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ABSTRACT

Distribution shift poses a significant challenge in machine learning, particularly in
biomedical applications using data collected across different subjects, institutions,
and recording devices, such as sleep data. While existing normalization layers,
BatchNorm, LayerNorm and InstanceNorm, help mitigate distribution shifts, when
applied over the time dimension they ignore the dependencies and auto-correlation
inherent to the vector coefficients they normalize. In this paper, we propose
PSDNorm that leverages Monge mapping and temporal context to normalize feature
maps in deep learning models for signals. Evaluations with architectures based on
U-Net or transformer backbones trained on 10K subjects across 10 datasets, show
that PSDNorm achieves state-of-the-art performance on unseen left-out datasets
while being more robust to data scarcity.

1 INTRODUCTION

Data Shift in Physiological Signals Machine learning techniques have achieved remarkable
success in various domains, including computer vision, biology, audio processing, and language
understanding. However, these methods face significant challenges when there are distribution shifts
between training and evaluation datasets (Moreno-Torres et al., 2012). For example, in biological
data, such as electroencephalography (EEG) signals, the distribution of the data can vary significantly.
Indeed, data is collected from different subjects, electrode positions, and recording conditions.
This paper focuses on sleep staging, a clinical task that consists in classifying periods of sleep in
different stages based on EEG signals (Stevens & Clark, [2004). Depending on the dataset, the
cohort can be composed of different age groups, sex repartition, health conditions, and recording
conditions (O’Reilly et al.} 2014;[Quan et al., | 1998; | Marcus et al.,|2013). Such variability brings shift
in the distribution making it challenging for the model to generalize to unseen datasets.

Normalization to Address Data Shift Normalization layers are widely used in deep learning to
improve training stability and generalization. Common layers include BatchNorm (loffe & Szegedyl,
2015), LayerNorm (Ba et al., 2016), and InstanceNorm (Ulyanov, [2016), which respectively compute
statistics across the batch, normalize across all features within each sample, and normalize each
channel independently within a sample. Some normalization methods target specific tasks, such as
EEG covariance matrices (Kobler et al.,2022) or time-series forecasting (Kim et al., 2021), but they
do not fully address spectral distribution shifts reflected in the temporal auto-correlations of signals.
Other papers have proposed to adapt layer statistics to new domains (Li et al.,|2016; /Chang et al.,
2019). In sleep staging, a simple normalization is often applied as preprocessing, e.g., standardizing
signals over entire nights (Apicella et al.,|2023) or short temporal windows (Chambon et al., 2018)).
Recent studies (Gnassounou et al.| 2023 2024) highlight the importance of considering temporal
correlation and spectral content in normalization, proposing Temporal Monge Alignment (TMA),
which aligns Power Spectral Density (PSD) to a common reference using Monge mapping, going
beyond simple z-score normalization. However, these methods remain preprocessing steps that
cannot be inserted as layers in the network architecture as it is done with BatchNorm, LayerNorm or
InstanceNorm.

Deep Learning for Sleep Staging Sleep staging has been addressed by various neural network
architectures, which process raw signals (Chambon et al.| 2018} Perslev et al.l 2021} |Guillot & Thoreyl,
2021)), spectrograms (Phan et al., {2023} [2019)), or both (Phan et al., [2022a)). More recent approaches
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Figure 1: Description of normalization layers. The input shape is (IV, ¢, ¢) with batch size N,
channels c, and signal length ¢. BatchNorm estimates the mean /i and variance 52 over batch

and time, and learns parameters (v, ) to normalize the input. PSDNorm estimates PSDs P over

time and accounts for local temporal correlations. It computes the barycenter PSD P, updates

it via a running Riemannian barycenter (6), and applies the filter H to normalize the input. The
hyperparameter f controls the extent of temporal correlation considered, thereby adjusting the
strength of the normalization.

involve transformer-based models that handle multimodal (Wang et al.), spectrogram (Phan et al.,
2022b)), or heterogeneous inputs (Guo et al.,|2024), offering improved modeling of temporal depen-
dencies. However, most existing models are trained on relatively small cohorts, typically consisting
of only a few hundred subjects, which limits their ability to generalize to diverse clinical settings.
Notable exceptions include U-Sleep (Perslev et al.||2021)), which was trained on a large-scale dataset
and incorporates BatchNorm layers to mitigate data variability, and foundational models (Thapa
et al.; [Fox et al.;|Deng et al.) that achieve strong generalization from vast amount of data but require
significant computational resources and are challenging to adapt without fine-tuning. Our focus is
on developing smaller, efficient models that balance good generalization with ease of training and
deployment in clinical practice.

Contributions In this work, we introduce the PSDNorm deep learning layer, a novel approach
to address distribution shifts in machine learning for signals. PSDNorm leverages Monge Map-
ping to incorporate temporal context and normalize feature maps effectively. This layer enhances
model robustness to new subjects at inference time. Unlike standard normalization layers such as
LayerNorm or InstanceNorm, PSDNorm leverages the sequential nature of intermediate feature
maps, as illustrated in Figure T[] We evaluate PSDNorm through extensive experiments on 10 sleep
datasets. This evaluation covers 10M of samples across 10K subjects, using a leave-one-dataset-out
(LODO) protocol with 3 different random seeds. To the best of our knowledge, such a large-scale
and systematic evaluation has never been conducted before. PSDNorm achieves state-of-the-art
performance and requires 4 times fewer labeled data to match the accuracy of the best baseline.
Results highlight the potential of PSDNorm as a practical and efficient solution for tackling domain
shifts in signals.

The paper is structured as follows: Section 2] discusses existing normalization layers and pre-
processing. Section [3]introduces PSDNorm, followed by numerical results in Section 4]

Notations Vectors are denoted by small cap boldface letters (e.g., x), matrices by large cap
boldface letters (e.g., X). The element-wise product, power of n and division are denoted ©®, -©"
and @, respectively. [1, K] denotes {1,..., K}. The absolute value is |.|. The discrete circular
convolution along the temporal axis operates row-wise as, * : R°*¢ x RS — Rexf for £ > f.
vec : R*¢ — R concatenates rows of a time series into a vector. z; = [x]; refers to the I element
of x, and X ,,, = [X];.,n, denotes the element of X at the ™ row and m™ column. X* and X T are
the conjugate and the transpose of X, respectively. diag puts the elements of a vector on the diagonal
of a matrix. ® is the Kronecker product. 1. is the vector of ones of size c.
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2 RELATED WORKS

In this section, we first review classical architectures for sleep staging and fundamental concepts of
normalization layers. Then, we recall the Temporal Monge Alignment (TMA) method (Gnassounou
et al.| 2023) that aligns the PSD of signals using optimal transport.

Deep Learning for Sleep Staging Numerous neural network architectures have been proposed
for sleep staging, processing data in different formats as introduced in Section[I} Different types of
architectures have been explored, such as convolutional neural networks (CNNs) (Chambon et al.}
2018)), recurrent neural networks (RNNs) (Supratak et al2017; [Phan et al.| [2019), and more recently
transformers (Phan et al.| 2022b; [Wang et al.; |Guo et al.| 2024)), which have shown promise in
modeling temporal dependencies in sleep data. While many models are typically evaluated on a
limited number of datasets, the work by (Perslev et al.|[2021) introduced U-Sleep, a model trained on
a large-scale dataset of sleep recordings. Their architecture, based on U-Time (Perslev et al.,|2019),
incorporates BatchNorm layers to mitigate data variability, and they employ a domain generalization
approach: training a single model on a sufficiently diverse set of domains to ensure it generalizes
to unseen datasets without additional adaptation. This architecture is composed of encoder-decoder
blocks with skip connections, allowing the model to capture both local and global features of the
sleep signals effectively. Each encoder and decoder block consists of convolutional layers followed
by BatchNorm and non-linear activation functions, enabling the model to learn robust representations
of the input data. A more detailed description of U-Time is provided in Appendix [A3]

Normalization Layers Normalization layers enhance training and robustness in deep neural
networks. The most common are BatchNorm (loffe & Szegedyl [2015)), InstanceNorm (Ulyanov,
2016), and LayerNorm (Ba et al.,[2016). BatchNorm normalizes feature maps using batch and time
statistics, ensuring zero mean and unit variance. The output is adjusted with learnable parameters.
InstanceNorm normalizes each channel per sample using its own statistics, independent of the batch
(see Fig. |I|) Popular in time-series forecasting, it is used in RevIN (Kim et al., [2021), which reverses
normalization after decoding. LayerNorm normalizes across all channels and time steps within each
sample, with learnable scaling and shifting. While these normalization layers are widely employed,
they operate on vectors ignoring statistical dependence and autocorrelation between their coefficients,
which are prevalent when operating on time-series. To address this limitation, the Temporal Monge
Alignment (TMA) (Gnassounou et al., [2023;2024) was introduced as a pre-processing step to align
temporal correlations by leveraging the Power Spectral density (PSD) of multivariate signals using
Monge Optimal Transport mapping.

