
Published as an SCSL Workshop Paper at ICLR 2025

PRIVACY RISKS AND MEMORIZATION OF
SPURIOUS CORRELATED DATA

Chenxiang Zhang, Jun Pang & Sjouke Mauw
University of Luxembourg
chenxiang.zhang@uni.lu

ABSTRACT

Neural networks are vulnerable to privacy attacks aimed at stealing sensitive
data. The risks are amplified in real-world scenario when models are trained
on limited and biased data. In this work, we investigate the impact of spurious
correlation bias on privacy vulnerability. We introduce spurious privacy leakage,
a phenomenon where spurious groups are more vulnerable to privacy attacks
compared to other groups. Through empirical analysis, we counterintuitively
demonstrate that reducing spurious correlation fails to address the privacy disparity
between groups. This leads us to introduce a new perspective on privacy disparity
based on data memorization. We show that mitigating spurious correlation does
not reduce the degree of data memorization, and therefore, neither the privacy risks.
Our findings highlight the need to rethink privacy with spurious learning.

1 INTRODUCTION

Neural networks are applied across diverse domains such as face recognition, medical prognosis, or
personalized advertisement. All these applications are trained on user-sensitive data that can be of
interest to attackers (Shokri et al., 2017; Liu et al., 2021a; Mireshghallah et al., 2020; Yeom et al.,
2018). Additionally, real-world collected data are limited and often biased towards specific groups, a
subset of the dataset sharing a common characteristic (e.g. gender, ethnicity, or geographic location).
On top of the privacy concerns, models trained on real-world data can also inherit biases, causing
failures at test time (Sagawa et al., 2019; Geirhos et al., 2020; Shah et al., 2020). Therefore, models
deployed in sensitive domains should satisfy multiple constraints, such as ensuring fair performance
across groups and protection of sensitive data.

In this work, we focus on the spurious correlation bias, a statistical relationship between two variables
that appears to be causal but is either caused by a third confounding variable or random chance.
Spurious correlation has been widely studied in machine learning (Sagawa et al., 2019; Izmailov
et al., 2022; Yang et al., 2023) with the objective to improve the worst-group performance, however,
its privacy side-effect has been overlooked. On the other hand, privacy research typically focuses on
unbiased datasets such as CIFAR10 or CIFAR100 (Krizhevsky, 2009; Hu et al., 2022), overlooking
the privacy risks of sensitive applications that use limited and biased real-world datasets. We address
this gap by investigating the privacy of neural networks trained on spurious correlated real-world
datasets using membership inference attacks (MIA), a family of privacy attacks commonly used for
their simplicity and versatility (Murakonda & Shokri, 2020; Carlini et al., 2021).

Contributions. We observe a phenomenon we term spurious privacy leakage, where groups with
spurious correlation are significantly more vulnerable to MIA than other groups (Section 3.1). This
phenomenon adds the fairness requirement to the existing privacy challenges, modeling a realistic
scenario for data-sensitive applications. For example, privacy auditing may naively conclude that
a model satisfies the privacy requirements by evaluating on an aggregated average metric over the
entire dataset. However, spurious correlation can cause one group to be significantly more vulnerable
than others, violating the requirements for that specific group. Studying the group privacy disparity is
important to bridge and advance the privacy and spurious correlation research, to understand the risks
of the model, and to improve the auditing process.

We further investigate the consequences of spurious privacy leakage. Previous works suggested that
improving the generalization across groups can mitigate privacy disparity (Kulynych et al., 2022).
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However, to the best of our knowledge, there is no evidence to support the claim. To study this,
we use robust training methods (Sagawa et al., 2019; Kirichenko et al., 2022) to mitigate spurious
correlations and re-evaluate the privacy vulnerability. Surprisingly, even after the mitigation, we
observe no consistent privacy improvement (Section 4). This result leads us to introduce a new
perspective on group privacy disparity based on memorization (Zhang et al., 2021): spurious robust
training improves wort-class performance but do not reduce the memorization level of data compared
to standard training (Figure 3), and therefore neither it can mitigate the privacy risks. We release the
code at https://anonymous.4open.science/r/spurious-mia-6676.

2 BACKGROUND & RELATED WORK

We provide a concise introduction needed to follow the rest of the work including neural networks,
membership inference attacks, and spurious correlation.

Neural networks represent functions fθ : X → Y that map the input data x ∈ X to a label y ∈ Y .
The dataset D = {(xi,yi)} is a set of labeled pairs used for estimating the model parameters. The
neural network is parametrized by θ ∈ Rn and it is updated using a first-order optimizer to minimize
a loss function ℓ : Y × Y → R. We focus on the classification setting where the cross-entropy loss is
commonly used. Formally, the objective is the empirical risk minimization (ERM) (Vapnik, 1991):

θ̂ERM = argmin
θ

E(x,y)∈D(ℓ(y, fθ(x))

Spurious correlation is a statistical relationship between two variables X and Y that first appears
to be causal but in reality is either caused by a third confounding (e.g. spurious) variable Z or
due to random chance. This relationship is in contrast with causality, where the change of the
variable X leads to a direct and predictable outcome of Y while ruling out the presence of any
confounding factors Z. For a given dataset with spurious correlation, a feature z is called spurious
if it is correlated with the target label y in the training data but not in the test data. For example,
in a binary bird classification dataset where waterbirds mainly appear on a water background, a
biased model can exploit the background spurious feature instead of the bird invariant feature,
leading to a wrong prediction when the input is a waterbird on a land background (Sagawa et al.,
2019). Ideally, we would like to suppress the bias coming from the spurious features, which can be
expressed as Pr(y | x) = Pr(y | xinv, z) = Pr(y | xinv) where we decomposed the input x as a
combination of invariant features xinv and spurious features z. Sagawa et al. (2019) proposed the
group distributionally robust optimization (DRO) to mitigate spurious features. DRO minimizes the
worst-group loss, while ERM which minimizes the average loss:

