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ABSTRACT

Interpretable machine learning and explainable AI (XAI) methods used to investi-
gate fairness properties can be described as ML auditing. Current ML researchers
have noted that there are limited, successful implementations of procedural fair-
ness, which focuses on the decision-making steps rather than fair outcomes. We
present the results of our procedural fairness auditing framework for XAI tools.
We evaluated Stealth, an ensemble XAI method that combines novel global sur-
rogate model generation that avoids detection by deceptive models with well-
known LIME’s local explanations. Through a procedural fairness lens, we audited
Stealth’s decision-making process outside of its notable performance outcomes.
The procedural fairness audit reports that Stealth’s global surrogate models are
impressive and a successful application of recursive bi-clustering for representa-
tive data downsampling. However, the audit also revealed Stealth’s training data
biases, and we discuss how Stealth’s fairness claims were misguided by “fairer
outcomes.” The procedural fairness auditing framework provides an outline of
how to interpret ML decision-making, ensuring procedural fairness.

1 INTRODUCTION

Researchers have identified a need for interpretable machine learning (IML) and explainable AI
(XAI) methods that explain models’ decision-making processes, including fairness and bias proper-
ties. These research interests are combined under the ML auditing domain. IML and XAI methods
have been extensively studied, and some, such as Local Interpretable Model-Agnostic Explanations
(LIME) (Ribeiro et al., 2016) and SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017)
have become very popular. Recent studies (Slack et al., 2020) fooling LIME and SHAP have high-
lighted deceptive, malicious AI and the dangers of AI detecting when it is being explained or audited.
However, there is little known about auditing a potentially deceptive agent. The concepts of decep-
tive AI and ML auditing are central to understanding black box models and ensuring trustworthy
AI.

While various fairness metrics scores can be used to reflect the extent of fairness, another type
of fairness testing is to generate explanations on what features are interpreted to contribute most
to a model’s outcome. The advantage of using explanation-based testing over statistical metrics
is that it provides stakeholders with more straightforward and human-comprehensible insights on
how much a feature has influenced the prediction model outcomes. Procedural fairness auditing
involves interpretation and explanation while emphasizing procedural fairness. Procedural fairness
calls for ensuring models’ decision-making processes are iteratively fair. Current research interests
have progressed from measuring fairness metrics to prioritizing procedural fairness (also known
as procedural justice) over distributive fairness, shifting from “fair outcomes” to “fair procedures.”
Carey & Wu (2023) have critiqued the reductive ways that ML practitioners claim to implement
procedural fairness due to a lack of auditing model’s outcomes as well as decision-making process.

In this paper, we applied our procedural fairness audit framework to understand the decision-making
process of an explainable AI (XAI) tool Stealth (Alvarez & Menzies, 2023). Stealth is an ensem-
ble auditing tool that generates explanations through global surrogates and local explanations with
the well-known XAI tool, LIME. Since we chose to investigate an XAI tool, Stealth, our analysis
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can be seen from a new meta-auditing perspective. There are three layers of explanation within
our meta-audit (see Figure 1): (1) the XAI audit system Stealth, which generates global surrogate
models; (2) LIME, which provides local explanations for the parent and surrogate models; and
(3) a “auditor-in-the-loop” procedural fairness audit which iteratively investigates the case study’s
algorithm/decision-making process. There is Stealth’s auditing explanation process through its sur-
rogate generation and our meta-audit of how Stealth generates its explanations. Our iterative audit
exposed the latent bias present in Stealth’s surrogate generation and further supports why procedural
fairness needs to be accurately implemented in socio-technical work. We provide a novel applica-
tion of procedural fairness through a auditor-in-the-loop auditing framework, and our results clarify
the appropriate use of Stealth’s deception-aware XAI system. While Stealth’s “fairness” claims are
misguided, we discuss the impressive contributions of Alvarez & Menzies (2023) surrogate gener-
ation technique and how our audit results contribute to the larger Trustworthy ML, XAI, IML, and
security research communities.

