014; Cao & Yang,
2015; Bourtoule et al., 2021; Neel et al., 2021). Like our
work, these methods also aim to approximate the leave-one-
out model efficiently given the trained full model, but addi-
tionally require that the approximated model is “statistically
indistinguishable” from a model that would have resulted
from retraining without the ith individual’s data (Izzo et al.,
2021; Guo et al., 2020; Ginart et al., 2019). These works
generally need to add noise in the approximation procedure
in order to ensure this constraint is satisfied.

2. Iterative Approximate CV
In this section, we present our method for approximating
leave-one-out CV in the setting of iterative optimization,
where the algorithm may not be run to convergence. We
find that even when θ̂ can not be exactly computed, we can
still approximate the leave-one-out iterates θ̂(t)−i accurately
by leveraging the structure of the iterative update. In our
theoretical results below, we will see that our estimates
have guaranteed accuracy (under mild conditions) along all
iterations t ≥ 1 of the algorithm, i.e., even at iterations
when the algorithm is far from convergence.

2.1. Framework

The iterative procedures that we will study in this paper—
gradient descent, stochastic gradient descent, and proximal
gradient descent—can all be expressed within the following
general framework. Suppose our objective function can be
written in the form

F (Z; θ) = g(Z; θ) + h(θ)

where g(Z; θ) is twice-differentiable in θ while h(θ) may
be nondifferentiable. We consider solving the problem (1)
iteratively as follows: for each step t ≥ 1, we take a gradient
step on g (possibly after subsampling the data points), and a
proximal step on h. Specifically, the iterations are given by

θ̂(t) = argmin
θ

{
1

2αt
∥θ − θ′∥22 + h(θ)

}
where θ′ = θ̂(t−1) − αt∇θg(ZSt

; θ̂(t−1)), (5)

where St ⊆ [n] is a subset of indices, ZSt
:= {Zi : i ∈ St}

is the corresponding subset of the data, and αt > 0 is the
learning rate.

In the setting where the objective function is twice-
differentiable, we can take g(Z; θ) = F (Z; θ) and h ≡ 0.

For example, in the regularized ERM setting, if the loss func-
tion ℓ and the penalty function π(θ) are twice-differentiable,
we can simply take g(Z; θ) =

∑n
i=1 ℓ(Zi; θ) + λπ(θ).

Then (5) yields gradient descent if we choose the full dataset
St = [n] at each iteration,

GD : θ̂(t) = θ̂(t−1) − αt∇θF (Z; θ̂(t−1)), (6)

or stochastic gradient descent if at each iteration we sample
a random batch St ⊆ [n],

SGD : θ̂(t) = θ̂(t−1) − αt∇θF (ZSt
; θ̂(t−1)). (7)

In other settings, we may have a nondifferentiable term
h(θ), which has an inexpensive proximal map (i.e., the
solution to (5) can be computed efficiently for each itera-
tion). For instance, in regularized ERM with a nonsmooth
penalty function π such as the ℓ1 norm, we might take
g(Z; θ) =

∑n
i=1 ℓ(Zi; θ) and h(θ) = λπ(θ). Then the

general iterative scheme (5), run again with the full dataset
St = [n] at each iteration, reduces to proximal gradient
descent,

ProxGD : θ̂(t) = argmin
θ

{ 1

2αt
∥θ − θ′∥22 + h(θ)

}
where θ′ = θ̂(t−1) − αt∇θg(Z; θ̂(t−1)). (8)

2.2. Estimation Procedure: General Case

We will now provide an algorithm for Iterative Approximate
CV (IACV) for general iterative procedures of the form (5).
After deriving the general formulation, we will then show
how it specializes to each of the three settings, GD, SGD,
and ProxGD.

The targets θ̂(t)−i for i ∈ [n] are obtained by running the same
iterative solver as in (5) except with i-th data point being
left out: for each t ≥ 1,

θ̂
(t)
−i = argmin

θ

{
1

2αt
∥θ − θ′∥22 + h(θ)

}
where θ′ = θ̂

(t−1)
−i − αt∇θg(ZSt\{i}; θ̂

(t−1)
−i), (9)

In many settings, running the iterative algorithm for each
i ∈ [n] is computationally too expensive, since at each
iteration t, it requires computing gradients for g at n dif-
ferent parameter vectors {θ̂(t−1)

−i }ni=1. Thus, we aim to find
computationally inexpensive surrogates for these gradients.

We now define our procedure, which produces approxima-
tions θ̃(t)−i ≈ θ̂

(t)
−i , at each iteration t ≥ 1 and for each i ∈ [n].

At iteration t, if we are not running the exact leave-one-out
procedure, then computing θ′ in (9) above involves two
unknowns: the previous iterate, θ̂(t−1)

−i , which we simply

approximate with our previous iteration’s estimate θ̃
(t−1)
−i ,

3

Iterative Approximate Cross-Validation

and its gradient, ∇θg(ZSt\{i}; θ̂
(t−1)
−i), which we now ad-

dress. If θ 7→ g(·; θ) is twice-differentiable, a natural idea is
to approximate ∇θg(ZSt\i; θ̂

(t−1)
−i) by its Taylor expansion

at θ̂(t−1). The reason we choose θ̂(t−1) as the base point is
that it can be shared across the n problems of approximat-
ing ∇θg(ZSt\i; θ̂

(t−1)
−i) for each i ∈ [n]. We thus take the

approximation

∇θg(ZSt\i; θ̂
(t−1)
−i) ≈ ∇θg(ZSt\i; θ̂

(t−1))

+∇2
θg(ZSt\i; θ̂

(t−1))[θ̂
(t−1)
−i − θ̂(t−1)], (10)

and then again plug in θ̃
(t−1)
−i for the unknown θ̂

(t−1)
−i in the

last term.

Thus, for each i ∈ [n] each t ≥ 1, the IACV approximation
is given by

IACV: θ̃
(t)
−i = argmin

θ

{
1

2αt
∥θ − θ′∥22 + h(θ)

}
where θ′ = θ̃

(t−1)
−i − αt

(
∇θg(ZSt\i; θ̂

(t−1))

+∇2
θg(ZSt\i; θ̂

(t−1))[θ̃
(t−1)
−i − θ̂(t−1)]

)
. (11)

2.3. Estimation Procedure for GD, SGD, and ProxGD

Next, we give the details for implementing this general
procedure in the specific settings of GD, SGD, and ProxGD.

Gradient descent (GD) For GD, we have h(θ) ≡ 0 and
St ≡ [n], so the steps of IACV reduce to

θ̃
(t)
−i = θ̃

(t−1)
−i − αt

(
∇θF (Z−i; θ̂

(t−1))

+∇2
θF (Z−i; θ̂

(t−1))[θ̃
(t−1)
−i − θ̂(t−1)]

)
. (12)

Stochastic gradient descent (SGD) For SGD, we again
have h(θ) ≡ 0, but the sets St consist of small batches of
data. The steps of IACV reduce to

θ̃
(t)
−i = θ̃

(t−1)
−i − αt

(
∇θF (ZSt\i; θ̂

(t−1))

+∇2
θF (ZSt\i; θ̂

(t−1))[θ̃
(t−1)
−i − θ̂(t−1)]

)
. (13)

Proximal gradient descent (ProxGD) For ProxGD, we
again take St ≡ [n], but the function h(θ) is nontrivial (e.g.,
a nonsmooth regularizer). The steps of IACV reduce to

θ̃
(t)
−i = argmin

θ

{
1

2αt
∥θ − θ′∥22 + h(θ)

}
where θ′ = θ̃

(t−1)
−i − αt

(
∇θg(Z−i; θ̂

(t−1))

+∇2
θg(Z−i; θ̂

(t−1))[θ̃
(t−1)
−i − θ̂(t−1)]

)
. (14)

Computational Cost
IACV Exact LOO CV

GD n(Ap +Bp) + np2 n2Ap + np
SGD K(Ap +Bp) + np2 nKAp + np

ProxGD n(Ap +Bp +Dp) + np2 n2Ap + nDp + np

Table 1. The order of per-iteration computation complexity of iter-
ative approximate CV (IACV) as compared to exact leave-one-out
(LOO) CV. See Section 3 for details.

3. Computation and Memory Complexity
In this section, we compare the computation and memory
complexity of the proposed leave-one-out CV approxima-
tion method (11) with the exact leave-one-out CV (9). Note
that running IACV (11) assumes that we have access to the
iterates θ̂(t), obtained by running the iterative procedure (5)
on the full dataset. In addition, at each time t, we also need
to calculate ∇θg(ZSt\i; θ̂

(t−1)) and ∇2
θg(ZSt\i; θ̂

(t−1)) in
order to compute the estimator. In other words, at each
time t we need to compute the gradient and Hessian of g
for datasets ZSt\i that vary with i but at a parameter vector
θ̂(t−1) that is constant over i—in general, this can be done
efficiently due to the separability of the data in the ERM
problem. This is different from the computational cost of
exact leave-one-out CV, which instead requires computing
∇θg(ZSt\i; θ̂

(t−1)
−i) for each i at each iteration t, i.e., the

gradient of g needs to be computed at n different parameter
vectors {θ̂(t−1)

−i }ni=1.

For simplicity, let us consider the case where g(Z; θ) =∑n
i=1 ℓ(Zi; θ). We denote the computational cost of one

call to ∇θℓ(Zi, ·) as Ap, and one call to ∇2
θℓ(Zi, ·) as

Bp, which depend on the dimension p of the parameter
θ. We also assume that the cost of computing ∇θg(Z; ·) =∑n

i=1 ∇θℓ(Zi; ·) is equal to nAp, and similarly nBp for
∇2

θg(Z; ·); this assumption is mild since, in most typical
settings, the gradient or Hessian of the loss can only be com-
puted via evaluation on each data point one-by-one. Finally,
let Dp denotes the computational cost of one call to the
proximal operator θ′ 7→ argminθ{ 1

2αt
∥θ − θ′∥22 + h(θ)}.

In Table 1, we provide the per-iteration computation com-
plexity of computing {θ̃(t)−i}ni=1 for a single iteration t in
our proposed method IACV, as compared to computing
{θ̂(t)−i}ni=1 in the exact leave-one-out CV, for the three itera-
tive algorithms GD, SGD (with batch size K), and ProxGD.
Details for these calculations are given in Appendix B.