θ̂DRO = argmin
θ

max
g∈G

E(x,y,g)∈D[ℓ(y, fθ(x))]

where the dataset is divided into g groups. The new dataset is D = {(xi,yi, gi)} where g ∈ G is
a discrete-valued label (e.g. all the combinations of birds and backgrounds or geographical area
information). DRO is considered an oracle method due to its explicit use of the group information for
the training (Liu et al., 2021b). Additional methods in the literature suppress the spurious features
by learning and assigning a different weight per sample (Liu et al., 2021b; Nam et al., 2020), by
retraining the classifier head at the end of the training (Kirichenko et al., 2022; Izmailov et al., 2022;
Kang et al., 2019), by group sampling (Yang et al., 2024; Idrissi et al., 2022), or using contrastive
methods (Zhang et al., 2022).

Membership inference attacks (MIA) aim to determine whether a specific input data was used
during the model training. MIA is usually used to audit a model’s privacy level thanks to its simplicity
(Murakonda & Shokri, 2020) and versatility for creating a more complex attack (Carlini et al., 2021).
The membership inference problem can be defined as learning a function A : X → [0, 1], where A
is the attacker model that takes input x ∈ X and outputs 1 if x was used during the model training.
We assume the black-box (Shokri et al., 2017) access to the target model, where the only target
information accessible is the output probability vector p. Shokri et al. (2017) introduced the first
MIA for neural networks with black-box access, where several shadow models are trained to mimic
the behavior of the target model. More advanced attacks have been developed based on the idea of
shadow models (Yeom et al., 2018; Liu et al., 2022; Carlini et al., 2022; Ye et al., 2022; Sablayrolles
et al., 2019; Watson et al., 2021; Long et al., 2020). In this work, we focus on the state-of-the-art LiRA
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method (Carlini et al., 2022). Given an input x, LiRA predicts its membership by training N shadow
models, each on a different subset of the dataset. Half of the models are named INs and contain x
and the other half named OUTs do not. Each shadow model IN outputs a confidence score ϕ(pshadow)
which is used to estimate the parameters of a Gaussian N (µin, σin), and in the same way, OUTs are
used to estimate N (µout, σout). Finally, the result of the attack is defined as a likelihood-ratio test:

Λ =
Pr(ϕ(ptarget) | N (µin, σin))

Pr(ϕ(ptarget) | N (µout, σout))

where ϕ(ptarget) = log(p/(1− p)) is the confidence score obtained by querying the target model
with x. The score Λ is used by the attacker to determine how likely it is that the given x is a member.

Privacy and safety. The intersection of privacy and ML safety topics has been extensively studied.
Wang et al. (2020) focused on how pruning can mitigate privacy attacks and Shokri et al. (2021)
explored the connection between privacy and explainability. Song et al. (2019) found that adversarial
training can increase privacy leakage, but Li et al. (2024) reported contradictory findings when using
a better evaluation (Carlini et al., 2022). In our work, we investigate the privacy risk of real-world
spurious correlated datasets, which is related to ensuring fairness across groups. Prior works on
privacy-fairness reported that subpopulations can exhibit varying levels of privacy risk (Truex et al.,
2019; Tian et al., 2024; Zhong et al., 2022; Kulynych et al., 2022). Tian et al. (2024) showed that
applying fairness methods can mildly mitigate MIA risks under an average metrics. Instead, we use a
per-group analysis, revealing the privacy disparity between different groups. Kulynych et al. (2022)
and Zhong et al. (2022) also investigated privacy disparity on synthetic and tabular datasets. They
hypothesize that group fairness improvements can be an effective mitigation methods. In Section 4,
we show that this approach does not address privacy disparities in real-world spurious datasets.
Similar to our setting, Yang et al. (2022) found that synthetic spurious datasets MNIST/CIFAR
have privacy disparity measured with an average privacy metric, which is suboptimal (Carlini et al.,
2022). We extend their results on real-world spurious datasets, showing that for certain datasets,
only state-of-the-art evalution with TPR at low FPR can reveal the privacy disparity, highlighting
the importance of re-evaluating prior works. Lastly, while it is known that out-of-distribution
samples have higher vulnerability (Carlini et al., 2022), real-world spurious correlated samples are by
definition in-distribution and have been overlooked. We provide a comprehensive set of results to
resolve the conflicts in the literature.

3 SPURIOUS CORRELATION AND PRIVACY RISKS

We demonstrate the differences in privacy leakage between spurious and non-spurious correlated
groups. Our results show that auditing the privacy level on the whole dataset is misleading in the
presence of spurious correlations (Carlini et al., 2022; Feldman & Zhang, 2020) where the spurious
groups can have significantly higher privacy leakage.

3.1 SPURIOUS PRIVACY LEAKAGE

Spurious correlations are characterized by the presence of spurious features. Assuming we have the
labels of the spurious features, learning with spurious correlation is equivalent to learning with an
imbalanced dataset. We refer to spurious groups as the minority groups with the worst performance
(e.g. worst-group accuracy) compared to the majority groups.