2 LITERATURE REVIEW

ML auditing is a combination of interpretation (how AI makes decisions) and explanation (how
these interpretations are explained to humans). Procedural fairness auditing investigates a model’s
decision-making process, prioritizing fairness at each step. Fairness testing refers to the testing
schema that evaluates whether bias is identified and mitigated in ML models. This section reviews
the current ML Auditing field. However, since there is a gap in specific auditing research, the most
relevant work is from the Explainable AI/ML (XAI), Interpretable ML (IML), and Trustworthy ML
research domains. We introduce the field of XAI research, the relevant IML and Trustworthy ML
work, and discuss the potential challenges faced by current XAI techniques as related to procedural
fairness auditing.

Procedural Fairness: Researchers (Carey & Wu, 2023; Grgić-Hlača et al., 2018; Morse et al., 2021)
note procedural fairness (also referenced as procedural justice) would investigate the models’ entire
ecosystem: the model itself, the data sets used in training, the developer, and the population im-
pacted by the model. Rueda et al. (2022) argue that explainability is necessary to ensure procedural
fairness requirements. There are differing opinions about where fairness relates to interpretability
and explainability, but for the sake of argument, we view the explanation as a subdomain of in-
terpretability and interpretable ML as directly connected to trustworthy ML. Rudin (Rudin, 2019;
Rudin & Radin, 2019; Semenova et al., 2022) has a long-term claim that deep learning and overly
complex models have been used simply for perceived sophistication when simpler models perform
similarly and competitively with larger models. With a lot of attention on deep learning and compu-
tationally heavy, black-box models, strengthening the generalizability of conceptually simpler but
still strong models needs more attention.

XAI Scope: The standard ways to evaluate the performance of these models vary on their scope:
pre-hoc, in-model, post-hoc, intrinsic, model-specific, model agnostic, local, and global (Molnar,
2022; Carvalho et al., 2019). Since procedural fairness should be considered at all levels of product
development, the guiding questions should be considered before (pre-hoc) training and after training
(post-hoc) the model. The procedural fairness auditing framework is a way for practitioners to
understand a high-level model agnostic overview of the model through a step-by-step procedural
investigation of the entire development pipeline. Our procedural fairness audit falls within the pre-
hoc and post-hoc, model-agnostic, global, and local explainability scope.

Global methods will focus on identifying features that most influence the model’s outcomes, whereas
local methods will identify features that specifically impact individual outcomes as related to an
individual input. For example, LIME creates thousands of test set data perturbations. If there are
100 testing points, then for each one, LIME creates a neighborhood of perturbed points around the
test point. Each of these perturbation points has very slight changes, and all of these points are given
to the model to label. Based on how the labels change, LIME is able to use its perturbed points to
identify which feature perturbation impacted the label for that testing point.

We chose Stealth as our case study because its combination of global and local explanations widens
our scope beyond just one or the other. Stealth’s global surrogate generation falls specifically within
the static, model-agnostic, global, post-hoc, surrogate, feature importance explanation domain (also
referred to as knowledge distillation) (Zhou et al., 2021). Stealth’s application of LIME connects
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knowledge distillation with a saliency method within the specific static, model-agnostic, post-hoc,
local, feature importance explanation domain (Zhou et al., 2021). Calls within the IML field (Car-
valho et al., 2019; Molnar et al., 2021; Molnar, 2022; Molnar et al., 2020; Kim et al., 2016) and
XAI fields (London, 2019; Rueda et al., 2022; Vilone & Longo, 2020; Adadi & Berrada, 2018)
showed there were limited explanation systems that were deception aware, and there still are very
few defenses against deceptive AI.

Malicious, Deceptive AI Fooling XAI: Trustworthy ML and XAI tools have to expand beyond
fairness metric performance because researchers have proved simple models like random forests,
SVMs, and logistical regression can be maliciously misleading. Slack et al. (2020) explanation de-
tection with SHAP and LIME exposed the vulnerabilities of perturbation-based saliency explanation
methods. There has been a response to improving their vulnerabilities, like making them more ro-
bust or changing the distribution technique that generates their perturbed data (Molnar et al., 2020;
Saito et al., 2020). However, these improvements do not guarantee deception prevention.