For example, for GD, we can see that IACV is more efficient
as long as Bp + p2 ≪ nAp. Since typically, Ap and Bp are
of order p and p2, respectively, we can see that condition
Bp + p2 ≪ nAp is typically satisfied when n ≫ p (which
is exactly the regime considered in the literature for analyz-
ing the existing CV approximation methods (Beirami et al.,

4

Iterative Approximate Cross-Validation

2017; Wilson et al., 2020)), and thus IACV is computation-
ally more efficient in this regime.

One limitation of IACV is an increased memory cost—the
proposed method needs to store the data, gradient, and Hes-
sian, which costs O(np+ p2) space, while the exact leave-
one-out CV costs O(np) as it only needs to store the data
and gradient. In the n ≫ p regime, however, the memory
cost of the two methods is on the same order.

4. Accuracy Guarantees for IACV
In this section, we provide theoretical guarantees for IACV
in the GD and SGD settings. (Guarantees for ProxGD are
given in Appendix A.) For both GD and SGD, we will con-
sider the objective function F (Z; θ) =

∑n
i=1 ℓ(Zi; θ) +

λπ(θ), where π is a twice-differentiable regularizer, as be-
fore.

We will study two notions of accuracy: the approximation
error,

Err(t)approx =
1

n

n∑
i=1

∥θ̃(t)−i − θ̂
(t)
−i∥2, (15)

measuring our accuracy in approximating the exact leave-
one-out estimators θ̂(t)−i , and the CV error,

Err(t)CV = |CV({θ̃(t)−i}
n
i=1)− CV({θ̂(t)−i}

n
i=1)|, (16)

measuring our accuracy in estimating the leave-one-out CV
loss for {θ̂(t)−i}ni=1. (This latter notion of error is the quantity
that was plotted in Figure 1.)

4.1. Guarantees for GD

We first state our assumptions for the GD setting.

Assumption 4.1. For all t ≥ 1,
mini∈[n] λmin(∇2

θF (Z−i; θ̂
(t−1))) ≥ nλ0 and

maxi∈[n] λmax(∇2
θF (Z−i; θ̂

(t−1))) ≤ nλ1 for some
positive constants λ0, λ1 > 0.

This first assumption says the Hessian of F is well-
conditioned along all iterates. Note that in the literature
for analyzing the NS (3) or IJ (4) estimators, the Hessian is
often assumed to be well-conditioned at θ̂, the minimizer
of (1) (Beirami et al., 2017; Wilson et al., 2020; Giordano
et al., 2019), which is sufficient since θ̃NS

−i and θ̃IJ−i in (3)
and (4) are based on θ̂ only. Here we require a stronger
assumption because our estimator depends on θ̂(t) for all t.

The second assumption is about the gradient.

Assumption 4.2. For all t ≥ 1, i ∈ [n], we have
∥∇θℓ(Zi; θ̂

(t−1))∥2 ≤ ηi for some ηi > 0.

The final assumption requires the Hessian to be Lipschitz.

Assumption 4.3. For all i ∈ [n], ∇2
θF (Z−i; ·) is nγ-

Lipschitz, i.e., for any θ1, θ2 ∈ Rp,

∥∇2
θF (Z−i; θ1)−∇2

θF (Z−i; θ1)∥ ≤ nγ∥θ1 − θ2∥2.

We are now ready to state our first main result about IACV.
Theorem 4.4 (Approximation Error of IACV for GD). Sup-
pose θ̂(0) = θ̂

(0)
−i = θ̃

(0)
−i for all i ∈ [n], αt ≤ 1/(nλ1) for

t ≥ 1, and Assumptions 4.1–4.3 are satisfied with γ < 2λ0

and n ≥ 4∥η∥∞
2λ0−γ . Then for all t ≥ 1 and i ∈ [n], we

have ∥θ̂(t) − θ̂
(t)
−i∥2 ≤ 2ηi

(2λ0−γ)n and ∥θ̃(t)−i − θ̂
(t)
−i∥2 ≤

4γη2
i

λ0(2λ0−γ)2n2 .

In Theorem 4.4, we give upper bounds that are independent
of t, for clarity of the result; tighter, iteration-dependent
upper bounds are discussed in Appendix D. As an immediate
consequence of the last bound, the approximation error (15)
is bounded as

Err(t)approx ≤ 4γ∥η∥2∞
λ0(2λ0 − γ)2n2

for all t ≥ 1.

In Theorem 4.4, we see that the error bound for ∥θ̃(t)−i−θ̂
(t)
−i∥2

is of a smaller order than the one for ∥θ̂(t) − θ̂
(t)
−i∥2. This

is exactly what we need—the goal of leave-one-out CV is
to determine how the leave-one-out estimators θ̂(t)−i behave
differently from the estimator θ̂(t) computed on the full
dataset, and thus the approximations θ̃(t)−i are useful only if
they can improve over the “baseline” accuracy of θ̂(t) itself.

In addition, it has been shown in Beirami et al. (2017);
Wilson et al. (2020) that the NS (3) and IJ (4) estimators
achieve an approximation error of order 1/n2, which is the
same as our result above. However, NS and IJ only achieve
this error when run with the exact value of θ̂ (as we have
seen in Figure 1, this assumption is crucial for empirical ac-
curacy), while IACV achieves the O(1/n2) approximation
error bound along all iterations of the algorithm rather than
only at convergence.

Based on the approximation error bounds established in
Theorem 4.4, we are also able to provide guarantees for
IACV’s ability to approximate the leave-one-out CV loss
CV({θ̂(t)−i}ni=1), with error on the order of 1/n2. We will
need one additional assumption on the gradient of the loss,
which can be viewed as a stronger version of Assump-
tion 4.2:
Assumption 4.5. Suppose for any i ∈ [n] and all t ≥ 1,
there exists η′i > 0 such that supa∈[0,1] ∥∇ℓ(Zi; aθ̃

(t)
−i+(1−

a)θ̂
(t)
−i)∥2 ≤ η′i.

For example, this assumption will be satisfied if ℓ(Zi, ·) is
η′i-Lipschitz for each i.

5

Iterative Approximate Cross-Validation

Theorem 4.6 (CV Error of IACV for GD). If the assump-
tions in Theorem 4.4 are satisfied, and Assumption 4.5 holds,
then for all t ≥ 1, Err(t)CV ≤ 1

n

∑n
i=1

4γη′
iη

2
i

λ0(2λ0−γ)2n2 .

Theorem 4.6 suggests IACV might be useful when we per-
form early stopping based on CV loss as it has guaranteed
accurate estimates of CV({θ̂(t)−i}ni=1) along the entire trajec-
tory, including times t that are well before convergence.

When are these assumptions satisfied? Next, we pro-
vide an example of a setting where Assumptions 4.1–4.5
are likely satisfied. Suppose the data is generated from
the generalized linear model with a canonic link function
(McCullagh & Nelder, 1989). Specifically, suppose Yi has
density exp(ηiYi − ϕ(ηi))h(Yi), where ϕ : R 7→ R is a
given function and ηi is linked with Xi via ηi = X⊤

i θ∗.
Then given i.i.d. data Z = {(Xi, Yi)}ni=1, the gradient,
and the Hessian of the negative log-likelihood function with
ridge regularizer are given as

∇θF (Z; θ) = −
n∑

i=1

(
Yi − ϕ′(θ⊤Xi)

)
Xi + λθ,

∇2
θF (Z; θ) =

n∑
i=1

ϕ′′(θ⊤Xi)XiX
⊤
i + λIp.

Since E(Yi) = ϕ′(θ∗⊤Xi) and Var(Yi) = ϕ′′(θ∗⊤Xi) > 0,
we expect the first and second derivatives of the objective
will be well-controlled when θ is close to θ∗, the Xis are
bounded, and n ≥ p. For many non-convex problems of
interest, if we could have a warm-start initialization, then the
problem at local typically satisfies certain restricted strong
convexity and smoothness properties, and the Hessians and
gradients along the iterates are often well-controlled as well
(Loh & Wainwright, 2013; Chi et al., 2019).

4.2. Guarantees for SGD

In the SGD setting, we assume the batches {St}t≥1 are
drawn i.i.d. such that each data point is included in St with
probability K/n. To establish the approximation guarantee
for IACV in this setting, we need the following three as-
sumptions, which are stochastic analogues of Assumptions
4.1–4.3.

Assumption 4.7. Suppose F (·; θ) is twice differentiable in
θ and there exists λ0, λ1 > 0 such that for all t ≥ 1, i ∈ [n],
and αt ≤ 1

Kλ1
, we have

E(∥[Ip − αt∇2
θF (ZSt\{i}; θ̂

(t−1))][θ̂(t−1) − θ̂
(t−1)
−i]∥2)

≤(1− αtKλ0)E
[
∥θ̂(t−1) − θ̂

(t−1)
−i ∥2

]
,

where the expectation is taken over randomly drawn batches
S1, . . . , St.

For example, this assumption would be satisfied under the
stronger assumption that for all a, θ ∈ Rp, all i ∈ [n], and
for a randomly drawn batch S,

ES(∥(Ip − αt∇2
θF (ZS\{i}; θ))v∥2) ≤ (1− αtKλ0)∥a∥2.

Essentially, we can interpret Kλ0 and Kλ1 as bounding the
smallest and largest eigenvalues of ∇2

θF (ZS\{i}; θ).

Our next assumptions bound the gradient and the Lipschitz
constant of the Hessian.

Assumption 4.8. For all t ≥ 1 and i ∈ [n], we have
ES1,...,St−1

∥∇θℓ(Zi; θ̂
(t−1))∥2 ≤ ηi for some ηi > 0.

Assumption 4.9. There exists γ > 0 such that for any
i ∈ [n] and t ≥ 1,

E sup
θ′

∥∥∥(∇2
θF (ZSt\{i}; θ

′)−∇2
θF (ZSt\{i}; θ̂

(t−1)))

[θ̂
(t−1)
−i − θ̂(t−1)]

∥∥∥
2

≤ γKE∥θ̂(t−1)
−i − θ̂(t−1)∥22,

where the supremum is taken over θ′ = aθ̂
(t−1)
−i + (1 −

a)θ̂(t−1) for any a ∈ [0, 1].

