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Abstract

Despite ongoing efforts to defend neural classifiers from adversarial attacks, they
remain vulnerable, especially to unseen attacks. In contrast, humans are difficult
to be cheated by subtle manipulations, since we make judgments only based on
essential factors. Inspired by this observation, we attempt to model label generation
with essential label-causative factors and incorporate label-non-causative factors
to assist data generation. For an adversarial example, we aim to discriminate the
perturbations as non-causative factors and make predictions only based on the label-
causative factors. Concretely, we propose a casual diffusion model (CausalDiff) that
adapts diffusion models for conditional data generation and disentangles the two
types of casual factors by learning towards a novel casual information bottleneck
objective. Empirically, CausalDiff has significantly outperformed state-of-the-art
defense methods on various unseen attacks, achieving an average robustness of
86.39% (+4.01%) on CIFAR-10, 56.25% (+3.13%) on CIFAR-100, and 82.62%
(+4.93%) on GTSRB (German Traffic Sign Recognition Benchmark). The code is
available at https://github.com/CAS-AISafetyBasicResearchGroup/CausalDiff.

1 Introduction

Neural classifiers, despite their impressive performance in various applications, are susceptible
to adversarial attacks [1, 2], which can deceive them into making erroneous judgments on subtly
manipulated examples. Such vulnerabilities pose severe threats in safety-critical scenarios such as
face recognition [3, 4] and autonomous driving [5]. There has been extensive work on defending
against adversarial attacks such as certified defenses [6, 7], adversarial training [8, 9], and adversarial
purification Samangouei et al. [10].
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Figure 1: Illustration of training (Left) and inference (Right) processes of our proposed CausalDiff
model. During training, the model constructs a structural causal model leveraging a conditional
diffusion model, disentangling the (label) Y-causative feature S and the Y-non-causative feature Z
through maximization of the Causal Information Bottleneck (CIB). In the inference stage, CausalDiff
first purifies an adversarial example X̃ , yielded by perturbing X according to the target victim model
parameterized by θ, to obtain the benign counterpart X∗. Then, it infers the Y-causative feature S∗

for label prediction. We visualize the vectors of S and Z inferred from a perturbed image of a horse
using a diffusion model. We find that S captures the general concept of a horse, even when the input
image only shows the head, while Z carries information about the horse’s skin color.

Although effective, these methods have some limitations. Certified defense methods have limited
practicality due to the small certified region that can theoretically guarantee robustness. Adversarial
training approaches suffer from a significant decline in robustness against unseen attacks since they
take effect by adding adversarial examples into the training set. Purification methods, not designed
for specific attacks, struggle to determine the optimal denoising level for unforeseen attacks with
differing degrees of perturbation. Consequently, they face challenges in effectively defending against
unseen attacks.

In reality, attack behaviors are often unpredictable. Is there a way of strengthening a model to
act like humans, i.e., be insensitive to subtle perturbations and robust against various unforeseen
attacks? Given an image of an object, we typically identify the key visual features that are necessary to
determine its category and disregard other factors such as styles, backgrounds, details, or perturbations.
This allows us to make robust judgments. Inspired by this human decision-making process, we would
like to learn a model that can disentangle the essential features for determining the category from
other non-essential ones.

It is natural to treat the essential features as the causal factors of the label, and both essential and the
other features as the causal factors of the entire image. Then, we can learn to disentangle them by
modeling the process of data generation and label prediction with a structural causal model (SCM)
[11, 12](shown in Fig. 1 (Left)). According to the theoretical results provided by Liu et al. [13], the
identifiability of such SCMs can be guaranteed under mild conditions. Although similar SCMs have
also been employed in modeling the generation of multi-domain data [14] and adversarial examples
[15, 16], they either aim to enhance out-of-distribution robustness or protect the model from a certain
type of attack. In contrast, our research focuses on modeling the generation of native in-domain data
to enhance adversarial robustness against various unseen attacks.

Fig. 1 (Left) depicts our SCM, where Y denotes the category (e.g., horse) of an input image X;
S denotes the essential semantic features of determining Y (i.e., Y -causative factors), such as the
characteristics of eyes, ears, nose, mouth, etc. of horses; and Z represents the other features (i.e.,
Y -non-causative factors) that are not needed to predict Y but are important to generate X , such as
the fur color and the image background. Given an adversarial example produced by an unknown
attack, our model aims to disentangle its Y -causative features S from the spurious factors in Z and
make a robust prediction. To successfully learn the disentanglement, our SCM is guided by the tasks
of data generation and label prediction, where there are three major challenges:

1) How do we model the conditional generation of X given S and Z effectively? To this end, we
employ a well-recognized diffusion model with state-of-the-art (SOTA) generative performance and
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efficiency, i.e., the Denoising Diffusion Probabilistic Model (DDPM) [17], as the backbone. We
further adapt it for conditional generation from latent variables rather than random noise. 2) What
training objective should we use to effectively learn the disentanglement of S and Z? With this
regard, we propose a Causal Information Bottleneck (CIB) optimization objective. CIB aligns the
information in the latent variables (S,Z) with observed variables (X,Y ) with a bottleneck set by the
mutual information (MI) between S,Z and X . The derived function will minimize the MI between
S and Z while learning the other causal relations, ensuring their disentanglement within the causal
framework. 3) Given an adversarial example, what inference strategies shall we adopt to make robust
predictions? As shown in Fig. 1 (Right), according to how the adversarial example X̃ is generated,
we first purify it to yield a benign example X∗ and then infer the Y-causative factor S based on X∗

for final classification. We name the entire causal defense framework based on diffusion models as
CausalDiff.

The experimental results on facing various unseen attacks, encompassing both black-box and white-
box ones, show that CausalDiff has superior performance compared to representative adversarial
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Figure 2: Adversarial robustness of four mod-
els against 100-step PGD attack under varying
attack strength indicated by ϵ-budget.

Table 1: The experimental results of four models
on toy data. The variation of latent v and logits
p(y|v) is measured between clean and adversarial
examples. The model margin is estimated by the
minimal adversarial perturbation required to flip
the label, employing both ℓ2 and ℓ∞ norm.

Model △ v ↓ △ p(y|v) ↓ margin ↑
(ℓ2 / ℓ∞)

Discriminative 1.15 0.81 2.14 / 0.38
Generative 0.06 0.27 1.12 / 0.24
Causalw/o Disent. 0.29 0.32 9.58 / 5.30
Causalw/ Disent. 0.27 0.22 10.64 / 6.28

defense baselines including state-of-the-art (SOTA) methods. Specifically, our CausalDiff achieves
robustness of 86.39% (+4.01%) on CIFAR10, 56.25% (+3.13%) on CIFAR-100 [18], and 81.79%
(+4.93%) on GTSRB [19].

In summary, we highlight our contributions as follows: 1) We propose a novel causal diffusion
framework (CausalDiff) to defend against unseen attacks by modeling the generation of native in-
domain data with the category(Y)-causative factors and the other Y-non-causal factors; 2) We propose
a Causal Information Bottleneck (CIB) objective to disentangle Y-causative from Y-non-causative
factors during causal model training and an associated inference algorithm for adversarial defense; 3)
CausalDiff significantly outperforms SOTA methods in defending against various unseen attacks.

2 Related Work

Adversarial Defense. Adversarial training primarily focuses on optimizing the training algorithm
[8, 20, 21], incorporating data augmentation [22, 23, 9], and enhancing acceleration [24, 25]. Despite
its effectiveness, the trained models could still be vulnerable to unseen attacks [26, 27]. Adver-
sarial purification, orthogonal to our work, utilizes a generative model to purify adversarial noise
from examples before classification. Leveraging diffusion models [28, 17, 29, 30], diffusion-based
purification have shown to be effective [31–35, 27].

Causal Learning for Robustness. Causal representation learning [12, 36, 14, 37] focuses on discov-
ering invariant mechanisms within structural causal models and has achieved remarkable performance
in improving model transferability [14, 13, 38–40] and interpretability [41, 42]. Moreover, in terms
of adversarial robustness, researchers [43, 15, 44, 45, 16, 46–48] have attempted to model the attack
behaviors in causal structures to identify the adversarial factors. However, modeling particular attack
types will limit the model robustness on other types of attacks [27].

Conditional Diffusion Model. Diffusion models [28, 17, 29, 30, 49] have achieved compelling
image generation capabilities. To equip them with the ability of controllable generation, the sampling
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process can be guided by 1) classifier confidence to generate images of a certain category [30, 50, 51],
and 2) semantic embedding of text content or a certain style [52–55].

3 Pilot Study on Toy Data

(a) Discriminative

y=0
y=1

(b) Generative (c) Causalwithout Disent. (d) Causalwith Disent.