Experiment setup. We select the datasets that are used by the spurious correlation community (Yang
et al., 2023): Waterbirds (Sagawa et al., 2019), CelebA (Liu et al., 2014), FMoW (Koh et al., 2021),
MultiNLI (Williams et al., 2017), and CivilComments (Koh et al., 2021). These datasets contain real-
world spurious correlations, diverse modalities, and different target complexity (see Appendix A for
details). Moreover, to the best of our knowledge, we are the first to study MIA attacks on subgroups of
these realistic datasets. We use the pretrained ResNet50 (He et al., 2016) on ImageNet1k and finetune
using random crop and horizontal flip. For text datasets, BERT’s bert-base-uncased model (Devlin
et al., 2019) is used. We perform hyperparameter optimization for each dataset using a grid search
over learning rate (lr), weight decay (wd), and epochs. The grid search and its best hyperparameters
are in Appendix B. We report the training and test accuracy to evaluate the performance and their
difference to quantify the overfitting level. We do the same for the worst-group accuracy (WGA),
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Figure 1: Attack success rate divided per group on Waterbirds, CelebA, MultiNLI, and CivilCom-
ments respectively. Across the datasets, there is a spurious group (solid lines) with consistent higher
privacy leakage compared to non-spurious groups under the LiRA attack.

which is a commonly used proxy metric to measure the mitigation success of spurious features
(Sagawa et al., 2019). For privacy evaluation, we follow the guidelines from Carlini et al. (2022).
We train non-overfit models and report the full log-scale ROC curves, the true positive rate (TPR)
at a low false positive rate (FPR) region, and also the AUROC curve for completeness. We train 32
shadow models for Waterbirds/CelebA and 16 for FMoW/MultiNLI/CivilComments.

Across all the spurious correlated datasets, the group performance disparity is consistently present,
with the spurious groups having the lowest accuracy among all the groups (see Table 1). For example,
in Waterbirds, ERM has a test average accuracy of 81.08% while one of the spurious group only
34.41%. Beyond these performance disparity, we show that spurious correlations also cause privacy
issues. Using the state-of-the-art MIA method LiRA (Carlini et al., 2022), we analyze the privacy
leakage of each group of the five spurious correlated datasets. For each dataset, we train the shadow
models using 50% of the sampled training data as in the LiRA algorithm. We ensure that the sampled
subset maintains a similar group proportion as the original dataset by first sampling per group, and
then combining all the sampled groups together. Figure 1 shows that across the datasets, there exists
a spurious group that exhibits higher privacy leakage than non-spurious groups. The largest disparity
is observed at ≈3% FPR area of Waterbirds, where the samples in the most spurious group are
≈10 times more vulnerable than samples in the non-spurious group. At ≈0.1% FPR of CelebA,
we continue to observe a significant disparity, with the most spurious group being ≈10 times more
vulnerable than the least spurious group. In both the text datasets MultiNLI and CivilComments,
the disparity is persists with ≈4 times difference between the most and least vulnerable groups (see
Table 2 for the exact TPR at low FPR). The existence of spurious privacy leakage unfairly exposes
some data groups, allowing an attacker to craft better targeted attacks. Prior research focused on
privacy and fairness have observed the disparity between different subpopulations (Zhong et al.,
2022; Kulynych et al., 2022; Tian et al., 2024). Our results complement their findings by analyzing
real-world spurious correlated data, exposing the vulnerability of spurious groups. Surprisingly, we
do not observe spurious privacy leakage in FMoW, which we investigate in Appendix B.

Finding I. Spurious privacy leakage is present in real-world datasets, where spurious groups
can have disproportionately higher vulnerability to privacy attacks than other groups.

4 PRIVACY RISKS OF SPURIOUS ROBUST METHODS

Counterintuitively, we demonstrate that reducing the impact of spurious features does not mitigate
spurious privacy leakage. We train models using spurious robust methods and observe that the group
privacy disparity persists due to data memorization (Zhang et al., 2021).

Spurious correlations can be suppressed using robust training methods such as group distributional
robust optimization (DRO) (Sagawa et al., 2019) or deep feature reweighting (DFR) (Kirichenko
et al., 2022). Extensive benchmarks (Izmailov et al., 2022; Yang et al., 2023) report DRO and DFR
as the most effective methods for mitigating spurious correlations. DRO is referred as an oracle
method because it requires a group label to minimize the worst-group error in its objective function
(Liu et al., 2021b), while DFR achieves the highest average worst-group accuracy compared to 17
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Table 1: Robust methods DRO and DFR mitigate spurious features and improve WGA. The train-test
difference on the whole dataset is misleading to detect overfitting. One should monitor the train-test
difference for each group. *DRO fails to improve over ERM on FMoW and we omit it.

Data Model Train Acc. (↑) Test Acc. (↑) Diff. Acc. (↓) Train WGA (↑) Test WGA (↑) Diff. WGA (↓)

Waterb.
ERM 97.16 ± 0.11 81.12 ± 0.35 16.0 50.18 ± 2.70 34.30 ± 1.27 15.8
DRO 96.16 ± 0.23 86.42 ± 0.38 9.7 93.73 ± 0.44 78.12 ± 0.84 15.6
DFR 92.63 ± 1.13 85.98 ± 0.60 6.7 85.81 ± 1.95 77.67 ± 2.13 8.2

CelebA
ERM 97.12 ± 0.03 95.82 ± 0.06 1.3 62.81 ± 1.82 42.67 ± 0.62 20.2
DRO 94.47 ± 0.05 93.23 ± 0.21 1.2 91.84 ± 0.36 86.11 ± 0.89 5.7
DFR 95.43 ± 0.14 90.52 ± 0.22 4.9 89.46 ± 0.36 84.00 ± 0.60 5.4