For example, this assumption would be satisfied if given any
v, θ1, θ2 ∈ Rp,

ES∥(∇2
θF (ZS\{i}; θ1)−∇2

θF (ZS\{i}; θ2)v∥2
≤γK∥v∥2∥θ1 − θ2∥2.

In addition, we need an extra assumption as follows.

Assumption 4.10. There exists β ≥ 1 such that for
all t ≥ 1, we have ES1,...,St−1

∥θ̂(t−1)
−i − θ̂(t−1)∥22 ≤

β n
K

(
ES1,...,St−1

∥θ̂(t−1)
−i − θ̂(t−1)∥2

)2

.

Assumption 4.10 can be viewed as a reverse Jensen’s in-
equality, but there is an inflation factor β n

K on the right-hand
side. The order n

K of this inflation factor is expected. A
simple way to reveal this is to examine the inequality when
t = 2. If θ̂(0)−i = θ̂(0), then θ̂

(1)
−i − θ̂(1) = 0 with probability

(1− K
n) and θ̂

(1)
−i − θ̂(1) = α1∇θℓ(Zi; θ̂

(0)) with probabil-
ity K

n (depending on whether data point i is excluded or
included in the first batch S1 at time t = 1). Thus, we have
ES1

∥θ̂(1)−i − θ̂(1)∥22 = n
K (ES1

∥θ̂(1)−i − θ̂(1)∥)2.

Now we are ready to present a guarantee on the approxima-
tion error of IACV in the SGD setting.

Theorem 4.11 (Approximation Error of IACV for SGD).
Suppose θ̂(0) = θ̂

(0)
−i = θ̃

(0)
−i for all i ∈ [n], αt ≤ 1/(Kλ0)

for all t ≥ 1 and Assumptions 4.7–4.10 are satisfied with
γβ < 2λ0 and K ≥ 4∥η∥∞

2λ0−γβ . Then for all t ≥ 1, i ∈ [n], we

6

Iterative Approximate Cross-Validation

have E∥θ̂(t) − θ̂
(t)
−i∥2 ≤ 2ηi

(2λ0−γβ)n and E∥θ̃(t)−i − θ̂
(t)
−i∥2 ≤

4γβη2
i

λ0(2λ0−γβ)2nK , where the expectation is taken over the
randomly drawn batches S1, . . . , St.

By Theorem 4.11, the expected approximation error in the
SGD case is bounded as

E
(

Err(t)approx

)
≤ 4γβ∥η∥2∞

λ0(2λ0 − γ)2n2
for all t ≥ 1.

Interestingly, we find that the “baseline” approximation
error E∥θ̂(t) − θ̂

(t)
−i∥2 does not depend on K and is at the

same order 1
n as the one in Theorem 4.4. In contrast, the

IACV error E∥θ̃(t)−i − θ̂
(t)
−i∥2 scales at the order of 1

nK , as
compared to order 1

n2 in the previous setting. This factor
comes from the inflation factor n

K in Assumption 4.10; as
discussed immediately below this assumption, the factor
n
K cannot be removed if we expect the assumption to hold
in practice for all t ≥ 1, but a remaining open question is
whether the factor n

K can be removed if we only require it to
hold for all t ≥ T0 for some large T0. If this is the case, then
(for sufficiently large t) the IACV error in Theorem 4.11
will scale as 1

n2 rather than 1
nK .

Finally, we provide a CV error guarantee under the SGD
setting, with one additional assumption:

Assumption 4.12. Suppose for any i ∈ [n] and all t ≥ 1,
there exists η′i > 0 such that

E

{
sup

a∈[0,1]

|∇θℓ(Zi; aθ̃
(t)
−i + (1− a)θ̂

(t)
−i)

⊤(θ̃
(t)
−i − θ̂

(t)
−i)|

}
≤η′iE∥θ̃

(t)
−i − θ̂

(t)
−i∥2.

For example, this assumption will be satisfied if ℓ(Zi, ·) is
η′i-Lipschitz for each i.

Theorem 4.13 (CV Error of IACV for SGD). If the assump-
tions in Theorem 4.11 and Assumption 4.12 are satisfied,
then for all t ≥ 1:

E
(

Err(t)CV

)
≤ 1

n

n∑
i=1

4γβη′iη
2
i

λ0(2λ0 − γβ)2nK
,

where the expectation is taken over the randomly drawn
batches S1, . . . , St.

As before, this result is analogous to Theorem 4.6 for the
GD setting, but with rate 1/nK in place of 1/n2.

5. Limiting Behavior of IACV
As we have seen in Section 4, IACV achieves accurate ap-
proximation along all iterations of the algorithm under some

regularity conditions. Thus, in the setting when θ̂(t) in-
deed converges to θ̂, IACV also has the same approximation
properties in the limit, and its approximation error bound is
comparable to the guarantee of the one-step Newton (NS)
estimator in (3) as we have mentioned in Section 4.1. In this
section, we show this is not a coincidence—in fact, there is
a close connection of the proposed estimator θ̃(t)−i to the NS
estimator when t → ∞ and the algorithm converges to θ̂.

Theorem 5.1. Suppose θ̂(t) converges to θ̂, Assumption 4.1
is satisfied along all iterations, αt = α < 1/(nλ1) for all
t ≥ 1, and ∇2

θF (Z−i; θ), ∇θF (Z−i; θ) are continuous in
θ for all i ∈ [n]. Then θ̃

(t)
−i defined in (12) converges to θ̃NS

−i

in (3), as t → ∞.

Moreover, in Theorem A.3, we will show similar guarantees
continue to hold in the ProxGD setting. (In the SGD setting,
however, the techniques for proving Theorem 5.1 fail—we
will give an intuition for why this is the case, in Appendix
E.2.)

In view of the results in Theorem 5.1, we can regard IACV
as an extension of θ̃NS

−i in (3) to iterative solvers with prov-
able per-iteration guarantees. This provides a safe and effi-
cient way to approximate CV in practice where it is often
agnostic whether the algorithm will converge to the solution
of ERM or not.

6. Simulation Studies
In this section, we conduct numerical studies to investigate
the empirical performance of the proposed IACV method
and to verify our theoretical findings for GD, SGD, and
ProxGD.1 The data is generated from a logistic regression
model, with Zi = (Xi, Yi) ∈ Rp × {0, 1}, with dimension
p = 20 and with Xi drawn with i.i.d. N(0, 1) entries while

Yi ∼ Bernoulli(exp(X⊤
i θ∗)/(1 + exp(X⊤

i θ∗)))

for true parameter vector θ∗ which has 5 randomly chosen
nonzero entries drawn as N(0, 1), and all other entries zero.
Our objective function is given by regularized negative log-
likelihood, F (Z; θ) =

∑n
i=1 ℓ(Zi; θ) + λπ(θ), where

ℓ(Zi; θ) = −Yi ·X⊤
i θ + log(1 + exp(X⊤

i θ)).

For GD and SGD, we use ridge regularization, with π(θ) =
∥θ∥22 and penalty parameter λ = 10−6 · n. For ProxGD
we instead use the logistic Lasso, with π(θ) = ∥θ∥1 and
λ = 10−6 ·n. We initialize the algorithm at the origin. Each
simulation study is repeated for 100 independent trials.

Our proposed method is given by the IACV estimator θ̃(t)−i ,
defined in (12) for GD and in (13) for SGD. For comparison,

1Code to reproduce all experiments is available at https:
//github.com/yuetianluo/IACV.

7

https://github.com/yuetianluo/IACV
https://github.com/yuetianluo/IACV

Iterative Approximate Cross-Validation

we also implement the one-step Newton (NS) and infinites-
imal jackknife (IJ) estimators along the optimization path,
i.e., we use the tth iteration θ̂(t) in place of the true mini-
mizer θ̂ in the definition of the NS (3) or IJ (4) estimators,
leading to the approximate NS estimator

θ̃
NS(t)
−i = θ̂(t) −

(
∇2

θF (Z−i; θ̂
(t))

)−1

∇θF (Z−i; θ̂
(t))

and similarly the approximate IJ estimator

θ̃
IJ(t)
−i = θ̂(t) −

(
∇2

θF (Z; θ̂(t))
)−1

∇θF (Z−i; θ̂
(t)).

Finally, we also compare to a “baseline” estimator where
we simply approximate the leave-one-out iterate θ̂

(t)
−i with

the full-data iterate θ̂(t): θ̂
baseline(t)
−i = θ̂(t). Of course,

this baseline is not useful in practice (since data point i
has not actually been removed from the estimator), and
thus any proposed method is only meaningful if it can
perform substantially better than this baseline. We mea-
sure the accuracy of the four methods (baseline, NS, IJ,
and IACV) in terms of the averaged approximation er-
ror Err(t)approx defined in (15), and the relative CV error,

RelErr(t)CV = Err(t)CV/CV({θ̂(t)−i}ni=1), where Err(t)CV is defined
in (16).

6.1. Gradient Descent (GD)

For the gradient descent simulation, we consider sample
sizes n = 250 and n = 1000, and αt = 0.5/n. In the top
panels of Figure 2, we can see that along the iterations of the
algorithm, the approximation error of IACV is always better
than NS and IJ before the convergence of the algorithm. As
a result of that, IACV also achieves better CV error as we
illustrate in the middle panels of Figure 2. In fact, during
early iterations, the error of both NS and IJ is higher than
the (noninformative) baseline estimator θ̂

baseline(t)
−i , while

IACV’s error is substantially lower, and also shows a smaller
variance in estimation as it has narrower shaded areas. When
the algorithm converges, we find that the performance of
IACV and the NS estimator are almost the same, which
matches the theoretical prediction in Theorem 5.1 (where
we see that, under mild assumptions, IACV will converge
to the NS estimator, i.e., the black line and the red line will
meet in the limit), while the IJ method shows higher error
even at convergence.

In addition, we observe that as sample size n increases
from 250 to 1000, the limiting approximation error of IACV
decreases from 1.5 × 10−3 to 6.8 × 10−5. This roughly
matches what we have shown in Theorem 4.4 that the ap-
proximation error decreases quadratically with respect to
the sample size.