Figure 3: Visualizations of feature space for the two categories on toy data by T-SNE for (a)
discriminative model, (b) generative model, (c) causal model without disentanglement, and (d) causal
model with disentanglement.

To compare our proposed causal model with other representative models in terms of adversarial
robustness, we constructed a toy dataset according to the hypothesis that the essential factors are the
basis of generating labels and they also determine the generation of data together with label-non-
causative features. Pilot studies on this toy data will provide insights into whether our causal model
will work and why it works.

3.1 Experimental Settings

Toy Data Construction. We constructed 2000 samples following the causal structure in Fig. 1 (Left).
Specifically, for each data point, we randomly sample the vectors s and z from two different normal
distributions, project s to a score ys with random weights, obtain its label by comparing ys with the
medium score, and generate the representation x by projecting the concatenation [s; z] with another
random matrix. Please refer to Appendix B.3 for detailed information.

Models for Comparisons. We investigated four representative models: 1) a Discriminative model
for classification, 2) a Generative model that predicts the label of an adversarial example with
maxy p(x|y) [27], 3) a causal model without disentanglement (Causalwithout Disent.) that models
the generation of both x and y with the same latent factor v, 4) our causal model with disentanglement
(Causalwith Disent.) that is illustrated in Fig. 1. The concrete structures of the four models and further
details are presented in Appendix B.3.

3.2 Experimental Observations

Adversarial Robustness. We evaluate the model’s robustness against a 100-step PGD attack with
varying ϵ-budgets under the ℓ∞ bound [8]. Model performance in terms of both clean accuracy (when
ϵ = 0) and robust accuracy is examined.

As shown in Fig. 2: 1) The Discriminative model exhibits the highest clean accuracy but suffers a
rapid decline in robustness, dropping to 0% when the attack budget ϵ reaches 1.2., which highlights
its vulnerability. 2) The Generative model has the lowest clean accuracy while its robustness does
not dramatically regress with larger attack budgets. The low clean accuracy may be due to the
inconsistency between the generation process it modeled and the way this toy dataset is constructed.
The small gap between clean and robust accuracy indicates its decent effectiveness in defending
against adversarial attacks. 3) Causalwith Disent. obtains the second-best clean accuracy, yet its
robustness gradually declines with increasing attack strength, maintaining 61.4% robustness at
ϵ = 6.4. 4) Our model, Causalwith Disent., has slightly lower clean accuracy than Causal without
Disent. but the best robustness among the four. As the attack strength increases, it maintains at least
71.8% robust accuracy at ϵ = 6.4, indicating that it is promising to enhance model robustness by
causal modeling with disentanglement of the label-causative factors from the non-causative ones.
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Sensitivity to Perturbations. To delve further into how the model behavior changes when defending
against adversarial perturbations, we measure the variation between latent variables of clean and
adversarial examples, denoted as △ v = 1 − cosine(v, vadv), where v and vadv represents the
latent vector of clean and adversarial example, respectively (v = s for Causalwith Disent.). We also
compute the change of predicted logits, △ p(y|v) = p(y|v)− p(y|vadv), with y being the true class
label. Note that a larger variation in the latent factor for prediction, or the predicted logits, results in
increased insensitivity to perturbations.

The experimental results, as shown in Tab. 4, indicate that Causalwith Disent., compared to
Causalwithout Disent., exhibits less sensitivity in both latent variables and prediction outcomes.
This suggests that by disentangling the label-causative factor s, it becomes more challenging for
attackers to perturb the model and alter its prediction. The small variation of v in the Generative
model is probably attributed to the lack of discriminability in v.

Prediction Margins. To intuitively explain the sensitivity of each model to perturbations, we estimate
the minimal adversarial perturbation ∥δ∥ under PGD required to flip the correct model prediction
y of a sample x. It can be interpreted as the prediction margins in terms of perturbation, denoted
as margin(x, y) = min ∥δ∥, subject to p(y|x + δ) < p(ȳ|x + δ) [56]. We measure the ∥δ∥ under
ℓ2 and ℓ∞ norms. Additionally, we visualized the latent vector space of each model to intuitively
observe the margin of the classification boundary.

As shown in Tab. 4, Causalwith Disent. has the largest prediction margin. This implies that an attacker
would need to add significantly more perturbation to successfully cheat our model. We can draw
similar conclusions from Fig. 3, which illustrates the distribution of predictive features extracted by
each model for correctly classified clean samples across categories. Again, Causalwith Disent. has
the largest margin between the classes, indicating that it has high confidence in its prediction and
increases the cost and difficulty for an attacker to succeed.

4 Causal Diffusion Model

To enhance model robustness on real-world data, in this section, we propose a Causal Diffusion
(CausalDiff) Modeling approach, that couples our previously studied SCM (shown in Fig. 6(d)) with
diffusion models. We will introduce the three major components in CausalDiff: conditional diffusion
generation, causal information bottleneck optimization, and adversarial example inference. We take
the Denoising Diffusion Probabilistic Model (DDPM) [17] as an instance for illustration and it can
be easily adapted to other diffusion models.

4.1 Conditional Diffusion Generation

Standard diffusion models generate images based on random noise which do not apply to the
conditional generation of X based on S and Z in our SCM. In standard diffusion models, at each
time step t during denoising, a UNet ϵθ(xt, t) is employed to decode an image given input xt. While
diffusion models are highly effective in image generation, they lack an explicit decoder component
for generating images from latent variables. To handle this, we develop a conditional DDPM using
latent variables S and Z controlling the generation process. This approach draws inspiration from
both the class-conditional diffusion model [51] as well as the style control mechanism introduced in
DiffAE [52]. The output htout at each layer of the UNet depends on t and xt, i.e.,

htout = ts ·GroupNorm(h) + tb, (1)
where h is the feature map of xt, ts and tb are the scale and bias of timestep t.

Inspired by the class-conditional diffusion model [51] and the style control mechanism in DiffAE
[52], we adapt the standard diffusion generation to be conditioned on S and Z in addition to timestep
t. Specifically, the UNet becomes ϵθ(xt, t, s, z), the final output ht,s,zout is calculated based on the
original htout, the hidden state s and z (representing causal factor S and Z) encoded from input x:

ht,s,zout = zs · htout + sb, (2)

where zs and sb are produced from the affine projections of z and s respectively, i.e., zs = Affinez(z)
and sb = Affines(s). As such, the label-causative factor S acts as a bias that can affect the direction
of the latent vector and change its semantics, while the label-non-causative factor Z can only scale
the latent vector in a similar way to style control.
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4.2 Causal Information Bottleneck Optimization

To learn the causal factors S,Z in our SCM and disentangle them, we propose a Causal Information
Bottleneck (CIB) optimization objective. It maximizes the mutual information between the latent
factors S,Z and the observed data sample (X,Y ) with an information bottleneck that constrains the
information retained in S,Z with respect to X .

Specifically, to align the information captured in the latent factors with the observed data (X,Y ), we
maximize the mutual information between them, denoted as I(X,Y; S,Z), which can be derived as:

I(X,Y ;S,Z) = I(X;S,Z) + I(Y ;S)− I(S;Z)− I(X;Y ). (3)

A detailed proof is presented in Appendix A.1. Among the resultant terms, I(X;Y ) is solely
dependent on the observed data, independent of latent variables or the causal model, and thus can
be ignored in the learning process. Maximizing I(X;S,Z) will urge S and Z to capture ample
information about X . I(S;Y ) indicates that the Y -causative factor S should be correlated with Y .
The term, −I(S;Z) ensures S and Z to be effectively disentangled.

Existing work on optimizing similar SCMs adapts the Evidence Lower BOund (ELBO) from Vari-
ational Autoencoders (VAE) to formulate the causal ELBO objectives [14]. This objective only
maximizes the likelihood of (X,Y ), and does not consider the latent factors. Consequently, the final
optimization goal of causal ELBO differs from I(X,Y ;S,Z) in that it does not have −I(S;Z) in
Eq. (3), which is crucial for disentanglement. Further details are discussed in Appendix A.4.

To avoid X contain too many unimportant details, we constrain the mutual information between X
and the latent factors S,Z with an information bottleneck Ic. Then, the updated objective becomes:

max I(X,Y ;S,Z), s.t.I(X;S,Z) ≤ Ic. (4)

Employing Lagrange multiplier λ≥0, we formulate our objective as max I(X,Y ;S,Z)−λ(I(X;S,Z)
−Ic). Since Ic is a constant, it is equal to maximize the Causal Information Bottleneck (CIB):

CIB(X,Y, S, Z) = I(X;S,Z) + I(Y ;S)− I(S;Z)− λI(X;S,Z). (5)

I(X;S,Z) and −λI(X;S,Z) indicate two opposing optimization directions. Because it is unclear
whether (1− λ) should be positive or negative, we approximate these terms via two separate lower
bounds instead of combining them.