Gaussian Periodic Signals Consider a multivariate signal X £ [x1,...,x.]" € R®*‘ of sufficient
length. A standard assumption is that this signal follows a centered Gaussian distribution where
sensors are uncorrelated and signals are periodic. This periodicity and uncorrelation structure implies
that the signal’s covariance matrix is block diagonal, with each block having a circulant structure. A
fundamental property of symmetric positive definite circulant matrices is their diagonalization (Grayl,
2006)) with real and positive eigenvalues in the Fourier basis Fy € CH*? of elements

[Fep = % exp <—2m(ll)él/1)) : (1

where [,1' € [1, /] . Hence, we have vec(X) ~ N (0, X) with 3 block-diagonal,
¥ = (I. ® Fy) diag (vec(P)) (I. @ F}) € R><, )

where P € R°** contains positive entries corresponding to the Power Spectral Density of each sensor.
In practice, since we only have access to a single realization of the signal, the PSD is estimated with
only f < / frequencies, i.e., P € R®*f. This amounts to considering the local correlation of the
signal and neglecting the long-range correlations.

Power Spectral Density Estimation The Welch estimator (Welchl [1967) computes the PSD of
a signal by averaging the squared Fourier transform of overlapping segments of the signal. Hence,
the realization of the signal X € R°*¢ is decimated into overlapping segments {X() ... X} ¢
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R*f to estimate the PSD. The Welch estimator is defined as
1 L

5 A T l *

P2 |((ewh) oxO)F
1=1

where w € R7 is the window function such that ||w|> = 1.

©2
e RS (3)

f-Monge Mapping Let A/(0, Z(S)) and NV (0, E(t)) be source and target centered Gaussian distri-
butions respectively with covariance matrices following the structure () and PSDs denoted by P(*)
and P(® € R/ Given a signal X € R°** such that vec(X) ~ N(0, £(*)), the f-Monge mapping
as defined by (Gnassounou et al., [2023} [2024) is

1 O3
) 2 (4 A (t) (s) * cex f
my (X,P ) X+H e R, where H —\/f (P oP ) F;eR @

In this case, f controls the alignment between the source and target distributions. Indeed, if f = /,
then the f-Monge mapping is the classical Monge mapping between Gaussian distributions and the
source signal has its covariance matrix equal to »® after the mapping. If f = 1, then each sensor is
only multiplied by a scalar.

Gaussian Wasserstein Barycenter For Gaussian distributions admitting the decomposition (2)), the
Wasserstein barycenter (Agueh & Carlier,2011)) admits an elegant closed-form solution. Consider
K centered Gaussian distributions admitting the decomposition (2)) of PSDs P ... P Their
barycenter is also a centered Gaussian distribution A/(0, ) admitting the decomposition (2) with

PSD
1 K ) @2
p2 <K2p<k>®2> e R/ ©)
k=1

Temporal Monge Alignement TMA is a pre-processing method that aligns the PSD of multi-
variate signals using the f-Monge mapping. Given a source signal X and a set of target signals

X = {Xgl), . 7X,gK)}, the TMA method uses the f-Monge mapping between the source and the
Wasserstein barycenter of the target signals. Hence, it simply consists of 1) estimating the PSD of
all the signals, 2) computing the Wasserstein barycenter of the target signals, and 3) applying the
f-Monge mapping to the source signal. TMA, as a preprocessing method, is inherently limited to
handling PSD shifts in the raw signals and cannot address more complex distributional changes in the
data. This limitation highlights the need for a layer that can effectively capture and adapt to these
complex variations during learning and inside deep learning models.

3 PSDNORM LAYER

The classical normalization layers, such as BatchNorm or InstanceNorm do not take into account
the temporal autocorrelation structure of signals. They treat each time sample in the intermediate
representations independently. In this section, we introduce the PSDNorm layer that aligns the PSD
of each signal onto a barycenter PSD within the architecture of a deep learning model.

PSDNorm is a novel normalization layer that can be used as a drop-in replacement for layers
like BatchNorm or InstanceNorm. Instead of simple standardization, it aligns the Power Spectral
Density (PSD) of feature maps to a running barycenter PSD. This approach, optimized for modern
hardware, enhances model robustness to new subjects at inference time without retraining. We
define the normalized feature map as G = PSDNorm(G). The following sections introduce the core
components of PSDNorm and its implementation.

3.1 CORE COMPONENTS OF THE LAYER

In the following, we formally define PSDNorm and present each of its three main components: 1) PSD
estimation, 2) running Riemannian barycenter estimation, and 3) f-Monge mapping computation.
Given a batch B = {G() ..., G} of N pre-normalization feature maps, PSDNorm outputs a
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normalized batch B = {é(l), ..., G )} with normalized PSD. Those three steps are detailed in the
following and illustrated in the right part of Figure[T}

PSD Estimation First, the estimation of the PSD
of each feature map is performed using the Welch

method. The per-channel mean ﬁ(j ) is computed for

each feature map G /) as u(j) = % Zle [G(J)} €
Re.

Then, the PSD of the centered feature map GU) —
ﬁ(] )12, denoted P9, is estimated as described in  Figure 2: Description of the running Rie-
Equation (3). This centering step is required as fea- manian barycenter. The barycenter of the
ture maps are typically non-centered due to activa- batch ﬁB is estimated from the PSD of each
tion functions and convolution biases but they are .. sample.

assumed to have a stationary mean. The Welch es-
timation involves segmenting the centered feature map into overlapping windows, computing the
Fourier transform of each window and then averaging them.

Geodesic and Running Riemanian Barycenter The PSDNorm aligns the PSD of each feature
map to a barycenter PSD. This barycenter is computed during training by interpolating between
the batch Wasserstein barycenter and the current running Riemanian barycenter using the geodesic
associated with the Bures metric (Bhatia et al.,[2019). The batch barycenter is first computed from the
current batch PSDs {f’(l), ceey pw )} using Equation . To ensure gradual adaptation, the running
barycenter is updated via an exponential geodesic average with « € [0, 1]:

1 1\ ©2
= =03 =03
P ((1 —a)P ’ +aPy ) e RX/ . ©)
A proof of the geodesic is provided in Appendix [A.T]

PSD Adaptation with f-Monge Mapping The final step of the PSDNorm is the application of
the f-Monge mapping to each feature map after subtracting the per-channel mean. Indeed, for all
j € [1, N], itis defined as

GU) = my (G(j) _ ﬁ(j)ll,ﬁ) — ((G(j) - ﬁ(j)1;> % ﬁ(j)) c Rex! @)
where H() is the Monge mapping filter computed as
qO) & % (ﬁ@ ﬁ(j))@% F} € R ®)
where PU) is the estimated PSD of GU) — 1]

3.2 IMPLEMENTATION DETAILS

Overall Algorithm The forward computation of the proposed layer is outlined in Algorithm|I] At
train time, the PSDNorm performs three main operations: 1) PSD estimation, 2) running Riemannian
barycenter update, and 3) Monge mapping application. At inference, the PSDNorm operates similarly,
except it does not update the running barycenter. The PSDNorm is fully differentiable and can
be integrated into any deep learning model. Similarly to classical normalization layers, a stop
gradient operation is applied to the running barycenter to prevent the backpropagation of the gradient
computation through the barycenter. PSDNorm has a unique additional hyperparameter f which is
the filter size. It controls the alignment between each feature map and the running barycenter PSD
and it is typically chosen in our experiments between 1 and 17. In practice, the Fourier transforms are
efficiently computed using the Fast Fourier Transform (FFT) algorithm. Because of the estimation of
PSDs, the complexity of the PSDNorm, both at train and inference times, is O(Ncl f log(f)), where
N is the batch size, ¢ the number of channels, ¢ the signal length, and f the filter size.



Under review as a conference paper at ICLR 2026

3.3 DISCUSSION AND CONNECTIONS TO RELATED METHODS

PSDNorm as a generalization of In- Algorithm 1 Forward pass of PSDNorm

stanceNorm InstanceNorm applies |: Input: Batch B — { G, ... g™ }, running
a per-channel z-score over time, sub- ~
tracting the mean and dividing by barycenter P, filter-size f, momentum «, training flag

the st'and.ard deviatioqfequivalent 2: Output: Normalized batch {é(l), ...,GW )}
to whitening under an i.i.d. assump- )

tion over time. In contrast, PSD- 3 forA]( ): Lto N do

Norm explicitly accounts for tempo- 4 K 7’ < Mean estimatiog ,

ral structure by estimating the PSD  5:  P() « PSD est. from G — 591/ with eq. (3)
and whitening/re-coloring in the fre- 6: end for

quency domain. InstanceNorm is re-  7: if training then

covered as a special case of PSDNorm 5 B . wi

by setting thepﬁlter sizeto f = 1 and 8 Pp  Bachbary. from {P17}; with eg. e

using the uniform PSD barycenteras ~ 9: P ¢ Running bary. up. from P, P with eq. (@)

= . 10: end if
P = 1. as the re-coloring transform 11: for j = 1 to N do

instead of the barycentric PSD. 2 ~ =
12:  HU) « Filter estimation from P4), P with eq. (§)
13:  GUY « f-Monge mapping with eq.