MultiNLI
ERM 97.26 ± 0.04 80.74 ± 0.04 16.5 91.43 ± 0.79 61.76 ± 0.28 29.7
DRO 89.69 ± 0.09 78.76 ± 0.07 10.9 85.34 ± 0.23 72.96 ± 0.66 12.4
DFR 96.36 ± 0.14 79.17 ± 0.06 17.2 90.84 ± 0.11 71.33 ± 0.13 19.5

CivilCom.
ERM 97.45 ± 0.04 88.03 ± 0.06 9.4 90.41 ± 0.32 53.26 ± 0.59 37.1
DRO 90.00 ± 0.29 81.11 ± 0.31 8.9 81.84 ± 0.85 68.60 ± 0.47 13.2
DFR 86.88 ± 0.17 79.38 ± 0.05 7.5 77.49 ± 0.69 69.47 ± 0.26 8.0

FMoW*
ERM 91.58 ± 0.04 50.85 ± 0.08 40.7 90.84 ± 0.06 31.04 ± 0.20 59.8
DRO - - - - - -
DFR 91.20 ± 0.38 48.62 ± 0.09 42.6 88.57 ± 0.55 32.44 ± 0.34 56.1

Table 2: Comparing the privacy of spurious ro-
bust methods. Despite improving the WGA,
DRO and DFR do not consistently mitigate the
privacy attack across datasets. *Waterbirds is
evaluated at ≈3% FPR due to the limited sam-
ples. The spurious groups are highlighted .

TPR @ 0.1% FPR (↓)

Data ERM DRO DFR

Waterb.* 3.12 ± 0.10 3.12 ± 0.11 3.13 ± 0.10
30.91 ± 2.81 31.06 ± 2.76 33.20 ± 2.83

CelebA 0.27 ± 0.01 0.26 ± 0.01 0.26 ± 0.01
4.61 ± 0.50 4.56 ± 0.48 4.77 ± 0.46

MultiNLI 5.88 ± 0.42 5.73 ± 0.45 5.86 ± 0.40
8.26 ± 0.55 9.08 ± 1.37 7.78 ± 0.57

CivilCom. 0.10 ± 0.02 0.14 ± 0.03 0.12 ± 0.03
0.44 ± 0.10 0.43 ± 0.17 0.32 ± 0.12

FMoW 7.45 ± 0.27 - 7.61 ± 0.28
6.30 ± 1.80 - 6.42 ± 1.80
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Figure 2: Memorization score per group for each
method. Robust methods DRO and DFR do not
mitigate the data memorization and therefore
neither the privacy leakage.

spurious robust methods across 12 datasets (Yang et al., 2023). Therefore, we choose these methods
for our analysis, comparing the privacy leakage of ERM, DRO, and DFR.

Experiment setup. For each dataset and training method, we train the shadow models by following
the same LiRA setup as in Section 3. We ensure that models across different training methods use the
same subset of data by fixing the random seeds. For privacy evaluation, we train non-overfit models
by monitoring the difference between the train-val losses (Yeom et al., 2018).

Per-group overfitting. The performance results in Table 1 show the average and worst-group
accuracy of robust training methods for all five datasets. We highlight that relying only on the average
train-test accuracy difference can be misleading in detecting overfitting. When comparing two models,
the first can have a lower average train-test difference but a higher train-test difference in one of the
groups. For example in CelebA, the ERM method has a lower average difference than DFR (1.3%
vs 4.9%) but a higher WGA difference (20.2% vs 5.4%). The same pattern can be observed for
MultiNLI and FMoW. To truly avoid overfitting, we recommend assessing the performance disparity
of all the groups.

Robust methods do not mitigate privacy leakage. Yeom et al. (2018) demonstrated that overfitting is
a sufficient condition for MIA to succeed. Moreover, Kulynych et al. (2022) suggested that improving
group performance fairness can mitigate the privacy disparity. However, to the best of our knowledge,

5



Published as an SCSL Workshop Paper at ICLR 2025

there is no evidence to support the claim. Therefore, does mitigating performance disparity really
mitigate spurious privacy leakage? Firstly, we confirmed that spurious robust methods DRO and
DFR significantly improve the WGA compared to ERM by mitigating the spurious correlation (see
Table 1). Then, we run LiRA using ERM trained shadow models and ERM, DRO, and DFR as targets.
Table 2 report the privacy attack success rate for each dataset, group, and training method. The
average privacy at low FPR (“T” rows) is mitigated across datasets (see Appendix, Table 5). Tian
et al. (2024) observed similar results using fairness methods. However, our per-group analysis reveal
additional insight over the average analysis. The privacy leakage for spurious groups stay consistent
for ERM, DRO, and DFR across datasets, indicating that the spurious privacy leakage issue persists
despite successfully mitigating spurious correlations. Our results may be surprising, but overfitting is
only a sufficient and not a necessary condition for MIA to succeed (Yeom et al., 2018). We provide
another perspective on privacy disparity based on memorization.

Finding II. Spurious robust training reduce group performance disparity but fail to address
spurious privacy leakage on real-world datasets.