To maximize the Causal Information Bottleneck (CIB) in Eq. (5), we derive its lower bound as the
concrete training loss function. When using the diffusion model ϵθ, classifier fy(s; θ) (to estimate
pθ(y|s)), and the encoder fs,z(x; θ) (to estimate pθ(s, z|x) ), the lower bound of CIB is:

Ep(x,s,z)[log pθ(x|s, z)]+Ep(y,s)[log pθ(y|s)]−IθCLUB(S;Z)−λEp(x)[DKL(pθ(s, z|x)∥q(s, z))],
(6)

where pθ(s|z) is a variational distribution to estimate p(s|z) and IθCLUB(S;Z) = Ep(s,z)[log pθ(s|z)]
− Ep(z)Ep(s)[log pθ(s|z)] represents the Contrastive Log-Ratio Upper Bound (CLUB) of mutual
information proposed by Cheng et al. [57]. pθ(x|s, z) represents the likelihood estimated by the
conditional diffusion model. DKL refers to the Kullback-Leibler (KL) divergence [58]; and q(·)
denotes the prior distribution of the latent variable, e.g., a normal distribution N (0, I). A detailed
proof can be found in Appendix A.2.

Loss Function. Thus, maximizing the lower bound of CIB is equal to minimizing the loss function:

L(x, y, s, z; θ) = αEϵ,t∥ϵθ(xt, t, s, z)−ϵt∥22+γLCE(s, y; θ)

+ ηIθCLUB(S;Z) + λDKL(pθ(s, z|x)∥q(s, z)),
(7)

where α, λ, γ, η determine the weighting of each term in the optimization process. A detailed
derivation can be found in Appendix A.3.

Algorithm. We pretrain the model with the data reconstruction loss (the first term in Eq. (7))
alone before training the model with the entire loss, so that the model can learn the causal factors,
disentanglement, and classification from a decent starting point. For space concern, we illustrate the
training process in Appendix B.2 involves the training algorithm (Algorithm 1) and the pretraining
algorithm (Algorithm 2).
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Table 2: Clean accuracy and adversarial robustness on CIFAR-10 against StAdv under ℓ∞ (ϵ = 0.05)
norm bound and AutoAttack (AA) under ℓ2 (ϵ = 0.5) as well as ℓ∞ (ϵ = 8/255) bound. We
calculate the average robustness across three attack methods to evaluate the model’s robustness
against unseen attacks. We use underlining to highlight the best robustness for each attack method
within each defense category, and bold font to denote the state-of-the-art (SOTA) across all methods.

METHOD BACKBONE
CLEAN

ACC (%)
ROBUST ACC(%)

AA l∞ AA ℓ2 STADV AVG

ADV.
TRAIN

AT-l∞ [23] DDPM 88.87 63.28 64.65 4.88 44.27
AT-l2 [23] DDPM 93.16 49.41 81.05 5.27 45.24
AT-l∞ [9] EDM 93.36 70.90 69.73 2.93 47.85
AT-l2 [9] EDM 95.90 53.32 84.77 5.08 47.72
CAUSALADV-T [15] WRN-76-10 83.71 8.76 21.95 75.60 35.44
CAUSALADV-M [15] WRN-76-10 70.22 24.36 49.10 48.60 40.69
DICE [16] WRN-34-10 82.85 37.51 41.58 82.46 53.85

PURIFY
DIFFPURE [33] SCORE SDE 87.50 53.12 75.59 12.89 47.20
LM-DDPM[27] DDPM 80.47 53.32 63.09 74.22 63.54
LM-EDM[27] EDM 87.89 71.68 75.00 87.50 78.06

OTHERS
SBGC [59] SCORE SDE 95.04 0.00 0.00 0.00 0.00
CAMA [43] VAE 32.19 3.38 5.53 27.54 12.15
RDC [27] EDM 89.85 75.67 82.03 89.45 82.38

OURS
CAUSALDIFF DDPM 90.23 83.01 86.33 89.84 86.39
CAUSALDIFF W/O CFI DDPM 83.20 74.61 75.59 82.23 77.48
CAUSALDIFFW/O AP DDPM 91.21 69.14 84.96 91.21 81.77

4.3 Adversarial Example Inference

Guided by the causal generation of an adversarial example X̃ according to Fig. 1 (Right), we illustrate
the process for robust classification. Following a typical attack paradigm, X̃ is produced by adding
an adversarial perturbation to a target clean example X when attacking a model θ. To make a robust
prediction on X̃ , our robust inference process comprises three steps: 1) purifying X̃ to benign X by
the unconditional diffusion model ϵθ(xt, t), 2) inferring S and Z from X utilizing the causal model
ϵθ(xt, t, s, z), and 3) predicting Y based on S using a classifier fy(s; θ).

Adversarial Purification (AP). We follow the concept of Likelihood Maximization (LM) [33, 27] to
purify the adversarial example X̃ to a benign X∗ by maximizing the data log-likelihood log pθ(x):

x∗ = argmaxx log pθ(x̃). (8)

Concretely, we maximize its lower bound utilizing the unconditional diffusion model ϵθ(xt, t)
trained according to Section C.2. Chen et al. [27] suggest using one random timestep t during each
purification iteration while we believe that smaller timesteps should be more effective since they
retain more information from the original example. Thus, we limit the random selection to within the
first 50 timesteps. This way significantly boosts adversarial robustness, which will be discussed in
Section 5.3.

Causal Factor Inference (CFI). In order to infer the causal and non-causal factors S and Z, which
can reconstruct the original image X , we optimize the latent variables by maximizing the conditional
likelihood pθ(x|s, z) employing the trained conditional diffusion model ϵθ(xt, t, s, z):

s∗, z∗ = argmaxs,z log pθ(x
∗|s, z). (9)

Similarly to purification, we obtain s∗ and z∗ by maximizing the lower bound
−Eϵ,t[wt∥ϵθ(xt, t, s, z) − ϵ∥] using the conditional diffusion model ϵθ(xt, t, s, z). For effi-
ciency concerns, instead of using all the timesteps for estimation as in Chen et al. [27], we sample
Npurify = 5 timesteps at the same intervals across the entire timesteps.

Latent-S-Based Classification (LSBC). After obtaining s∗ according to Eq. (9), we use the trained
classifier fy(s; θ) to predict label Y :

y∗ = argmaxy log pθ(y|s∗). (10)
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Table 3: Clean accuracy and adversarial robustness against AutoAttack (AA) on GTSRB (Left) and
CIFAR-100 (Right) dataset. We use ϵ = 8/255 as ℓ∞ and ϵ = 0.5 as ℓ2 norm bound.

Method Clean
Acc

Robust Acc
AA l∞ AA ℓ2 Fog Avg

DOA [61] 76.56 31.25 36.72 68.36 45.44
GTSRB-CNN [3] 93.95 62.30 74.80 65.43 67.51
AT-4 [8] 92.58 74.78 80.47 78.13 77.69
AT-8 [8] 91.21 74.02 79.10 73.44 75.52
AT-16 [8] 89.65 73.24 75.59 69.92 72.92

CausalDiff 97.85 80.86 80.86 86.13 82.62

Method Clean Acc Robust Acc

WRN40-2 78.13 0.00
AT-DDPM [23] 63.56 34.64
AT-EDM [9] 75.22 42.67
DiffPure [33] 39.06 7.81
DC [27] 79.69 39.06
RDC [27] 80.47 53.12

CausalDiff 65.62 56.25

Within our inference pipeline, both adversarial purification and causal factor inference leverage the
diffusion model learned toward the CIB optimization objective while they take effect independently.
When we combine these two approaches, adversarial robustness could be enhanced further. The
concrete inference algorithm in Algorithm 3 is presented as Appendix B.2.

4.4 Comparison with Adversarial Purification

First, our CausalDiff can be viewed as semantic-level purification. Instead of pixel-level denoising,
CausalDiff purifies an image in the latent space, trying to remove the effect of perturbation by putting
it to the label-non-causative features. Second, conventional purification inevitably loses information
essential for classification during denoising. By disentangling label-causative features from label-
non-causative features, CausalDiff can retain essential information in the label-causative features to a
large extent. Third, unlike pixel-level purification which does not know the optimal denoising level
for various attacks, CausalDiff acts adaptively on different attacks by the causal inference of S and Z.
Fourth, they can be combined to further enhance adversarial robustness.

5 Experiments

In this section, we introduce the experimental settings in Section 5.1. Section 5.2 presents the main
results defending against unforeseen attacks on CIFAR-10, CIFAR-100, and GTSRB datasets. We
then evaluate the effectiveness of individual components of CausalDiff in Section 5.3. Due to space
constraints, we provide analyses of core components during training and inference in Appendix C.1
and Appendix C.2. Additionally, we showcase examples in Appendix C.3.