14: end for

Similarity with Test-time Domain Adaptation PSDNorm is inspired by Temporal Monge Align-
ment (TMA) (Gnassounou et al., 2023)), a pre-processing technique that can be used for test-time
adaptation. Test-time Domain Adaptation methods adjust a pre-trained model to a new target domain
during inference, without requiring access to the original training data (Wang et al., 2021 |Yang et al.,
2021). While PSDNorm must be integrated into the model during training and is not a post-hoc
adaptation method, it provides a similar benefit at inference time. Designing new modern architectures
that incorporate PSDNorm can enhance robustness to domain shifts without the need for retraining or
access to source data.

Discussion of Gaussian and Stationarity Assumptions PSDNorm relies on the Gaussian ap-
proximation of OT for compensation variability but does not assume that the signals are Gaussian.
This allows for efficient alignment of second-order statistics (covariance structure), but also allows
preserving higher-order discriminative information. This approach is computationally tractable and
targets the most prominent sources of domain shift without over-distorting the signal, a strategy also
used in successful methods like Deep CORAL (Sun & Saenkol 2016)). Like BatchNorm, PSDNorm
assumes shifts are captured by low-order statistics, but it provides a richer alignment by incorporating
temporal context.

4 NUMERICAL EXPERIMENTS Table 1: Characteristics of the datasets.

In this section, we evaluate the proposed method ~ Dataset ~ Subj.  Rec.  Agezstd  Sex (F/M)

through a series of experiments designed to high-  ABc 44 117  488+98 43%/57%
light its effectiveness and robustness on the clin-  CCSHS 515 515 17.7+£04  50%/50%
ically relevant task of sleep staging. We firstde-  CFS 681 681  41.7+£20.0 55%/45%

scribe the datasets and training setup employed, ~ HPAP 166 166 465119  43%/57%
MROS 2101 2698 764 +55 0%/100%

.fololowed by a'per'formance comparison withex-  puyg 70 132 S88L220 33%6T%
isting normalization techniques. Next, we as-  ggHs 5730 8271 631+ 112  52%/48%

sess the efficiency of PSDNorm by training over ~ MASS 61 61  425+£189 55%/45%
varying numbers of subjects per dataset. Finally, = CHAT 1230 1635 6.6+ 14  52%/48%
we analyze the robustness of PSDNorm against ~ SOF 434 434 828431  100%/0%
domain shift by focusing on subject-wise per-  Total 11032 14710 - -

formance and different architectures. The code
will be available on GitHub upon acceptance. The anonymized code is available in the supplementary
material. All numerical experiments were conducted using a total of 1500 GPU hours on NVIDIA
H100 GPUs.
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4.1 EXPERIMENTAL SETUP

Datasets To evaluate the effect of normalization layers, we use ten datasets of sleep staging
described in Table E} ABC (Jessie P. et al., 2018), CCSHS (Rosen et al., 2003), CFS (Redline
et al.| [1995), HPAP (Rosen et al.l [2012), MROS (Blackwell et al.l 2011), SHHS (Quan et al.,
1998)), CHAT (Marcus et al.l |2013), and SOF (Spira et al., 2008)) are publicly available sleep
datasets with restricted access from National Sleep Research Resource (NSRR) (Zhang et al., 2018).
PHYS (Goldberger et al.l 2000) and MASS (O’Reilly et al.,|2014)) are two other datasets publicly
available. Every 30 s epoch is labeled with one of the five sleep stages: Wake, N1, N2, N3, and REM.
These datasets are unbalanced in terms of age, sex, number of subjects, and have been recorded with
different sensors in different institutions which makes the sleep staging task challenging. We now
describe the pre-processing steps and splits of the datasets.

Data Pre-processing We follow a standard pre-processing pipeline used in the field (Chambon
et al., 2017} |Stephansen et al.} [2018)). The datasets vary in the number and type of available EEG
and electrooculogram (EOG) channels. To ensure consistency, we use two bipolar EEG channels,
as some datasets lack additional channels. For dataset from NSRR, we select the channels C3-A2
and C4-Al. For signals from Physionet and MASS, we use the only available channels Fpz-Cz and
Pz-Oz. The EEG signals are low-pass filtered with a 30 Hz cutoff frequency and resampled to 100 Hz.
All data extraction and pre-processing steps are implemented using MNE-BIDS (Appelhoff et al.,
2019) and MNE-Python (Gramfort et al.| [2013]).

Leave-One-Dataset-Out (LODO) Setup and Balancing We evaluate model performance using
a leave-one-dataset-out (LODO) protocol: in each fold, one dataset is held out for testing, and the
model is trained on the union of the remaining datasets. From the training data, 80% of subjects are
used for training and 20% for validation, which is used for early stopping. The full held-out dataset is
used for testing. To assess performance in low-data regimes, we also evaluate a variant in which we
subsample at most IV subjects per dataset, promoting balanced contributions across training sources.
We refer to this configuration as balanced @ N, with IV ranging from 40 to 400. The exact number of
subjects per dataset in each case is listed in Appendix Table[3]

Architecture and Training Sleep staging has inspired a variety of neural architectures, from early
CNN-based models (Chambon et al.,|2017; [Stephansen et al., [2018; Phan et al.| [2022a) to recent
attention-based approaches (Phan et al.,[2022b; [2023]; [Wang et al.). We evaluate two architectures:
U-Sleep (Perslev et al.l [2019;[2021)), a state-of-the-art temporal CNN model designed for robustness
and large-scale training, and a newly introduced architecture, CNNTransformer. CNNTransformer
combines a lightweight convolutional encoder with a Transformer applied to epoch-level embeddings.
It is specifically tailored for two-channel EEG and designed to scale efficiently to large datasets, while
remaining minimal in implementation (under 100 lines of code) and training cost (Appendix[A.4). Its
design draws inspiration from recent transformer-based models for time series (Yang et al.| [2023)),
with an emphasis on simplicity and practicality.

We use the Adam optimizer (Kingmal [2014) with a learning rate of 10~ to minimize the weighted
cross-entropy loss, where class weights are computed from the training set distribution. Training
is performed with a batch size of 64, and early stopping is applied based on validation loss with a
patience of 3 epochs. Each input corresponds to a sequence of 17°30s, with a stride of 10°30s between
sequences along the full-night recording. The filter size f of PSDNorm is set to 5. A sensitivity
analysis of f is provided in Appendix [A.6]in the appendix, and show that the performance is stable
across a range of values from 5 to 11.

Evaluation At inference, the model similarly processes sequences of 17°30s with a stride of 10°30s.
Performance is evaluated using the balanced accuracy score (BACC), computed on the central 10°30s
of each prediction window. Each experiment is repeated three times with different random seeds, and
we report the mean and standard deviation of BACC.

Normalization Strategies We compare the proposed PSDNorm with three normalization strategies:
BatchNorm, LayerNorm, and InstanceNorm. Note that InstanceNorm corresponds to a special case
of PSDNorm with f = 1 and a fixed identity mapping instead of a learned running barycenter. In
the following experiments, the BatchNorm layers in the first three convolutional layers are replaced
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Table 2: Balanced Accuracy (BACC) scores on the left-out datasets with USleep. The top
section reports results in the large-scale setting (using all available subjects), while the bottom
section presents results in the medium-scale setting (balanced @400). For each row, the best score is
highlighted in bold, and standard deviations reflect training variability across 3 random seeds. The
mean BACC reports the average over all the subjects.