Spurious privacy leakage and memorization. We provide an alternative view of the spurious
privacy leakage phenomenon using the memorization score of data, which is also responsible for
the success of MIA (Feldman, 2020; Feldman & Zhang, 2020; Carlini et al., 2022). Firstly, we
demonstrate that spurious groups are more vulnerable to LiRA due to a higher memorization score
compared to other groups (see Appendix B.2). Additionally, our results in Figure 2 confirm that
spurious robust methods DRO and DFR do not reduce the memorization score. In particular, ERM
and DFR share a similar distribution of memorization scores for both spurious and non-spurious
groups. This is because DFR only retrains the last layer but the sample memorization is distributed
across different layers (Feldman & Zhang, 2020; Maini et al., 2023). Therefore, DFR can hardly
affect memorization and privacy despite mitigating the group fairness. DRO has a similar privacy
leakage (Table 2) and memorization to ERM and DFR for non spurious groups, but even higher
memorization for spurious groups. Izmailov et al. (2022) showed that DRO acts as DFR by learning
not better features, but a better reweighting of a similar set of features, which can explain the similar
privacy leakage of DRO, ERM, and DFR.

Finding III. Spurious correlated data have higher memorization score than non-spurious data
even after mitigating spurious correlation using state-of-the-art robust methods.

5 CONCLUSION

Our findings confirm critical privacy concerns when training neural networks on real-world datasets
with spurious correlations. The existence of spurious privacy leakage makes spurious data more
vulnerable to privacy attacks than non-spurious data. Leveraging this information, an attacker can
craft more powerful attacks targeting specific demographic groups. We emphasize the need to avoid
aggregate metrics over the entire dataset, instead, privacy audits must include fine-grained group-level
analyses to ensure performance and privacy fairness. Moreover, we show that state-of-the-art spurious
robust training mitigate spurious correlations but do not affect spurious privacy leakage. Our results
present opportunities for future research on privacy and spurious correlations focused on mitigating
data memorization as a potential solution.

Impact. Our work impacts the machine learning communities concerned with bias, fairness, and
security. Understanding the connection between spurious correlations and privacy is important for
assessing the risks for data-sensitive domains. In particular, we suggest practitioners working in
auditing to carefully assess privacy disparities.

Limitations. Our results are based on a state-of-the-art attack-based evaluation rather than analytical
guarantees. While our approach is more practical and provides realistic empirical evidence, it is
limited to the choice of our experiment settings.

Reproducibility. We have made our code publicly available through an anonymized repository
(Section 1). Details for each experiment setup are presented in the respective sections, along with the
corresponding grid search and the best hyperparameters in the appendix (see Table 3).
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APPENDIX

We report the dataset details, additional results on group privacy disparity, a comparison of different
membership inference attack methods, define and show the memorization score for each dataset, and
more results on differential privacy and model architectures.

A DATASET

Waterbirds Sagawa et al. (2019). Vision dataset where the task is to classify whether landbird or
waterbird. The background is the spurious feature represented as water or land background. The
presence of the spurious features induces four data groups: landbird on land background, landbird on
water background, waterbird on water background, and waterbird on land background. The groups
have respectively 3498, 184, 1057, and 56 samples. Therefore, the type of bird is spurious correlated
with the same type of background.

CelebA Liu et al. (2014). Vision dataset where the task is to classify whether a celebrity is a male or
female. The hair color is the spurious features represented as dark or blonde hair. The presence of
spurious features induces four data groups: female with blonde hair, female with dark hair, male with
dark hair, and male with blonde hair. The groups have respectively 71629, 66874, 22880, and 1387
samples. Therefore, blonde hair is spurious correlated with female celebrities.

FMoW Koh et al. (2021). Vision dataset where the task is to identify between 62 classes the type
of land usage, e.g. hospital, airport, single or multi-use residential area. The geographical location
is the spurious feature representing the continents: Asia, Europe, Africa, Americas, and Oceania.
The groups have respectively 17809, 34816, 1582, 20973, and 1641 samples whereas the African
countries have the majority of samples as single-use residential areas (36%). Therefore, samples
collected from Africa are spurious correlated with the single-unit residential areas. Moreover, the test
set presents a distribution shift with samples collected from different years.

MultiNLI Williams et al. (2017). Text dataset where the task is to identify the relationship between
two pairs of text as a contradiction, entailment, or neither. The negation is the spurious feature
usually found in the contradiction class. The presence of the spurious feature induces six data groups:
contradiction without negation, contradiction with negation, entailment without negation, entailment
with negation, neutral without negation, and neutral with negation. The groups have respectively
57498, 11158, 67376, 1521, 66630, and 1991 samples. Therefore, samples with the spurious feature
negation are correlated with the contradiction class.

CivilComments Koh et al. (2021). Text dataset with the task of detecting toxic comments of online
articles. The demographic identities (male, female, LGBTQ, Christian, Muslim, other religions,
Black, and White) combined with the target (toxic or not) divides the dataset into 16 groups groups.
The group “other religions” is spurious correlated with the target. The groups have respectively
16568, 26846, 5638, 27824, 11064, 4402, 4727, 9812, 2435, 3928, 1865, 1867, 2964, 608, 2076, and
3462 samples.

B SPURIOUS PRIVACY LEAKAGE

We report additional technical details related to Section 3 and include additional results: comparing
different membership inference attacks on spurious data, demonstrating how memorization of spurious
data causes higher privacy leakage.

Hyperparameters. For Section 3, we apply grid search to find the best hyperparameters for each
dataset. For Waterbirds and CelebA we search the learning rate between [1e-3, 1e-4] and weight
decay [1e-1, 1e-2, 1e-3]. For FMoW the learning rate [1e-3, 3e-3, 1e-4, 3e-4], weight decay [1e-1,
1e-2, 1e-3], and epochs [20, 30, 40]. For MultiNLI the learning rate [1e-5, 3e-5], weight decay
[1e-5, 1e-4]. For CivilComments the learning rate [1e-5, 1e-6], weight decay [1e-3, 1e-4]. The best
hyperparameters are reported at Table 3.
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Table 3: Hyperparameters used to train shadow models for each dataset. Adapted from the hyperpa-
rameters of Izmailov et al. (2022). Since we trained the models using LiRA algorithm with 50% of
the total dataset, we had to grid search and validate on the validation set.