5.1 Experimental Settings

Datasets and Model Architecture. Our experiments utilize the CIFAR-10, CIFAR-100 [18] and
GTSRB [19] datasets. CIFAR-10 and CIFAR-100 each consists of 50,000 training images, categorized
into 10 and 100 classes, respectively. GTSRB comprises 39,209 training images (each histogram
equalized and resized to 3× 32× 32) of German traffic signs, categorized into 43 classes. We use
DDPM [17] as the diffusion model. Further details are available in Appendix B.2.

Attack Evaluation Method. For the CIFAR-10 dataset, we utilize seven types of attack strategies
with both ℓ∞ and ℓ2 norm bounds for evaluation. These strategies include StAdv attack [60],
BPDA+EOT, and AutoAttack [2] (AA), which comprises white-box attacks such as APGD-ce,
APGD-t, FAB-t, and a black-box Square Attack. For CIFAR-100, we follow the setting of Chen et al.
[27], evaluating against the ℓ∞ threat model with ϵ = 8/255. For the GTSRB dataset, we utilize four
types of attacks as well as fog corruptions. Attack methods include AutoAttack, which comprises
APGD-ce, APGD-t, FAB-t, and Square Attack.

5.2 Comparisons on Unseen Attacks

CIFAR-10. From the experimental results for CIFAR-10 presented in Table 2, we have several
observations: 1) The adversarial training methods perform robustly on the same type of attacks they
use for training but poorly on other unseen attacks. The only exception is that when the models employ
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the most effective attack (i.e., AT-ℓ∞) for adversarial training, the robustness regarding ℓ2 is not hurt
much. 2) In contrast, purification methods, especially the ones based on more powerful diffusion
models (DDPM and EDM), have decent robustness on each unseen attack and much better average
robustness. This is reasonable since they learn to purify the adversarial samples without targeting any
specific attacks. 3) Our CausalDiff performs the best not only regarding the average robustness but
also on each type of attack. Remarkably, the average robust accuracy (86.39%) is only 3.84% lower
than the clean accuracy (90.23%) and it boosts the robustness on the most challenging attack (ℓ∞) to
83.01%. Notably, the reported CausalDiff is based on DDPM, which acts less effectively than EDM,
which can be seen from AT and LM purification. Grounded on a stronger backbone, CausalDiff could
achieve even better performance. Table 4 shows the performance under the BPDA + EOT (EOT = 20)
attack. Under this attack, models whose gradients are not accessible and also be compared (e.g., ADP
[31]). The results again confirm the superior performance of CausalDiff across different attack types.

CIFAR-100. The experimental results on CIFAR-100 in Table 3 (Right) indicate that CausalDiff
achieves the highest robustness among all, even with a much lower clean accuracy. The low clean
accuracy is likely due to the insufficient training samples to learn S,Z, and its weaker backbone -

Figure 4: Visualization by T-SNE of the feature space,
inferred by our CausalDiff, of the label-causative factor
s, label-non-causative factor z, and their concatenation.

Table 4: Clean and robust accuracy on
CIFAR-10 against BPDA + EOT against
ℓ∞ (ϵ = 8/255) threat model.

Method Clean
Acc (%)

Robust
Acc (%)

Purify - EBM [62] 84.12 54.90
LM - DDPM [27] 83.20 69.73
ADP [31] 86.14 70.01
RDC [27] 89.85 75.67
GDMP [35] 93.50 76.22
DiffPure [33] 89.02 81.40

CausalDiff 90.23 88.48

DDPM. We believe more augmented data and a stronger diffusion backbone like EDM (used by RDC
[27]) could further enhance the performance.

GTSRB. The left part of Table 3 show that CausalDiff also has compelling robustness on traffic sign
classification, in terms of not only unforeseen adversarial attacks but also natural corruptions like fog.
Evaluations based on different types of tasks, and different numbers of classes (10, 100, and 43) have
all shown the efficacy of CausalDiff.

5.3 Ablation Study

As mentioned in Section 4.3, our CausalDiff contains Adversarial Purification (AP), Causal Factor
Inference (CFI), and Latent-S-Based Classification (LSBC). The last block of Table 2 shows the
individual effect of the AP and CFI in CausalDiff. We can see: 1) Our DDPM-based purification
(CausalDiff w/o CFI, achieved by AP plus a standard classifier) performs similarly to LM-EDM and
is significantly better than LM-DDPM, showing that the strategy of sampling within small timesteps
for purification is much more effective than entire timesteps. (We show more analysis on this in
Appendix C.2. ) 2) The core component of CasualDiff - causal disentanglement (CausalDiff w/o AP)
outperforms all the baselines in terms of average robustness except RDC which incorporates an extra
LM purification step. It shows that modeling the generative of native in-domain data can enhance the
model’s inherent robustness and thus effectively defend against various types of attacks.

5.4 Visualization of Latent Factors

To understand how the latent causal factors S and Z in CausalDiff take effect during adversarial
classification, we visualize S, Z, and their concatenation using t-SNE in Fig. 4. We randomly
sampled 5000 correctly classified test samples from CIFAR-10 for visualization. We find that the
Y-causative factor S of samples in each category are located in the same cluster, with clear margins
between different clusters except the categories - dog, cat, and bird. These three categories share
more commonalities than the others and are not surprising to have blurred boundaries. Additionally,
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the S vectors of airplanes (dark blue) are near those of birds (green), and trucks have S vectors
near automobiles. In contrast to the S vectors, the vectors of Z do not exhibit correlations with the
categories. This also aligns with our objective to extract the Y-non-causative factors to Z. The vectors
of their concatenation, i.e., [s; z], also display in clusters but with much more blurred boundaries.
These observations are consistent with our commonsense knowledge, showing that CausalDiff has
learned reasonable Y-causative factors by S and Y-non-causative factors by Z.

6 Conclusion

We develop a causal model based on diffusion model to improve adversarial robustness. A pilot study
on toy data suggests that the model defends against adversarial attacks by leveraging label-causative
features to resist perturbations and expand the model’s margin. Moreover, on the CIFAR-10, CIFAR-
100 and GTSRB datasets, our model appears to capture semantic features consistent with the human
decision-making process and surpass all baseline models, achieving state-of-the-art performance in
adversarial robustness, particularly against unseen attacks.

Acknowledgments and Disclosure of Funding

This work is supported by the Strategic Priority Research Program of the Chinese Academy of
Sciences, Grant No. XDB0680101, CAS Project for Young Scientists in Basic Research under Grant
No. YSBR-034, the Innovation Project of ICT CAS under Grant No. E261090, the National Natural
Science Foundation of China (NSFC) under Grants No. 62302486, the Innovation Project of ICT
CAS under Grants No. E361140, the CAS Special Research Assistant Funding Project, the project
under Grants No. JCKY2022130C039, and the Strategic Priority Research Program of the CAS
under Grants No. XDB0680102. We would like to thank the UIBE GVC Laboratory and the Digital
Economy Laboratory at the University of International Business and Economics for their provision
of computational resources and support.

10



References

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,”
arXiv preprint arXiv:1412.6572, 2014.

[2] F. Croce and M. Hein, “Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks,” in International conference on machine learning. PMLR,
2020, pp. 2206–2216.

[3] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and
D. Song, “Robust physical-world attacks on deep learning visual classification,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2018, pp. 1625–1634.

[4] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to a crime: Real and
stealthy attacks on state-of-the-art face recognition,” in Proceedings of the 2016 acm sigsac
conference on computer and communications security, 2016, pp. 1528–1540.

[5] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer,
O. Pink, V. Pratt et al., “Towards fully autonomous driving: Systems and algorithms,” in 2011
IEEE intelligent vehicles symposium (IV). IEEE, 2011, pp. 163–168.

[6] N. Carlini, G. Katz, C. Barrett, and D. L. Dill, “Provably minimally-distorted adversarial
examples,” arXiv preprint arXiv:1709.10207, 2017.

[7] M. Hein and M. Andriushchenko, “Formal guarantees on the robustness of a classifier against
adversarial manipulation,” Advances in neural information processing systems, vol. 30, 2017.

[8] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

[9] Z. Wang, T. Pang, C. Du, M. Lin, W. Liu, and S. Yan, “Better diffusion models further improve
adversarial training,” arXiv preprint arXiv:2302.04638, 2023.

[10] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting classifiers against
adversarial attacks using generative models,” arXiv preprint arXiv:1805.06605, 2018.

[11] J. Pearl and D. Mackenzie, The book of why: the new science of cause and effect. Basic books,
2018.

[12] B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio,
“Toward causal representation learning,” Proceedings of the IEEE, vol. 109, no. 5, pp. 612–634,
2021.