Dataset BatchNorm LayerNorm InstanceNorm TMA PSDNorm
ABC 78.4910.42 77.9410.31 78.83_10.59 78.33410.12 78.5640.67
CCSHS 88.79.021 87.511¢9.77 88.7510.04 88.61410.10 88.5610.36
CFS 84971037 84.294¢0.67 85.7310.29 84.85410.13 85.4210.09
£ CHAT 64.721394  64.3610 40 68.8612.49 69.761162 T70.5711.24
% HOMEPAP 76.39410.29 75.2310.78 76.7010.35 76.771066 16.7210.27
2 MASS 73.71410.62 71.3943.00 72.12419.70 73.901 069 725141168
= MROS 81.3040.25 80.441¢.29 81.494 918 809141942 81.5710.34
< PhysioNet 76.13i0.57 75.1210.22 76.15i0,52 76.48i0,37 75.96i1,02
SHHS 779711 46 75.9810.48 79.0540.89 782141930 79144101
SOF 81.334054 81.824¢.79 81.9840.22 81.841049 82.5040.34
Mean(Dataset) 78.3840.47 77.4140.08 78.97+0.11 78.9840.14 79.1540.14
Mean(Subject) 78.14i1.01 76.7810,18 79-26i0.48 78.77i0,07 79~5110.62
ABC 78.2641.33 75.2940.81 78.7340.42 78.0440.51 78.1840.68
CCSHS 87.4210.16 85.20410.48 87.62_ ¢ 42 87.5710.20 87.5810.30
CES 84.32 057  81.661135 84.724083 84581020  84.294046
S CHAT 66.5510.88 61.1941 16 64.43 .14 41 68.731248 70.2811 70
é HOMEPAP 75.2510.50 74.8610.25 76.4710.63 76.101L9.32 76.8310.61
@ MASS 70.0041 .01 68.5613.33 71524113 716341920 T72.7711.00
=t MRQS 80.3710.20 78.0540.29 80.28 19.21 80.0940.40 80.2640.11
= PhysmNet 75.81i0_13 71.82i212 74.68i0'55 75.31i1A54 74.82i2.11
M SHHS 76.4410.92 75.1240.39 78.6840.37 77.0040.39 78.88.10.68
SOF 81.0841.14 78.704+0.50 80.68+1 38 81.25. 071 79.4910.41

Mean(Dataset) 77.5540.34 75.0540.28 77.7840.46 78.0340.35 78.34410.42
Mean(Subject) 77~22i034 75~04i042 78-17i0,28 77~74i036 78.85i0A59

with either PyTorch’s default implementations of LayerNorm, InstanceNorm (Paszke et al.,2019)), or
PSDNorm. To preserve the receptive field, the filter size f of PSDNorm is used in the first layer and
progressively halved in the following ones. We fix the momentum « to 1072,

4.2 NUMERICAL RESULTS

This section presents results from large-scale sleep stage classification experiments. The analysis be-
gins with a comparison of PSDNorm against standard normalization layers—BatchNorm, LayerNorm,
and InstanceNorm—on the full datasets. Then, the data efficiency of each method is evaluated under
limited training data regimes. Finally, robustness to distribution shift is assessed via subject-wise
performance across multiple neural network architectures.

Performance Comparison on Full Datasets Table |2 (top) reports the LODO BACC of U-Sleep
across all datasets, averaged over three random seeds. PSDNorm consistently outperforms all
baseline normalization layers—BatchNorm, LayerNorm, InstanceNorm, and TMA—achieving the
highest mean BACC of 79.51% over subjects, which exceeds BatchNorm (78.38%), InstanceNorm
(78.97%), LayerNorm (77.41%) and TMA (78.77%). On the challenging CHAT dataset, where all
methods struggle, PSDNorm outperforms all other normalizations by more than 1 percentage points,
highlighting its robustness under strong distribution shifts. Although InstanceNorm is a strong base-
line—outperforming BatchNorm and LayerNorm by at least one standard deviation on average—it is
consistently surpassed by PSDNorm in average performance. In contrast, LayerNorm underperforms
across the board, achieving the lowest average BACC and never ranking first, confirming its limited
suitability for this task. PSDNorm also improves score by almost 1% over TMA, showing that using
Monge Alignment inside the network allows for better adaptation.
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USleep

Efficiency: Performance with 4x Less Data 20 22 24 26 28
The PSDNorm layer improves model per- pSDNorm_]
formance when trained on the full dataset InstanceNorm TMA
(~10000 subjects), but such large-scale data CNNTransformer
availability is not always the case. In many 20 22 24 26 28
real-world scenarios—such as rare disease _| l_

PSDNorm TMA

studies, pediatric populations, or data col-
lected in constrained clinical settings—Ilabeled ~ nstanceNorm

recordings are scarce, expensive to annotate, . . .
or restricted due to privacy concerns. Evaluat- Figure 3: Critical Difference (CD) diagram for two

ing model robustness under these constraints architectures on datasets balanced @400. Average
is therefore essential. To this end, we train all ranks across datasets and subjects for USleep and
models using the balanced @400 setup, which CNNTransformer. Black lines connect methods that

reduces the training data by a factor of 4 com- are not significantly different.

pared to the full-data setting. In this lower-

data regime, PSDNorm continues to outperform all baseline normalization strategies and achieves
higher average BACC. The performance improvement of PSDNorm over the best baseline is more
pronounced in this setting: the BACC gain reaches +0.67%, compared to +0.25% in the full-data
setting. The gains exceed one standard deviation. To assess statistical significance, we conducted a
critical difference (CD) test (Demsar, 2006). Figure [3| (top) reports the average rank of each method
and the corresponding statistical comparisons. The results confirm that PSDNorm significantly out-
performs the baselines, underscoring the value of incorporating temporal structure into normalization
for robust and data-efficient generalization. The same trend is observed for U-Sleep trained on all
subjects (see in Appendix Figure[§)). The following experiments focus on the balanced @400 setup.

Robustness Across Architectures PSDNorm is a plug-and-play normalization layer that can be
seamlessly integrated into various neural network architectures. To demonstrate this flexibility, we
evaluate its performance on both the U-Sleep and CNNTransformer models. Figure [3|reports the
average rank of each normalization method across datasets and subjects for both architectures using
datasets balanced@400. In both architectures, PSDNorm achieves the best overall ranking and
demonstrates statistically significant improvements over both BatchNorm, InstanceNorm, and TMA.
The results confirm that PSDNorm generalizes well beyond a single architecture and can provide
consistent improvements in diverse modeling setups which is not the case of TMA that is ranked
the worst with CNNTransformer. InstanceNorm performs competitively in some cases but is never
significantly better than PSDNorm. Detailed numerical scores for CNNTransformer are reported in
the supplementary material (Table[7).

It is important to highlight that PSDNorm brings improvements without too much additional compu-
tational cost. In appendix Appendix [A.12] we provide a detailed comparison of the computational
time of PSDNorm with other normalization layers. The results show that PSDNorm is only slightly
slower than BatchNorm and InstanceNorm, with a negligible increase in training time (less than 10%)
and no significant impact on inference speed.

Target: MASS Target: CHAT
Performance on the most challenging subjects (61 subj.) (1230 subj.)

Performance variability across subjects is a key e %91 |

challenge in biomedical applications where en- 8(23 0.7 2 | 4
suring consistently high performance—even for <5

the most challenging subjects—is critigal. To @ g5 . m’ e
highlight the robustness of PSDNorm, Figure [ v v v A v
presents a scatter plot of subject-wise BACC € 0.94 1

scores comparing BatchNorm or InstanceNorm g 4
vs. PSDNorm across two selected target datasets. § g 0.71 1

CHAT and MASS are two challenging datasets, oz

where the prediction performance is significantly £ 057 69% o8- 99%

lower than the other datasets. For CHAT, most of 05 07 09 05 07 09
the dots are below the diagonal, indicating that PS- BACC PSDNorm  BACC PSDNorm

DNorm improves performance for 91% of subjects  Figure 4: Subject-wise BACC comparison on

against BatchNorm and 99% of subjects against MASS and CHAT (balanced @400). Blue dot
InstanceNorm, with the largest gains observed for  means improvement with PSDNorm.
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Figure 5: Illustration of PSD normalization with different normalization layers. The figure
shows the PSD of different segment of 17min from one subject batch as input, and after 3 encoders
using different normalization layers.

the hardest subjects, reinforcing its ability to han-

dle challenging cases. For MASS, PSDNorm improves performance for 75% of subjects against
BatchNorm and 69% against InstanceNorm. This demonstrates that PSDNorm is not only effective in
improving overall performance but also excels in enhancing the performance of the most challenging
subjects.

4.3 ILLUSTRATION OF PSD NORMALIZATION

Figure [5] shows how different normalization layers affect the PSD of signals at several stages of
the network. The input signals display limited variability, which explains why applying TMA as a
pre-processing step provides only marginal benefit. In the first row, corresponding to BatchNorm,
the PSD variability increases with depth, a behavior that is undesirable for generalization. TMA
exhibits a similar pattern, as no normalization is applied within the network to counteract this accu-
mulation of variance. In contrast, both InstanceNorm and PSDNorm reduce PSD variability across
samples. However, InstanceNorm does not fully align the PSDs, and noticeable differences remain
between samples. PSDNorm, on the other hand, achieves strong alignment of PSDs across samples,
indicating its ability to normalize the underlying temporal correlations. In addition, PSDNorm gives
more consistent PSDs across different layers of the network giving a better stability compare to
InstanceNorm. This alignment is essential for improving robustness and generalization, particularly
in settings involving distribution shifts.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

This paper introduced PSDNorm, a normalization layer that aligns the power spectral density (PSD)
of each signal to a geodesic barycenter. By leveraging temporal correlations, PSDNorm offers a
principled alternative to standard normalization layers. Experiments on large-scale sleep staging
datasets show that PSDNorm consistently improves performance, robustness, and data efficiency,
especially under domain shift and limited-data settings—outperforming BatchNorm, LayerNorm,
and InstanceNorm across architectures.