Relevant Auditing Work: The most related work is by Park et al. (2022). They proposed an au-
diting tool that separates itself from other fairness toolkits (Bellamy et al., 2018; Bird et al., 2020;
Saleiro et al., 2018; Kearns et al., 2018) because it is applicable to cloud services like Stealth. How-
ever, their main contributions are providing security for both parties, but their limitations include
not building fair ML models nor addressing possible attacks such as model extraction, inversion,
and evasion attacks (such as deception). Medical and Biology ML scholars (Eid et al., 2021;?; Oala
et al., 2020) have identified a gap in IML research and a need for clear and generalizable auditing
methods that are easily tailored to their applications. Specifically, Oala et al. (2020) reported there
was a need for audit applications for the entire development life cycle. Amongst the XAI domain,
there is a theoretical call for understanding explanations better tailored for humans (Miller, 2019)
and XAI auditing tools that consider algorithmic fairness (Adler et al., 2018). Our work differs
because our procedural fairness audit presents an “auditor-in-the-loop” (Zhang et al., 2022; Miller,
2019; Abdul et al., 2018; Zhu et al., 2018; Mohseni et al., 2021) auditing framework for developers,
and our case study is an XAI tool that is deception-aware.

Other Fairness & Bias Mitigation Techniques: Other techniques include pre-processing data in-
terventions (Calmon et al., 2017; Feldman et al., 2015; Chakraborty et al., 2021), reweighting (Kami-
ran & Calders, 2012), manipulating fairer model outcomes (Hardt et al., 2016; Pleiss et al., 2017;
Zafar et al., 2017; Kamishima et al., 2012), trained model mitigation (Zafar et al., 2019; Zhang et al.,
2018), and other ways to audit (Kearns et al., 2018; Saleiro et al., 2018).

There is a common theme within the Software Engineering and IML fields to remove demographic
features such as race and gender and then imply the model cannot be discriminatory because these
individual demographic features are removed from training. This is a very naive understanding of
discrimination and connects to the sociological concept of “colorblind racism” Carr (1997). Simply
removing demographic features does not change any underlying bias that is still present and can be
inferred through other features.

3 CASE STUDY MOTIVATION

In the past few years, scholars have raised concerns about deceptive AI (Schneider et al., 2020;
Brundage et al., 2018; Banovic et al., 2023; Slack et al., 2020), discriminatory AI (Noble, 2018;
Benjamin, 2020; Buolamwini & Gebru, 2018; Keyes, 2018; O’neil, 2017; Obermeyer et al., 2019;
Angwin et al., 2016; Eubanks, 2018), and vulnerabilities of XAI tools (Meske et al., 2022; Baniecki
& Biecek, 2023; Slack et al., 2020). Thus, more current research has begun to explore paths for
better identifying these problems. Researchers have presented many local mitigation, deception,
and detection solutions which Schneider et al. (2020) described as “a new cat and mouse game
between ‘liars’ and ‘detectors’. . . in the context of AI”, with limited scalable industry applications.
Stealth was motivated by a real-world event: Dieselgate (Ewing, 2020; Fracarolli Nunes & Lee Park,
2016), where the U.S. Environmental Protection Agency (EPA) found Volkswagen cars’ AI detected
when it was evaluated and released wrongfully lower emission rate only when evaluated. There is an
assumption that biased, discriminatory AI is an unforeseen side effect, an unfortunate consequence
of biased data, or an illuminating reflection of unconscious bias. Still, even hypothetically, we must
consider: what if Volkswagen wanted to deceive its EPA evaluators? How will practitioners be able
to evaluate larger corporations’ pay-for-service models, and how will they know they are not being
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deceived? Stealth raised a concern regarding deceptive, malicious AI that has yet to be explored:
How can XAI tools explain models that can potentially detect and mislead explanation tools?

The novelty of Stealth is applying a well-established downsampling technique, FastMap, to select
a subset of training data for surrogate model generation. This technique, known as recursive bi-
clustering, is not a novel concept in itself, but the novelty of Stealth lies in its application of bi-
clustering to the XAI fairness problem. Alvarez & Menzies (2023) proposed a global surrogate
modeling technique as a way to audit deceptive models. It claimed to create accurate and “fairer”
global surrogate models that required a remarkably minimal amount of training data.