[13] C. Liu, X. Sun, J. Wang, H. Tang, T. Li, T. Qin, W. Chen, and T.-Y. Liu, “Learning causal
semantic representation for out-of-distribution prediction,” Advances in Neural Information
Processing Systems, vol. 34, pp. 6155–6170, 2021.

[14] X. Sun, B. Wu, X. Zheng, C. Liu, W. Chen, T. Qin, and T.-Y. Liu, “Recovering latent causal
factor for generalization to distributional shifts,” Advances in Neural Information Processing
Systems, vol. 34, pp. 16 846–16 859, 2021.

[15] Y. Zhang, M. Gong, T. Liu, G. Niu, X. Tian, B. Han, B. Schölkopf, and K. Zhang, “Causaladv:
Adversarial robustness through the lens of causality,” arXiv preprint arXiv:2106.06196, 2021.

[16] Q. Ren, Y. Chen, Y. Mo, Q. Wu, and J. Yan, “Dice: Domain-attack invariant causal learning for
improved data privacy protection and adversarial robustness,” in Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 1483–1492.

[17] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural
Information Processing Systems, vol. 33, pp. 6840–6851, 2020.

[18] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.

11



[19] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german traffic sign recognition
benchmark: a multi-class classification competition,” in The 2011 international joint conference
on neural networks. IEEE, 2011, pp. 1453–1460.

[20] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan, “Theoretically principled
trade-off between robustness and accuracy,” in International conference on machine learning.
PMLR, 2019, pp. 7472–7482.

[21] C. Qin, J. Martens, S. Gowal, D. Krishnan, K. Dvijotham, A. Fawzi, S. De, R. Stanforth, and
P. Kohli, “Adversarial robustness through local linearization,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[22] S. Gowal, S.-A. Rebuffi, O. Wiles, F. Stimberg, D. A. Calian, and T. A. Mann, “Improving
robustness using generated data,” Advances in Neural Information Processing Systems, vol. 34,
pp. 4218–4233, 2021.

[23] S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg, O. Wiles, and T. Mann, “Fixing data
augmentation to improve adversarial robustness,” arXiv preprint arXiv:2103.01946, 2021.

[24] A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G. Taylor,
and T. Goldstein, “Adversarial training for free!” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[25] H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and T. Zhao, “Smart: Robust and efficient fine-tuning
for pre-trained natural language models through principled regularized optimization,” arXiv
preprint arXiv:1911.03437, 2019.

[26] C. Laidlaw, S. Singla, and S. Feizi, “Perceptual adversarial robustness: Defense against unseen
threat models,” arXiv preprint arXiv:2006.12655, 2020.

[27] H. Chen, Y. Dong, Z. Wang, X. Yang, C. Duan, H. Su, and J. Zhu, “Robust classification via a
single diffusion model,” arXiv preprint arXiv:2305.15241, 2023.

[28] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning
using nonequilibrium thermodynamics,” in International Conference on Machine Learning.
PMLR, 2015, pp. 2256–2265.

[29] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,”
Advances in neural information processing systems, vol. 32, 2019.

[30] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based
generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456,
2020.

[31] J. Yoon, S. J. Hwang, and J. Lee, “Adversarial purification with score-based generative models,”
in International Conference on Machine Learning. PMLR, 2021, pp. 12 062–12 072.

[32] C. Xiao, Z. Chen, K. Jin, J. Wang, W. Nie, M. Liu, A. Anandkumar, B. Li, and D. Song,
“Densepure: Understanding diffusion models towards adversarial robustness,” arXiv preprint
arXiv:2211.00322, 2022.

[33] W. Nie, B. Guo, Y. Huang, C. Xiao, A. Vahdat, and A. Anandkumar, “Diffusion models for
adversarial purification,” arXiv preprint arXiv:2205.07460, 2022.

[34] Q. Wu, H. Ye, and Y. Gu, “Guided diffusion model for adversarial purification from random
noise,” arXiv preprint arXiv:2206.10875, 2022.

[35] J. Wang, Z. Lyu, D. Lin, B. Dai, and H. Fu, “Guided diffusion model for adversarial purification,”
arXiv preprint arXiv:2205.14969, 2022.

[36] J. Mitrovic, B. McWilliams, J. Walker, L. Buesing, and C. Blundell, “Representation learning
via invariant causal mechanisms,” arXiv preprint arXiv:2010.07922, 2020.

[37] B. Schölkopf, “Causality for machine learning,” in Probabilistic and Causal Inference: The
Works of Judea Pearl, 2022, pp. 765–804.

12



[38] Y. Chen, Y. Zhang, Y. Bian, H. Yang, M. Kaili, B. Xie, T. Liu, B. Han, and J. Cheng, “Learning
causally invariant representations for out-of-distribution generalization on graphs,” Advances in
Neural Information Processing Systems, vol. 35, pp. 22 131–22 148, 2022.

[39] W. Wang, X. Lin, F. Feng, X. He, M. Lin, and T.-S. Chua, “Causal representation learning for
out-of-distribution recommendation,” in Proceedings of the ACM Web Conference 2022, 2022,
pp. 3562–3571.

[40] R. Wang, M. Yi, Z. Chen, and S. Zhu, “Out-of-distribution generalization with causal invariant
transformations,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 375–385.

[41] R. Moraffah, M. Karami, R. Guo, A. Raglin, and H. Liu, “Causal interpretability for machine
learning-problems, methods and evaluation,” ACM SIGKDD Explorations Newsletter, vol. 22,
no. 1, pp. 18–33, 2020.

[42] G. Xu, T. D. Duong, Q. Li, S. Liu, and X. Wang, “Causality learning: A new perspective for
interpretable machine learning,” arXiv preprint arXiv:2006.16789, 2020.

[43] C. Zhang, K. Zhang, and Y. Li, “A causal view on robustness of neural networks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 289–301, 2020.

[44] K. Tang, M. Tao, and H. Zhang, “Adversarial visual robustness by causal intervention,” arXiv
preprint arXiv:2106.09534, 2021.

[45] S. Yang, T. Guo, Y. Wang, and C. Xu, “Adversarial robustness through disentangled representa-
tions,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp.
3145–3153.

[46] B.-K. Lee, J. Kim, and Y. M. Ro, “Mitigating adversarial vulnerability through causal param-
eter estimation by adversarial double machine learning,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 4499–4509.

[47] J. Kim, B.-K. Lee, and Y. M. Ro, “Demystifying causal features on adversarial examples
and causal inoculation for robust network by adversarial instrumental variable regression,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023,
pp. 12 302–12 312.

[48] H. Hua, J. Yan, X. Fang, W. Huang, H. Yin, and W. Ge, “Causal information bottleneck boosts
adversarial robustness of deep neural network,” arXiv preprint arXiv:2210.14229, 2022.

[49] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the design space of diffusion-based
generative models,” Advances in Neural Information Processing Systems, vol. 35, pp. 26 565–
26 577, 2022.

[50] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in
Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.

[51] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” arXiv preprint arXiv:2207.12598,
2022.

[52] K. Preechakul, N. Chatthee, S. Wizadwongsa, and S. Suwajanakorn, “Diffusion autoencoders:
Toward a meaningful and decodable representation,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2022, pp. 10 619–10 629.

[53] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image
synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2022, pp. 10 684–10 695.

[54] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and
M. Chen, “Glide: Towards photorealistic image generation and editing with text-guided diffusion
models,” arXiv preprint arXiv:2112.10741, 2021.

[55] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image
generation with clip latents,” arXiv preprint arXiv:2204.06125, 2022.

13



[56] G. W. Ding, Y. Sharma, K. Y. C. Lui, and R. Huang, “Mma training: Direct input space margin
maximization through adversarial training,” arXiv preprint arXiv:1812.02637, 2018.

[57] P. Cheng, W. Hao, S. Dai, J. Liu, Z. Gan, and L. Carin, “Club: A contrastive log-ratio upper
bound of mutual information,” in International conference on machine learning. PMLR, 2020,
pp. 1779–1788.

[58] S. Kullback, Information theory and statistics. Courier Corporation, 1997.

[59] R. S. Zimmermann, L. Schott, Y. Song, B. A. Dunn, and D. A. Klindt, “Score-based generative
classifiers,” arXiv preprint arXiv:2110.00473, 2021.

[60] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially transformed adversarial
examples,” arXiv preprint arXiv:1801.02612, 2018.

[61] T. Wu, L. Tong, and Y. Vorobeychik, “Defending against physically realizable attacks on image
classification,” arXiv preprint arXiv:1909.09552, 2019.

[62] M. Hill, J. Mitchell, and S.-C. Zhu, “Stochastic security: Adversarial defense using long-run
dynamics of energy-based models,” arXiv preprint arXiv:2005.13525, 2020.