While the results are promising, some limitations remain. PSDNorm introduces a filter size hyperpa-
rameter (f) that controls normalization strength; although we provide default values that perform
well across datasets, selecting it automatically in adaptive settings could be challenging.

Despite these limitations, PSDNorm is flexible and easy to integrate into existing models. Future
work includes extending it to other signals such as audio and other biomedical applications.
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A APPENDIX

A.1 PROOF OF THE BURES-WASSERSTEIN GEODESIC (6)) BETWEEN COVARIANCE MATRICES
OF STRUCTURE (2)

Proposition A.1. Let =) and 9 be two covariance matrices in RS *<f Jollowing @). Let us
denote P®) and P the corresponding PSD matrices. The geodesic associated with the Bures-

Wasserstein metric between £ and £ and parameterized by o € [0,1] is () following @) of
PSD

1 1\ ©2
P(a) = ((1 —a)P®%2 ¢ aP(t)®2)

Proof. From Bhatia et al.|(2019), the geodesic associated with the Bures-Wasserstein metric between
two covariance matrices £'*) and () is given by

) =1 - a)?2® + 250 4ol - a) [(2“)2(”)% + (2“)2(5))%} . )

where

2

(BOxM) Z 5w? (E(sﬁg(t)z(s)%) S ORES (10)
Since =¥ and =* diagonalize in the unitary basis I, @ F £, 7() also diagonalizes in this basis.

Thus, we only have to compute the geodesic between the PSD matrices P(*) and P(*) and from now
on, all operations are element-wise. Let P(«/) be the PSD of (), we have

P(a) = (1 - )?P® +a2P® 1 o(1 - a) [(P<s> o PW)O3 1 (PO o P<s>)@%} )
=(1-a)’P®) 4+ a*P® 1 20(1 — a)(P®) 0 PM)®3 (12)

1 1\ ©2
_ ((1 PO 4 aP(t)®2) . (13)

This concludes the proof. [

A.2 BALANCED DATASETS

Table 3: Number of samples in the balanced datasets. Average and standard deviation (across LODO)
are computed over 10 datasets left-out from the training set.

Balanced datasets Number of subjects

Balanced @40 360 £ 0
Balanced @100 787 £ 19
Balanced @200 1387 £ 63
Balanced @400 2466 + 157
All subjects 9929 + 1659

In the main paper, we report results across different training set sizes. Since the datasets are highly
imbalanced (e.g., ABC has 44 subjects, SHHS has 5,730), we create balanced subsets by randomly
selecting up to IV subjects per dataset. This avoids over-representing the largest dataset and ensures
greater diversity in the training data. We consider four values of N: 40, 100, 200, and 400. The
average number of subjects in each balanced set is shown in Table[3] Notably, the balanced set with
400 subjects contains roughly four times less data than the full dataset.

A.3 U-TIME: CNN FOR TIME SERIES SEGMENTATION

U-Time Perslev et al.|(2019;|2021)) is a convolutional neural network (CNN) inspired by the U-Net
architecture Ronneberger et al.[(2015), designed for segmenting temporal sequences. U-Time maps
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sequential inputs of arbitrary length to sequences of class labels on a freely chosen temporal scale.
The architecture is composed of several encoder and decoder blocks, with skip connections between
them.

Encoder blocks A single encoder block is composed of a convolutional layer, an activation
function, a BatchNorm layer, and a max pooling layer. First, the convolution is applied to the input
signal, followed by the activation function and the BatchNorm layer. Finally, the max pooling
layer downsamples the temporal dimension. In the following, the pre-BatchNorm feature map is
denoted G and the post-BatchNorm feature map G, i.e., G £ BatchNorm (G). Each encoder block
downsamples by 2 the signal length but increases the number of channels.

Decoder blocks and Segmentation Head The decoding part of U-Time is symmetrical to the
encoding part. Each decoder block doubles the signal length and decreases the number of channels.
It is composed of a convolutional layer, an activation function, a BatchNorm layer, an upsampling
layer and a concatenation layer of the skip connection of the corresponding encoding block. Finally,
the segmentation head applies two convolutional layers with an activation function in between to
output the final segmentation. It should be noted that U-Time employs BatchNorm layers but other
normalization layers, such as LayerNorm [Ba et al.| (2016 or InstanceNorm [Ulyanov| (2016) are
possible.

Implementation The architecture is inspired from Braindecode |Schirrmeister et al.|(2017). The
implementation is improved to make it more efficient and faster. One epoch of training takes about
30 min on a single H100 GPU.

A.4 ARCHITECTURE: CNNTRANSFORMER

The CNNTransformer is a hybrid architecture designed for multichannel time series classification
inspired by transformers for EEG-DataWang et al.;|Phan et al.| (2022b);|Yang et al.|(2023)); Thapa et al.|
It combines convolutional feature extraction with long-range temporal modeling via a Transformer
encoder at epoch-level. The model processes an input tensor of shape (B, S, C, T), where B is the
batch size, .S is the number of temporal segments, C'is the number of input channels, and 7 is the
number of time samples per segment. It outputs a tensor of shape (B, ncjasses, S ), Where nglagses is the
number of classes and S is the number of epochs.

The architecture consists of the following components:

 Reshaping: The input is first permuted and reshaped to a 3D tensor of shape (B,C,S - T)
to be compatible with 1D convolutional layers applied along the temporal dimension.

* CNN-based Feature Extractor: A stack of 10 Conv1D layers, each followed by ELU
activation and Batch Normalization. Some layers use a stride greater than 1 to progressively
reduce the temporal resolution. This block extracts local temporal patterns and increases the
representational capacity up to a dimensionality of dpogel-

* Adaptive Pooling: An AdaptiveAvgPool1D layer reduces the temporal length to a fixed
number of steps (5), independent of the input sequence length. This step ensures a consistent
temporal resolution before the Transformer.

* Positional Encoding: Learnable positional embeddings of shape (1, S, dmoder) are added
to the feature representations to preserve temporal ordering before passing through the
Transformer encoder.

* Transformer Encoder: A standard Transformer encoder composed of L layers, each
consisting of multi-head self-attention and a feedforward sublayer. This module models
global temporal dependencies across the S steps.

* Classification Head: After transposing the data to shape (B, dimodel, S), @ final 1D convolu-
tion with a kernel size of 1 projects the output to 7j,sses, yielding predictions for each epoch
segment.

The model is trained end-to-end using standard optimization techniques. The use of adaptive pooling
and self-attention enables it to generalize across variable-length inputs while maintaining temporal
resolution. A full summary of the architecture is provided in Table
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Table 4: Architecture overview of the CNNTransformer model. In pratice, diodel 1S set to 768, Nhead
to 8, and S is 35.

Stage Operation Details Output Shape

Input Raw signal Multichannel EEG signal with S segments and 7 (B, S,C,T)
time samples per segment

Reshape Permute & flatten Rearranged as (B,C, S - T) to process with 1D  (B,C,S-T)
convolutions

Feature Extractor 1D CNN stack 10-layer sequence of ConvlD — ELU — Batch- (B, dmodel, ")
Norm; includes temporal downsampling via stride

Temporal Pooling AdaptiveAvgPool 1D Downsamples to fixed temporal resolution defined (B, dmodel; S)
by S

Positional Encoding ~ Learnable embeddings ~ Added to temporal dimension to encode temporal (B, dmodel, S)
order before transformer layers

Transformer Encoder Multi-head attention 2 Transformer layers with dmoder embedding di- (B, dmodel; S)
mension, 7heaq heads, and feedforward sublayers

Classifier Linear projection Projects feature vectors to class logits at each epoch (B, nglasses; S)
time step

A.5 EQUATION FOR BATCHNORM AND INSTANCENORM

BatchNorm The BatchNorm layer |loffe & Szegedy|(2015) normalizes features maps in a neural

network to have zero mean and unit variance. At train time, given a batch B = {G(1), ... GV} ¢
R** of N pre-BatchNorm feature maps and for all j, m, 1 € [1, N] x[1,¢c] x [1, ], the BatchNorm
layer is computed as

*V““‘*+Bm7 (14)

where ~, 3 € R¢ are learnable parameters. The mean and standard deviation gt € R¢ and & € R¢
are computed across the time and the batch,

nmémzz @,

]1l_ (15)
2
~2 A (J) Qi
o (o)

At test time, the mean and variance pi and & are replaced by their running mean and variance, also
called exponential moving average, estimated during training.