Researcher Molnar (2023) has recently raised criticisms of the popular use of the Synthetic Mi-
nority Over-sampling Technique (SMOTE) (Chawla et al., 2002). Molnar claims that “fixing” an
imbalanced data set is misguided if state-of-the-art learners are implemented, and calibration is a
concern (Molnar, 2023). Where over-sampling creates generated examples from the original data,
downsampling reduces the larger data population to the size of the smallest population. He com-
ments against downsampling as a substitute for over-sampling because of the “loss of data” and the
loss of the representative sample. However, Stealth creates a downsampled subset with the same
representation balance as the original set. Stealth is a good relevant case study because Stealth’s
results demonstrate the unique advantage of representative downsampling and how limited data can
provide insights on how data imbalance impacts bias and fairness properties.

4 PROCEDURAL FAIRNESS AUDIT

Our audit uses a top-down research design, the current approach favored by responsible AI re-
searchers (Bringas Colmenarejo et al., 2022; Varshney, 2022; Camacho Ibáñez & Villas Olmeda,
2021). The top-down/proactive approach refers to gathering the interests of stakeholders and in-
vestments and deciding the best practices, and the bottom-up/reactive approach is where operational
practices inspire best practices after development. The literature supports the top-down proactive
approach to organizing high-risk projects. However, a big problem we highlight is the interest of
stakeholders and the possibility of deception. Therefore, our audit must be implemented at the start
(top-down) and end (bottom-up) of the design pipeline. We guided each step of the procedural fair-
ness audit with leading questions (adapted from the necessary questions in Zhang et al. (2022)), and
this section describes the results of our audit.

Once the high-level, top-down understanding was gathered, we moved on to the bottom-up ap-
proach, moving through each individual pipeline step outlined in Figure 2. Since Stealth’s surrogate
generation is rooted in data down-sampling, the most important step was understanding the data
sets, data processing, and training sets.

1. What is the motivation behind the socio-technical system, and why should this system be
implemented?

2. What are the worst-case impacts of this system, and who is impacted most by the socio-
technical system? Are they consulted in the making of this system?

3. How is fairness considered in this context, and where are the areas for possible bias?

4. How is the system intended to work?

5. What data is used to train the model? What are the proportions of protected attributes
within the training and test sets?

6. What algorithms, toolkits, or packages are used?

7. What is the overall performance of the model?

8. How is success defined, measured, and evaluated?

9. Is this model intrinsically interpretable? If not, justify why an IML model is not used.

10. How does the model decide globally and locally for a particular instance (e.g., a transaction
and an audit engagement)?

11. What feature(s) most informs the trained model’s decision-making?

4



Under review as a conference paper at ICLR 2024

Figure 1: Procedural Fairness Audit.

5 CASE STUDY: STEALTH

5.1 PRE-PROCESSING

The data sets in Table 1 are popular in AI/ML fairness literature, particularly for their clearly biased
training results. Stealth’s pre-processing steps were supported by pre-processing steps in IBM’s
fairness toolkit (Bellamy et al., 2018). For each data set, the standard ML pre-processing meth-
ods were applied: (1) rows with missing values were ignored, (2) continuous features were dis-
cretized and converted to categorical, and (3) Non-numerical features (i.e., protected attributes such
as sex, race, and age, and other demographics) were converted to numerical and coded to binary
outcomes where 0 represented the under-represented/marginalized 1 group and 1 represented the
over-represented/privileged group. The class outcomes were coded similarly, with 0 being negative
and 1 being positive outcomes.

Table 1: Data sets descriptions including their domain usage and protected attributes.

Protected
data set Domain Attribute

Adult Census (ADU, 1994) U.S. census information from 1994 to predict personal income Sex, Race
Bank Marketing (BAN, 2017) Marketing data of a Portuguese bank to predict term deposit Age

COMPAS (Angwin et al., 2016) Criminal history of defendants to predict re-offending Sex, Race
German Credit (GER, 2000) Personal information to predict good or bad credit Sex
Communities (COM, 2009) Law enforcement information to predict violent crimes RacePctWhite

5.2 ALGORITHM

Stealth has 7 main parts, as shown in Figure 2.

1. Data Preparation: The available data is divided 40:40:20 into a Parent:Surrogate:Test
split. The Parent set is used to build the PARENT model (which may have hidden malicious
model behavior).