Finally, in the bottom panels of Figure 2, we report the
runtime of IACV as compared to the exact leave-one-out

1e−1

1e−3

1e−5

102 104

E
rr

ap
pr

ox

n = 250

1e−1

1e−3

1e−5

102 104

n = 1000

1e−1

1e−3

1e−5

1e−7
1 102 104

Iter Num (log scale)

R
el

E
rr

C
V

1e−1

1e−3

1e−5

1e−7

1 102 104

Iter Num (log scale)

Method
Baseline
NS
IJ
IACV

 30

 60

 90

3 × 103 6 × 103

Iter Num
R

un
tim

e
(s

)
0

400

800

1200

3 × 103 6 × 103

Iter Num

Method
Exact CV
IACV

Figure 2. Comparison of the baseline, NS, IJ, and IACV methods
in gradient descent for logistic regression with ridge regularizer.
Top: approximation error comparison; middle: relative CV error
comparison; bottom: runtime comparison of exact leave-one-out
CV and IACV. Solid lines represent the median value over 100
experiments and shaded areas denote the region between lower
and upper quartiles.

CV. We can see that IACV is much faster than the exact
leave-one-out CV method; in particular when n = 1000,
IACV shows approximately 6-7 times speed-up. A larger
scale simulation for GD is provided in Appendix C.

6.2. Stochastic Gradient Descent (SGD)

For the stochastic gradient descent simulation, we take sam-
ple size n = 1000, and test batch size K = 100 and
K = 400. We choose αt based on a common strategy
called “epoch doubling” in the literature, where we run
T0 = 1000 steps with step size α = 0.5/K, then run 2T0

steps with step size α/2, and so on.

We plot the accuracy of the different methods in Figure
3, in the top (approximation error) and middle (CV error)
panels. We can see that IACV has a clear advantage over
the other methods. In contrast to the simulation results in
Figure 2 for GD, here the red line (for NS) does not reach
the black line (for IACV) even after T = 105 iterations, in
terms of approximation error. This may be due to the slow
convergence of SGD; nonetheless, it is still unclear whether
the NS estimator θ̃NS(t)

−i and our estimator θ̃(t)−i will converge
to the same limit or not, since we do not know whether a

8

Iterative Approximate Cross-Validation

1e−1

1e−3

1e−5

10 103 105

E
rr

ap
pr

ox

K = 100

1e−1

1e−3

1e−5

10 103 105

K = 400

1e−1

1e−3

1e−5

1e−7
10 103 105

Iter Num (log scale)

R
el

E
rr

C
V

1e−1

1e−3

1e−5

1e−7

10 103 105

Iter Num (log scale)

Method
Baseline
NS
IJ
IACV

0

5000

10000

15000

4 × 104 8 × 104

Iter Num

R
un

tim
e

(s
)

0

5000

10000

15000

20000

4 × 104 8 × 104

Iter Num

Method
Exact CV
IACV

Figure 3. Comparison of the baseline, NS, IJ, and IACV methods
in stochastic gradient descent for logistic regression with ridge
regularizer; details of the panels are the same as in Figure 2. Note
that in the top panels, the results for NS and IJ (red and blue) are
nearly perfectly overlapping and thus difficult to distinguish.

result analogous to Theorem 5.1 holds in the setting of SGD.
As for GD, we see that IACV offers error far lower than
both NS and IJ during early iterations, when NS and IJ show
error higher even than the baseline estimator.

Finally, we show the runtime of IACV with exact leave-one-
out CV in the bottom panel in Figure 3. We can see IACV
still has clear computational advantages in this setting.

6.3. Proximal Gradient Descent (ProxGD)

Finally, for the proximal gradient descent simulation, we
take sample sizes n = 250 and n = 1000, and αt = 0.5/n,
as for the GD simulation. The regularizer is now π(θ) =
∥θ∥1, a nonsmooth function (see Appendix A for the defini-
tion of the NS and IJ methods in this nonsmooth setting).

The results for this setting are qualitatively very similar
to the GD setting; again, we see that IACV shows good
accuracy in terms of both approximation error and CV error
even at early iterations, while NS and IJ show error higher
than the baseline during early iterations. Finally, when the
algorithm converges, the performance of our estimator is
similar to the NS estimator as predicted in Theorem A.3
(which is the analogue of Theorem 5.1, for the ProxGD
setting).

1e−1

1e−4

102 104

E
rr

ap
pr

ox

n = 250

1e−1

1e−4

102 104

n = 1000

1e−1

1e−4

1e−7
1 102 104

Iter Num (log scale)

R
el

E
rr

C
V

1e−1

1e−4

1e−7

1 102 104

Iter Num (log scale)

Method
Baseline
NS
IJ
IACV

 30

 60

 90

3 × 103 6 × 103

Iter Num
R

un
tim

e
(s

)
0

400

800

1200

3 × 103 6 × 103

Iter Num

Method
Exact CV
IACV

Figure 4. Comparison of the baseline, NS, IJ, and IACV methods
in proximal gradient descent for logistic regression with ℓ1 regu-
larizer (the logistic Lasso); details of the panels are the same as in
Figure 2.

7. Conclusion and Discussions
In this paper, we provide a new method, iterative approx-
imate cross-validation (IACV), to efficiently approximate
the computationally expensive leave-one-out CV under the
ERM framework when the problem is solved by common
iterative algorithms. This work suggests several interesting
directions for further exploration. For example, Theorem 5.1
establishes that, for gradient descent, the IACV and NS esti-
mators coincide at convergence; we do not yet know whether
an analogous result holds for SGD. We can also consider
the performance of IACV in a high-dimensional setting. For
instance, in regression with p > n, the NS estimator defined
in (3) fails due to high dimensionality, but Stephenson &
Broderick (2020) propose running ℓ1-regularized regression
and then running the NS estimator on the selected active set
of θ̂. It would be interesting to see whether we can adapt
the IACV method to that setting and provide theoretical
guarantees for the sparse high-dimensional regime.

Acknowledgements
Z.R. and R.F.B were supported by the Office of Naval Re-
search via grant N00014-20-1-2337. R.F.B. was additionally
supported by the National Science Foundation via grants
DMS-1654076 and DMS-2023109.

9

Iterative Approximate Cross-Validation

References
Allen, D. M. The relationship between variable selection

and data agumentation and a method for prediction. tech-
nometrics, 16(1):125–127, 1974.

Arlot, S. and Celisse, A. A survey of cross-validation pro-
cedures for model selection. Statistics surveys, 4:40–79,
2010.

Beirami, A., Razaviyayn, M., Shahrampour, S., and Tarokh,
V. On optimal generalizability in parametric learning.
Advances in Neural Information Processing Systems, 30,
2017.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot,
N. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 141–159. IEEE, 2021.

Cao, Y. and Yang, J. Towards making systems forget with
machine unlearning. In 2015 IEEE Symposium on Secu-
rity and Privacy, pp. 463–480. IEEE, 2015.

Chi, Y., Lu, Y. M., and Chen, Y. Nonconvex optimization
meets low-rank matrix factorization: An overview. IEEE
Transactions on Signal Processing, 67(20):5239–5269,
2019.

Efron, B. The jackknife, the bootstrap and other resampling
plans. SIAM, 1982.

Geisser, S. The predictive sample reuse method with appli-
cations. Journal of the American statistical Association,
70(350):320–328, 1975.

Ghosh, S., Stephenson, W., Nguyen, T. D., Deshpande,
S., and Broderick, T. Approximate cross-validation for
structured models. Advances in Neural Information Pro-
cessing Systems, 33:8741–8752, 2020.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y. Making ai
forget you: Data deletion in machine learning. Advances
in neural information processing systems, 32, 2019.

Giordano, R., Stephenson, W., Liu, R., Jordan, M., and
Broderick, T. A swiss army infinitesimal jackknife. In The
22nd International Conference on Artificial Intelligence
and Statistics, pp. 1139–1147. PMLR, 2019.

Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten,
L. Certified data removal from machine learning models.
In Proceedings of the 37th International Conference on
Machine Learning, pp. 3832–3842, 2020.

Izzo, Z., Smart, M. A., Chaudhuri, K., and Zou, J. Approx-
imate data deletion from machine learning models. In
International Conference on Artificial Intelligence and
Statistics, pp. 2008–2016. PMLR, 2021.

Jabbar, H. and Khan, R. Z. Methods to avoid over-fitting
and under-fitting in supervised machine learning (com-
parative study). Computer Science, Communication and
Instrumentation Devices, 70:163–172, 2015.

Jaeckel, L. The infinitesimal jackknife. memorandum. Tech-
nical report, MM 72-1215-11, Bell Lab. Murray Hill, NJ,
1972.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International conference
on machine learning, pp. 1885–1894. PMLR, 2017.

Loh, P.-L. and Wainwright, M. J. Regularized m-estimators
with nonconvexity: Statistical and algorithmic theory for
local optima. Advances in Neural Information Processing
Systems, 26, 2013.

McCullagh, P. and Nelder, J. Generalized linear models,
1989.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. Descent-to-
delete: Gradient-based methods for machine unlearning.
In Algorithmic Learning Theory, pp. 931–962. PMLR,
2021.

Obuchi, T. and Kabashima, Y. Cross validation in lasso and
its acceleration. Journal of Statistical Mechanics: Theory
and Experiment, 2016(5):053304, 2016.

Rad, K. R. and Maleki, A. A scalable estimate of the out-
of-sample prediction error via approximate leave-one-out
cross-validation. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 82(4):965–996, 2020.

Stephenson, W. and Broderick, T. Approximate cross-
validation in high dimensions with guarantees. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 2424–2434. PMLR, 2020.

Stone, M. Cross-validatory choice and assessment of statis-
tical predictions. Journal of the royal statistical society:
Series B (Methodological), 36(2):111–133, 1974.

Tsai, C.-H., Lin, C.-Y., and Lin, C.-J. Incremental and
decremental training for linear classification. In Proceed-
ings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 343–352,
2014.

Wang, S., Zhou, W., Lu, H., Maleki, A., and Mirrokni, V.
Approximate leave-one-out for fast parameter tuning in
high dimensions. In International Conference on Ma-
chine Learning, pp. 5228–5237. PMLR, 2018.