InstanceNorm Another popular normalization is the InstanceNorm layer Ulyanov|(2016). During

training, InstanceNorm operates similarly to (T4)), but the mean and variance are computed per sample

instead of across the batch dimension, i.e., /Lsij) and a(] )

Ag) A EZGU)I ,
K =1 7
1 ) N2
252 (G- s))
=1

Hence, each sensor of each sample is normalized independently of the others. At test time, Instan-
ceNorm behaves identically to its training phase and therefore does not rely on running statistics
contrary to the BatchNorm.

are computed for each sample 7,

(16)
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A.6 SENSITIVITY TO FILTER SIZE

The filter size f in PSDNorm controls the temporal context used for normalization, influencing the
strength of adaptation to temporal variations. Figure[6|shows the impact of different f values on the
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Figure 6: Performance of PSDNorm with varying filter sizes. The BACC score is plotted against
the filter size used with U-Sleep.

BACC score across datasets using U-Sleep trained on balanced @400. This experiments shows that
for any f, PSDNorm consistently improves performance compared to other normalization techniques.
Taking a f between 5 and 11 yields the best results, with a peak at f = 5. Smaller values (e.g.,
f =1, equivalent to InstanceNorm) provide less adaptation, while larger values (e.g., f = 21) may
over-smooth temporal variations, leading to diminished performance. Overall, the results shows that
f is not so sensitive yielding good performance for a wide range of values.

A.7 F1 SCORE VS. BALANCED ACCURACY

In the main paper, we report Balanced Accuracy scores, which account for class imbalance in sleep
stage classification. Prior work, such as the U-Time paper |Perslev et al.|(2019)), uses the F1 score
to evaluate performance. In Table [5] we report F1 scores on the left-out datasets. These scores
are slightly higher than the Balanced Accuracy scores and are comparable to those reported in the
U-Time paper.

Our main findings remain consistent: BatchNorm and InstanceNorm are the strongest baselines and
achieve the best performance on 3 out of 10 datasets. PSDNorm outperforms all other methods on
7 out of 10 datasets. The same trend holds for the balanced @400 setup, where PSDNorm again
outperforms all baselines on 7 datasets, while InstanceNorm is never the top performer.

These results confirm that our implementation achieves state-of-the-art performance in sleep stage
classification. Moreover, PSDNorm maintains its advantage even in data-limited settings

A.8 IMPACT OF WHITENING AND TARGET COVARIANCE

As explained in the main paper, InstanceNorm is a special case of PSDNorm with F' = 1 and an
identity target covariance matrix (i.e., whitening). PSDNorm extends this by (i) using temporal
context with F' > 1, and (ii) mapping the PSD to a target covariance matrix, such as a barycenter
(i.e., colorization).

In this section, we evaluate the impact of whitening on the performance of PSDNorm, to assess the
benefit of using a barycenter as the target covariance matrix. Table[6|reports results on 10 datasets
(balanced @400), with and without whitening.

Whitening improves performance on only one dataset (CCSHS), while projecting to the barycenter
yields the best results on 6 datasets.

This suggests that, while whitening may help when F' = 1, it is less effective when F' > 1. Using a
barycenter leads to a more robust and stable target covariance matrix.

A.9 GENERALIZATION OF PSDNORM IN CNNTRANSFORMER

The CNNTransformer architecture is a hybrid model that combines convolutional and transformer
layers for time series classification.
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Table 5: F1 scores of different methods on the left-out datasets. The lower section displays results
for training over datasets balanced @400 i.e., small-scale dataset, while the upper section presents
results for training over all subjects i.e., large-scale dataset. The best scores are highlighted in bold.

The reported standard deviations indicate performance variability across 3 seeds.

Dataset BatchNorm LayerNorm InstanceNorm TMA PSDNorm(F=5)
ABC 81.00+0.11  79.5040.49 80.56+0.39 80.89+0.06 81.121¢.37
CCSHS 89.83:&0.19 89.01:‘:0‘43 89.39;{:0_16 89~37j:0411 89.13:&0.17
CFS 88.30+0.52  87.39+0.06 88.4510.17 88.2840.37 88.5210.15
& CHAT 65.77+4.06  65.2543.96 71.3542.75 71.80+2.66 72.1642 21
% HOMEPAP 77.0640.14 76.6241.06 77.5010.46 77.8210.64 77.3010.24
2 MASS T7.2741.42 74.21 45 05 75.1245 08 77.7411 05 76.00+3.00
= MROS 85.5310.48 84.0240.95 85.2240.19 85.1340.98 85.0210.42
< PhysioNet 74~98i1.84 74.29:5:1‘50 75-07:|:1.05 76.01i0.73 75.29;‘;1_21
SHHS 78.954+0.92  78.0441.21 80.30+1.29 78.8440.43 80.3210.91
SOF 86.30+0.40  85.8240.22 86.57+0.60 86.3110.27 86.99.¢.33
Mean(Dataset) 80.5010.51 79.41i()‘73 80‘95i0.36 81.22i0,20 81.1910,11
Mean(Subject) 80.0510.78 79.09i()‘90 81‘31i083 80.5910.19 81'39i0A69
ABC 79.804+0.34 77.86+0.80 78.36+1.20 79.4940.68 78.084+0.78
CCSHS 88.3240.49  87.2240.51 88.7310.52 88.4710.62 88.7910.99
CFS 87.01409.18  85.6140.16 87.62.1¢.27 87.37+0.44 87.06+0.77
S CHAT 66564142 61.324005  64.191463  69.901274 71.86 10.05
é; HOMEPAP 76.2041905  76.151713 77.6610.58 76.8310.97 T7.8511.29
3 MASS 76.06+169  73.95+5.80 76.9411.12 76.3210.36 771641173
2 MROS 83.691030 82221107  83.95:053 84.15.046  83.51i0.s4
= PhysioNet 76.26i1_27 70-4O:t0.14 73.84:|:0'93 75.24:&2‘72 73-51:|:3.05
- SHHS 76981070  75.98+022 79121096 78191090  79.261135
SOF 85491055 84.231130  85.5010s6  85.5610.90 84.1411 05
Mean(Dataset) 79.6410.41 77.57+0.73 79.5940.95 80.15¢.26 80.124¢.57
Mean(Subject) 78.57i0.55 76.86i0.22 79~53i0.30 79~70i0466 80~29i0.68

Table 6: Impact of the whitening on the performance of PSDNorm on the 10 datasets balanced @

400.
Dataset BatchNorm  InstanceNorm PSDNorm
Barycenter =~ Whitening
ABC 78.26i1,33 78.73i0_42 78-18i0.68 77.86i1,33
CCSHS 87.42:|:0_16 87.6210_42 87.58:‘:0_30 87.80:|:0_23
CFS 84.32 057 84.721033  84.29.036 84.0110.60
CHAT 66.55i0,88 64.43i4,41 70.28i1_70 69.07i3,73
HOMEPAP  75.251¢.50 76.4710.63 76.83 1061 76.1310.93
MASS 70.0041.01 71.5244 13 72771100 69.11415
MROS 80.37i0,20 80.28i0,21 80.26i0,11 80.50i0_75
PhysioNet 75.8140.13 74.681055 74.8215 11 74.5841 57
SHHS 76.4410.92 78.6810.37 78881068 78771067
SOF 81.0847.14  80.684+7.3s 79.4919 41 80.10+0.62
Mean 77-55i0.34 77-78i0,46 78.34i0,42 77-79i0.30

The main paper presents a critical difference diagram for the CNNTransformer evaluated on datasets
balanced @400. It shows that PSDNorm with F' = 5 is the best-performing normalization layer.

In Table [/} we report the results of different normalization layers used in the CNNTransformer

architecture on datasets balanced @40

0.
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Table 7: Different normalization layers used in the CNNTransformer architecture for datasets
balanced @400.

Dataset BatchNorm  InstanceNorm TMA PSDNorm
ABC 76.9940.53 75.4040.36 77.5040.54 76.3110.46
CCSHS 86.75+0.48 87.0040.34 86.73+0.25 86.921.32
CFS 83.3240.35 83.77+0.34 83.1640.38 83.7140.29
CHAT 66.4449.49 66.4042 55 66.4741.37 70.04,¢.37
HOMEPAP 74.8141 36 75.9210.44 74.7610.83 75.2610.55
MASS 71.5140.47 71.7041 17 70.574+080 72.5540.81
MROS 79.77+0.31 79.7410.55 79.850.08 79.77+0.30
PhysioNet 72.5440.34 74.3640.84 71.3941 38 74.9510.41
SHHS 75.344+0.34 76.551+0.92 75.154098 77.26410.57
SOF 80.63+0.60 80.784+0.54 81.03104s8 80.3110.90
Mean 76.38i0_17 77-O7i0.28 76.30i0_57 77-83i0.36
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Figure 7: Performance of PSDNorm and BatchNorm with varying training set sizes. The BACC
score is plotted against the number of training subjects used with U-Sleep.