Data Optim Batch size LR WD Epochs C

Waterbirds SGD 32 1e-3 1e-2 100 1
CelebA SGD 32 1e-3 1e-2 20 5
FMoW SGD 32 3e-3 1e-2 20 1
MultiNLI AdamW 16 1e-5 1e-4 5 8
CivilComments AdamW 32 1e-5 1e-4 5 8

B.1 MEMBERSHIP INFERENCE ATTACKS COMPARISON

Most of the previous MIAs are limited by the assumption that all the samples have the same level of
importance (or hardness) (Yeom et al., 2018; Shokri et al., 2017), which is incorrect since natural
data follow a long-tail distribution (Feldman, 2020). We compare three different state-of-the-art
MIAs and show that the phenomenon of spurious privacy leakage exists regardless of the attack used.
We use two different versions of LiRA (Carlini et al., 2022), online and offline, and TrajMIA (Liu
et al., 2022). The results in Table 4 show that all the methods successfully reveal the disparity on
Waterbirds, and LiRA online is the strongest attack on vulnerable groups.

Table 4: Comparing the attack success rate of different membership inference attacks on ERM models
trained with Waterbirds. All the methods can be used to identify the privacy disparity, but LiRA poses
a greater risk for more vulnerable spurious groups. *TPRs are reported at ~1% and ~3% for groups 1
and 2 respectively due to their limited sample size. The spurious groups are highlighted .

TPR @ 0.1% FPR (↑) AUROC (↑)

Group LiRA LiRA (offline) TrajMIA LiRA LiRA (offline) TrajMIA

1 0.22 ± 0.03 0.14 ± 0.02 1.67 ± 3.27 51.78 ± 0.15 49.97 ± 0.22 58.20 ± 3.42
2* 10.87 ± 1.18 5.39 ± 0.78 3.18 ± 0.47 75.07 ± 0.54 61.32 ± 1.01 70.28 ± 1.22
3* 30.91 ± 2.81 18.98 ± 2.13 14.60 ± 1.69 85.83 ± 0.76 69.50 ± 1.67 86.16 ± 2.55
4 1.73 ± 0.19 0.83 ± 0.11 6.57 ± 0.59 60.52 ± 0.34 53.63 ± 0.42 72.40 ± 2.31
T 1.16 ± 0.07 0.44 ± 0.04 1.68 ± 0.00 55.44 ± 0.14 51.43 ± 0.16 74.74 ± 0.00

B.2 MEMORIZATION SCORE OF SPURIOUS GROUPS

Feldman (2020) introduced the notion of label memorization (Definition B.1) as the difference in
the label of a model trained with or without x. We use the models from the LiRA algorithm from
Section 3.1 to approximate the memorization score. Carlini et al. (2022) proposed the privacy score
d = |µin −µout|/(σin +σout) to measure the difference between the loss distributions coming from IN
and OUT shadow models of LiRA. Note that both mem(.) and d measure the difference between two
probability distributions conditioned on D and D \ {i} but with a different level of granularity; label
memorization is coarser than d and collapses the whole distributions to a single scalar, the probability
of outputting the correct label.

Definition B.1 (Label memorization). Label memorization is the difference in the output label of a
model f ∼ A(D) fit on the dataset D with or without a specific data point (xi,yi) ∼ D. Formally,
mem(A, D, i) =

∣∣Prf∼A(D) (f(xi) = yi)− Prf∼A(D\{i}) (f(xi) = yi)
∣∣

We compute d for each data point and use a Gaussian kernel density estimator to fit each group.
The results in Fig. 3 show the estimated frequency of the memorization score for the whole dataset
divided per group. We observe that the spurious groups have, on average, higher memorization scores
compared to non-spurious groups (except for FMoW as in Fig. 1). The increase can be attributed
to the presence of spurious features, which turn typical examples into atypical ones that the model
has to memorize. A higher memorization score is known to be linked to a higher vulnerability under
privacy attacks (Feldman, 2020), which matches what we observed previously.
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Figure 3: Memorization score divided per group on Waterbirds, CelebA, MultiNLI, and CivilCom-
ments respectively. Spurious correlated groups (solid lines) have on average a higher memorization
score than non-spurious groups, which indicates that models treat spurious groups as atypical exam-
ples. In the FMoW dataset, all the groups have similar levels of memorization.

B.3 TASK COMPLEXITY AND PRIVACY LEAKAGE

The FMoW dataset has similar privacy vulnerabilities across the groups. FMoW is a more challenging
task with 62 classes compared to 2 of Waterbirds. Given a fixed dataset, we show that the number of
classes is related to the feature complexity and spurious privacy leakage.

Experiment setup. We create two new datasets with 16 (FMoW16) and 4 (FMoW4) classes by
sequentially clustering the 62 classes of the original FMoW. We train 16 shadow models for each
dataset as in Section 3.1 and use LiRA for privacy analysis. The results are averaged over 5 different
target models.

Figure 4a shows the decrease of average privacy risk over the total dataset as the task simplifies from
62 to 4 classes (black dot-dashed line). This observation is consistent with prior works on balanced
datasets, such as the higher vulnerability in CIFAR100 compared to CIFAR10 (Shokri et al., 2017;
Carlini et al., 2022). Interestingly, when zooming in on the dataset using our per-group analysis, we
observe that the group privacy disparity emerges between the spurious and non-spurious groups as
the task simplifies. While the leakage for most of the groups drops, the spurious group 2 remains
consistently vulnerable at 6% TPR at 0.1% FPR across the dataset with different classes.