Wilson, A., Kasy, M., and Mackey, L. Approximate cross-
validation: Guarantees for model assessment and selec-
tion. In International Conference on Artificial Intelli-
gence and Statistics, pp. 4530–4540. PMLR, 2020.

10

Iterative Approximate Cross-Validation

Wright, S. J. and Recht, B. Optimization for data analysis.
Cambridge University Press, 2022.

11

Iterative Approximate Cross-Validation

A. Guarantees for IACV in the Proximal GD Setting
We now provide the analogues of Theorems 4.4 and 4.6 in the ProxGD setting, working with the objective function
F (Z; θ) = g(Z; θ) + h(θ), where as before, g(Z; θ) =

∑n
i=1 ℓ(Zi; θ) is the empirical risk and h(θ) = λπ(θ) is the

nonsmooth regularization term.

Theorem A.1. Suppose θ̂(0) = θ̂
(0)
−i = θ̃

(0)
−i for all i ∈ [n], αt ≤ 1/(nλ1) for t ≥ 1, and Assumptions 4.1–4.3 are satisfied

with F (·; θ) replaced by g(·; θ) and with γ < 2λ0 and n ≥ 4∥η∥∞
2λ0−γ . Assume also that h is convex. Then for all t ≥ 1 and

i ∈ [n], we have

∥θ̂(t) − θ̂
(t)
−i∥2 ≤ 2ηi

(2λ0 − γ)n

and

∥θ̃(t)−i − θ̂
(t)
−i∥2 ≤ 4γη2i

λ0(2λ0 − γ)2n2
.

Note that these bounds are identical to the results obtained in Theorem 4.4, and thus as before, we obtain the approximation
error bound

Err(t)approx ≤ 4γ∥η∥2∞
λ0(2λ0 − γ)2n2

for all t ≥ 1.

The proof of Theorem A.1 is provided in Appendix E.1.

Next we bound the CV error for IACV in the ProxGD setting.

Theorem A.2. Suppose the assumptions in Theorem A.1 and Assumption 4.5 are satisfied. Then for all t ≥ 1,

Err(t)CV ≤ 1

n

n∑
i=1

4γη′iη
2
i

λ0(2λ0 − γ)2n2
.

Again, this bound is the same as the one obtained in Theorem 4.6 for GD. The proof of Theorem A.2 is essentially the same
as the proof of Theorem 4.6 and for simplicity, we omit it here.

Next, we provide convergence theory for IACV in the ProxGD setting, to obtain a result analogous to Theorem 5.1 for the
GD case comparing the IACV and NS estimators.

First, we need to define the NS estimator in this setting where F (Z; θ) is nonsmooth. The main idea is to replace the one
Newton step in (3) with one proximal Newton step (Wilson et al., 2020):

θ̃NS
−i = prox

∇2
θg(Z−i;θ̂)

h

(
θ̂ −

(
∇2

θg(Z−i; θ̂)
)−1

∇θg(Z−i; θ̂)

)
, (17)

where given any positive definite matrix H ∈ Rp×p and convex function h : Rp → R, proxHh (x) is defined as follows:

proxHh (x) = arg min
z∈Rp

1

2
(x− z)⊤H(x− z) + h(z). (18)

(We can similarly define the IJ estimator in this setting as

θ̃IJ−i = prox
∇2

θg(Z−i;θ̂)
h

(
θ̂ −

(
∇2

θg(Z; θ̂)
)−1

∇θg(Z−i; θ̂)

)
. (19)

In our simulations in Section 6.3, we simply replace θ̂ with θ̂(t) in equations (17) and (19) to obtain our approximate NS
and IJ iterations.)

Next, we show θ̃
(t)
−i in (14) will converge to θ̃NS

−i in (17), under proper assumptions.

Theorem A.3. Suppose θ̂(t) converges to θ̂, Assumption 4.1 is satisfied along all iterations with g(·; θ) in place of F (·; θ),
αt = α < 1/(nλ1) for all t ≥ 1, and ∇2

θg(Z−i; θ), ∇θg(Z−i; θ) are continuous in θ for all i ∈ [n]. In addition, we assume
h(θ) is convex. Then it holds that θ̃(t)−i in (14) converges to θ̃NS

−i in (17), as t → ∞.

The proof of this theorem is provided in Appendix E.2.

12

Iterative Approximate Cross-Validation

1e−1

1e−3

1e−5

1e−7

102 104

Iteration Number (log scale)

E
rr

ap
pr

ox

1e−1

1e−3

1e−5

1e−7

1 102 104

Iteration Number (log scale)

R
el

E
rr

C
V Method

Baseline
NS
IJ
IACV

Figure 5. Approximation error and relative CV error comparison of the baseline, NS, IJ, and IACV methods in gradient descent for logistic
regression with ridge regularizer. Solid lines represent the median value over 100 experiments and shaded areas denote the region between
lower and upper quartiles.

B. Details for deriving computational complexity
To derive the calculations in Table 1, for example, for GD, the main per-iteration cost of our method comes from computing
{∇θg(Z−i; θ̂

(t−1))}ni=1 and {∇2
θg(Z−i; θ̂

(t−1))}ni=1, and performing the Hessian-gradient product. As we assume above,
due to the relation ∇θg(Z−i; θ̂

(t−1)) =
∑

j∈[n],j ̸=i ∇θℓ(Zj ; θ̂
(t−1)), the cost of computing {∇θg(Z−i; θ̂

(t−1))}ni=1 and

{∇2
θg(Z−i; θ̂

(t−1))}ni=1 is of order n(Ap +Bp). Moreover, the cost of the Hessian-gradient product is of order np2. On the
other hand, the main per-iteration computational cost of the exact leave-one-out CV (i.e., running an iteration of gradient
descent on the dataset Z−i, for each i), comes from evaluating ∇θg(Z−i, θ̂

(t−1)
−i) and then subtracting this gradient from the

current estimate, for each i. These two steps have cost of order nAp and p, respectively, for each i, and therefore the total
cost of one iteration has order n2Ap + np. Similar calculations can be performed to compute the order of computational
complexity for SGD and ProxGD as well.

Note here that we do not intend to compare the runtime of NS and IJ with IACV and exact CV because these methods are
not comparable in terms of their target problem. NS and IJ are one-step methods, where given a single solution (i.e., a single
θ̂(T) approximating θ̂), we run the method once to approximate the leave-one-out models. On the other hand, exact iterative
CV as well as our IACV methods are both performed in an online fashion, with steps carried out for each t = 1, . . . , T . The
cost of NS and IJ will not scale with T , while naturally cost of CV and IACV must scale with T ; this apparent computational
benefit of NS and IJ is simply due to the fact that NS and IJ ignore the iterative nature of the algorithm and thus are
completely invalid (i.e., errors are higher than the noninformative “baseline”) for early, pre-convergence times T .

C. A Larger Scale Simulation for IACV in GD
In Figures 5 and 6, we provide simulation results for comparing IACV and other methods when n = 5000, p = 50. We
observe a similar pattern as in the existing plots: the approximation error of IACV is always better than NS and IJ before the
convergence of the algorithm and IACV is much faster than the exact leave-one-out CV. If we further grow p and n, we find
it is too expensive to run the whole program as the exact leave-one-out CV takes too much time to run for many independent
trials, but we nonetheless would expect to see similar performance.

D. A Iteration-Dependent Upper Bound for ∥θ̃(t)−i − θ̂
(t)
−i∥2

Notice that in Theorem 4.4, we only present a version of the upper bound which is independent of t for convenience. It is
simple and clearly illustrates the idea that the error bound holds along the whole trajectory of the learning process. But
based on our proof, a t-dependent iterative bound on the approximation error can be obtained and it will typically be sharper
at the early stage of training. Specifically, in our proof of Theorem 4.4, (25) shows

∥θ̃(t)−i − θ̂
(t)
−i∥2 ≤ (1− αtnλ0)∥θ̃(t−1)

−i − θ̂
(t−1)
−i ∥2 + αtnγ∥θ̂(t−1)

−i − θ̂(t−1)∥22, ∀t ≥ 1.

13

Iterative Approximate Cross-Validation

0e+00

1e+05

2e+05

3 × 103 6 × 103

Iteration Number

R
un

tim
e

(s
)

 Method
Exact CV
IACV

Figure 6. Runtime comparison of the baseline, NS, IJ, and IACV methods in gradient descent for logistic regression with ridge regularizer.

The error bound of θ̃(t)−i depends on error bound of θ̃(t−1)
−i and ∥θ̂(t−1)

−i − θ̂(t−1)∥2. Furthermore, ∥θ̂(t−1)
−i − θ̂(t−1)∥2 also

satisfies the following iterative upper bound by (23):

∥θ̂(t−1)
−i − θ̂(t−1)∥2 ≤ (1− αt−1nλ0)∥θ̂(t−2) − θ̂

(t−2)
−i ∥2 + αt−1ηi + αt−1nγ∥θ̂(t−2) − θ̂

(t−2)
−i ∥22.

If we initialize θ̂(0) = θ̂
(0)
−i = θ̃

(0)
−i = 0, we can see the error bound for ∥θ̂(t−1)

−i − θ̂(t−1)∥2 will slightly increase from 0

over the iteration t and stabilize when the error contraction (−αt−1nλ0∥θ̂(t−2) − θ̂
(t−2)
−i ∥2) cancels out the per-iteration

approximation error accumulation (αt−1ηi + αt−1nγ∥θ̂(t−2) − θ̂
(t−2)
−i ∥22). By a similar argument, we also have the error

bound for ∥θ̃(t)−i − θ̂
(t)
−i∥2 will increase first and then stabilize.

E. Proofs
E.1. Proofs of error bound results

In this section we prove the approximation error bounds and CV error bounds for GD, SGD, and ProxGD.

Proof of Theorem 4.4. Step 1. In this step, we prove the bound on ∥θ̂(t) − θ̂
(t)
−i∥2 by induction. By the update rule of θ̂(t)

and θ̂
(t)
−i , we have

θ̂(t) − θ̂
(t)
−i = θ̂(t−1) − θ̂

(t−1)
−i + αt

(
∇θF (Z−i; θ̂

(t−1)
−i)−∇θF (Z; θ̂(t−1))

)
= θ̂(t−1) − θ̂

(t−1)
−i − αt∇ℓ(Zi; θ̂

(t−1)) + αt

(
∇θF (Z−i; θ̂

(t−1)
−i)−∇θF (Z−i; θ̂

(t−1))
)
.