[63] M. Boudiaf, J. Rony, I. M. Ziko, E. Granger, M. Pedersoli, P. Piantanida, and I. B. Ayed, “A
unifying mutual information view of metric learning: cross-entropy vs. pairwise losses,” in
European conference on computer vision. Springer, 2020, pp. 548–564.

14



A Proof of Propositions

In this section, we will present the detailed proof for the theoretical results mentioned in the main
paper.

A.1 Proof of Causal Information Bottleneck (CIB)

According to the Structural Causal Model (SCM), we have p(x, y, s, z) = p(s)p(z)p(x|s, z)p(y|s).
Thus, the Causal Information Bottleneck (CIB) can be represented as:

I(X,Y ;S,Z) = Ep(x,y,s,z) log
p(x, y, s, z)

p(x, y)p(s, z)

=Ep(x,y,s,z) log
p(s)p(z)p(x|s, z)p(y|s)

p(x, y)p(s, z)

=Ep(x,y,s,z) log
p(x|s, z)p(y|s)

p(x, y)
+ Ep(x,y,s,z) log

p(s)p(z)

p(s, z)

=Ep(x,y,s,z) log
p(x|s, z)p(y|s)

p(x, y)
− I(S;Z)

=Ep(x,y,s,z) log
p(x|s, z)p(y|s)p(s, z)
p(y|x)p(x)p(s, z)

− I(S;Z)

=Ep(x,y,s,z) log
p(y|s)
p(y|x)

+ Ep(x,y,s,z) log
p(x|s, z)p(s, z)
p(x)p(s, z)

− I(S;Z)

=Ep(x,y,s,z) log
p(y|s)
p(y|x)

+ I(X;S,Z)− I(S;Z)

=Ep(x,y,s,z) log
p(y|s)p(s)p(y)
p(y|x)p(s)p(y)

+ I(X;S,Z)− I(S;Z)

=Ep(x,y,s,z) log
p(y)

p(y|x)
+ Ep(x,y,s,z) log

p(y|s)p(s)
p(s)p(y)

+ I(X;S,Z)− I(S;Z)

=Ep(x,y,s,z) log
p(y)p(x)

p(y|x)p(x)
+ I(Y ;S) + I(X;S,Z)− I(S;Z)

=I(X;Y ) + I(Y ;S) + I(X;S,Z)− I(S;Z)

(11)

Therefore, we have proved the result in Eq. (5)

A.2 Proof of the Lower Bound of CIB

According to the result in Eq. (11), we further prove its lower bound shown in Eq. (6) in this section.

As for the lower bound of the recontruction term I(X;S,Z), we have:

I(X;S,Z) = Ep(x,s,z)[log
p(x|s, z)
p(x)

]

= Ep(x,s,z)[log
p(x|s, z)pθ(x|s, z)
p(x)pθ(x|s, z)

], when using a variational distribution pθ(x|s, z) to approximate p(x|s, z),

= Ep(x,s,z)[log
pθ(x|s, z)

p(x)
] + Ep(s,z)Ep(x|s,z)[log

p(x|s, z)
pθ(x|s, z)

]

= Ep(x,s,z)[log
pθ(x|s, z)

p(x)
] + Ep(s,z)[DKL

p(x|s, z)
pθ(x|s, z)

], where DKL(·) represents KL-divergence,

≥ Ep(x,s,z)[log
pθ(x|s, z)

p(x)
]

= Ep(x,s,z)[log pθ(x|s, z)] + Ep(x,s,z)[log
1

p(x)
]

= Ep(x,s,z)[log pθ(x|s, z)] +H(x), whereH(x) indicates entropy of x.
(12)
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As for the upper bound of I(X;S,Z), we have:

I(X;S,Z) = Ep(x,s,z)[log
p(x|s, z)
p(x)

]

= Ep(x,s,z)[log
p(x|s, z)q(s, z)
p(x)q(s, z)

], when using a prior distribution q(s, z) to estimate p(s, z),

= Ep(x,s,z)[log
p(x|s, z)
q(s, z)

]−DKL(p(s, z)||q(s, z)), where DKL(·) represents KL-divergence,

≤ Ep(x,s,z)[log
p(x|s, z)
q(s, z)

]

= Ep(x)Ep(s,z|x)[log
p(s, z|x)
q(s, z)

]

= Ep(x)[DKL(p(s, z|x)||q(s, z))].
(13)

Regarding the label prediction term I(Y ;S), we can maximize the mutual information between factor
S and label Y by maximize Ep(y,s)[log pθ(y|s)] as well as employing a cross-entropy loss function,
according to Boudiaf et al. [63].

As for the disentangle term I(S;Z), according to the Contrastive Log-Ratio Upper Bound (CLUB) of
mutual information proposed by Cheng et al. [57], we have

I(S;Z) ≤ IθCLUB(S;Z) = Ep(s,z)[log pθ(s|z)]− Ep(z)Ep(s)[log pθ(s|z)], (14)

where pθ(s|z) is a variational distribution to estimate p(s|z).
Thus, we have proved the results in Eq. (6) that

I(X;S,Z) + I(Y ;S)− I(S;Z)− λI(X;S,Z)

≥ Ep(x,s,z)[log pθ(x|s, z)] + Ep(y,s)[log pθ(y|s)]− IθCLUB(S;Z)− λ Ep(x)[DKL(pθ(s, z|x)∥q(s, z))].
= Ep(x,s,z)[log pθ(x|s, z)] + Ep(y,s)[log pθ(y|s)]− Ep(s,z)[log pθ(s|z)]

+ Ep(z)Ep(s)[log pθ(s|z)]− λ Ep(x)[DKL(pθ(s, z|x)∥q(s, z))].
(15)

A.3 Detailed Derivation of Loss Function

Based on the result in Eq. (15), we can optimize the Causal Information Bottleneck (CIB)
I(X,Y ;S,Z) by maximizing its theoratically lower bound. In this part, we discuss the detailed
derivation for the lower bound of CIB in term of designing the loss function proposed in Eq. (7).

Specifically, for the reconstruction term Ep(x,s,z)[log pθ(x|s, z)], we can maximize the log-likelihood
estimated by our conditional diffusion model:

log pθ(x|s, z) ≥ −Eϵ,t[wt∥ϵθ(xt, t, s, z)− ϵ∥] + C, (16)

where ϵθ(xt, t, s, z) denotes our conditional diffusion model, and constant C is negligible [17].

Regarding the label prediction term Ep(y,s)[log pθ(y|s)], following the results proposed by Boudiaf
et al. [63], we can leveraging a cross-entropy loss function to maximize the mutual information
between factor S and label Y .

As for the disentanglement term I(S;Z), we following the optimization strategies proposed by Cheng
et al. [57], leveraging a predictor pθ to learn the relationship between S and Z so as to estimate
IθCLUB(S;Z).

Overall, we have proved the loss function of our Causal Information Bottleneck (CIB) proposed in
Eq. (7):

L(x, y, s, z; θ) = α Eϵ,t ∥ϵθ (xt, t, s, z)− ϵt∥22 + γLCE(s, y; θ)

+ η{Ep(s,z)[log pθ(s|z)]− Ep(z)Ep(s)[log pθ(s|z)]}+ λ DKL(pθ(s, z|x)∥q(s, z)),
(17)

where Ep(s,z)[log pθ(s|z)]− Ep(z)Ep(s)[log pθ(s|z)] is the estimation of IθCLUB(S;Z).
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Algorithm 1 CausalDiff Algorithm
Require: Dataset D; The CausalDiff parameterized by θ pretrained by Algorithm 2 involves an
UNet ϵθ(xt, t, s, z) with diffusion timestep T , an encoder f(s,z)(x; θ), a classifier fy(s; θ), and an
MI estimater fCLUB(s, z; θ) for the CLUB loss; an optimizer optim(·), dropout probability pdrop of
s, z for simultaneously training an unconditional generation, hyperparameters α, λ, γ, η.

Initialize:
Load fs,z(x; θ) and ϵθ from the pretrained model θ.
Initialize fy(s; θ) and fCLUB(s, z; θ) randomly.

for ep=1 to N2 do
Get mini-batch (x, y) ∼ D
s, z = f(s,z)(x; θ)
t ∼ Uniform({1, 2, ..., T}), ϵ ∼ N (0, I)
if rand(0, 1) ≤ pdrop then

Compute loss L(x; θ) = ∥ϵθ (xt, t)− ϵ∥22
Update ϵθ with optim(θ,L(x; θ))

else
Compute loss L(x, y, s, z; θ) according to Eq. (7)
Update ϵθ(xt, t, s, z), f(s,z)(x; θ),

and fy(s; θ) by optim(θ,L(x, y, s, z; θ))
end if
Update fCLUB(s, z; θ) according to the CLUB algorithm [57]

end for

A.4 ELBO (Evidence Lower BOund) V.S. MI (Mutual Information)

the Causal Evidence Lower BOund (ELBO) for multi-domain datasets as proposed by Sun et al.
[14], we directly formulate the Causal ELBO within our causal structure, as depicted in Fig. 1 (Left).
Given that p(x, y, s, z) = p(s)p(z)p(x|s, z)p(y|s), we can derive the Causal ELBO in single domain
as follows:

ELBO = Ep(x,y[Eqψ(s,z|x,y) log
pθ(x, y, s, z)

qψ(s, z|x, y)
]

= Ep(x,y)
{
Eqψ(s,z|x,y)

[
log pθ(x | s, z) + log

pθ(s, z)

qψ(s, z | x)
+ log pθ(y | s) + log

qψ(y | x)
qψ(y | s)

]}
,

(18)
where pθ is to learn the ground-truth p and qψ is variational distribution to mimic pθ.