We hypothesize that spurious groups are characterized by similar and fewer discriminative features
across tasks (FMoW62 and FMoW4), causing spurious privacy leakage. Firstly, we show that the
embeddings of the spurious group between FMoW62 and FMoW4 are more similar than the other
groups. We use the linear centered kernel alignment (CKA, Kornblith et al. (2019)) to quantify
the similarity between the pre-layer layer embeddings. Figure 4b shows that the spurious group
(blue-colored bar) has the highest CKA embedding similarity among all the groups, confirming a
higher number of discriminative features in common. Secondly, we show that as the task simplifies,
fewer discriminative features are learned. We use the PCA on the same embeddings and compute its
explained variance. The results in Figure 4c show that the FMoW4’s feature embeddings variance can
be explained with fewer features than FMoW62, indicating simpler learned features. Additionally, for
each dataset, spurious groups require fewer features than non-spurious groups to explain the variance.
These analysis support our hypothesis, showing that spurious privacy leakage depends on the task
complexity.

C ROBUST TRAINING

We report additional technical details related to Section 4 and include an additional result analyzing
the privacy side effect of choosing L2 vs L1 regularization in DFR.

Hyperparameters. We use the same hyperparameters as in Table 3. Robust training DRO requires
an extra hyperparameter C. For Waterbirds and CelebA we tune C within [0, 1, 2, 3, 4], for FMoW
[0, 1, 2, 4, 8, 16], and for MultiNLI and CivilComments [0, 1, 2, 4, 8, 16]. For DFR, we do not
use the validation set for retraining but use a group-balanced subset sampled from the training set.
This allows a fairer comparison with other methods by not exploiting additional data, and it is also
necessary for a fair privacy analysis since adding extra data invalidates the membership inference
comparison.
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Figure 4: (a) Group privacy disparity increases as the target complexity reduces from FMoW62 to
FMoW4. The solid line, representing the spurious group 2, remains constant while the other groups
become less vulnerable. (b) Embeddings similarity of each group between FMoW62 and FMoW4
using linear CKA. The most similar group is the spurious group 2 colored in blue. (c) Feature
complexity using explainable variance for embeddings of models trained on FMoW62 and FMoW4.
FMoW4 requires only 3 principal components compared to 25 of FMoW62 to explain ≈ 95% of the
variance. Additionally, spurious groups need fewer components than non-spurious groups.

Experiment setup. For the LiRA attack, we train 32 ERM shadow models for Waterbirds and CelebA
and 16 ERM shadow models for FMoW, MultiNLI, and CivilComments. We also train 5 DRO and
DFR models for all the datasets. We use the online version of LiRA with a fixed variance for all
the attacks to audit the privacy level. Table 2 reports the mean and standard error of using the ERM
trained shadow models to attack 32 target models for each training type of Waterbirds and CelebA,
and 5 for FMoW and MultiNLI.

D COMPUTE RESOURCES

All the experiments are run on our internal cluster with the GPU Tesla V100 16GB/32GB of memory.
We give an estimate of the amount of compute required for each experiment. For Section 3, we trained
96 shadow models for Waterbirds and CelebA, and 48 for FMoW, MultiNLI, and CivilComments
which took ~600 hours of computing. We trained 16 shadow models for FMoW4 and FMoW16
which took another ~100 hours. The full research required additional computing for hyperparameter
grid searches.

13



Published as an SCSL Workshop Paper at ICLR 2025

Table 5: Comparing the attack success rate of different training methods for spurious and non-spurious
groups. This it the full version of the Table 2 in the main text. The spurious groups are highlighted .
*The spurious groups 1 and 2 of Waterbirds are evaluated at 1% and 3% respectively due to the limited
samples. DRO fails to improve the accuracy on FMoW after an extensive grid search, therefore we
omit it.

TPR @ 0.1% FPR (↓) AUROC (↓)

Data Group (n) ERM DRO DFR ERM DRO DFR

Waterb.

0 (1749) 0.22 ± 0.03 0.22 ± 0.03 0.22 ± 0.03 51.78 ± 0.15 51.59 ± 0.16 51.64 ± 0.16
1 (92)* 10.87 ± 1.18 10.91 ± 1.08 11.16 ± 1.20 75.07 ± 0.54 74.69 ± 0.58 75.15 ± 0.52
2 (28)* 30.91 ± 2.81 31.06 ± 2.76 33.20 ± 2.83 85.83 ± 0.76 85.54 ± 0.77 86.17 ± 0.79
3 (528) 1.73 ± 0.19 1.73 ± 0.19 1.91 ± 0.20 60.52 ± 0.34 60.33 ± 0.42 60.66 ± 0.33
T (2397) 1.16 ± 0.07 1.13 ± 0.06 1.19 ± 0.06 55.44 ± 0.14 55.23 ± 0.17 55.39 ± 0.15

CelebA

0 (35814) 0.53 ± 0.01 0.51 ± 0.02 0.52 ± 0.02 53.12 ± 0.05 52.89 ± 0.15 53.04 ± 0.11
1 (33437) 0.27 ± 0.01 0.26 ± 0.01 0.26 ± 0.01 50.58 ± 0.05 50.48 ± 0.10 50.56 ± 0.06
2 (11440) 1.64 ± 0.05 1.58 ± 0.06 1.62 ± 0.05 59.77 ± 0.08 59.44 ± 0.26 59.36 ± 0.26
3 (693) 4.61 ± 0.50 4.56 ± 0.48 4.77 ± 0.46 80.51 ± 0.21 79.95 ± 0.52 80.00 ± 0.48
T (81384) 0.76 ± 0.01 0.73 ± 0.02 0.74 ± 0.01 53.43 ± 0.04 53.22 ± 0.14 53.30 ± 0.11