1To clarify under-represented is the most common case in ML fairness problems because typically the
marginalized group is the underrepresented or smaller population within the data set. However, I prefer to use
marginalized because it can be extended to the COMPAS data set. The COMPAS data set is different because,
in the case of racialized policing in the U.S., the marginalized group is the over-represented population.
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2. Baseline generation: By training the PARENT using 40% training data and evaluating
with the 20% test data, Alvarez & Menzies (2023) collected the PARENT’s baseline per-
formance values on the performance and fairness metrics. To create a default baseline, 80%
of the data is used to train a full model.

3. Recursive Bi-Clustering: To downsample the SURROGATE training set into a represen-
tative subset, they used a recursive bi-clustering technique, Fastmap, which finds clusters
of size

√
N , where N is the total amount of data points in the training set. One random

example per leaf was used to build the SURROGATE downsampled subset. Alvarez &
Menzies (2023) reference Chen et al. (2018), who reported Fastmap is fast and useful for
finding a good representative subset of examples across data.

4. Parent label probing: To label the SURROGATE training set, Alvarez & Menzies (2023)
probed the PARENT for labels, enabling the SURROGATE to mimic the same global be-
havior. The PARENT classifies every value in the SURROGATE’s training set, and its
classifications become the assigned label for those values instead of the original observed
label. The SURROGATE models aim to “copy” PARENT behavior by extracting the labels
by probing PARENT.

5. Surrogate Generation: The downsampled training set with labels from the PARENT is
used to train a random forest to build a global SURROGATE model.

6. Performance Evaluation: Using the 20% test set, the evaluation metric scores for both
the SURROGATE and PARENT are generated. These values are computed 20 times with
reproducible random seeds, and all 9 metrics between the PARENT and SURROGATE are
statistically compared with Scott-Knott’s Statistical Test. The performance evaluation is
used to measure how well the SURROGATE performs compared to the PARENT.

7. Local Explanation Generation: LIME reports the most influential features of both mod-
els. The top-ranked feature sets were compared using the Jaccard Index/Coefficient. The
local evaluation explains the features of each model that influenced the specific outcomes
in the test set.

Figure 2: Stealth’s full pipeline flowchart for surrogate generation and evaluation.
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5.3 PARENT MODEL & SURROGATE GENERATION

After reviewing the pre-processing methods, we examined Stealth’s surrogate generation. We looked
into the code, and the Scikit-Learn train/test split method was stratified to ensure similar representa-
tion distributions in both training sets and the testing set. However, when we gathered the protected
attribute representations in the downsampled set and the training sets, we found a critical problem.

There were significant class imbalances in the surrogate training set retained from the baseline (the
model trained on 80% data set) shown in Figure 3. Specifically, when looking at the German data set,
we can see that the privileged classes received the positive outcome 10x more than the marginalized
class, and while the negative outcome is higher for the privileged, this percentage is proportional to
the overrepresentation of the privileged class in the data set. The ratios between the baseline and the
surrogate and the parent and the surrogate training subset are visually represented in Figure 3 and
Figure 4.

The recursive bi-clustering method reduces the full training set into a representative subset, allowing
the surrogate to copy the global behavior of the parent with 3-10% of the training set. This extremely
limited use of data shown in Table 2 is one of Stealth’s novel contributions. However, the imbal-
anced subgroup representation remains in the surrogate training set data distributions. This result
highlights the accuracy of the downsampling technique but exposes the imbalanced and, therefore,
unfair data distribution training the surrogate. Alvarez & Menzies’ reported fairness intervention
claim was misleading. Chakraborty et al. (2021) note the dangers of imbalanced demographic rep-
resentation and how this unbalance leads to bias within the model’s outcomes. With such extreme
imbalance within the subsets, the surrogates had to present bias within its outcomes.

The Jaccard Coefficient evaluation of the parent and surrogate’s influencing features, as reported by
LIME, showed a 60% similarity for the parent and surrogate’s top-ranked influencing features. The
surrogates do perform just as well as the parent model despite their extreme imbalances. The crucial
point we make is that the surrogates do not improve the fairness properties of the parent model
through a representative, downsampled subset because the surrogate mimics the outcomes of
the parent model.