(20)

Given any u ∈ Rp, by the Taylor expansion for gu(θ) = ⟨u,∇θF (Z−i; θ)⟩, we have

gu(θ̂
(t−1)
−i) = gu(θ̂

(t−1)) +∇θgu(θ
′)

⇐⇒ ⟨u,∇θF (Z−i; θ̂
(t−1)
−i)⟩ = ⟨u,∇θF (Z−i; θ̂

(t−1))⟩+ ⟨u,∇2
θF (Z−i; θ̂

′)[θ̂
(t−1)
−i − θ̂(t−1)]⟩

= ⟨u,∇θF (Z−i; θ̂
(t−1))⟩+ ⟨u,∇2

θF (Z−i; θ̂
(t−1))[θ̂

(t−1)
−i − θ̂(t−1)]⟩

+ ⟨u, (∇2
θF (Z−i; θ

′)−∇2
θF (Z−i; θ̂

(t−1)))[θ̂
(t−1)
−i − θ̂(t−1)]⟩

(21)

where θ′ = aθ̂(t−1) + (1− a)θ̂
(t−1)
−i for some a ∈ [0, 1].

14

Iterative Approximate Cross-Validation

Plugging (21) into (20), we have for any u ∈ Rp,

⟨θ̂(t) − θ̂
(t)
−i , u⟩ = ⟨θ̂(t−1) − θ̂

(t−1)
−i − αtℓ(Zi; θ̂

(t−1)) + αt∇2
θF (Z−i; θ̂

(t−1))[θ̂
(t−1)
−i − θ̂(t−1)], u⟩

+ αt⟨u, (∇2
θF (Z−i; θ

′)−∇2
θF (Z−i; θ̂

(t−1)))[θ̂
(t−1)
−i − θ̂(t−1)]⟩

=
〈(

Ip − αt∇2
θF (Z−i; θ̂

(t−1))
)
[θ̂(t−1) − θ̂

(t−1)
−i]− αtℓ(Zi; θ̂

(t−1)), u
〉

+ αt⟨u, (∇2
θF (Z−i; θ

′)−∇2
θF (Z−i; θ̂

(t−1)))[θ̂
(t−1)
−i − θ̂(t−1)]⟩.

(22)

Since θ̂(0) = θ̂
(0)
−i , the error bound of θ̂(t) to θ̂

(t)
−i holds at t = 0. Suppose now ∥θ̂(t−1) − θ̂

(t−1)
−i ∥2 ≤ 2ηi

(2λ0−γ)n holds for

some t ≥ 1, then by (22) and the fact that ∥θ̂(t)−i − θ̃
(t)
−i∥2 = supu:∥u∥2=1⟨θ̂

(t)
−i − θ̃

(t)
−i , u⟩, we have

∥θ̂(t) − θ̂
(t)
−i∥2

(a)

≤
∥∥∥Ip − αt∇2

θF (Z−i; θ̂
(t−1))

∥∥∥
2
∥θ̂(t−1) − θ̂

(t−1)
−i ∥2 + αtηi + αtnγ∥θ̂(t−1) − θ̂

(t−1)
−i ∥22

(b)

≤(1− αtnλ0)∥θ̂(t−1) − θ̂
(t−1)
−i ∥2 + αtηi + αtnγ∥θ̂(t−1) − θ̂

(t−1)
−i ∥22

(c)

≤(1− αtnλ0)
2ηi

(2λ0 − γ)n
+ αtηi + αtnγ ·

(2ηi
(2λ0 − γ)n

)2

(d)

≤ (1− αtnλ0)
2ηi

(2λ0 − γ)n
+ αtηi + αtnγ

ηi
(2λ0 − γ)n

=
2ηi

(2λ0 − γ)n
,

(23)

where (a) is by triangle inequality and Assumptions 4.2 and 4.3; (b) is by Assumption 4.1; (c) is by the induction assumption;
(d) is because n ≥ 4∥η∥∞

2λ0−γ . This proves the desired bound on ∥θ̂(t) − θ̂
(t)
−i∥2.

Step 2. We now prove the bound on ∥θ̃(t)−i − θ̂
(t)
−i∥2 by induction. First by the update rule of θ̂(t)−i and the Taylor expansion in

(21), we have for any u ∈ Rp,

⟨θ̂(t)−i , u⟩ =
〈
θ̂
(t−1)
−i − αt

(
∇θF (Z−i; θ̂

(t−1)) +∇2
θF (Z−i; θ̂

(t−1))[θ̂
(t−1)
−i − θ̂(t−1)]

)
, u

〉
− αt⟨u, (∇2

θF (Z−i; θ
′)−∇2

θF (Z−i; θ̂
(t−1)))[θ̂

(t−1)
−i − θ̂(t−1)]⟩.

Combining with (12), we have

⟨θ̂(t)−i − θ̃
(t)
−i , u⟩ =

〈
θ̂
(t−1)
−i − θ̃

(t−1)
−i − αt∇2

θF (Z−i; θ̂
(t−1))[θ̂

(t−1)
−i − θ̃

(t−1)
−i], u

〉
− αt⟨u, (∇2

θF (Z−i; θ
′)−∇2

θF (Z−i; θ̂
(t−1)))[θ̂

(t−1)
−i − θ̂(t−1)]⟩

=
〈(

Ip − αt∇2
θF (Z−i; θ̂

(t−1))
)
[θ̂

(t−1)
−i − θ̃

(t−1)
−i], u

〉
− αt⟨u, (∇2

θF (Z−i; θ
′)−∇2

θF (Z−i; θ̂
(t−1)))[θ̂

(t−1)
−i − θ̂(t−1)]⟩.

(24)

Since θ̂
(0)
−i = θ̃

(0)
−i , the error bound holds at t = 0. Suppose now ∥θ̃(t−1)

−i − θ̂
(t−1)
−i ∥2 ≤ 4γη2

i

λ0(2λ0−γ)2n2 holds, then at time t,
based on (24), we have

∥θ̂(t)−i − θ̃
(t)
−i∥2

(a)

≤
∥∥∥Ip − αt∇2

θF (Z−i; θ̂
(t−1))

∥∥∥
2
∥θ̂(t−1)

−i − θ̃
(t−1)
−i ∥2 + αtnγ∥θ̂(t−1)

−i − θ̂(t−1)∥22
(b)

≤(1− αtnλ0)∥θ̂(t−1)
−i − θ̃

(t−1)
−i ∥2 + αtnγ∥θ̂(t−1)

−i − θ̂(t−1)∥22
(c)

≤(1− αtnλ0)
4γη2i

λ0(2λ0 − γ)2n2
+ αtnγ

(
2ηi

(2λ0 − γ)n

)2

=
4γη2i

λ0(2λ0 − γ)2n2
.

(25)

Here (a) is by the triangle inequality and Assumption 4.3; (b) is by Assumption 4.1; (c) is by the induction assumption and
the error bound we have proved for ∥θ̂(t−1)

−i − θ̂(t−1)∥2 in Step 1. This proves the desired bound on ∥θ̃(t)−i − θ̂
(t)
−i∥2, and

thuscompletes the proof of this theorem.

15

Iterative Approximate Cross-Validation

Proof of Theorem 4.6. First, for every i ∈ [n], by the Taylor expansion, we have

ℓ(Zi; θ̃
(t)
−i) = ℓ(Zi; θ̂

(t)
−i) +∇θℓ(Zi; θ

′)⊤[θ̃
(t)
−i − θ̂

(t)
−i]

where θ′ = aθ̃
(t)
−i + (1− a)θ̂

(t)
−i for some 0 ≤ a ≤ 1. Thus

|ℓ(Zi; θ̃
(t)
−i)− ℓ(Zi; θ̂

(t)
−i)| ≤ ∥∇θℓ(Zi; θ

′)∥2 · ∥θ̃(t)−i − θ̂
(t)
−i∥2 ≤ η′i∥θ̃

(t)
−i − θ̂

(t)
−i∥2. (26)

Here the last inequality is by Assumption 4.5. This completes the proof of this theorem, once we plug in the bound on
∥θ̃(t)−i − θ̂

(t)
−i∥2 obtained in Theorem 4.4.

Proof of Theorem 4.11. Step 1. In this step, we prove the bound on ∥θ̂(t) − θ̂
(t)
−i∥2 by induction. Similar to (21), given any

u ∈ Rp, by the Taylor expansion for ⟨∇θF (ZSt\{i}; θ̂
(t−1)
−i), u⟩, we have

⟨∇θF (ZSt\{i}; θ̂
(t−1)
−i), u⟩ =

〈
∇θF (ZSt\{i}; θ̂

(t−1)) +∇2
θF (ZSt\{i}; θ̂

(t−1))[θ̂
(t−1)
−i − θ̂(t−1)], u

〉
+ ⟨(∇2

θF (ZSt\{i}; θ
′)−∇2

θF (ZSt\{i}; θ̂
(t−1)))[θ̂

(t−1)
−i − θ̂(t−1)], u⟩,

(27)

where θ′ = aθ̂(t−1) + (1− a)θ̂
(t−1)
−i with 0 ≤ a ≤ 1.

So we have

⟨θ̂(t) − θ̂
(t)
−i , u⟩ = ⟨θ̂(t−1) − θ̂

(t−1)
−i − αt∇θF (ZSt ; θ̂

(t−1)) + αt∇θF (ZSt\{i}; θ̂
(t−1)
−i), u⟩

(27)
= ⟨[Ip − αt∇2

θF (ZSt\{i}; θ̂
(t−1))][θ̂(t−1) − θ̂

(t−1)
−i], u⟩

− ⟨αt∇θF (ZSt ; θ̂
(t−1))− αt∇θF (ZSt\{i}; θ̂

(t−1)), u⟩

+ αt⟨(∇2
θF (ZSt\{i}; θ

′)−∇2
θF (ZSt\{i}; θ̂

(t−1)))[θ̂
(t−1)
−i − θ̂(t−1)], u⟩.