MultiNLI

0 (14374) 6.95 ± 0.66 6.65 ± 0.61 6.78 ± 0.62 74.36 ± 0.36 74.23 ± 0.40 74.26 ± 0.34
1 (2789) 2.03 ± 0.21 2.12 ± 0.22 2.13 ± 0.21 56.81 ± 1.21 56.95 ± 1.37 56.98 ± 1.36
2 (16844) 5.88 ± 0.42 5.73 ± 0.45 5.86 ± 0.40 72.04 ± 0.31 71.93 ± 0.30 72.01 ± 0.30
3 (380) 6.14 ± 1.84 5.66 ± 1.73 6.22 ± 1.84 77.41 ± 0.33 77.28 ± 0.27 77.25 ± 0.30
4 (16657) 5.81 ± 0.25 5.67 ± 0.25 5.85 ± 0.28 75.83 ± 0.15 75.64 ± 0.20 75.67 ± 0.13
5 (498) 8.26 ± 0.55 9.08 ± 1.37 7.78 ± 0.57 83.70 ± 0.53 83.49 ± 0.61 83.59 ± 0.57
T (51542) 5.95 ± 0.42 5.83 ± 0.44 5.93 ± 0.42 73.44 ± 0.16 73.31 ± 0.19 73.33 ± 0.13

CivilCom.

0 (8284) 0.13 ± 0.02 0.12 ± 0.02 0.10 ± 0.02 50.46 ± 0.14 50.59 ± 0.36 50.55 ± 0.36
1 (13423) 0.12 ± 0.03 0.12 ± 0.02 0.13 ± 0.02 50.38 ± 0.22 50.68 ± 0.47 50.68 ± 0.46
2 (2819) 0.16 ± 0.04 0.11 ± 0.03 0.13 ± 0.03 49.79 ± 0.38 50.19 ± 0.26 49.97 ± 0.24
3 (13912) 0.10 ± 0.02 0.14 ± 0.03 0.12 ± 0.03 50.60 ± 0.25 50.44 ± 0.24 50.40 ± 0.24
4 (5532) 0.11 ± 0.01 0.12 ± 0.02 0.13 ± 0.01 50.09 ± 0.18 50.55 ± 0.22 50.56 ± 0.22
5 (2201) 0.23 ± 0.07 0.30 ± 0.09 0.18 ± 0.05 50.59 ± 0.44 50.82 ± 0.42 50.84 ± 0.38
6 (2363) 0.08 ± 0.06 0.07 ± 0.05 0.08 ± 0.06 49.60 ± 0.25 50.03 ± 0.22 50.18 ± 0.21
7 (4906) 0.11 ± 0.02 0.13 ± 0.04 0.09 ± 0.02 50.07 ± 0.36 50.00 ± 0.28 50.08 ± 0.22
8 (1217) 0.20 ± 0.07 0.11 ± 0.05 0.14 ± 0.07 50.03 ± 0.34 49.55 ± 0.59 50.22 ± 0.49
9 (1964) 0.21 ± 0.06 0.16 ± 0.04 0.18 ± 0.04 49.99 ± 0.44 49.91 ± 0.22 49.81 ± 0.39
10 (932) 0.11 ± 0.04 0.11 ± 0.04 0.11 ± 0.04 50.13 ± 0.86 50.51 ± 1.01 50.64 ± 0.96
11 (933) 0.07 ± 0.04 0.21 ± 0.12 0.24 ± 0.11 49.31 ± 0.69 48.87 ± 0.61 48.75 ± 0.60
12 (1482) 0.02 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 49.66 ± 0.24 50.23 ± 0.44 49.84 ± 0.33
13 (304) 0.44 ± 0.10 0.43 ± 0.17 0.32 ± 0.12 50.72 ± 1.70 50.91 ± 1.86 50.53 ± 1.71
14 (1038) 0.22 ± 0.11 0.19 ± 0.11 0.26 ± 0.12 51.84 ± 0.59 51.84 ± 0.63 51.80 ± 0.56
15 (1731) 0.38 ± 0.10 0.26 ± 0.07 0.30 ± 0.09 49.78 ± 0.48 50.25 ± 0.62 49.76 ± 0.47
T (38018) 0.09 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 50.24 ± 0.07 50.41 ± 0.11 50.38 ± 0.09

FMoW

0 (8904) 5.14 ± 0.41 - 5.22 ± 0.37 83.70 ± 0.05 - 83.60 ± 0.05
1 (17408) 7.45 ± 0.27 - 7.61 ± 0.28 85.12 ± 0.07 - 84.96 ± 0.08
2 (791) 6.30 ± 1.80 - 6.42 ± 1.80 81.54 ± 0.22 - 81.62 ± 0.24
3 (10486) 5.53 ± 0.31 - 5.69 ± 0.32 82.85 ± 0.13 - 82.74 ± 0.13
4 (820) 4.61 ± 0.95 - 5.34 ± 0.88 80.37 ± 0.45 - 80.26 ± 0.52
T (38409) 6.54 ± 0.21 - 6.47 ± 0.17 84.02 ± 0.05 - 83.90 ± 0.03
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