This result revealed a flaw in the commonly held assumption that “more data” implies better results.
When it comes to discriminatory/biased ML, if the original model or data is biased, the more data
used only further reinforces said bias. Dressel & Farid (2018) supports this insight, which found that
COMPAS models trained on 2 features performed just as well as models trained on all the features.
A promising area for future work would be to investigate why Stealth’s performance is statistically
ranked fairer than its parent when the surrogate maintains the same unfair data imbalance.

Table 2: Sizes of the baseline (trained on 80% of the entire data set), parent, and surrogate model
training sets.

data set Baseline Parent Surrogate Surrogate %
Adult Census 45,522 12,604 128 10%
Bank 30,488 12,195 128 10%
COMPAS 6,172 2468 64 3%
Communities 123 49 16 33%
German 1,000 400 32 8%

6 RESULTS & DISCUSSION

While Alvarez & Menzies (2023) Scott Knott’s Statistical Test analysis implied that Stealth was
fairer than its parent model, further investigation revealed extremely imbalanced training sets.
Stealth is presented as a “fairer” model generation, which also prevents malicious attacks. While
the motivations behind this study are well-intentioned, this is an example of a model that does not
fully achieve what the authors suggest it can do. After performing our procedural fairness audit and
looking further into its subset generation, we find that there is still bias through data set imbalance.
This finding exposes Stealth’s claim of fairness as misguided and an example of how evaluation
metrics are not the best way to determine “improved fairness.” The main source of bias comes from
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Figure 3: The Baseline model’s positive and negative labels are separated by the marginalized and
privileged protected attributes and compared to the downsampled Surrogate’s percentages. A similar
label imbalance in the Baseline is maintained in the Surrogate.

Figure 4: The Parent model’s positive and negative labels are separated by the marginalized and
privileged protected attributes and compared to the downsampled Surrogate’s percentages. A similar
label imbalance from the Parent is maintained in the Surrogate.

looking further into the data representation ratios within the training, test, and down-sampled sets
shown in Figures 3 and 4.

In a more positive light, the contribution of Stealth’s work is the impressive application of their
recursive bi-clustering downsampling technique to surrogate generation. Stealth’s downsampling
technique did create an accurate/representative subset, as supported by the data representation ratios
seen in Figures 3 and 4. Also, the surrogate models were successful at duplicating the parent’s global
behavior, as supported by Alvarez & Menzies (2023) LIME explanations and statistical analysis with
the Jaccard Coefficient score.
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With the same data imbalance as the baseline and parent set, the surrogates performed statistically
similar to the parent model. This result contributes to a further understanding of the root of bias
and how little data can bias a model. With a lot of attention focused on deep learning and big
data modeling, we report that if models with a median of 10% of a data set are able to perform
comparatively and with similar bias, the impact of deep learning models should be heavily reviewed.
Alvarez & Menzies (2023) experimented with random forests, which Molnar remarks are “strong
learners,” but there are other learners that future work can investigate (Molnar, 2023).

7 CONCLUSION

This study developed a procedural justice audit and used the audit to assess an XAI case study,
Stealth. The procedural justice audit exposed the imbalanced training sets and made us question
Alvarez & Menzies’ claims to improve fairness. Our procedural fairness audit of Stealth is an
example of a meta-audit where an XAI, auditing tool is being further evaluated. Generalized fairness
interventions oversimplify the nuances of bias and discrimination within AI models. Thus, fairness
and bias mitigation properties must be contextualized and procedurally evaluated per model. While
Stealth fails to meet its fairness claims, it does use a representative downsampling technique to create
viable global surrogates that avoid evaluation detection by deceptive AI.

We caution future researchers against only using metric thresholds as fairness evaluations and to
re-focus on procedural fairness. Whereas other XAI have a general assumption that the model-
owners are honest. There is a need for better XAI tools, and as deceptive AI is gaining traction,
there’s an increasing need for evaluation tools to give a sense of security that these models aren’t
intrinsically or intentionally biased. This is especially important as more ML services (Marketplace,
2019; Ribeiro et al., 2015) and models from the cloud are being marketed and widely accepted,
as we’ve seen with OpenAI’s ChatGPT. This proposed procedural fairness audit is an example
of an iterative XAI audit and advocates for a more comprehensive implementation of “procedural
fairness,” which emphasizes justice beyond “fair outcomes.” The results of the audit contribute to
the intersectional work of IML, XAI, Trustworthy ML, and security (deception detection).
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