Then we have

E∥θ̂(t) − θ̂
(t)
−i∥2 ≤ E

(
∥[Ip − αt∇2

θF (ZSt\{i}; θ̂
(t−1))][θ̂(t−1) − θ̂

(t−1)
−i]∥2

)
︸ ︷︷ ︸

(A)

+ αt E∥∇θF (ZSt
; θ̂(t−1))−∇θF (ZSt\{i}; θ̂

(t−1))∥2︸ ︷︷ ︸
(B)

+ αt E∥(∇2
θF (ZSt\{i}; θ

′)−∇2
θF (ZSt\{i}; θ̂

(t−1)))[θ̂
(t−1)
−i − θ̂(t−1)]∥2︸ ︷︷ ︸

(C)

.

(28)

Next, we bound the (A), (B), (C) terms separately. First for term (A),

E
(
∥[Ip − αt∇2

θF (ZSt\{i}; θ̂
(t−1))][θ̂(t−1) − θ̂

(t−1)
−i]∥2

)
=ES1,...,St−1

[
ESt

(∥[Ip − αt∇2
θF (ZSt\{i}; θ̂

(t−1))][θ̂(t−1) − θ̂
(t−1)
−i]∥2)

]
Assumption (4.7)

≤ (1− αtKλ0)ES1,...,St−1

[
∥θ̂(t−1) − θ̂

(t−1)
−i ∥2

]
.

(29)

Next, for term (B),

E∥∇θF (ZSt
; θ̂(t−1))−∇θF (ZSt\{i}; θ̂

(t−1))∥2

=ES1,...,St−1

[
ESt

∥∇θF (ZSt
; θ̂(t−1))−∇θF (ZSt\{i}; θ̂

(t−1))∥2
]

=
K

n
ES1,...,St−1

∥∇θℓ(Zi; θ̂
(t−1))∥2

Assumption (4.8)
≤ Kηi

n
.

(30)

16

Iterative Approximate Cross-Validation

Here the next-to-last step holds because each data point is included independently in St with probability K/n; thus with
probability 1 − K

n , we have ∇θF (ZSt ; θ̂
(t−1)) − ∇θF (ZSt\{i}; θ̂

(t−1)) = 0 and with probability K
n , i ∈ St and in that

case we have ∇θF (ZSt
; θ̂(t−1))−∇θF (ZSt\{i}; θ̂

(t−1)) = ∇θℓ(Zi; θ̂
(t−1)).

And, for term (C),

E∥(∇2
θF (ZSt\{i}; θ

′)−∇2
θF (ZSt\{i}; θ̂

(t−1)))[θ̂
(t−1)
−i − θ̂(t−1)]∥2

≤E sup
b∈[0,1]

∥(∇2
θF (ZSt\{i}; bθ̂

(t−1) + (1− b)θ̂
(t−1)
−i)−∇2

θF (ZSt\{i}; θ̂
(t−1)))[θ̂

(t−1)
−i − θ̂(t−1)]∥2

Assumption 4.9

≤ γKES1,...,St−1

[
∥θ̂(t−1)

−i − θ̂(t−1)∥22
]

Assumption 4.10

≤ γKβ
n

K

(
E∥θ̂(t−1)

−i − θ̂(t−1)∥2
)2

= γβn
(
E∥θ̂(t−1)

−i − θ̂(t−1)∥2
)2

.

(31)

Since θ̂(0) = θ̂
(0)
−i , the error bound of θ̂(t) to θ̂

(t)
−i holds at t = 0. Suppose now E∥θ̂(t−1) − θ̂

(t−1)
−i ∥2 ≤ 2ηi

(2λ0−γβ)n holds for
some t ≥ 1, then by plugging (29), (30) and (31) into (28), we have

E∥θ̂(t) − θ̂
(t)
−i∥2 ≤ (1− αtKλ0)E∥θ̂(t−1) − θ̂

(t−1)
−i ∥2 +

αtKηi
n

+ αtγβn
(
E∥θ̂(t−1)

−i − θ̂(t−1)∥2
)2

≤ (1− αtKλ0)
2ηi

(2λ0 − γβ)n
+

αtKηi
n

+ αtKγβ
ηi

(2λ0 − γβ)n

4ηi
(2λ0 − γβ)K

≤ (1− αtKλ0)
2ηi

(2λ0 − γβ)n
+

αtKηi
n

+ αtKγβ
ηi

(2λ0 − γβ)n
=

2ηi
(2λ0 − γβ)n

,

(32)

where the next-to-last step holds since we have assumed K ≥ 4∥η∥∞
2λ0−γβ by the assumption on K. This finishes the proof for

the first part.

Step 2. We now prove the bound on ∥θ̃(t)−i − θ̂
(t)
−i∥2 by induction. Based on the Taylor expansion in (27) and the update rule

of θ̃(t)−i in (13), we have for any u ∈ Rp,

⟨θ̂(t)−i − θ̃
(t)
−i , u⟩ = ⟨θ̂(t−1)

−i − αt∇θF (ZSt\{i}; θ̂
(t−1)
−i)− θ̃

(t−1)
−i , u⟩

+
〈
αt

(
∇θF (ZSt\{i}; θ̂

(t−1)) +∇2
θF (ZSt\{i}; θ̂

(t−1))[θ̃
(t−1)
−i − θ̂(t−1)]

)
, u

〉
(27)
=

〈(
Ip − αt∇2

θF (ZSt\{i}; θ̂
(t−1))

)
[θ̂

(t−1)
−i − θ̃

(t−1)
−i], u

〉
− αt⟨(∇2

θF (ZSt\{i}; θ
′)−∇2

θF (ZSt\{i}; θ̂
(t−1)))[θ̂

(t−1)
−i − θ̂(t−1)], u⟩.

Thus we have

E∥θ̂(t)−i − θ̃
(t)
−i∥2 ≤ E

[(
∥Ip − αt∇2

θF (ZSt\{i}; θ̂
(t−1))

)
[θ̂

(t−1)
−i − θ̃

(t−1)
−i]∥2

]
+ αtE

(
∥(∇2

θF (ZSt\{i}; θ
′)−∇2

θF (ZSt\{i}; θ̂
(t−1)))[θ̂

(t−1)
−i − θ̂(t−1)]∥22

)
≤ (1− αtKλ0)E∥θ̂(t−1)

−i − θ̃
(t−1)
−i ∥2 + αtγβn

(
E∥θ̂(t−1)

−i − θ̂(t−1)∥2
)2

≤ (1− αtKλ0)E∥θ̂(t−1)
−i − θ̃

(t−1)
−i ∥2 + αtγβn

(
2ηi

(2λ0 − γβ)n

)2

.

(33)

Here the next-to-last step holds by a similar argument as in (29) and (31), while the last step holds by the error bound we
have proved for E∥θ̂(t−1)

−i − θ̂(t−1)∥2 in Step 1.

Since θ̂
(0)
−i = θ̃

(0)
−i , the error bound holds at t = 0. Suppose now E∥θ̃(t−1)

−i − θ̂
(t−1)
−i ∥2 ≤ 4γβη2

i

λ0(2λ0−γβ)2nK holds, then at time
t, based on (33), we have

E∥θ̂(t)−i − θ̃
(t)
−i∥2 ≤ (1− αtKλ0)

4γβη2i
λ0(2λ0 − γβ)2nK

+ αtγnβ

(
2ηi

(2λ0 − γβ)n

)2

=
4γβη2i

λ0(2λ0 − γβ)2nK
, (34)

17

Iterative Approximate Cross-Validation

which proves the desired bound and thus completes the proof of this theorem.

Proof of Theorem 4.13. First, for every i ∈ [n], by the Taylor expansion, we have

ℓ(Zi; θ̃
(t)
−i) = ℓ(Zi; θ̂

(t)
−i) +∇θℓ(Zi; θ

′)⊤[θ̃
(t)
−i − θ̂

(t)
−i],

where θ′ = aθ̃
(t)
−i + (1− a)θ̂

(t)
−i for some 0 ≤ a ≤ 1.

Next

E(Err(t)CV) ≤
1

n

n∑
i=1

E(|ℓ(Zi; θ̃
(t)
−i)− ℓ(Zi; θ̂

(t)
−i)|)

≤ 1

n

n∑
i=1

E

{
sup

a∈[0,1]

|∇θℓ(Zi; aθ̃
(t)
−i + (1− a)θ̂

(t)
−i)

⊤[θ̃
(t)
−i − θ̂

(t)
−i]|

}

≤ 1

n

n∑
i=1

4η′iη
2
i γβ

λ0(2λ0 − γβ)2nK
,

where the last inequality is by Assumption 4.12 and Theorem 4.11.

Proof of Theorem A.1. The proof strategy of this theorem is similar to the proof of Theorem 4.4. For convenience, we will
define

proxαt

h (θ′) := argmin
θ

{
1

2αt
∥θ − θ′∥22 + h(θ)

}
. (35)

A key property we use here is that the proximal operator proxαt

h is nonexpansive for convex h (Wright & Recht, 2022,
Proposition 8.19), i.e.,

∥proxαt

h (x)− proxαt

h (x′)∥2 ≤ ∥x− x′∥2.

Step 1. In this step, we derive the error bound for ∥θ̂(t) − θ̂
(t)
−i∥2. By the updating rules of θ̂(t) and θ̂

(t)
−i , we have

∥θ̂(t) − θ̂
(t)
−i∥2 =

∥∥∥proxαt

h

(
θ̂(t−1) − αt∇θg(Z; θ̂(t−1))

)
− proxαt

h

(
θ̂
(t−1)
−i − αt∇θg(Z−i; θ̂

(t−1)
−i)

)∥∥∥
2

≤
∥∥∥θ̂(t−1) − αt∇θg(Z; θ̂(t−1))− (θ̂

(t−1)
−i − αt∇θg(Z−i; θ̂

(t−1)
−i))

∥∥∥
2
.

Here the inequality holds by the nonexpansiveness property of the proximal operator. The rest of the proof follows exactly
as in Step 1 of Theorem 4.4 by replacing F (·; θ) with g(·; θ).