First, we observe that CNNTransformer performs slightly below U-Sleep. Second, BatchNorm and
InstanceNorm are the best performers on one and two datasets respectively, while PSDNorm achieves
the best performance on 7 out of 10 datasets.

PSDNorm with F' = 5 outperforms BatchNorm by a margin of 0.9 and InstanceNorm by 0.54 in
average score.

These results highlight that PSDNorm is a plug-and-play normalization layer that can be seamlessly
integrated into various architectures to reduce feature space variability.

A.10 EVOLUTION OF PERFORMANCE WITH TRAINING SET SIZE

The choice of f in PSDNorm controls the intensity of the normalization: larger f provide stronger
normalization, while smaller f allow more flexibility in the model. In Figure[7] we evaluate its impact
across different training set sizes and observe a clear trend: when trained on fewer subjects, larger
filter sizes yield better performance (i.e., f = 17), whereas smaller filter sizes are more effective with
larger datasets (i.e., f = 5). This suggests that with limited data, stronger normalization helps prevent
overfitting, while with more data, a more flexible model is preferred. On average, PSDNorm with
f = b offers a good compromise, achieving one of the best performances across all training set sizes.

A.11 CRITICAL DIFFERENCE DIAGRAM FOR U-SLEEP ON ALL SUBJECTS
The main paper presents the critical difference diagram for U-Sleep on the dataset balanced @400.

Figure [ extends this analysis to all subjects across datasets. The conclusion remains consistent:
PSDNorm with F' = 5 is the best-performing normalization layer, while BatchNorm performs the
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worst. Interestingly, PSDNorm with ' = 17 ranks second to last, suggesting that overly strong
adaptation can hurt performance when the dataset is large.

USleep
2.2 24 26 28 3.0

PSDNorm —

InstanceNorm — TMA

Figure 8: Critical difference diagram for U-Sleep on all subjects.

A.12 COMPUTATIONAL TIME OF PSDNORM

Table 8: Computational time of PSDNorm compared to BatchNorm and InstanceNorm for
USleep and CNNTransformer. The time is done for leave out the dataset CHAT and with the dataset
balanced @400. The time is averaged over 3 runs and reported in seconds.

Model Normalization Time per epoch (sec) Time of inference (sec)
USleep BatchNorm 161.94 +10.18 95.63 £4.85

USleep InstanceNorm 258.71 £ 2.15(x) 93.40 +8.18

USleep PSDNorm(f =5) 172.85+4.05 98.72 +12.09
CNNTransformer BatchNorm 130.88 + 2.67 93.03 £5.25
CNNTransformer InstanceNorm 127.47 +£5.14 92.70 £4.11
CNNTransformer PSDNorm(f =5) 152.83 4+2.29 92.57 +2.64

One important aspect of normalization layers is their computational cost, which can impact training
and inference times. Table [§]compares the computational time of PSDNorm with BatchNorm and
InstanceNorm in both U-Sleep and CNNTransformer architectures. In U-Sleep, PSDNorm takes
172.85 seconds per epoch, which is slightly higher than BatchNorm (161.94 seconds) but significantly
lower than InstanceNorm (258.71 seconds). The high cost of InstanceNorm is due to the fact that the
torch.compile was not working for Usleep and InstanceNorm. For inference, PSDNorm takes 98.72
seconds, which is comparable to BatchNorm (95.63 seconds) but slightly higher than InstanceNorm
(93.40 seconds).

In CNNTransformer, PSDNorm takes 152.83 seconds per epoch, which is higher than BatchNorm
(130.88 seconds) and InstanceNorm (127.47 seconds). However, for inference, PSDNorm is equiv-
alent to both BatchNorm and InstanceNorm. The modest computational overhead introduced by
PSDNorm is a worthwhile trade-off for its superior performance. This efficiency is enabled by the
highly optimized implementation of the Fast Fourier Transform (FFT) on GPUs.

A.13 CLASS-WISE PERFORMANCE

The Tables show that the most complicated sleep stage to classify is N1, with F1 scores consistently
lower than other stages across all normalization methods. This is likely due to the inherent difficulty
of distinguishing N1 from other stages, as it shares characteristics with both wakefulness and deeper
sleep stages. In contrast, stages like Wake and REM tend to have higher F1 scores, indicating that
they are easier to classify accurately.

Figure [9illustrates the class-wise F1 score differences between normalization layers score against
BatchNorm score. For almost all the classes, other normalization increase the performance compared
to BatchNorm except for N1 where InstanceNorm shows a decrease in performance. PSDNorm is
consistently the best performing normalization across all classes, highlighting its effectiveness in
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Table 9: Class-wise F1 scores for BatchNorm layer on datasets balanced @ 400.

Dataset Wake N1 N2 N3 REM F1

ABC 86.07+0.68 93.97+036 80.054052 71.354145 88.4310.13 79.80+0.34
CCSHS 95.2210.46 48.084287 84.881081 86.131101 88541093 88.3210.49
CFS 94.64,1 010 42.694039 82271075 T77.201030 86.941034 87.01i01s
CHAT 78.3541.31 35.574964 52.631077 T2.671195 76.1247150 66.5647 42
HOMEPAP 84.511;101 41.454071 73.881200 OH7.414170 82521133 76.2047.95
MASS 66.931+465 40.024000 78731067 67.011039 75.804565 76.06+1.69
MROS 94.634025 41.7341.11 73.741072 47.861033 82.701046 83.6940.39
PhysioNet 89.22i0_4g 46.01i0_90 73~93i3404 550411456 77-30i0.61 76.26i1,27
SHHS 85.68+1.57 32964134 72481200 61914131 79.094107 76.98+0.70
SOF 93.91 1015 38294100 79151057 71.861317 86.49:015 85.49105s
Mean 86.91:|:1_07 42.04:|:1_34 75.17:|:1,39 66.84:‘:1.25 82.39:‘:1.22 79-6410.83

Table 10: Class-wise F1 scores for LayerNorm layer with f = 5 on datasets balanced @ 400.

Dataset Wake NI N2 N3 REM F1

ABC 83.294294 52.934096 780741104 68914093 85.054081  77.86+0.50
CCSHS 93.661040 40.6811.11 84.8011928 86.461082 85.391062 87.221051
CFS 93.78+050 38.56+207 81.15140.11 75.39+1.77 83.681090  85.611p.16
CHAT 72.0710814 30111063 46.821609s 70451090 68114407  61.3210.05
HOMEPAP 83.5841.72 43.8511‘55 73-97i1.76 57-54i1.92 79.16i1,19 76.15i1,13
MASS 60.7314.02 40.561087 77.3946.28 65911401 69.9211053 73.9545.50
MROS 94.1210.10 38411091 71484365 47.851037 79.051066 82.2211.97
PhySiONCt 88.04i0,37 44.7212403 64.53i1_93 48.49i0‘54 68.17i7,15 70~40i0.14
SHHS 84.611949 32.894192 72.021948 61.134159 75.631063  75.98+0.22
SOF 93.2440.27 35.61l4049 77494215 T70.834300 83.924001 84.231130
Mean 84.71:|:1_56 39.83:5.58 72.77:‘:2.77 65.30:‘:1.99 77-77:t2.66 77~49:|:1436

Table 11: Class-wise F1 scores for Instancenorm layer on datasets balanced @ 400.

Dataset Wake N1 N2 N3 REM Fl1

ABC 86.464+1.75 54.454078 75.681216 70.754051 88.6040.75 78.36+1.20
CCSHS 95.6910.14 49.2312062 85291089 85981068 89.231091 88.7310.52
CFS 94.954019 44974134 83301060 77171039 87.454038 87.6240.27
CHAT T7.67+16.38 29474845 48.784621 71341064 74.58+1183 64.191463
HOMEPAP 86.271053 43.194146 75191107 58.3941.03 83441046 77.6610.5s
MASS 67.2541.95 43.194005 78.641176 65.781137 78.341118 76.944112
MROS 94.8040.18 41.464071 74424116 48.894231 82114010 83.959+0.53
PhysioNet 89.43i0.41 44~35i0.62 68.91i2.82 51-05j:1.32 77-35j:0.95 73.84i0,93
SHHS 88.621030 33.024006 74311007 64.28.072 80.32:042 79.1240.96
SOF 94.424000 37184037 78431188 72.394156 86.8240.70 85.50+0.86
Mean 87.55i1_20 42~05i2.27 74~29i2406 66.60i1.25 82.83i0.77 79-59i1.16
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Table 12: Class-wise F1 scores for TMA preprocessing with f = 5 on datasets balanced @ 400.