Specifically, the causal ELBO, compared to our Causal Information Bottleneck (CIB), incorporates
the reconstruction term log pθ(x | s, z), the insensitivity term log pθ(s,z)

qψ(s,z|x) , and the label prediction
term log pθ(y | s). However, it overlooks the disentanglement of latent factors, a critical aspect for
effectively learning the causal model. Additionally, we have empirically assessed the robustness of
models trained with either CIB or causal ELBO (equivalent to η = 0) in section C.1. This evaluation
aims to investigate the efficacy of the disentanglement term I(S;Z).

B More Implementation Details

B.1 Baselines

We include representative defense methods of adversarial training (AT), purification, and other types
(e.g., generative-model-based approach) as baselines. Specifically, we compare with the AT methods
[9, 23] that use DDPM or the Elucidating Diffusion Model (EDM) [49] for data augmentation and
a theoretical framework TRADES [20] for adversarial training. We also include causality-based
AT baselines such as CausalAdv [15] and DICE [16]. Purification baselines include DiffPure [33]
(grounded on Score SDE [30]) and diffusion-based Likelihood Maximization (LM)[27] with EDM
(as in the original paper) and DDPM (we reproduced). Other defense baselines comprise generative
classifiers such as Score-Based Generative Classifier (SBGC) [59], [27], and the causality-based
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Algorithm 2 CausalDiff Pretrain Algorithm
Require: Dataset D; a diffusion model ϵθ, an encoder f(s,z)(x; θ), a classifier fy(s; θ); an optimizer
optim(·), probability pdrop of training samples for unconditional diffusion, diffusion training epoch
N1.

Initialize: randomly initialize parameter θ.
for ep=1 to N1 do
(x, y) ∼ D
s, z = f(s,z)(x; θ)
s, z ← ϕ with probability pdrop ▷ randomly mask the latent factors with probability pdrop
t ∼ Uniform({1, 2, ..., T}), ϵ ∼ N (0, I)

L(x, s, z; θ) = ∥ϵθ (xt, t, s, z)− ϵ∥22
Update ϵθ and f(s,z)(x; θ) by optim(θ,L(x, s, z; θ))

end for

Algorithm 3 Adversarially Robust Inference Algorithm
Require: A fully-trained causal model involves diffusion model ϵθ(xt, t, s, z), encoder f(s,z)(x; θ),
and classifier fy(s; θ); test image x, purification optimization steps Npurify, causal factor inference
steps Ninfer, number of sampling steps Nt for inference,optimizer optimpurify for purification, opti-
mizer optiminfer for causal factor inference.

Initialize: purified image x∗ = x
Stage 1: Adversarial Purification
for iter=1 to Npurify do
t ∼ Uniform({1, 2, ..., 50}), ϵ ∼ N (0, I)

L(x∗, θ) = ∥ϵθ (xt, t)− ϵ∥22
Update x∗ by optimpurify(x

∗;L(x∗, θ))
end for

Stage 2: Causal Factor Inference
Initial s∗, z∗ = f(s,z)(x

∗; θ)
for iter=1 to Ninfer do

Sample Nt timesteps t at equal intervals from 1 to T
Sample Nt ϵ ∼ N (0, I) corresponds to each t

Compute L(x∗, s∗, z∗; θ) = Eϵ,t ∥ϵθ (x∗
t , t, s, z)− ϵ∥22

Update s∗, z∗ by optiminfer(s
∗, z∗;L(x∗, s∗, z∗; θ))

end for

Stage 3: S-based Classification
y = fy(s

∗; θ)

return y

generative model CAMA [43]. Notably, we also include the SOTA method on unseen attacks - Robust
Diffusion Classifier (RDC), which incorporates purification and conditional generation based on
labels for defense.

B.2 Implementation Details

We use DDPM [17] as our generative model. For the encoder fs,z(x; θ) and the classification model
fs(y; θ), we employ WideResNet-70-16 (WRN-70-16) as the backbone.

Training Strategy. Considering the different complexities in learning fx(s, z; θ), f(s,z)(x; θ) and
fy(s; θ), attributed to the differing difficulty in generation and discrimination task, we segment the
training of the entire causal model into two distinct phases. As outlined in Section 4.2, we employ a
two-stage training process for our CausalDiff.
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Figure 5: SCM of models for pilot study including (a) discriminative model, (b) generative model, (c)
causal model without disentanglement, and (d) causal model with disentanglement.

(a) Discriminative(b) Generative (c) Causalwithout Disent. (d) Causalwith Disent.

Figure 6: Architecture of models for pilot study including (a) discriminative model, (b) generative
model, (c) causal model without disentanglement, and (d) causal model with disentanglement.

In the pretrain phase on CIFAR-10 and GTSRB datasets, focused on generation, primarily trains the
conditional diffusion model fx(s, z; θ) along with its corresponding encoder f(s,z)(x; θ) according to
Algorithm 2, setting N1 = 1440. For CIFAR-100, we added 10,000 images generated by EDM [49]
to our training set. Considering the computational cost, we only pretrain for N1 = 500 epochs. Note
that the augmented data is used only during the pretraining phase while not in the joint training phase.

Subsequently, we conduct joint training of the whole CausalDiff model for N2 = 560, amounting to
a total of 2000 epochs. The second phase, targeting discrimination and leveraging label information
to guide disentanglement, involves the joint training of the entire causal model. Note that, in order
to simultaneously train an unconditional diffusion model for adversarial purification, we follow Ho
and Salimans [51] to mask the condition s and z with probability pdrop = 0.1. Thus, a single shared
model is used for both adversarial purification and causal factor inference.

Both the pretraining and joint training phases utilize a learning rate of 1e−4 and a batch size of 128.
For simplicity, we follow the setting of wt = 1 [17]. We set α = 1., γ = 1e−2, η = 1e−5, λ = 1e−2

as the weights for the loss function in Eq. (7).

Since we need a standard diffusion model ϵθ(xt, t) for purification during adversarial inference, we
apply dropout of s and z with a ratio of pdrop = 0.1 for conditional diffusion generation as in Ho
et al. [17] during both pretraining and training. Thus, the unconditional probability of generating x
can also be estimated using the same model by masking s and z.

Inference Strategy. Leveraging the trained CausalDiff, we can infer its label from an adversarial
example in accordance with Algorithm 3, following the inference pipeline outlined in Section 4.3.
Specifically, we set Npurify = 5 and use momentum-SGD as our optimpurify, with a learning rate of
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Figure 7: Impact of η for disentanglement term in loss function on clean accuracy and robust accuracy.

0.1. For causal factor inference, we choose Nt = 10 to sample 10 timesteps per iteration and adopt
Ninfer = 10 with momentum-SGD as optiminfer, setting the learning rate to 1e−5.

Regarding white-box attacks, we perform a gradient backpropagation throughout the entire pipeline
of our CausalDiff approach, which includes purification, causal factors inference, and classification.
This implies that the attacker possesses sufficient knowledge of the causal model.

Attack Evaluation. Attack evaluation for CIFAR-10 dataset includes a 100-step StAdv attack [60]
with ϵ = 0.05 under the ℓ∞ norm bound, BPDA+EOT (EOT=20) against the ℓ∞ threat model
with ϵ = 8/255, and AutoAttack [2] (AA), which comprises 100-step white-box attacks such as
APGD-ce, APGD-t, FAB-t, and a 5000-step black-box Square Attack under both ℓ2 (ϵ = 0.5) and
ℓ∞ (ϵ = 8/255) constraints.

For the GTSRB dataset, we utilize four types of attacks as well as two types of corruptions
to evaluate robustness against adversarial attacks and the influence of the natural environment.
Specifically, the attack methods include AutoAttack, which comprises 100-step white-box attacks
such as APGD-ce, APGD-t, FAB-t, and a 5000-step black-box Square Attack under both ℓ2 (ϵ = 0.5)
and ℓ∞ (ϵ = 8/255) constraints. The corruptions include Fog and Brightness. Following Nie et al.
[33], we randomly sample 512 samples for evaluation.