Step 2. By our estimator in (14), we have

∥θ̃(t)−i − θ̂
(t)
−i∥2 =

∥∥∥proxαt

h

(
θ̃
(t−1)
−j − αt(∇θg(Z−j ; θ̂

(t−1)) +∇2
θg(Z−j ; θ̂

(t−1))[θ̃
(t−1)
−j − θ̂(t−1)])

)
− proxαt

h

(
θ̂
(t−1)
−i − αt∇θg(Z−i; θ̂

(t−1)
−i)

)∥∥∥
2

≤ ∥θ̃(t−1)
−j − αt(∇θg(Z−j ; θ̂

(t−1)) +∇2
θg(Z−j ; θ̂

(t−1))[θ̃
(t−1)
−j − θ̂(t−1)])− θ̂

(t−1)
−i

+ αt∇θg(Z−i; θ̂
(t−1)
−i)∥2,

where the inequality is again due to the nonexpansiveness property of the proximal operator. The remainder of the proof
again follows the same argument as in Step 2 of Theorem 4.4 by replacing F (·; θ) with g(·; θ).

18

Iterative Approximate Cross-Validation

E.2. Proofs of convergence results

In this section, we prove Theorems 5.1 and A.3, which establish convergence of the IACV estimator to the NS estimator in
the GD and ProxGD setting, respectively.

Proof of Theorem 5.1. Since we assume θ̂(t) converges to θ̂ and Assumption 4.1 is satisfied at all iterations, we therefore
see that ∇2

θF (Z−i; θ̂) is invertible by the continuity of ∇2
θF (Z−i; θ). Let us denote

bti = θ̂(t−1) − (∇2
θF (Z−i; θ̂

(t−1)))−1∇θF (Z−i; θ̂
(t−1)).

First, based on the update rule for θ̃(t)−i in (12), we have:

θ̃
(t)
−i − bti = [Ip − α∇2

θF (Z−i; θ̂
(t−1))](θ̃

(t−1)
−i − bti).

This implies

θ̃
(t)
−i − θ̃NS

−i = [Ip − α∇2
θF (Z−i; θ̂

(t−1))](θ̃
(t−1)
−i − bti) + bti − θ̃NS

−i

= [Ip − α∇2
θF (Z−i; θ̂

(t−1))](θ̃
(t−1)
−i − θ̃NS

−i)− α∇2
θF (Z−i; θ̂

(t−1))(θ̃NS
−i − bti),

and thus

∥θ̃(t)−i − θ̃NS
−i ∥2 ≤ ∥Ip − α∇2

θF (Z−i; θ̂
(t−1))∥ · ∥θ̃(t−1)

−i − θ̃NS
−i ∥2 + α∥∇2

θF (Z−i; θ̂
(t−1))∥ · ∥θ̃NS

−i − bti∥2
≤ (1− αnλ0) · ∥θ̃(t−1)

−i − θ̃NS
−i ∥2 + ∥θ̃NS

−i − bti∥2,

where the last step holds by Assumption 4.1 together with the choice of α.

Note that since ∇2
θF (Z−i; θ) and ∇θF (Z−i; θ) are continuous in θ, we then have bti → θ̃NS

−i as θ̂(t) converges to θ̂, i.e.,

lim
t→∞

∥θ̃NS
−i − bti∥2 = 0.

Combined with the above, this is sufficient to prove that

lim
t→∞

∥θ̃(t)−i − θ̃NS
−i ∥2 = 0,

which completes the proof of the theorem.

Proof of Theorem A.3. Let us first prove the claim that θ̃NS
−i in (17) is a fixed point of

a(t) = proxαh

(
a(t−1) − α

(
∇θg(Z−i; θ̂) +∇2

θg(Z−i; θ̂)[a
(t−1) − θ̂]

))
, (36)

where prox is defined in (35). To show this, it is equivalent to show θ̃NS
−i =

proxαh

(
θ̃NS
−i − α

(
∇θg(Z−i; θ̂) +∇2

θg(Z−i; θ̂)[θ̃
NS
−i − θ̂]

))
.

Since h is convex, by the definition of prox in (18) and the definition of θ̃NS
−i in (17), the first-order optimality condition tells

us that θ̃NS
−i must satisfy

0 ∈ −(∇2
θg(Z−i; θ̂)

(
θ̂ − θ̃NS

−i

)
−∇θg(Z−i; θ̂)) + ∂h(θ̃NS

−i). (37)

Also, the proximal operator proxαh has a unique solution as h is convex. By the definition of the proximal operator proxαh ,

the output of proxαh
(
θ̃NS
−i − α

(
∇θg(Z−i; θ̂) +∇2

θg(Z−i; θ̂)[θ̃
NS
−i − θ̂]

))
, say x∗, is the unique vector that satisfies

0 ∈ −
θ̃NS
−i − α

(
∇θg(Z−i; θ̂) +∇2

θg(Z−i; θ̂)[θ̃
NS
−i − θ̂]

)
− x∗

α
+ ∂h(x∗).

(38)

19

Iterative Approximate Cross-Validation

Notice that x∗ = θ̃NS
−i satisfies (38) because of (37). Thus, θ̃NS

−i is a fixed point of (36) as desired.

Next, we show θ̃
(t)
−i in (14) converges to θ̃NS

−i under the assumptions given in the statement of the theorem. By (14) together
with the calculations above, we have

θ̃
(t)
−i − θ̃NS

−i = proxαh

(
θ̃
(t−1)
−i − α(∇θg(Z−i; θ̂

(t−1)) +∇2
θg(Z−i; θ̂

(t−1))[θ̃
(t−1)
−i − θ̂(t−1)])

)
− proxαh

(
θ̃NS
−i − α

(
∇θg(Z−i; θ̂) +∇2

θg(Z−i; θ̂)[θ̃
NS
−i − θ̂]

))
.

So we have

∥θ̃(t)−i − θ̃NS
−i ∥2 =

∥∥∥proxαh (
θ̃
(t−1)
−i − α(∇θg(Z−i; θ̂

(t−1)) +∇2
θg(Z−i; θ̂

(t−1))[θ̃
(t−1)
−i − θ̂(t−1)])

)
− proxαh

(
θ̃NS
−i − α

(
∇θg(Z−i; θ̂) +∇2

θg(Z−i; θ̂)[θ̃
NS
−i − θ̂]

))∥∥∥
2

≤
∥∥∥(θ̃(t−1)

−i − α(∇θg(Z−i; θ̂
(t−1)) +∇2

θg(Z−i; θ̂
(t−1))[θ̃

(t−1)
−i − θ̂(t−1)])

)
−
(
θ̃NS
−i − α

(
∇θg(Z−i; θ̂) +∇2

θg(Z−i; θ̂)[θ̃
NS
−i − θ̂]

))∥∥∥
2

=
∥∥∥[I− α∇2

θg(Z−i; θ̂
(t−1))](θ̃

(t−1)
−i − θ̃NS

−i) + α(∇2
θg(Z−i; θ̂)−∇2

θg(Z−i; θ̂
(t−1)))θ̃NS

−i

− α(∇θg(Z−i; θ̂
(t−1))−∇2

θg(Z−i; θ̂
(t−1))θ̂(t−1)) + α(∇θg(Z−i; θ̂)−∇2

θg(Z−i; θ̂)θ̂)
∥∥∥
2

≤
∥∥∥[I− α∇2

θg(Z−i; θ̂
(t−1))](θ̃

(t−1)
−i − θ̃NS

−i)
∥∥∥
2
+ α

[
∥(∇2

θg(Z−i; θ̂)−∇2
θg(Z−i; θ̂

(t−1)))θ̃NS
−i ∥2

+ ∥∇θg(Z−i; θ̂
(t−1))−∇θg(Z−i; θ̂)∥2 + ∥∇2

θg(Z−i; θ̂
(t−1))θ̂(t−1) −∇2

θg(Z−i; θ̂)θ̂∥2
]

≤ (1− αnλ0) · ∥θ̃(t−1)
−i − θ̃NS

−i ∥2 + α
[
∥(∇2

θg(Z−i; θ̂)−∇2
θg(Z−i; θ̂

(t−1)))θ̃NS
−i ∥2

+ ∥∇θg(Z−i; θ̂
(t−1))−∇θg(Z−i; θ̂)∥2 + ∥∇2

θg(Z−i; θ̂
(t−1))θ̂(t−1) −∇2

θg(Z−i; θ̂)θ̂∥2
]
.

(39)

where the second step holds because proxαh is nonexpansive for convex h (Wright & Recht, 2022, Proposition 8.19), and the
last step applies Assumption 4.1 (with g in place of F , as assumed in the Theorem). Since ∇2

θg(Z−i; θ), ∇θg(Z−i; θ) are
continuous in θ, and θ̂(t) is assumed to converge to θ̂, the quantity in square brackets converges to zero. As in the proof of
Theorem 5.1, this therefore implies

lim
t→∞

∥θ̃(t)−i − θ̃NS
−i ∥2 → 0.

Can Theorem 5.1 be extended to SGD? A key intuition behind the proof of Theorem 5.1 is that θ̃NS
−i in (3) is a fixed

point of the following update equation

xt = xt−1 − αt

(
∇θF (Z−i; θ̂) +∇2

θF (Z−i; θ̂)[x
t−1 − θ̂]

)
.

In addition, we use the fact that given any ϵ > 0, a sequence of scalars {xt} that satisfies xt = (1− αt)x
t−1 + ϵ must have

xt → 0 when we take αt ≡ α > 0. Finally, we note in the proof of Theorem 5.1, the condition “θ̂ is the solution of (1)” is
actually not used, so the conclusions there continue to hold if we replace θ̂ with any θ̊ as long as: (1) θ̂(t) converges to θ̊ and
(2) Assumption 4.1 is satisfied along the iterates. A similar intuition holds for the proof of Theorem A.3.

In the SGD setting, on the other hand, the techniques for proving Theorem 5.1 fail as αt there are required to decay to zero
eventually for convergence. Thus, if we have a sequence of values {xt} satisfying xt = (1−αt)x

t−1 + ϵ for any ϵ > 0, this
does not necessarily imply xt → 0. Whether a result analogous to Theorem 5.1 might be provable for SGD via a different
technique remains an open question.

20