Dataset Wake NI N2 N3 REM F1

ABC 85.5040.93 54.761088 7891411907 71.404193 88431047 79.49+0.6s
CCSHS 95.511031 48.721007 85.024100 85.371133 89.331029 88.474060
CFS 94.7510.26 43.284997 83.061079 T77.381028 87171036 87.37+0.44
CHAT 80.70+4.88 37.51t185 58891408 75.7lia09 75954235 69.901274
HOMEPAP 84.13100s 43.924051 74.831140 57944119 81.58:015 76.8310.97
MASS 70451707 41.834363 77.301148 65.041201 79.504242 76.3210.36
MROS 94501032 41.7441713 75201196 48.924907 82.351070 84.1510.46
PhysioNet 89.40:&0,50 44.65:|:2‘19 71~13:|:5.36 51.61:‘:3.94 80.06:‘:1.02 75.24:‘:2.72
SHHS 88.3010.58 32.954017 73.2319258 62.331033 79271084 78.1910.90
SOF 93.6940.314 37.854216 79.334149 72.464192 86.8310.29 85.56+10.90
Mean 87.69i1_62 42~72i1.89 75~69i2408 66.821154 83-05i0.89 80-15i1.08

Table 13: Class-wise F1 scores for PSDNorm layer with f = 5 on datasets balanced @ 400.

Dataset Wake NI N2 N3 REM F1

ABC 84.57i1,39 54.46i0,59 75~94i1.14 70.7311.00 88.1940.23 78.08i0.78
CCSHS 95.7610.01 47974171 85341176 86.1740904 89.711033 88.79+0.99
CFS 95.0140.17 42.924106 82.081188 76.98+0.96 87.3110.13 87.0610.77
CHAT 82931199 36.594679 61.841995 T77.061132 78011162 71.8610.95
HOMEPAP 85.751145 44474078 75541172 58.7041.40 83.241055 77.8541.99
MASS 72.744212 42204116 78.564298 66.131237 78.234321 77.16471.73
MROS 94.631031 41401161 73.334180 47.561005 82524047 83.5110.84
PhysioNet 89.48i0_44 44~33i1.43 67~67i6416 49~37i4491 79-23i1.21 73-51i3.05
SHHS 89.0940.66 33.78+253 74154970 64.404020 80.2414703 79.264135
SOF 93.741097 34.701045 765840097 70.201002 85.501163 84.1441 05
Mean 88.37i0_90 42.28:|:2,01 75~10:|:2.61 66.73:‘:1,88 83.22:‘:1,04 80.12:‘:1,28

Normalization
0.03 A B InstanceNorm

mm TMA

mmm PSDNorm(F=5)
0.02
0.01 A u
0.00 + - - - - - b

—0.0114

Difference from BatchNorm

Wake N1 N2 N3 REM F1

Figure 9: Class-wise F1 score differences between normalization layers for dataset balanced @ 400.
The variance is giving by the seeds.
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Figure 10: Impact of the number of layers in U-Sleep using PSDNorm with f = 5. The BACC score
is plotted against the number of layers. The variance is one the Datasets.

Table 14: Performance of different normalization layers in U-Sleep in very low data regime on
datasets balanced @ 40.

Dataset BatchNorm LayerNorm InstanceNorm PSDNorm(f=5) PSDNorm(f=15)
ABC 73.831180 64.5443.46 72.2941 50 71.3541.15 72.6141 84
CCSHS 83.5840.45  T77.914159 85.33.10.69 85.1040.17 85.0040.25
CFS 81.131085 76.57411.89 81.5910.47 81.79.0.82 80.9310.13
CHAT 55-74i2.38 58~42i1464 63.38i5_26 59.66i0_89 67.86i3_59
HOMEPAP  74.521166 72.194165 76.031+0.48 76.0110.32 76.14.11 63
MASS 70.154309 64.7945.72 66.5840.30 69.4941 12 68.2146.25
MROS 77.1240.03 71.7649.38 76.594+0.28 77194038 76.77+1.30
PhysioNet 71.68:‘:1,61 69.59:‘:1,46 72.68:|:3_09 73.67:|:0.93 72.08:|:3,65
SHHS 73.7441.11 71.5040.97 75.5641.66 75.4341 .38 76.00.410.63
SOF 75.8449 16 73.5041.97 76.54.11 59 75.14 41 79 76.00+3.00
Mean 73-35j:0.87 7O~72j:1.22 75~19i1.03 74-79i0.75 75.88i0,93

improving sleep stage classification. But we have to note that for N1 and N2 the variance over the
seed is big showing the instability of the training for these classes.

A.14 STUDY OF IMPACT OF NUMBER OF LAYER IN U-SLEEP USING PSDNORM

In the main paper, we apply PSDNorm in 3 layers of U-Sleep. Here, we investigate the impact of
varying the number of layers that utilize PSDNorm. Figure [[0]shows the BACC score as a function of
the number of layers with PSDNorm. The results indicate that increasing the number of layers with
PSDNorm reach a plateau after 3 layers, but does reduce the variance across datasets. This suggests
that while adding more layers with PSDNorm can enhance performance, there are diminishing
returns beyond a certain point. Thus, using PSDNorm in 3 layers strikes a good balance between
performance, good variance, and computational efficiency.

A.15 STUDY IN VERY LOW DATA REGIME

In this section, we explore the performance of different normalization layers in U-Sleep when trained
on a very limited dataset, specifically balanced @ 40 subjects. The results indicate that in this low data
regime, PSDNorm with a small filter size (F' = 5) struggle to outperform InstanceNorm while still
outperforming BatchNorm and LayerNorm. However, PSDNorm with a larger filter size (/' = 15)
gives the best average performance across datasets with an increase of more than 10% in BACC
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Table 15: Comparison of PSDNorm with AdaBN on datasets balanced @400 using U-Sleep.

Dataset BatchNorm LayerNorm InstanceNorm AdaBN(3) AdaBN(full) TMA PSDNorm(F=5)
ABC 78.2641 33 75.2940.81 78.7310.42 78.2541 30 76.8911 30 78.0410.51 78.1840.68
CCSHS 87421016  85.2040.48 87.62.1¢ 42 87.38410.17 87.0210.16 87.5710.20 87.5840.30
CFS 84.321057 81.66+136 84.721033 84.211060 84.051056  84.58+0.20 84.2940.36
CHAT 66.5510.88 61.1941 .16 64.434+4.41 66.4940.89 66.441 .88 68.734+9.48 70.2841.70
HOMEPAP 75.2510.50 74.8640.25 76.4710.63 75.1540.46 74.46 10 53 76.1040.32 76.8310.61
MASS 70.0041.91  68.56+333 71.5241.13 69.6841.66 68.31+186 71.6341.92 72.7711.00
MROS 80.37+020 78.0540.22 80.2840.21 80.34+0.20 80.27+0.20 80.0940.40 80.2640.11
PhySiONCt 75.81i0_13 71482i2_12 74.68i0_55 75-27i0_14 74.0110.14 75-31i1.54 74-82i2.11
SHHS 76.4410.92 75.1240.39 78.6840.37 76.4310.92 76.411¢.92 77.0040.39 78.8810.68
SOF 81.0841.14  78.70+0.50 80.68+1.38 81.0541.13 80.67+1.13 81.2540.71 79.4940.41
Mean 77~22i0,34 75~04i0.42 78~17i0.28 77.18i0,34 77-08i0,34 77'74i0,36 78.85i0.59

compared to other normalization layers for CHAT dataset. This suggests that in scenarios with very
limited data, stronger normalization (larger filter size) is beneficial to prevent overfitting and enhance
generalization.

A.16 COMPARISON WITH ADABN

Table[T3] presents a comparison between PSDNorm and AdaBN using the U-Sleep architecture on
datasets balanced @400. AdaBN adapts the BatchNorm statistics separately for each subject. In the
original paper, all BN layers are replaced (AdaBN(full)), but for a fair comparison we also evaluate
one additional settings: AdaBN(3), which adapts only the first three BN layers.

As expected, AdaBN struggles to achieve strong performance on sleep staging. It consistently
underperforms compared to TMA and, in some cases, even performs worse than standard BatchNorm.
Notably, increasing the number of adapted BN layers further degrades performance, highlighting the
importance of not adapting too many layers within the model. In contrast, PSDNorm consistently
outperforms AdaBN across all datasets, demonstrating its effectiveness in normalizing features for
sleep staging tasks.
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