B.3 Details for Pilot Study

Data Construction. For each data point of the 2000 samples, we sample a vector s with dimension
hs = 8 from a normal distribution with mean −1 and variance 1, i.e., s ∼ N (−1, 1), and a vector
z ∼ N (1, 1) with dimension hz = 8. Subsequently, we projected the concatenation of s and z,
denoted as [s; z], to a sample x, with a random initialized matrix Ax(Ax ∈ R(hs+hz)×hx), i.e.,
x = [s; z] ·Ax. Similarly, we produced the score ys of x with ys = s ·Ay, where Ay ∈ Rhs×1. To
obtain samples with balanced binary labels, we consider the label y of the sample with ys above the
median as 1 and the others as 0.

Methods for Comparisons. In the pilot study detailed in Section 3, we conducted an investigation
and analysis on four models: 1) Discriminative: a discriminative model that learns to classify the
samples with a two-layer perceptron (MLP), 2) Generative [27]: a generative model that learns the
generation of the sample x conditioning on its label y and predict the label of an adversarial example
by calculating the maxy p(x|y), 3) Causal without Disent.: a causal model that models the generation
of both x and y with the same causal factor v (Causal modeling without Disentanglement), 4) Causal
with Disent.: our model that disentangles the label-causative factor s and another factor z during the
generation of x. For the latter two causal models, given an adversarial example, the hidden vectors v
or s, z are inferred for Causal without Disent. and with Disent. which are then used for the final label
prediction. This section comprehensively presents the designed causal structures in Fig. 5 and the
model architectures in Fig. 6.

20



Regarding implementation, we trained each of the four models for 20 epochs, optimizing the model
parameters using the Adam optimizer with a learning rate of 1e−3. The latent dimension for each
model was set to 64. For evaluation, we employed a 100-step PGD attack with ϵ = 0.3 and
α = 2/255 within the ℓ∞ norm boundary. The variation in latent variables and predicted logits
between adversarial examples and clean images, as presented in Table 4, is measured on adversarial
examples generated with ϵ = 10 and α = 0.05 within the ℓ∞ norm boundary, using a 100-step PGD
attack.

C More Experimental Results

C.1 Analyses on Core Components of Training

Effect of IθCLUB(S;Z) in Casual Information Bottleneck (CIB) To examine the impact of our
introduced disentanglement term IθCLUB(S;Z) in CIB (See Equation (6)), we vary η in Equation (7)
and evaluate the robustness against the most challenging attack in AutoAttack [2], i.e., with ℓ∞ norm
bounded by ϵ = 8/255. Larger η will cause the diffusion model to collapse, so we do not include the
results of larger η. As we mentioned in Section 4.2, our CIB regresses to the ELBO objective in [14]
when η = 0. As shown in Fig. 7, CausalDiff has better clean accuracy as well as robustness when
η > 0 and yields the best robustness when η = 10−5 (69.14% compared to 65.04% when η = 0).
It confirms that IθCLUB(S;Z) in the loss function is beneficial to disentangle the Y-causative from
Y-non-causative factors and can further enhance both clean accuracy and robustness.

C.2 Analyses on Core Components of Inference

Causal Factor Inference Method. We also evaluate the robustness using the encoder f(s,z)(x; θ)
to get latent variables instead of inferring s and z through the conditional diffusion model. The
results reveal that classification by the encoder (without purification) achieves a clean accuracy of
91.99% but 0.00% against AutoAttack under both ℓ∞ and ℓ2 threat models. This decline might
be attributed to imprecise modeling around x (i.e., x + δ), which results in an inability to resist
adversarial perturbations on x.

Timestep t Sampling Strategies for Purification As discussed in Section 5.2, our purification
method (CausalDiffw/o Causal Factor Inference in Table 2) markedly surpasses the direct adaptation of
likelihood maximization (LM-DDPM in Table 2), as proposed by Chen et al. [27], applied to DDPM.
This improvement stems from a refined strategy in sampling the timestep t.

As demonstrated in Fig. 9, we found that smaller timesteps perform better in distinguishing between
the distributions of clean and adversarial samples. Specifically, we presented the negative log-
likelihood estimated by expectation Eϵ[wt∥ϵθ(xt, t)− ϵ∥] for the given timestep over 512 examples.
This may caused by a larger timestep implies a greater degree of noise addition for estimating
likelihood, which might overshadow the adversarial perturbations, unexpected for purification.

C.3 Visualization of Cases

We visualize the generated images leveraging the conditional generation of our CausalDiff, providing
an intuitive depiction of the label-causative factor s∗ and the label-non-causative factor z∗. Fig. 8
illustrates that after inferring from the benign example x∗, perturbations are alleviated. The image
xs∗ conditioned on s∗ showcases that s∗ captures the core predictive features, reflecting the general
concept of the category (for instance, a common semantic representation of ’horse’ from an image of
a brown horse’s head), or even enhances the predictive features such as the dog’s face or the ship’s
body, whereas z∗ retains specific and non-predictive image details.

We also visualize the purified example x∗, conditionally generated x∗
s∗ and x∗

z∗ when encountering
an adversarial example x̃. These cases demonstrate that, despite the presence of perturbations in the
clean images, our CausalDiff effectively captures the correct predictive information of s∗, maintaining
alignment with the clean data.
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Figure 8: Reconstruction images x[s∗c ;z
∗
c ]

when given clean example x, where s∗c and z∗c are inferred
from the clean example x by our CausalDiff; generated images xs∗c and xz∗c conditioned on s∗c and
z∗c , respectively; purified image x∗ utilizing the unconditional diffusion (with s, z masked) when
given an adversarial example x̃; generated images xs∗ and xz∗ conditioned on s∗ and z∗, respectively,
where s∗ and z∗ are inferred from the purified image x∗.
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Figure 9: Distribution of likelihood for adversarial and benign examples across various timesteps t.

C.4 Speed Test of Inference Time

We evaluate the computational complexity of CausalDiff and DiffPure [33] as well as a discriminative
model (WRN-70-16) by measuring the inference time in seconds for a single sample (average on 100
examples from CIFAR-10 dataset) on two types of GPUs, including NVIDIA A6000 GPU and 4090
GPU (Our experiments leverage 4 A6000 GPUs and 4 4090 GPUs). The results are shown in Table 5.

Table 5: Comparison of NFEs (Number of Function Evaluations) across different models on GPUs

CausalDiff CausalDiff
w/o Purify

CausalDiff
w/o Causal Factor Infer. DiffPure WRN-70-16

NFE N1 +N2 + 1 N2 + 1 N1 + 1 N1 1
Time (A6000) 4.97 4.62 0.29 2.22 0.011
Time (4090) 4.88 4.61 0.25 2.06 0.007
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D Limitation

Although our CausalDiff significantly narrows the gap in classification accuracy between adversarial
and clean examples, it requires an inference cost of 1 + N1 + N2 NFEs (Number of Function
Evaluations), where efficiency improvements are needed. Note that N1 indicates the purification step
(e.g. 5) and N2 indicates the step of causal factor inference (e.g., 10) and 1 NFE for latent-S-based
classification. Furthermore, our CausalDiff represents a new framework, meaning it requires training
from scratch. Perhaps in the future, an efficient implementation of robust inference could be achieved
by embedding causal mechanisms into the existing models in a plug-and-play manner.

E Broader Impact

Our CausalDiff model, built upon a powerful generative framework, aims to align with human
decision-making mechanisms to enhance the stability and trustworthiness of neural networks. This
approach holds potential for advancing the field of Machine Learning, particularly in safety-sensitive
applications such as autonomous driving and facial recognition.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: see abstract

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Appendix D

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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24



Justification: Section 4.2 and Appendix A
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referenced.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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to reproduce that algorithm.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appendix E

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Appendix E

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Appendix 4

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29


	Introduction
	Related Work
	Pilot Study on Toy Data
	Experimental Settings
	Experimental Observations

	Causal Diffusion Model
	Conditional Diffusion Generation
	Causal Information Bottleneck Optimization
	Adversarial Example Inference
	Comparison with Adversarial Purification

	Experiments
	Experimental Settings
	Comparisons on Unseen Attacks
	Ablation Study
	Visualization of Latent Factors

	Conclusion
	Proof of Propositions
	Proof of Causal Information Bottleneck (CIB)
	Proof of the Lower Bound of CIB
	Detailed Derivation of Loss Function
	ELBO (Evidence Lower BOund) V.S. MI (Mutual Information)

	More Implementation Details
	Baselines
	Implementation Details
	Details for Pilot Study

	More Experimental Results
	Analyses on Core Components of Training
	Analyses on Core Components of Inference
	Visualization of Cases
	Speed Test of Inference Time

	Limitation
	Broader Impact

